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Abstract
Metric embeddings are fundamental in machine
learning, enabling similarity search, dimensional-
ity reduction, and representation learning. They
underpin modern architectures like transform-
ers and large language models, facilitating scal-
able training and improved generalization. The-
oretically, the classic problem in embedding de-
sign is mapping arbitrary metrics into ℓp spaces
while approximately preserving pairwise dis-
tances. We study this problem in a fully dy-
namic setting, where the underlying metric is
a graph metric subject to edge insertions and
deletions. Our goal is to maintain an effi-
cient embedding after each update. We present
the first fully dynamic algorithm for this prob-
lem, achieving O(log(n))2qO(log(nW ))q−1 ex-
pected distortion with O(m1/q+o(1)) update time
and O(q log(n) log(nW )) query time, where q ≥
2 is an integer parameter.

1. Introduction
Metric embeddings are fundamental to computer science,
with applications in machine learning, databases, and net-
work design. In ML, they are critical for tasks like similarity
search, dimensionality reduction, and representation learn-
ing, underpinning modern architectures such as transform-
ers and large language models (Vaswani, 2017; Kenton &
Toutanova, 2019). By enabling efficient and context-aware
representations of high-dimensional data, embeddings drive
scalable training and task generalization, making them es-
sential for advancing state-of-the-art models.

From a theoretical perspective, the classic formulation of
metric embedding problem is as follows. We are given a set
of points in an input metric space M = (V, d), and we want
to map (i.e., embed) each point v ∈ V to a point v′ ∈ V ′

in a target metric space M ′ = (V ′, d′). While this can be
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done in many ways, the usual goal in embedding design is to
ensure small distortion, i.e., we make sure that the distances
are approximately preserved.

Low-distortion embeddings with “simple” target metric
spaces V ′ effectively simplify the original metric while ap-
proximately preserving distances. This can be useful from
an algorithm design perspective as quite often, the problem
is much more approachable in the simpler metric, especially
from a computational perspective. Because of this, many
works have previously studied such embeddings for a va-
riety of target metrics such as ℓp spaces (Bourgain, 1985)
and hierarchical trees (Bartal, 1996a; 1998; Fakcharoenphol
et al., 2004). A closely related line of work also examines
the problem of maintaining a low-stretch spanning tree of
a graph (Alon et al., 1995; Elkin et al., 2008). These em-
beddings have been used to obtain algorithms for a variety
of problems such as sparsest cut (Linial et al., 1995), net-
work design (Awerbuch & Azar, 1997; Garg et al., 2000),
minimum bandwidth (Blum et al., 1998), and metric label-
ing (Kleinberg & Tardos, 2002)

Embeddings are a cornerstone of modern machine learning,
powering models from word2vec to large language mod-
els (LLMs). These methods represent discrete data—such
as words, entities, or tokens—in continuous metric spaces,
enabling geometric reasoning about semantic relationships.
This makes embeddings useful for tasks such as node classi-
fication, link prediction, and community detection (Zhang
& Chen, 2018; Abu-El-Haija et al., 2018; Yun et al., 2021;
Davison et al., 2024) Among embedding targets, ℓp spaces
(especially ℓ2) have emerged as the standard representation
space in much of modern machine learning. This is due to
(a) their interpretability—distances and angles have clear
geometric meaning—and (b) the fact that many key com-
putational primitives are substantially more efficient in ℓp
spaces. For example, nearest neighbor search in high dimen-
sions is routinely performed using locality-sensitive hashing
(LSH), a technique specifically designed for ℓ2 and other
vector norms.

In the past decade, motivated by the surge of interest in mod-
ern Big Data applications, there has been a renewed interest
in studying classical problems in a dynamic setting, where
the underlying input is constantly changing and the goal is to
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always maintain a good solution. This is considerably more
difficult than the static setting, where the entire input is fixed
and given upfront, as the algorithm needs to quickly adapt
to (adversarial) changes in the data. For dynamic mainte-
nance of low-stretch spanning trees, (Forster & Goranci,
2019) obtained an algorithm for unweighted graphs with
n1/2+o(1) update time and no(1) average stretch. The update
time was further improved to no(1) by (Chechik & Zhang,
2020). This was achieved by developing a new pruning tech-
nique for obtaining Low Diameter Decompositions (LDDs),
which partition the graph into clusters with bounded di-
ameter such that the number of inter-cluster edges is low.
Building on this pruning technique, (Forster et al., 2021) ob-
tained a dynamic algorithm for embeddings into probabilis-
tic trees which has O(log(n))2qO(log(nW ))q−1 expected
distortion and O(m1/q+o(1)) update time where q ≥ 2 is an
integer parameter. A separate line of work studies online
algorithms for embeddings, where the focus is generally on
making irrevocable decisions rather than minimizing com-
putation (Indyk et al., 2010; Barta et al., 2020; Newman &
Rabinovich, 2023).

In this work, we focus on the problem of dynamically em-
bedding into ℓp spaces. In the static setting, the seminal
result of (Bourgain, 1985) shows that any metric can be
embedded into ℓp space with O(log n) distortion and using
O(log2 n) dimensions. This was later shown to be tight by
(Linial et al., 1995). Recently, (Banihashem et al., 2024)
studied this problem in a restricted dynamic setting, referred
to as the decremental setting, which only allows for the
edge weights to be increased. They obtained an algorithm
O((m1/2+o(1) log2(W )+Q log(n)) log(nW )) total update
time and O(log3 n) expected distortion, where W refers to
the largest weight in the graph and Q denotes the number
of updates. Their techniques do not generalize to the fully
dynamic setting, where distances can both increase and de-
crease; the main idea behind their approach is to directly
turn the information provided by the decremental LDDs of
(Forster et al., 2021) into coordinates for the ℓp space and it
is not clear whether a fully dynamic version of these LDDs
can be obtained. They additionally obtain a lower bound
showing that any algorithm that maintains an embedding
that has low distortion with high probability, and explicitly
outputs all changes the embedding of each vertex, cannot
be fully dynamic.

In this paper, we circumvent this negative result by pro-
viding a fully dynamic algorithm for the problem which
maintains the changes implicitly via a function ρ that can
efficiently be queried, and has low expected distortion.
Our embedding has the additional guarantee that it is non-
contractive with high probability. We further strengthen
the lower bound of (Banihashem et al., 2024) by extending
to embeddings with low expected distortion that are non-

contractive with high probability, showing that an efficient
algorithm with these properties cannot be obtained in the
fully dynamic model.

1.1. Our Results
We study a fully dynamic setting in which the edges of a
graph G = (V,E) are inserted and deleted, and each edge
has some weight in the range {1, . . . ,W}.1 Since we study
low-distortion embeddings into the ℓp metric where the dis-
tance between any two points is never +∞, we will assume
that any two vertices in different connected components
are in distance W ′ ≫ nW (whereas normally one would
assume that their distance is +∞). Intuitively, this is assum-
ing that there is always a “default” edge between any two
vertices with a very high weight, even if there is no edge
e ∈ E connecting them. 2

Our goal is to randomly maintain a low-distortion embed-
ding function ρ : V → Rℓ that can efficiently calculate the
embedding of a queried vertex. We note that, while our
choice of the embedding function is random, the function
ρ itself is a deterministic mapping. In other words, while
changing the random seed of the algorithm will change the
function ρ but for any fixed seed, the function ρ will not
change unless the graph changes.

Our main result is the following theorem.

Theorem 1.1. Let G = (V,E) be a weighted undirected
graph undergoing edge insertions and deletions. For any
q ≥ 2, there exists an algorithm A (see Algorithm 1) that
randomly maintains an embedding function ρ : V → Rℓ

with the following properties:

• Low expected distortion and non-contractivity. For
any two vertices u, v,

1 ≤ E [|ρ(u)− ρ(v)|]
dG(u, v)

≤ O(log(n))2qO(log(nW ))q−1,

(1)

where the expectation is over the randomness in choos-
ing ρ. Furthermore, with high probability3, the embed-

1In this work, we consider the oblivious adversary model, in
which the updates are specified by an adversary who knows our
algorithms but does not have access to the random bits we use; see
Section 2 for more details.

2The infinite distances is also noted by (Banihashem et al.,
2024), who study the decremental case. They handle this issue
by assuming that the input graph is originally connected and only
allowing edge weight increases (and not deletions) to ensure the
graph remains connected.

3Throughout the paper, we use the term with high probability
to denote probabilities ≥ 1− 1/na where a is an arbitrarily large
constant.
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ding is non-contractive; i.e.,

∥ρ(u)− ρ(v)∥ ≥ dG(u, v) for all u, v ∈ V (2)

• Efficient update time. the amortized update time of
the algorithm is m1/q+o(1) with high probability.

• Efficient query time. For any vertex v ∈ V , we can
calculate ρ(v) in time O(q log(nW ) log(n)).

We further show that if we require that each update to the
embedding is explicitly outputted, then no such result can
be obtained, even if the expected distortion is only required
to be sublinear.

Theorem 1.2. Assume that the algorithm A is a fully dy-
namic algorithm for maintaining a random embedding
ρ : V → Rk with the following guarantees:

1. Sublinear expected distortion and non-contractivity:
dG(u, v) ≤ E [ρ(u)− ρ(v)] ≤ o(W ′)dG(u, v) and
the embedding is non-contractive with probability at
least 3/4.

2. Explicit changes: any change to the embedding of a
vertex v is explicitly outputted by the algorithm.

The amortized update time of the algorithm A is at least
Ω(n).

1.2. Overview of Techniques
We next present an overview of our proofs. We start by
briefly recapping the standard approach for constructing
ℓp embeddings in the static setting. We then examine a
natural algorithm based on this approach and explain why
it fails in the dynamic setting. Finally, we present a new
algorithm based on these failures and briefly outline its proof
of correctness.

Recap of static approach. We start by briefly recapping
the standard approach for embedding into ℓp spaces. Set
h = ⌈log n⌉. For each i ∈ [h], we obtain the set Si

by uniformly sampling the vertices in V with probability
pi := 1

2i . For any vertex v, we define its embedding to
be the concatenation of its distances from Si.4 Formally,
ρ(v) := (dG(S1, v), . . . , dG(Sh, v)), where dG(S, v) de-
notes the distance between v and the closest vertex in S;
i.e., dG(S, v) := minvS∈S dG(vS , v). We claim that ρ sat-
isfies the desired bounds for the expected distortion. We
focus on the ℓ1 norm for simplicity; the results for the other
norms follow directly at the cost of an additional log factor
given the inequality ∥ρ(u)− ρ(v)∥p ≤ ∥ρ(u)− ρ(v)∥1 ≤
log(n)∥ρ(u)− ρ(v)∥p.

4The standard construction uses logn independent copies for
each Si to ensure high probability bounds; for simplicity we skip
this step as our main focus is on expectation bounds.

The upper bound follows from the triangle inequality for
the metric dG. Fix any two vertices u and v. For any i ∈ [h]
we have

|dG(Si, u)− dG(Si, v)| ≤ |dG(u, v)| (3)

by the triangle inequality; summing over all i we obtain
∥ρ(u)− ρ(v)∥p ≤ ∥ρ(u)− ρ(v)∥1 ≤ h|dG(u, v)|.

The proof of the lower bound is more involved. The main
idea is to show that the sets Si are likely to be “close” to one
of u and v and “far” from the other. Specifically, let ri to
be the smallest radius such that |B(u, ri)|, |B(v, ri)| ≥ 2i

where B(x, r) denotes the (closed) ball with radius r with
center x. If ri ≥ dG(u, v)/2, then reduce it to dG(u, v)/2;
i.e., set ri to the minimum of the two mentioned values.
We note that rh = dG(u, v)/2 because the minimum radius
to include all the points is at least dG(u, v), and r0 = 0
because x ∈ B(x, 0) for any vertex x. We claim that
E [|dG(Si, u)− dG(Si, v)|] ≥ c (ri − ri−1) for some con-
stant c. We note that this implies the lower bound because

E [∥ρ(u)− ρ(v)∥1] ≥
h∑

i=1

|dG(Si, u)− dG(Si, v)|

≥
h∑

i=1

c (ri − ri−1) = crh,

which is at least Ω(dG(u, v)). To prove the claim,
we assume that ri > ri−1 since otherwise it
holds trivially. By definition of ri, we have
min (|B(u, ri − 1)|, |B(v, ri − 1)|) < 2i; assume w.l.o.g
that |B(u, ri − 1)| < 2i. Since ri + ri−1 − 1 < 2ri − 1 <
dG(u, v), the sets B1 := B(v, ri−1) and B2 := B(u, ri−1)
do not intersect. Furthermore, |B1| ≥ 2i−1 and |B2| ≤ 2i.
Therefore, with constant probability, the set S intersects B1

but does not intersect B2; the probability of each of the two
events are constants given the size of the sets and the events
are independent because B1 ∩B2 = ∅. When this happens,
we have dG(Si, u) ≥ ri and dG(Si, v) ≤ ri−1, finishing
the proof.

Candidate dynamic algorithm. To implement this algo-
rithm dynamically, a natural approach is to use dynamic
distance oracles, which can calculate the distance between
any two vertices, to obtain dG(Si, u). Note that while Si is
a set of vertices and not a single vertex, we can contract the
set Si into a single vertex and run the distance oracle on the
contracted graph. The problem with this approach however
is that dynamic distance oracles only obtain approximate dis-
tances and the approximation breaks the triangle inequality
in Equation (3). Specifically, denoting the distance esti-
mates with d̂(., .), if u and v are close to each other but are
both far from Si, then a (1+ ϵ)-approximate distance oracle
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has an error up to ϵdG(Si, u) when calculating dG(Si, u)
and dG(Si, v), which means |d̂G(Si, u)− d̂G(Si, v)| can be
much larger than dG(u, v). The proof for the lower bounds
also breaks down; the approximation error for the distance
oracle changes the bound on |dG(Si, u) − dG(Si, v)| to
ri − (1 + ϵ)ri which is not desirable and may even be nega-
tive.

Low-distortion trees. Our solution to the above issues is
to obtain the distance estimates by calculating distances in
another metric; specifically, distance in trees.5 This allows
us to circumvent the issue with Equation (3) by invoking
the triangle inequality in the new metric. Specifically, let s
be some fixed vertex in the tree (e.g., the root), and consider
the embedding ρ(u) := dT (s, u). Then for any two vertices
u and v,

|ρ(u)− ρ(v)| = |dT (s, u)− dT (s, v)| ≤ dT (u, v),

which is small in expectation provided the tree T itself has
low expected distortion. This fixes the issue with the proof
for the upper bound.

For the lower bound proof, our key insight is to, somewhat
counter-intuitively, inject noise into the distance estimates.
Specifically, instead of working with the tree T directly,
we modify it by multiplying the weight for each edge by a
random number taken uniformly from {1, 2}. The main idea
here is that if u and v are far from each other, then their path
to the root must be very different. Since the multiplication
factor is chosen independently for each edge, this means that
the noises themselves ensure that the lower bound holds.

Formally, as we show in Section 4, one can break the path
Pu,v between u and v in the tree T into two parts P ′

u and
P ′
v such that

dT ′(s, u)− dT ′(s, v) =
∑
e∈P ′

u

wT ′(e)−
∑
e∈P ′

v

wT ′(e),

where T ′ refers to the new tree obtained after randomly
modifying edge weights. We note that our choice of P ′

u

and P ′
v does not depend on the scaling factors for T ′. If

the independent noises for the scaling of each edge simply
combined, they would equate to

∑
e∈Pu

wT (e) ≥ dT (u, v),
which would give the desired lower bound. This is not the
case in general however because of concentration; the vari-
ance in the above difference equals

∑
e∈Pu,v

Var(wT ′(e))

which is Θ
(∑

e∈Pu,v
w2

T (e)
)

given the choice of scaling
factors. This can be much less than the desired variance

5Technically, since the graph G can be disconnected, we will
be considering forests. Since any forest is simply a collection of
separate trees however, we use the terms interchangeably unless
the distinction is important (in which case we point this out).

of d2T (u, v) = (
∑

e∈Pu,v
wT )

2 which we require for the
proofs. To solve this issue, we will rely on a property of
existing dynamic tree embeddings which, to the best of
our knowledge, was not previously noted. Specifically, we
show that the path between any two vertices in V contains
a “heavy” edge whose weight is within a small factor of
dT (u, v) itself. This allows us to show that the (undesired)
concentration effects do not hold here and we can still re-
cover the lower bound.

Lower bound. The proof for the lower bound uses a
“bridge graph” which was also used by (Banihashem et al.,
2024). Specifically, we consider a graph with two separate
cliques of size n/2, which we repeatedly connect and dis-
connect. The fact that the embedding is non-contractive
with high probability means that each time the edge is re-
moved, the two sides need to be in distance W ′. When
the edge is added back however, the two sides need to be
close again. Using the expected distortion guarantee and
Markov’s inequality, we conclude that for any fixed u and
v that are in different components, with high probability,
∥ρ(u) − ρ(v)∥ must change after each update, which can
only happen if at least one of ρ(u) and ρ(v) change. Since
there are Ω(n2) pairs, this means that we require at least
Ω(n) changes.

2. Preliminaries
Notation. For any positive integer k, we use [k] to de-
note the set {1, . . . , k}. We use G = (V,E) to denote the
weighted graph being updated and use ρ to denote the em-
bedding we maintain. We use n and m to denote the number
of vertices and edges in G respectively and the weights are
assumed to be integers in the range [1,W ]. For any edge
e ∈ G, we use wG(e) to denote its weight. We drop the de-
pendence on G when it is clear from context. For any graph
G, we use dG(., .) to denote the shortest path metric in the
graph. If two vertices u and v are not in the same connected
component, we set dG(u, v) = W ′ where W ′ ≫ nW is
a large integer. For any two vertices u and v and a tree
T we will use PT

u,v to denote the (unique) path between u
and v (assuming both vertices are in the same component),
dropping the dependence on T when it is clear from the
context.

Given a graph G′, we will often use V (G′) and E(G′) to de-
note the vertices and edges of the graph respectively. Unless
otherwise stated, V and E refer to the vertices and edges of
the input graph G which is undergoing edge insertions and
edge deletions.

Embedding. We use ρ : V → V ′ to denote an embedding
from a metric space (V, d) to a metric space (V, d′). In this
paper, we will generally work with random embeddings.
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These are embedding functions ρ that are chosen, randomly,
from a larger set P . Importantly, the function ρ itself is
deterministic. i.e., querying ρ(v) multiple times will always
lead to the same answer. Our choice of the function ρ will
be random.

We say a (randomly chosen) embedding ρ has expected
distortion α if, for any u, v ∈ V ,

d(u, v) ≤ E [d′(ρ(u), ρ(v))] ≤ αd(u, v)

and say it is non-contractive if

∀u, v : d′(ρ(u), ρ(v)) ≥ d(u, v).

In this paper, we will consider mainly two target metric
spaces V ′ for the output embedding. The first choice metric
embedding into trees, or more generally forests. The second
choice is the set of real-valued vectors Rk with the ℓp norm

∥x− y∥p :=
(∑k

i=1(x[i]− y[i])p
)1/p

where x[i] denotes
the i-th coordinate of x. We note that distances can be
infinite for graphs and forests if two vertices are not in
the same connected component. However, for any two
points x, y in Rk, we have ∥x − y∥p < +∞. Given this
discrepancy, when considering embedding into ℓp spaces,
we define the input metric dG(., .) as the shortest path metric
for any two vertices that are in the same component, and
define it as W ′ for any two vertices that are not in the same
connected component of G. This is essentially stating that
even if there is no edge e ∈ E between two vertices, one
can still move from one to the other with weight W ′. Note
that, since W ′ ≫ nW and edge weights are in range [W ],
the distance between any two vertices that are in the same
component is less than the distance between two different
components.

Dynamic model. We consider a fully dynamic model in
which the edges of a graph G = (V,E) are inserted and
deleted, and the goal is to always maintain an embedding
into the ℓp space. In this work, we operate in the oblivious
adversary model for dynamic algorithms which is a stan-
dard model for dynamic algorithms (Henzinger et al., 2018;
Forster et al., 2021; Banihashem et al., 2024). This means
that an adversary chooses the update stream with knowledge
of our algorithm, but without knowing the random bits we
use or the output embedding we maintain. This is equivalent
to assuming that the adversary specifies all of the updates
before our algorithm is started.

Our algorithm will maintain an embedding function ρ which
can efficiently be queried. This is in contrast to explicit
maintenance of an embedding where the algorithm is re-
quired to explicitly output all changes to the embeddings of
the vertices, i.e., which vertices have had their embedding

value changed and what the new value is. In fact, our lower
bounds show that, in the model we are considering, explic-
itly maintaining a low-distortion embedding is not possible.
Note that explicit maintenance is possible in a variant of
the decremental model where the edge weights increase but
there are no deletions (Banihashem et al., 2024).

3. Fully Dynamic Embedding
In this section, we present our dynamic algorithm for the
problem. Our algorithm assumes access to a fully dynamic
algorithm for embedding the metric into trees in which the
path between each two vertices contains a heavy edge with
length comparable to the total path length. Formally, we
define the concept of edge-dominant trees below.

Definition 3.1 (edge-dominant trees). We say a tree T
is edge dominant with parameter β < 1 if for any
path (v1, . . . , vf ) in the tree, where vi are vertices of the
tree, there exists an edge (vi, vi+1) in the path satisfying
wT (vi, vi+1) ≥ βdT (v1, vf ). We say a forest T is edge
dominant if all the trees in the forest are edge dominant.

The following lemma shows that an edge dominant forest
with low distortion can be maintained dynamically. In order
to effectively leverage the existing results for embeddings
into trees, for this lemma we assume that the forest maps
different connected components of the input graph to sep-
arate trees; i.e., we do not assume that there is a “default”
edge of weight W ′ between any two vertices. We will later
add these default edges in our algorithm to connect different
components.

Lemma 3.2. For any q ≥ 2, There exists an algorithm
which has m1/q+o(1) amortized update time with high prob-
ability and embeds the graph into a rooted forest T with the
following properties.

1. Each tree in the forest has height at most
O(q log(nW )).

2. For any two vertices u and v, we have dT (u, v) ≥
dG(u, v) and E [dT (u, v)] ≤ αqdG(u, v) where αq =
O(log(n))2q−1O(log(nW ))q−1. Here dG(u, v) is set
to +∞ if u and v are in different components of G.

3. The forest is edge dominant with parameter βq = 4 ·
3−q .

Throughout its running time, the algorithm outputs all
changes made to the forest.

We refer to Section C for the proof of the lemma which is
based on the dynamic embedding of (Forster et al., 2021).
While the depth of the tree and the upper bound on expected
distances have already been established, our result on the
existence of a heavy edge in each path is, to the best of our
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knowledge, novel.

To simplify the presentation, we will actually build an
embedding that satisfies a scaled version of the guaran-
tees in Theorem 1.1; specifically, we will ensure that
βq

2 dG(u, v) ≤ E [∥ρ(u)− ρ(v)∥p] ≤ αq log(n)dG(u, v),
where αq, βq are chosen as in Lemma 3.2. Additionally,
we will show that ∥ρ(u)− ρ(v)∥p ≥ βq

2 dG(u, v) with high
probability. Scaling the embedding by βq/2 proves Theo-
rem 1.1.

Given the forest obtained from Lemma 3.2, our algorithm
works as follows. We first create a new vertex s and connect
the root of each tree in the forest to s with weight W ′.
This effectively turns the forest into a tree, where vertices
that used to be in separate components are now in distance
Θ(W ′). We then multiply each edge e in the tree by a
random number γe chosen uniformly at random from {1, 2},
obtaining a new tree T ′.

In order to obtain the embedding ρ(.) of a vertex v, we
repeat this procedure k = Θ(log n) times and set ρ(v) to
be the concatenation of the distances of v to the root in
each of these trees. As we will see in the analysis, the
exact choice of constant behind log n for choosing k will
control the high probability guarantees we provide for non-
contractivity; for any a ≥ 1, we can ensure that the tree is
non-contractive with probability 1 − 1/na by choosing a
large enough constant.

For simplicity, we will not store T ′ directly and make the
following changes. Firstly, instead of storing a value γe for
each edge, we store a value γv for each vertex v ̸= s in the
tree T ′. This is clearly equivalent because we can associate
each edge in the tree with its lower vertex. Secondly, we
store the value of γv in a hash table, adding and removing
values as vertices are created and deleted in T . In order to
obtain the distance of a vertex from s, we simply traverse the
path from the node to its root, summing up the weight of the
edges multiplied by γv. A formal pseudocode is provided
in Algorithm 1.

As we will see in the next section, the multiplication by
γe plays a crucial role in the analysis. In the original tree
T , it is possible that two vertices have similar distances to
the root, even if they are far from each other. This is not
acceptable however as we require vertices u and v that are
far from each other two have accordingly far values in the
embedding. By multiplying γe, we are effectively adding
noise to the distances. The size of this noise is roughly
equal to dT (u, v) itself, ensuring that the embedded values
are far as well. Furthermore, repeating the procedure k times
allows us to ensure that the embedding is non-contractive
with high probability.

Remark 3.3. While ideally we would want a graph G with

n vertices and no edges to be mapped to a tree T with n
vertices and no edges, this is not the case. In order the tree
embedding algorithm in Lemma 3.2 to avoid making Θ(n)
operations at initialization due to outputting the “new” ver-
tices V added to the tree, the algorithm does not explicitly
create a vertex in the tree for each vertex in the graph at
the start of the algorithm. Rather, it only creates a corre-
sponding vertex in the tree once there is an edge connected
to the vertex. As such, technically the value γv may not
be available for a vertex v if it is isolated, prohibiting us
from calculating ρ(v); specifically, we run into an error in
Line 19. This issue can be easily fixed however; if such a
value is not available, we sample the value γv at the query
time and add it to the hash table. If a corresponding vertex
is created later on, we simply replace the value. Since the
operation is O(1), it does not affect the update time bounds.

Algorithm 1: Dynamic embedding into ℓp metric.

1 Function Init():
2 Set k = Θ(log n) ;
3 Initialize dynamic forest embeddings T1, . . . , Tk

(See Section C) and empty hash tables
H1, . . . ,Hk;

4 Function Update(u):
// Insertion or Deletion

5 for i ∈ [k] do
6 (Vadd, Vremove, )← Update(Ti, u)

// Forward to Ti and store
new and deleted vertices in
Ti

7 for each v in Vremove do
8 Remove (v, γv) from Hi;
9 for each v in Vadd do

10 Sample γv uniformly at random from
{1, 2};

11 Add (v, γv) to Hi;
12 Function Query(u):
13 for i ∈ [k] do
14 p← u, ρi(u)← 0;
15 while p /∈ root(Ti) do
16 Retrieve γp from Hi;
17 ρi(u)← ρi(u) + wTi(p, parentTi

(p)) · γp;
18 p← parentTi

(p);
19 ρi(u)← ρi(u) +W ′ · γp ;
20 return ρ(u) = (ρ1(u), . . . , ρk(u))

4. Analysis
In this section, we prove our main result, i.e., Theorem 1.1.
The update time analysis of the algorithm follows by charg-
ing each operation to a corresponding tree operation; since
the update time of the trees is bounded as in Lemma 3.2, the
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claim follows. Since we maintain Θ(log(n)) trees, our up-
date times are a factor log(n) higher than that of Lemma 3.2,
but this is absorbed by the mo(1) term in the updates. The
only extra operation we make is maintaining γe, which can
be charged to the running time of the tree embedding algo-
rithm the changes to T are directly outputted. Since sam-
pling, storing, and removing each (e, γe) pair is O(1), this
only affects the update time by a constant. As for the query
time, since the height of tree is at most O(q log(nW )), we
can output the embedding in time O(q log(nW )) as well.
Note that the extra samplings of γv specified in Remark 3.3
do not affect this as sampling only takes O(1) time.

We now focus on the analysis of the distortion for our embed-
ding. We will show that for any two vertices u and v and any
coordinate i ∈ [k], the expected difference between ρi(u)
and ρi(v) satisfies the following upper and lower bounds.

βq

2
dG(u, v) ≤ E [|ρi(u)− ρi(v)|] ≤ αqdG(u, v). (4)

It follows that, for all p ∈ [1,∞],

E [∥ρ(u)− ρ(v)∥p] ≥ E [∥ρ(u)− ρ(v)∥∞] ≥ βq

2
dG(u, v),

and

E [∥ρ(u)− ρ(v)∥p] ≤ E [∥ρ(u)− ρ(v)∥1]
= αq log(n)dG(u, v).

As mentioned in Section 3, rescaling the tree proves The-
orem 1.1. We will now separately prove the upper and
lower bounds in Equation (4). To keep the notation simple,
throughout the proof we will omit the dependence on i and
simply write ρ(v), T, T ′ instead of ρi(v), Ti, T

′
i ; this is es-

sentially the same as focusing on the special case k = 1,
where i is always 1 and ρ(.) = ρ1(.).

To avoid complicating the argument with corner cases, we
assume throughout the proof that u and v are in the same
connected component; this allows us to directly leverage
the guarantees from Lemma 3.2 without running into the
+∞ issue discussed earlier. In Appendix B, we separately
handle the case where u and v are in different components.

Upper bound on expected distance To establish the up-
per bound, we note that by the triangle inequality in the
tree T ′, the difference between distances of two vertices
from the root is at most their distances in T ′. We know
from Lemma 3.2 however that distances in T (and there-
fore in T ′) can be bounded in terms of distances in G. As
such, E [|ρ(u)− ρ(v)|] is can also be bounded in terms of
dG(u, v). Formally,

|ρ(u)− ρ(v)| = |dT ′(s, u)− dT ′(s, v)| ≤ dT ′(u, v)

where we have used, respectively, the definition of ρ and the
triangle inequality. Since γe ≤ 2, this is at most 2dT (u, v).
Therefore, E [|ρ(u)− ρ(v)|] ≤ 2E [dT (u, v)] is at most

O(log(n))2q−1O(log(nW ))q−1dG(u, v),

where the inequality follows from Lemma 3.2

Lower bound on expected distance To establish the
lower bound, we begin by observing that since T ′ is a tree,
ρ(u)− ρ(v) can be obtained by breaking the path between
u and v into two parts and taking the difference between
the length of these parts. Formally, let Pu and Pv denote
the paths from the root to u and v respectively and let P ′

denote the longest sub-path appearing in both Pu and Pv.
Let P ′

u = Pu\P ′ and P ′
v = Pv\P ′ denote the remainder of

the paths for u and v.

Observe however that P ′
u,v := P ′

u + P ′
v (i.e., the concatena-

tion of P ′
u and P ′

v) is the unique path from u to v. Formally,
letting ũ denote the last vertex in P ′, one can get from the
vertex u to ũ by following P ′

u and get from ũ to v by follow-
ing P ′

v . This is indeed a path (i.e., does not contain repeated
vertices) because if a vertex, say ṽ, appears in both P ′

u and
P ′
v, then there is a sub-path in both P ′

u and P ′
v from ũ to

ṽ. Since the tree does not contain any cycles, this sub-path
must be the same in both P ′

u and P ′
v, contradicting the as-

sumption that P ′ is the longest shared sub-path in Pu and
Pv .

We can therefore rewrite |ρ(u)− ρ(v)| as

|wT ′(Pu)− wT ′(Pv)|
= |wT ′(P ′) + wT ′(P ′

u)− wT ′(P ′)− wT ′(P ′
v)|

= |wT ′(P ′
u)− wT ′(P ′

v)|, (5)

The first equality holds by the definition of Pu and Pv

and the second equality follows from the definition of P ′,
where wT ′(.) denotes the weight function in the tree T ′.
Let eu,v denote the edge in Pu,v whose weight (in T ) is
at least βqdT (u, v); such an edge is guaranteed to exist by
Lemma 3.2. We will use the noise obtained from multiply-
ing w(eu,v) by γeu,v

to prove the lower bound. Formally,
fix the tree T as well as all values γe for e ̸= eu,v. Set
αe = (−1)1{e∈Pv}+1{eu,v∈Pu}; i.e., αe is −1 for all e that
are in the same part of P ′

u,v as eu,v and is 1 for all other e.
Since P ′

u+P ′
v = Pu,v , we can rewrite |wT ′(P ′

u)−wT ′(P ′
v)|

as

|wT ′(P ′
u)− wT ′(P ′

v)| = |wT ′(eu,v)−
∑

e ̸=eu,v

αewe|. (6)

Since we have fixed the graph T ′ and {γe}e ̸=eu,v
, the only

randomness in the above expression is in γeu,v
. It is well-

known that for a random variable X , the value α minimizing
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E [|X − α|] is the median of X and since wT (eu,v) is fixed,
the median of γeu,v (wT (u, v)) is 3

2wT (u, v). Therefore,

E [|wT ′(P ′
u)− wT ′(P ′

v)|]

= E

|γeu,vwT (eu,v)−
∑

e ̸=eu,v

αewe|


≥ E

[
|γeu,v

wT (eu,v)−
3

2
wT (u, v)|

]
,

where the inequality holds by the definition of the median
and the second equality holds since γeu,v

∼ Uniform {1, 2}.
Using the definition of eu,v and the fact that T is non-
contractive, we can further bound this with

1

2
wT (eu,v) ≥ βqdT (u, v) ≥ βqdG(u, v).

Since the values of T and {γe}e ̸=eu,v
were assumed to

be fixed in the above derivation, we have shown that
E
[
|ρ(u)− ρ(v)| | T, {γe}e ̸=eu,v

]
≥ dG(u, v). Taking it-

erated expectation we conclude that E [|ρ(u)− ρ(v)|] ≥
dG(u, v), finishing the proof.

Non-contractivity. It remains to show that ∥ρ(u) −
ρ(v)∥ ≥ βqdG(u, v) holds with high probability, where
we note that we are once again considering the vectorized
embedding ρ(.) = (ρ1(.), . . . , ρk(.)) where k = Θ(log n).
To prove this, it suffices to show that, for all i, with probabil-
ity at least 1/2 we have |ρi(u)−ρi(v)| ≥ βqdG(u, v). Since
k = Θ(log n), this would imply that with high probability,
|ρi(u) − ρi(v)| ≥ βqdG(u, v) for some i ∈ [k], finishing
the proof.

To prove the above claim, we once again fix the value of T
and {γe}e ̸=eu,v

. Since γe takes the values 1 and 2 with prob-
ability 1/2 each, Equations (5) and (6) imply that dT (u, v)
takes the values d1 := |wT (eu,v) −

∑
e ̸=eu,v

αewe| and
d2 := |2wT (eu,v) −

∑
e̸=eu,v

αewe| with probability 1/2

each. We note however that max {d1, d2} is at least d1+d2

2 ,
and d1 + d2 is at least

|wT (eu,v)−
∑

e ̸=eu,v

αewe|+ |2wT (eu,v)−
∑

e ̸=eu,v

αewe|

≥ wT (eu,v),

where the second inequality follows from the fact that |a|+
|b| ≥ |a− b| for all a, b ∈ R. By definition of eu,v , we have
wT (eu,v) ≥ βqdG(u, v), finishing the proof.

5. Lower Bound
In this section, we prove Theorem 1.2. We note that the
proof also works for the more general setting where ρ(.)
maps the vertices to “labels” that are used to calculate dis-
tances via some function.

Proof. Consider the following “bridge” graph example. We
first partition the set of vertices into two parts V1 and V2

with sizes ⌈n/2⌉ and ⌊n/2⌋ respectively. We then connect
all of the vertices that are in the same partition using edges
of weight 1. Let T denote the time step at which all the
vertices in the same partition are connected. After this
step we repeatedly insert and delete a “bridge” edge with
weight 1 between the two components. We repeat this step
for T ′ times where T ′ ≫ T is an arbitrary parameter (see
Algorithm 2).

Fix any two vertices u ∈ V1 and v ∈ V2. Recall that α
denotes the expected distortion of the embedding. When
the two components are connected, we have dG(u, v) ≤
3. Applying Markov’s inequality and using the expected
distortion guarantee we obtain

Pr [∥ρ(u)− ρ(v)∥ ≥W ′/2] ≤ 2E [∥ρ(u)− ρ(v)∥]
W ′

≤ 6α

W ′ ,

which is at most 1/4. When the components are not con-
nected, with probability at least 3/4 the embedding is non-
contractive and therefore we have ∥ρ(u) − ρ(v)∥ ≥ W ′.
Taking a union bound, we conclude that for any two consec-
utive time steps, with probability at least 1/2, the value of
∥ρ(u)− ρ(v)∥ needs to change. This in turn means that at
least one of the values ρ(u) and ρ(v) needs to change.

For any t ≥ T , let νt,v denote the indicator random variable
that takes the value 1 if the embedding ρ(v) changes after
time t and let νt =

∑
v νt,v denote the number of vertices

whose embedding changes. Let ρt(.) denote the value of ρ
right after the update. We can therefore write ⌈n/2⌉E [νt]
as

⌈n/2⌉
∑
u∈V

E [νt,v]

≥
∑
u∈V1

|V2|E [νt,v] +
∑
u∈V2

|V1|E [νt,v]

=
∑
u∈V1

∑
v∈V2

E [νt,u + νt,v]

≥
∑
u∈V1

∑
v∈V2

Pr [νt,u + νt,v ≥ 1]

=
∑
u∈V1

∑
v∈V2

Pr [(ρt(u), ρt(v)) ̸= (ρt−1(u), ρt−1(v))]

≥
∑
u∈V1

∑
v∈V2

Pr [∥ρt(u)− ρt(v)∥ ≠ ∥ρt−1(u)− ρt−1(v)∥]

≥ |V1||V2| ·
1

2
,

where the second equality uses the fact that |V1|, |V2| ≤
⌈n/2⌉, the third equality uses the definition of ν and the final

8



Fully Dynamic Embedding into ℓp Spaces

inequality uses the previously proved claim that the distance
∥ρ(u)−ρ(v)∥ needs to change with probability at least 1/2.
It follows that, for any t ≥ T , we have E [νt] ≥ Ω(n). This
in turn implies that the expected number of changes to the
embedding in the first T ′ steps is at least Ω(n(T ′ − T )).
Therefore, the expected amortized update time is at least
Ω(n(T ′ − T )/T ′) which is Ω(n) for T ′ ≥ 2T .

6. Conclusion
We presented the first efficient fully dynamic algorithm
for embedding graph metrics into ℓp spaces, supporting
both edge insertions and deletions with efficient update
times. Our algorithm has low expected distortion, is non-
contractive, and allows efficient retrieval of a queried ver-
tex’s embedding. Additionally, we established a lower
bound showing that any algorithm explicitly outputting em-
bedding updates cannot simultaneously be non-contractive
and achieve low expected distortion, highlighting the neces-
sity of our assumptions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Further Related Work
Static algorithms. As mentioned earlier Given the importance of embeddings into ℓp spaces, many previous works have
studied the problem of low-distortion embeddings in the statics setting; we here highlight a few works that are more closely
related to our problem. Most notably, (Bourgain, 1985) obtained an algorithm for embedding into an ℓp space with O(log n)
distortion, which is tight (Linial et al., 1995). For embedding into trees, the seminal work of (Bartal, 1996b) obtained an
algorithm with O(log2 n) distortion, which was later improved to O(log n) by (Fakcharoenphol et al., 2003). Additionally,
it is possible to obtain an embedding directly from trees into ℓ2 with

√
log log n distortion (Linial et al., 1998).

While these works and the techniques they introduce are the main inspiration behind the ideas used in our paper, they do not
have any direct implications for our problem because they consider a static setting whereas we study a dynamic setting
in which the graph is constantly changing. Rerunning a static algorithm after each update is possible but not efficient; in
contrast, we show how to maintain a low-distortion embedding efficiently.

Dynamic embeddings. Recent works have studied dynamic embeddings into simple metric spaces. In this line of
work, (Forster et al., 2021) obtained a decremental algorithm with O(m1+o(1)) update time and O(log2(n) log(nW ))
expected distortion, as well as a fully dynamic algorithm with O(m1/q+o(1)) update time and O(log(n))2qO(log(nW ))q−1

expected distortion. One of the key tools they developed to obtain these results is an efficient decremental algorithm
for maintaining Low Diameter Decompositions (LDDs) for a graph. This construction was later used by (Banihashem
et al., 2024) who obtained a decremental algorithm for embedding into ℓp spaces with O(log3 n) expected distortion and
O((m1+o(1) log2 W + Q log(n)) log(nW )) total update time, where Q refers to the total number of updates. They also
showed that efficiently maintaining a low-distortion embedding is not possible if we require that the embedding has low
distortion with high probability, and each change to the embedding of a vertex is explicitly outputted by the algorithm.
Our work extends these results by obtaining the first fully dynamic algorithm for embedding into ℓp spaces. Note that
the negative result of (Banihashem et al., 2024) does not apply to our setting because (a) we do not output changes to the
embedding of each vertex and (b) our distortion guarantees only hold in expectation. We further strengthen this negative
result by showing that even if a fully dynamic algorithm only preserves distances in expectation, as long as the embedding is
non-contractive, explicitly outputting changes cannot be done efficiently.

Dynamic spanning trees. A closely related line of work considers the problem of maintaining a spanning tree of a graph
with low average stretch. For unweighted graphs, was first studied by (Forster & Goranci, 2019), who obtained an algorithm
for with n1/2+o(1) update time and no(1) average stretch. The update time was later improved to no(1) by (Chechik &
Zhang, 2020). In addition, (Chechik & Zhang, 2020) obtained an algorithm for the problem in a decremental setting. A key
contribution of this work was a novel pruning technique for obtaining Low Diameter Decompositions (LDDs), which was
later leveraged by the aforementioned work of (Forster et al., 2021) to obtain a dynamic embedding into trees.

Dynamic shortest paths. Many works have considered dynamic algorithms for maintaining information about distances
in the graph in some form. This includes single source shortest paths (Roditty & Zwick, 2004; Henzinger et al., 2016;
2018), distance oracles (Thorup & Zwick, 2005; Abraham et al., 2012; Forster et al., 2023), spanners (Baswana et al., 2012;
Bodwin & Krinninger, 2016), and hopsets (Łącki & Nazari, 2020) to name a few. These tools have proved to be instrumental
in the development of dynamic embeddings; e.g., the decremental LDD of (Forster et al., 2021) uses the decremental SSSP
of (Henzinger et al., 2018). We refer to (Hanauer et al., 2021) for a comprehensive survey. We note that while randomness is
crucial for many of the developments in the field, many works have studied deterministic algorithms for these problems as
well (Chuzhoy, 2021; Bernstein et al., 2022).

Online embeddings. A closely related line of work is online embeddings where the elements of a metric arrive sequentially
and we need to assign an embedding to them (Indyk et al., 2010; Barta et al., 2020; Newman & Rabinovich, 2023). While the
problem statement is similar to the dynamic setting, especially the insertion-only case, the two problems are fundamentally
different. For dynamic algorithms, the main focus is on having a low update time and as such the problem is mainly
computational. In contrast, the key issue for designing online embeddings, and online algorithms in general, is that the
algorithm is obtaining information incrementally, but needs to make decisions irrevocably.
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B. Omitted Proofs
B.1. Proof of Theorem 1.1
Distortion across different components. We now handle the case where u and v are in different components of the graph
G. Given Lemma 3.2, this means that the two vertices will be in separate trees in each of the forests T1, . . . , Tk. The upper
bound on the distortion follows fairly easily, the difference between the embedding of any two vertices is at most

∥ρ(u)− ρ(v)∥ ≤
k∑

i=1

|ρi(u)− ρi(v)|

≤
k∑

i=1

|ρi(u)|+
k∑

i=1

|ρi(v)|

≤ Θ(k)max
u

E [|ρ1(u)|]),

where for the final inequality we have used the fact that T1, . . . , Tk are all sampled from the same distribution and as
such ρi(u) are all i.i.d. Given our construction of Ti however, for any u, the distance to the root of the tree is at most
O(1)qnW ≤ αqnW ; this follows from the recursive nature of the tree construction which, in each iteration, can increase
the maximum distance by at most a constant factor. This means we can bound the distance of ρ(u) and ρ(v) with
Θ(log(n)αqW

′), which finishes the upper bound proof because dG(u, v) = W ′.

As for the lower bounds, we note that since the two same argument as before applies; specifically, if we do not apply the
scaling by γv , the path connecting u and v in the tree T ′ contains two edges that are of weight W ′. The exact same argument
as before implies that the random scaling causes the vertices to be in distance at least W ′ in both expectation and high
probability.

B.2. Pseudocode for Theorem 1.2
Algorithm 2: Bridge Edge Update Process
Input: Vertex set V of size n, number of bridge toggles T ′

Output: Sequence of graph updates
1 Partition V into V1 and V2 such that |V1| = ⌈n/2⌉, |V2| = ⌊n/2⌋;
2 Add all edges of weight 1 between pairs in V1 and between pairs in V2;
3 Let T ← time step when intra-partition edges are fully added;
4 Fix any u ∈ V1 and v ∈ V2;
5 for t = T + 1 to T + T ′ do
6 if t is odd then
7 Insert bridge edge (u, v) of weight 1;
8 else
9 Delete bridge edge (u, v);

C. Constructing Edge Dominant Trees
In this section, we prove Lemma 3.2. The proof uses the recursive approach of (Forster et al., 2021) for constructing fully
dynamic trees. The approach starts with a (slow) fully dynamic algorithm and “bootstraps” it using a decremental algorithm
and obtains a speedup. (See also (Abraham et al., 2012; Forster et al., 2023) for similar applications of this technique) If
we simply rerun a static algorithm after each update for the fully dynamic algorithm and use the decremental algorithm
of (Forster et al., 2021), this leads to an algorithm with update time m1/2+o(1). Repeating this approach with the new
dynamic algorithm, we can further improve the running time, at the cost of worse expected distortion. As we show in this
section, this fully dynamic algorithm satisfies the edge dominant guarantees required by Lemma 3.2.

The remainder of the section is organized as follows. We first provide the boosting reduction of (Forster et al., 2021) and state
the reduction we use from prior work (Section C.1). We then show that the tree obtained from the boosted algorithm satisfies
the edge dominant guarantee required in Lemma 3.2, provided that the original algorithms used for boosting satisfied the
property (Section C.2). Finally, we state a specific instantiation of the boosting framework using the decremental algorithm
of (Forster et al., 2021) and the static algorithm of (Blelloch et al., 2016) (Section C.3).
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C.1. Tree Construction
We now present the fully dynamic reduction of (Forster et al., 2021) for boosting a slow fully dynamic algorithm into a
faster one by combining it with a decremental algorithm. Specifically, given a decremental algorithm A and a (slower) fully
dynamic algorithm B, we obtain a new fully dynamic algorithm C whose update time improves on that of B.

Overview of approach. We run the algorithm A in phases of length ℓ, restarting the algorithm at the beginning of each
phase. In each time step, let E denote the set of edges together with their weight and F denote the same set at the start of
the current phase. We will use I = E\F to denote the set of edges that have been inserted since the beginning of the phase
but have not yet been deleted and use D = F\E to denote the set of edges that have been deleted since the beginning of the
phase.

Let U denote the set of endpoints of edges in I; i.e., U = {u : (u, v) ∈ I for some v}. Let TA denote the tree maintained by
the decremental algorithm and define Pu to be the path from the root to u in TA. Define P := ∪u∈UPu and H := P ∪ U .
Let TB be the graph obtained by maintaining a fully dynamic embedding of H using the algorithm B. Consider the graph
(TA\H) ∪ TB obtained by replacing H in TA with the tree TB , and let TC be the resultig graph.

Dynamic maintenance. We next state a lemma form (Forster et al., 2021) that shows the aforementioned values can be
maintained efficiently in a dynamic setting. We begin with some definitions. Let hA and sA denote upper bounds on the
height of TA and the expected distortion of TA respectively. Let hB and sB denote the corresponding values for TB . Let χA

denote an upper bound on the number of times the path from a fixed vertex to the root can change during a run of algorithm
A. Let tA(m,n) and uB(m,n) denote upper bounds on, respectively, the total time of algorithm A and amortized update
time of algorithm B when run on a graph with n vertices and at most m edges.

Lemma C.1 ((Forster et al., 2021)). The graph TC is a non-contractive forest with expected stretch bounded by sAsB , and
has height at most hA + hB . Additionally, for any integer ℓ ≥ 1, there exists a fully dynamic algorithm that maintains the
tree TC with amortized update time O(tA(m,n) log(n)/ℓ) such assuming at least ℓ updates are performed.

C.2. Edge Dominant Property
We now show that the tree TC is edge dominant. On a very high level, this seems reasonable since static embeddings into
trees use the framework of Bartal’s embedding which is Hierarchical and weights multiply by two when traveling from a
leaf towards the root. This idea more or less extends to decremental dynamic algorithms as well.

For the fully dynamic case however, the proof is more subtle since the output tree is actually obtained by combining two
separate trees in the algorithm. To prove the lemma, we will show that the path connecting any two vertices in a tree can
be divided into at most three parts such that each part lies entirely in one tree (Lemma C.5). This implies the Lemma’s
statement by considering the maximum edge in each of these parts.

Lemma C.2. Assume that the trees TA and TB are edge dominant with parameter α, and assume the algorithms A and B
preserve connectivity. Then the tree TC is edge dominant with scaling α/3.

We say a tree embedding T preserves connectivity for G if for any pair of vertices are connected in G if and only if they are
connected in T . We next show that the tree TC preserves connectivity. This can be obtained from the distortion guarantees
of the forest; since the forest is non-contractive, any two vertices that are not in the same component of the graph should not
be in the same component of the tree. As for vertices that are not in the same component, if they fall in different components
with non-zero probability, then their expected distortion would be +∞, contradicting Lemma C.1. We provide a simple
proof for completeness however as it provides a nice intuition for the remaining proofs.

Lemma C.3. If TA and TB preserve connectivity then so does TC .

Proof. First note that if u and v are in different components in the input, then they must be in different trees in the output
since TC is non-contractive. Now, assume that u and v are in the same connected component in G. Consider the path
connecting u and v in G and label each vertex with a number indicating the component of that vertex in TC . Since u and v
have different labels, there must be an edge in the path such that the label of its endpoints is different.

There are now two cases:
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1. The edge is in F . In this case, since TA preserves connectivity, the endpoints must be in the same component of TA.
This means that they are connected in TC as well however. Specifically, to get from one endpoints to another, we can
follow the path connecting them in TA and for any edge that is in P (and therefore is not in TC ), we can just go through
a “detour” path in TB . Such a detour must exist since TB preserves connectivity.

2. The edge is not in F . In this case, the edge must be in the set I which means it appears in H . Since TB preserves
connectivity, the endpoints of the edge are connected in TB , which in turn means that they must be in the same
connected component of TC .

In both cases, we have shown that the endpoints of the edge were in the same component of TC , contradicting the choice of
the edge. It follows that u and v are in the same component, finishing the proof.

The following lemma states that the tree TA\P does not connect different components of TB together. We note that the
converse is not true and TB can connect different components of TA together; indeed, if an edge is inserted in G connecting
two different components, then the components of A are unchanged (assuming the ℓ-length phase has not ended), and TB is
necessary for connecting the two components in TC .

Lemma C.4. If u, v ∈ V (TB) then u and v are in the same connected component in TB if and only if they are in the same
connected component in TC .

Proof. Assume that u and v are in the same component of TB; then they are clearly in the same connected component in
TC as well since E(TB) ⊆ E(TC). Conversely, assume that u, v ∈ V (TB) are connected in TC ; we will show that they are
connected in TB as well. The key insight we rely upon is that if a vertex v ∈ V (TA) appears in U , then so does the entirety
of its path to the root. Therefore, the graph U cannot put two vertices in the same component of TA in different components.
Since TB preserves connectivity, this means that TB cannot do this either.

Formally, let e1, . . . , ef denote the edges of the path connecting them. If all the edges are in E(TB), then the claim clearly
holds. Otherwise, let ei denote the first edge not in E(TB). Since the edge is not in TB , it must be in TA\P . Continue along
the path until we once again reach a vertex in TB . Let (u′, v′) denote the vertices in TB that are connected via this sub-path.
Since u′ and v′ are connected via TA, they are connected in P because P contains the path from both of these endpoints
to the root. Since TB preserves connectivity, this means that these endpoints are in the same component of TB as well.
Therefore, there must be a path connecting them in TB . This is a contradiction as such a path would form a cycle with the
path in TA\P , contradicting the fact that TC is a tree.

Lemma C.5. Fix two vertices u, v ∈ V (TC) and let e1, . . . , ef denote the edges of the path connecting them. There exists
indices 0 ≤ i ≤ j ≤ f + 1 such that e1, . . . , ei and ej , . . . , ef are in E(TA\P ) and ei+1, . . . , ej−1 are in E(TB).

Proof. The key insight behind the proof is that since (TA\P ) cannot connect two components of TB , any path in TC cannot
enter TB after leaving it. This means that we can break the path into three parts representing before TB , during TB , and after
TB respectively. Formally, let V (P ) denote the set of vertices in P . If there PC

u,v ∩ VP is empty, then the path must entirely
lie in either TA\P or in TB . This is because in order to get from any vertex in TA\P to TB , we need to first go through
some vertex in V (P ). In this case, the lemma clearly holds. Otherwise, let vi, vj denote the first and last vertices for the
path in V (P ). Since the vertices are connected, they are in the same connected component in TC which, by the previous
lemma, implies they are in the same connected component in TB . Therefore, the path connecting them lies entirely in TB ,
finishing the proof. (see Figure 1 for an illustration).

We can now prove Lemma C.2

Proof of Lemma C.2. Fix the vertices u, v ∈ V (TC). Let e1, . . . , ef denote the edges of the path connecting them. We need
to show that there exists a value i′ ∈ [f ] such that

w(ei′) ≥
α

3
dTC

(u, v)
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vyxbau

Figure 1. Example for Lemma C.5. The blue vertices and edges denote the tree TA. Edges (a, b) and (x, y) have been inserted after the
start of the current phase. The dashed edges denote the edges of the graph U and the green vertices and edges denote the tree TC ; note
that the leaves TC are in TA. In order to get from u to v, we start from the vertex u and following the path to the root until reaching the
vertex in TB . Next, we follow the path in TB to the appropriate leaf and go downwards until reaching v.

Let i and j be the indices specified by Lemma C.5. Define the sub-paths P1,i ∈ (e1, . . . , ei), Pi,j ∈ (ei, . . . , ej), and
Pj,f ∈ (e1, . . . , ei). Let e1,i, ei,j , and ej,f denote the heaviest edges in each sub-path; if any sub-path is empty, set the
corresponding edge to an arbitrary value such as Null and define its weight to be 0.

Since TA and TB are edge dominant with parameter α, and each of the three sub-paths is entirely contained in either TA or
TB , we have w(e1,i) ≥ αw(P1,i) and similarly for ei,j and ej,f . Therefore,

max {w(e1,i), w(ei,j), w(ej,f )}

≥ 1

3
(w(e1,i) + w(ei,j) + w(ej,f ))

≥ α

3
(w(P1,i) + w(Pi,j) + w(Pj,f ))

= α
dTC

(u, v)

3
,

where the first inequality holds because max ≥ average and the second inequality holds by Edge-dominance of TA, TB .

C.3. Proof of Lemma 3.2
Combining the above results, we obtain Lemma 3.2. The lemma follows using the same proof as Theorem 4.2 in (Forster
et al., 2021). We sketch the proof for completeness, emphasizing the edge-dominant property.

Proof. We can firstly assume that an upper bound on m because we can start with the value 1 and, each time the upper
bound is violated, multiply it by 2 and restart the procedure; since the upper bounds increase exponentially, the restarting
cost can always be charged back to the previous updates at the cost of a constant factor.

Assuming an upper bound is known, the proof follows by induction on i. The base case follows from (Blelloch et al., 2016)
who obtain an efficient algorithm for calculating the FRT tree of (Fakcharoenphol et al., 2003). We note that the tree is
edge-dominant with parameter 1/4. For q ≥ 2, we use Lemma C.1. Specifically, set A to be the decremental algorithm of
(Forster et al., 2021) and set B to be the fully dynamic algorithm obtained by induction for q − 1. As long as there are less
than ℓ = m1−1/q updates, we can simply run the fully dynamic algorithm. Afterwards, we run the recursive algorithm of
Section C.1.

The stretch dominant property holds before we reach ℓ updates because of the induction hypothesis. As for after the
ℓ updates, the fully dynamic algorithm satisfies the property with βq−1. Additionally, the decremental algorithm A
satisfies it with parameter 1/4. Lemma C.2 now implies that the recursive algorithm satisfies the property with parameter
min

{
1/4, 3−(q−1)

}
· 13 ≥ 3−q .
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