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Abstract

In this work, we study high-fidelity stereo audio compres-
sion without using residual vector quantization (RVQ). We
present preliminary findings of our neural audio codec ap-
proach, capable of compressing general (speech, music, and
environment) stereo audio at 44.1 kHz to 13 kbps with min-
imal loss in audio fidelity. We achieve this compression by
using scalar quantization (SQ) in combination with an au-
toregressive latent model (ARM), enabling efficient entropy
modeling. This approach circumvents the pitfalls of widely-
used RVQ approaches, and to the best of our knowledge is
the first application of SQ with ARM to the general audio
compression domain.

1 Introduction
Audio compression has a long line of research, enabling
ever greater storage and transmission efficiency. Tradition-
ally, codecs have relied on handcrafted transforms and quan-
tization rules that are tuned to the human hearing system and
psychoacoustics. Recent advances in general audio codecs
have shown that learned compression can replace these man-
ually designed pipelines with neural networks trained end-
to-end, achieving significantly higher reconstruction quality
at considerably lower bitrates. Instead of optimizing each
component separately, these approaches train autoencoders
to reconstruct the signal while quantizing the latent repre-
sentation. The reconstruction quality is measured by various
losses, based either on signal processing and psychoacoustics
or through discriminators inspired by generative adversarial
networks (GANs). The overall objective of these networks is
to compress audio into the fewest possible bits while recon-
structing the audio as faithfully as possible. This objective
can be expressed as a rate-distortion (RD) optimization prob-
lem:

𝐿 = 𝑅 + 𝜆𝐷, (1)
where 𝜆 is a Lagrange multiplier that controls the trade-off
between bitrate (𝑅) and reconstruction distortion (𝐷). The
rate is measured by the negative log-likelihood of the quan-
tized latent codes, while distortion is often evaluated using
perceptually motivated metrics or GAN-losses. This frame-
work has enabled learned neural codecs to surpass conven-
tional codecs in rate-distortion performance in many domains
(e.g., image, video, and audio compression).

While entropy models can compress the latent space effi-
ciently, they require quantized latents. Common quantization
methods are vector quantization (VQ) and scalar quantiza-
tion (SQ). VQ maps encoder outputs to discrete codewords
from a learned codebook, capturing correlations between
latent dimensions. SQ rounds each latent element to the
nearest integer independently. Quantization introduces non-
differentiability, making end-to-end rate-distortion optimiza-
tion challenging.

Recent neural audio codecs (Zeghidour et al. 2022;
Défossez et al. 2022; Kumar et al. 2023; Siuzdak et al. 2024)
rely on residual vector quantization (RVQ), a variant of VQ.
While VQ is appealing for generative audio modeling as it
allows downstream tasks to use tokenized representations
of audio (Agostinelli et al. 2023; Copet et al. 2023; Streich
et al. 2025), it is difficult to train and scale. Large codebooks
can lead to codebook collapse, while small codebooks limit
expressiveness. Moreover, the computational cost of encod-
ing grows exponentially with the dimensionality of the latent
space, making VQ infeasible for high-dimensional represen-
tations. To mitigate these issues, RVQ is used along with var-
ious strategies to avoid codebook collapse. While effective,
these approaches add complexity, instability, and latency to
the training and inference pipelines.

Scalar quantization offers several practical advantages over
VQ in learned compression. While VQ is theoretically op-
timal for minimizing rate-distortion in finite-dimensional
spaces, its computational and memory requirements grow ex-
ponentially with latent dimensionality. RVQ mitigates many
of these issues but requires multiple codebooks per timestep,
increasing complexity. In contrast, SQ treats each latent di-
mension independently, avoiding the combinatorial explo-
sion of codebook search. Because each scalar latent is quan-
tized independently, its marginal distribution can be modeled
using flexible yet tractable probability models, such as fac-
torized or autoregressive priors, without estimating the joint
distribution of high-dimensional codewords. Combined with
a learned nonlinear transform, uniform scalar quantization is
expressive enough to emulate complex, non-uniform quan-
tization behavior while remaining efficient to optimize and
deploy (Ballé et al. 2020).

Additionally, the non-differentiability of SQ is easier to
overcome. During training, hard quantization can be replaced
with additive uniform noise, allowing the quantized latent
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Figure 1: Overview of the proposed autoregressive audio compression model. The encoder transforms raw audio into a latent
representation. Latents are quantized using scalar quantization and processed by an autoregressive model that predicts per-
latent distribution parameters (mean 𝜇 and scale 𝑏) conditioned on previously decoded elements. These parameters guide
arithmetic encoding to produce a compact bitstream. During decoding, latents are reconstructed sequentially: for each latent, the
autoregressive model predicts its distribution parameters, which are then used by the arithmetic decoder to recover the latent.
The reconstructed latents are finally passed through the decoder to synthesize the waveform.

distributions to remain differentiable. This stochastic relax-
ation enables direct optimization of the rate-distortion trade-
off with continuous entropy models, resulting in stable and
efficient training. In contrast, VQ relies on discrete code-
book lookup that break differentiability, requiring additional
heuristics such as straight-through estimators or EMA up-
dates, which can lead to instability or codebook collapse.
Because of the simplicity and robustness of SQ, in combina-
tion with findings that it obtains near-optimal rate-distortion
performance (Ballé et al. 2020), SQ has become the standard
approach in many learned image compression models (Ballé,
Laparra, and Simoncelli 2016; Ballé et al. 2018; Minnen,
Ballé, and Toderici 2018; He et al. 2022), and represents an
appealing direction for learned audio codecs.

In image compression, ARMs are typically implemented
using causal context or checkerboard dependencies (Minnen,
Ballé, and Toderici 2018; Minnen and Singh 2020; He et al.
2021). In audio compression, entropy modeling has seen
limited exploration. Some works extend hyperprior-based
models from image to audio compression (Ballé et al. 2018;
Yao et al. 2023; Byun et al. 2023), where Zhen et al. (2021)
use an ARM model on a vector quantized latent space to en-
code speech. Finite Scalar Quantization (FSQ) has recently
been proposed as an alternative to vector quantization (VQ)
(Mentzer et al. 2023), in which the latent space is discretized
onto a fixed set of scalar levels rather than a learned code-
book. Several works have explored FSQ for speech audio
compression (Langman et al. 2024; Parker et al. 2024; Ye
et al. 2025). However, to the best of our knowledge, we are
the first to explore scalar quantization with entropy modeling
in the general audio domain at 44.1 kHz sampling rate.

Building on these ideas, we introduce a high-fidelity neural
audio codec that integrates scalar quantization with an au-
toregressive latent model and arithmetic coding. Our model
is built on the variational autoencoder component of Stable
Audio Open (Evans et al. 2024), which reconstructs stereo
audio at high-fidelity 44.1 kHz. Our approach efficiently cap-
tures temporal dependencies while maintaining training sta-
bility, low bitrates, and high perceptual fidelity.

Our contributions can be summarized as follows:

• We show preliminary research on a novel neural audio
codec capable of compressing stereo audio at 44.1 kHz
without the widely-used RVQ approach. Our model
achieves results comparable to those of a state-of-the-
art stereophonic neural audio codec using RVQ without
the need to mitigate codebook collapse and using consid-
erably less training steps and data.

• To the best of our knowledge, we are the first to apply
scalar quantization and autoregressive latent modeling to
general audio compression. This enables efficient entropy
estimation and temporal dependency modeling, demon-
strating that VQ and RVQ are not required to achieve
high-fidelity general audio compression.

2 Method
Figure 1 illustrates the proposed compression pipeline. Au-
dio is first encoded into a compact latent representation via a
learned encoder network. Latents are quantized using scalar
quantization: each element is rounded to the nearest integer
at inference, while additive uniform noise is applied dur-
ing training to preserve differentiability and enable stable
rate-distortion optimization. The quantized latents are mod-
eled with an autoregressive entropy model, which predicts
the parameters of a per-element Laplace distribution condi-
tioned on previously decoded latents. These distributions are
then leveraged by arithmetic coding to produce a compact
bitstream of the latent representation.

During decoding, the bitstream is decoded sequentially.
At each step, the autoregressive model outputs distribution
parameters conditioned on the previously decoded latents,
which the arithmetic decoder uses to recover the current la-
tent. The complete latent sequence is then passed through
the decoder to reconstruct the waveform. This design ef-
fectively captures temporal dependencies while avoiding the
complexity and potential instability of vector or residual vec-
tor quantization. It further allows stable end-to-end differen-
tiable training, leading to high compression efficiency.



2.1 Autoencoder
We adopt the variational autoencoder from Stable Audio
Open (Evans et al. 2024), which operates on raw waveforms.
The encoder downsamples the input using strided convolu-
tional blocks, each preceded by residual dilated 1D convo-
lutions with Snake activations (Ziyin, Hartwig, and Ueda
2020). The decoder mirrors the encoder using upsampling
blocks followed by residual dilated convolutions with Snake.

Given a waveform 𝑥 of length 𝑇 at sampling rate 𝑓𝑠 , the
encoder with downsampling ratio 𝑀 produces a latent se-
quence 𝑧 ∈ R𝑇 ′×𝐷 , where 𝑇 ′ = 𝑇/𝑀 and 𝐷 is the latent
dimension. We index latents by time 𝑡 = 1, . . . , 𝑇 ′ and chan-
nel 𝑑 = 1, . . . , 𝐷.

2.2 Scalar Quantization
We employ scalar quantization (Sullivan 2002), approxi-
mated during training with additive uniform noise:

𝑧𝑡 ,𝑑 = 𝑧𝑡 ,𝑑 + 𝑢𝑡 ,𝑑 , 𝑢𝑡 ,𝑑 ∼ U
(
−Δ

2
,
Δ

2

)
, (2)

and at inference:

𝑧𝑡 ,𝑑 = Δ · round
( 𝑧𝑡 ,𝑑
Δ

)
, (3)

with Δ = 1. This approach preserves differentiability and
enables direct optimization of the rate-distortion objective.

2.3 Autoregressive Latent Model
Efficient entropy modeling is essential to achieve low bi-
trates. Simple factorized priors, which treat each latent in-
dependently, fail to capture the strong temporal dependen-
cies present in audio signals. Autoregressive latent models
(ARMs) address this limitation by modeling the probability
of each quantized latent element conditioned on all previ-
ously decoded time steps. Formally, the joint probability of
a latent sequence 𝑧 ∈ R𝑇×𝐷 can be expressed as

𝑃(𝑧) =
𝑇∏
𝑡=1

𝐷∏
𝑑=1

𝑃(𝑧𝑡 ,𝑑 | 𝑧<𝑡 ), (4)

where 𝑧<𝑡 denotes all latents at previous time steps. While
ARMs are autoregressive over time, the latent dimensions at
each time step are typically modeled as conditionally inde-
pendent for computational efficiency. This conditional for-
mulation enables the model to capture temporal correlations
accurately, leading to lower bitrates.

A continuous transformer is used as the autoregressive
latent model. A start token 𝑠 ∈ R1×𝐷 is prepended to the
latent sequence. At each time step 𝑡, the model outputs per-
dimension Laplace parameters 𝜇𝑡 ,𝑑 and 𝑏𝑡 ,𝑑 , conditioned on
all previously decoded latents:

𝑝(𝑧𝑡 ,𝑑 | 𝑧<𝑡 ) = Laplace(𝑧𝑡 ,𝑑; 𝜇𝑡 ,𝑑 , 𝑏𝑡 ,𝑑). (5)

To estimate the number of bits required, we compute the
probability mass of the quantization bin centered at 𝑧𝑡 ,𝑑:

𝑟𝑡 ,𝑑 = − log2

(
CDFLap

(
𝑧𝑡 ,𝑑 + Δ

2 ; 𝜇𝑡 ,𝑑 , 𝑏𝑡 ,𝑑
)

− CDFLap
(
𝑧𝑡 ,𝑑 − Δ

2 ; 𝜇𝑡 ,𝑑 , 𝑏𝑡 ,𝑑
) )
.

(6)

Let 𝑆 = 𝑓𝑠/𝑀 denote the latent frame rate. The bitrate in
bits per second is then

bps = 𝑆 · E𝑡 ,𝑑 [𝑟𝑡 ,𝑑] =
𝑓𝑠

𝑇𝐷

𝑇 ′∑︁
𝑡=1

𝐷∑︁
𝑑=1

𝑟𝑡 ,𝑑 . (7)

The resulting bitrate is dynamic and content-dependent: if
a latent element is easy to predict (e.g., during silent or highly
regular audio segments), the model assigns high probability
to the correct quantized value, resulting in near-zero bits.
Conversely, for unpredictable or noisy latents, the model
assigns a lower probability, leading to a higher number of
bits to encode the information accurately.

2.4 Training Objectives
We adopt the Stable Audio Open (Evans et al. 2024) config-
uration for spectral and adversarial losses. The spectral loss
LSPEC consists of multi-resolution STFT losses (Yamamoto,
Song, and Kim 2020) applied to stereo audio (sum-difference
and left/right channels). The perceptual loss LGAN combines
an adversarial loss and a feature-matching term. Additionally,
we include the ARM loss:

LLM = mean𝑡 ,𝑑 [𝑟𝑡 ,𝑑] . (8)
During training, an identity mapping layer is inserted be-

fore the ARM to control the gradient flow between ARM
and the autoencoder. This layer passes the forward signal
unchanged, but scales the backward gradients by a factor of
𝜆. This ensures that the ARM is trained at full strength, with
an effective learning rate independent of 𝜆, while the autoen-
coder receives only a fraction 𝜆 of the ARM’s gradient.

3 Experiments
3.1 Setup
The training dataset consists of 1k hours, aggregated ran-
domly from various sources used by Kumar et al. (2023).
For speech, we use DAPS (Gautham 2014), Clean Speech
from DNS Challenge 4 (Dubey et al. 2022), Common Voice
(Ardila et al. 2019), and VCTK (Veaux, Yamagishi, and Mac-
donald 2017). For music, we use MUSDB (Rafii, Liutkus,
and Stöter 2017) and MTG-Jamendo (Bogdanov et al. 2019).
For environmental sounds, we use training split from Au-
dioset (Daniel et al. 2017). All audio is resampled to 44.1 kHz
and randomly cropped into 0.37 s segments. For evaluation,
we extract 3000 ten-second segments from the test split of
Audioset, held-out speakers from DAPS (F1 and M1), and
the test split of MUSDB. We follow the balanced data sam-
pling strategy of Kumar et al. (2023), ensuring each batch
contains the same number of samples from each domain and
at least one full-band audio segment.

We adopt the same training setup as Evans et al. (2024),
but reduce the segment length and incorporate an ARM in the
latent space. Both the autoencoder and the ARM are trained
with AdamW (𝛽1 = 0.8, 𝛽2 = 0.99, weight decay = 1e-3).
The base learning rates are 1.5e-4 for the autoencoder and
4e-6 for the ARM. We apply an EMA of model weights (𝛽 =
0.9999). The ARM loss is weighted by 𝜆, and we train two
variants with 𝜆 = 0.5 (which operates at 13 kbps) and 𝜆 =
0.3 (which operates at 20.4 kbps). Our models are trained on
4×H100 GPUs with a batch size of 6 for 500k steps.



Model Bitrate↓ Mel↓ STFT↓ SI-SDR↑ ViSQOL↑
Opus 12.0 0.95 2.20 7.78 2.89
Encodec 12.0 0.69 0.97 8.59 4.05
Ours 13.0 0.63 1.00 10.81 3.83
Opus 20.0 0.58 0.96 7.79 3.99
Ours 20.4 0.52 0.95 13.84 3.93
Encodec 24.0 0.60 0.95 10.80 4.15
Stable Audio 44.1 0.73 0.79 8.38 4.05

Table 1: Objective reconstruction quality of various codecs
and our models. Some codecs are evaluated at multiple bi-
trates. Our model achieves the best Mel distance and SI-SDR,
while matching EnCodec in STFT distance.

3.2 Evaluation
We train two models, one version operates at 13 kbps bitrate
and the other at 20.4 kbps bitrate. We compare the recon-
struction performance of our models with the stereo version
of Encodec (Défossez et al. 2022), a learned neural audio
codec based on RVQ, and Opus (Valin, Vos, and Terriberry
2012), a widely-used multi-channel audio codec. For each
codec, we use two different bitrate settings. We also evalu-
ate against the original variational autoencoder from Stable
Audio Open (Evans et al. 2024), which uses FP32 precision,
giving a bitrate of 𝑆 · 𝐷 · 𝑏 = 21.53 · 64 · 32 = 44.1 kbps.
We run each of these models on the evaluation dataset, and
compare their reconstruction result using both objective and
subjective metrics.

For objective evaluation, we report the mel distance, Short-
Time Fourier transform (STFT) distance (Yamamoto, Song,
and Kim 2020), Scale-Invariant Signal-to-Distortion Ratio
(SI-SDR) (Le Roux et al. 2019), and Virtual Speech Quality
Objective Listener (ViSQOL) (Chinen et al. 2020). The Mel
and STFT distances measure the reconstruction quality based
on perceptually weighted spectral distortion and STFT mag-
nitudes. SI-SDR quantifies signal fidelity in the time domain
while being invariant to loudness scaling. ViSQOL estimates
audio quality by approximating human perception. Lower
Mel and STFT distances and higher SI-SDR and ViSQOL
scores indicate better reconstruction quality.

For the subjective evaluation, we conduct a MUSHRA lis-
tening test.1 We use ten unseen 10-second audio segments,
covering a diverse range of music genres. A total of 20 partic-
ipants were recruited to rate the audio reconstruction quality.
During the test, participants first completed two practice tri-
als, followed by eight test trials. In each trial, participants
rated the reconstruction quality of the tested models along
with a hidden reference and two anchors (3.5 kHz and 7 kHz),
on a scale from 0 (Bad) to 100 (Excellent). Playback was un-
restricted and the participants used headphones.

3.3 Results
The results for the objective evaluation are presented in Ta-
ble 1. Both of our model variants outperform all other models
in terms of Mel distance and SI-SDR. For STFT distance, our

1https://www.mabyduck.com/
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Figure 2: MUSHRA human evaluation results. All learned
compression models outperform Opus, which falls below the
7 kHz anchor. Our model achieves performance comparable
to EnCodec while using considerably fewer kbps than Stable
Audio Open.

model achieves comparable performance to Encodec. While
these objective metrics are informative, they do not fully align
with perceptual quality. For instance, although the 44.1 kbps
Stable Audio Open model underperforms compared to other
models on the objective metrics, it achieves the best percep-
tual quality when rated by humans in the MUSHRA test.

The results for MUSHRA listening test are reported in Fig-
ure 2. Overall, Stable Audio Open achieves the highest rating.
Our 20.4 kbps model is roughly equivalent to the 24 kbps En-
codec model, and the 12 kbps Encodec is slightly better com-
pared to our 13 kbps model by roughly 6 points. Our model
surpasses Opus across all conditions. Notably, we trained our
model on a dataset of 1k hours compared to EnCodec which
was trained on 80k hours. The fact that listeners consistently
rated our reconstructions as comparable to Encodec suggests
that SQ combined with ARM can achieve high perceptual
quality at significantly reduced training cost. When com-
pared to the original Stable Audio Open, our model showed
a 6% to 14% decrease in MUSHRA scores, but achieved
a 55% to 71% reduction in bitrate, demonstrating that our
approach is highly promising.

4 Conclusion
We presented preliminary research into compressing stereo
high-fidelity audio without leveraging vector quantization.
Inspired by approaches used in image compression, we eval-
uate whether scalar quantization and a latent autoregressive
model are feasible approaches for audio compression. Our
findings indicate that while our approach cannot yet out-
perform existing RVQ-based approaches, the rate-distortion
trade-off is comparable to the state-of-the-art stereo neural
audio codec (Défossez et al. 2022). We believe SQ combined
with ARM is an interesting alternative compared to RVQ for
learned audio compression, meriting further investigation.
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Ballé, J.; Laparra, V.; and Simoncelli, E. P. 2016. End-
to-end optimized image compression. arXiv preprint
arXiv:1611.01704.
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Rafii, Z.; Liutkus, A.; and Stöter, F.-R. 2017. Stylianos Ioan-
nis Mimilakis, Rachel Bittner. musdb18 corpus music sepa-
ration.
Siuzdak, H.; et al. 2024. Snac: Multi-scale neural audio
codec. arXiv preprint arXiv:2410.14411.
Streich, G.; et al. 2025. Generating Vocals from Lyrics and
Musical Accompaniment. In ICASSP 2025-2025 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 1–5. IEEE.
Sullivan, G. J. 2002. Efficient scalar quantization of expo-
nential and Laplacian random variables. IEEE Transactions
on information theory, 42(5): 1365–1374.
Valin, J.-M.; Vos, K.; and Terriberry, T. 2012. Definition
opus audio codec.
Veaux, C.; Yamagishi, J.; and Macdonald, K. 2017. Cstr
vctk corpus: English multi-speaker corpus cstr voice cloning.
University of Edinburgh. The Centre for Speech Technology
Research (CSTR).
Yamamoto, R.; Song, E.; and Kim, J.-M. 2020. Parallel
wavegan: A fast waveform generation model based on genera-
tive adversarial networks with multi-resolution spectrogram.



In ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE.
Yao, S.; Xiao, Z.; Wang, S.; Dai, J.; Niu, K.; and Zhang, P.
2023. Variational speech waveform compression to catalyze
semantic communications. In 2023 IEEE Wireless Commu-
nications and Networking Conference (WCNC), 1–6. IEEE.
Ye, Z.; Zhu, X.; Chan, C.-M.; Wang, X.; Tan, X.; Lei, J.;
Peng, Y.; Liu, H.; Jin, Y.; Dai, Z.; et al. 2025. Llasa: Scal-
ing train-time and inference-time compute for llama-based
speech synthesis. arXiv preprint arXiv:2502.04128.
Zeghidour, N.; Luebs, A.; Omran, A.; Skoglund, J.; and
Tagliasacchi, M. 2022. SoundStream: An end-to-end neural
audio codec. IEEE ACM Trans. Audio Speech Lang. Pro-
cess., 30: 495–507.
Zhen, K.; Sung, J.; Lee, M. S.; Beack, S.; and Kim, M. 2021.
Scalable and efficient neural speech coding: A hybrid design.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 30: 12–25.
Ziyin, L.; Hartwig, T.; and Ueda, M. 2020. Neural networks
fail to learn periodic functions and how to fix it. arXiv
[cs.LG].


