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ABSTRACT

Scaling up data and computing has become the norm for pre-training powerful
visual encoders. Current algorithms, when scaled up, often require training on large-
scale datasets that are unlikely to be object-centric. However, these algorithms
were typically developed and validated on the object-centric ImageNet. This
discrepancy may suggest sub-optimal scalability and underutilized data potential.
Non-object-centric (NOC) data, with its multiple objects and complex layouts,
tends to be more information-dense. To better leverage this underlying structure, we
introduce a semantic bottleneck to MIM, which reduces the number of prototypes
to encourage the emergence of objectness at patch-level token representation.
Further, cross-view consistency regularization is applied to encourage multiview
invariance. Together, this induces semantic object discovery and allows instance
discrimination to be applied between object-level features (slots). Our experiments
encompass pre-training on object-centric, scene-centric, web-crawled, and ego-
centric data. Across all settings, our approach learns transferrable representations
and achieves significant improvements over prior work in image recognition, scene
understanding, and robot learning evaluations. When scaled up with million-scale
datasets, our method also demonstrates superior data efficiency and scalability. We
will make our code and model artifacts publicly available.

1 INTRODUCTION

Self-supervised representation learning from visual data has seen significant progress, evolving from
contrastive learning (Chen et al., 2021; Caron et al., 2021) to masked image modeling (MIM) (Bao
et al., 2022; He et al., 2022; Xie et al., 2022; Wei et al., 2022) and hybrid methods (Zhou et al.,
2022; Oquab et al., 2024), which have benefited numerous downstream tasks. A key advantage of
self-supervised learning is its ability to learn representations from unlabeled data, eliminating the
need for human annotations and making it easier to scale up training datasets. Despite this advantage
in utilizing diverse types of data, most research has focused on object-centric datasets like ImageNet
for model development, leaving large volumes of non-object-centric (NOC) data, such as Open
Images (Kuznetsova et al., 2020), SA-1B (Kirillov et al., 2023), LAION (Schuhmann et al., 2022),
and Ego4D (Grauman et al., 2022), underutilized. However, many primary application domains of
self-supervised learning – such as object detection, image segmentation, and robotics – often require
handling NOC data.

This motivates us to explore the potential of NOC data for self-supervised learning, which is rich
in information, offers new opportunities for data scaling, and could bridge the data-domain gap
between self-supervised learning and real-world applications. While some research has investigated
scene-centric data for self-supervised dense representation learning by developing pixel-level (Xie
et al., 2021; Wang et al., 2021; Zhou et al., 2022) and object-level (Hénaff et al., 2021; 2022; Wen
et al., 2022) contrastive learning objectives using learned or handcrafted objectness, these studies have
primarily relied on ResNet-based backbones. As a result, it remains unclear how well these methods
translate to modern architectures like vision transformers (see Tab. 1). Although one might argue
that the state-of-the-art self-supervised model, DINOv2 (Oquab et al., 2024), already utilizes NOC
data with a vision transformer backbone, its success heavily depends on data curation techniques that
leverage the object-centric ImageNet dataset to select neighboring data, keeping its data distribution
closely tied to object-centric approaches. Our preliminary experiments also suggest unsatisfactory
results of DINOv2 using the same NOC data setup (Figs. 3 and 5).
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To this end, we begin by conducting a comprehensive evaluation of existing self-supervised learning
approaches on four datasets: object-centric (Deng et al., 2009) and non-object-centric (Lin et al.,
2014; Changpinyo et al., 2021; Grauman et al., 2022). While the performance of current methods on
non-object-centric data is suboptimal from a representation learning perspective, our study reveals that
several insights from object-centric learning remain applicable to NOC data. Specifically, cross-view
learning (Tian et al., 2020b) encourages semantic learning by enforcing feature invariance to data
augmentations, while MIM, suitable for pre-training transformer-based architectures, is particularly
effective at capturing fine-grained, low-level representations (see Fig. 1 for visualizations).

Motivated by these insights, we propose SlotMIM, a method that repurposes and integrates masked
image modeling (MIM) and contrastive learning for effective representation learning from NOC
datasets. The core idea of SlotMIM is to group patch-level image tokens into object-level feature
abstractions, referred to as “slots”, thereby decomposing NOC data into object-centric slots so that
object-centric techniques can be effectively applied. To make patch-level tokens more semantically
aware for subsequent grouping, we enhance MIM with cross-view consistency regularization. Addi-
tionally, we introduce a semantic bottleneck, which reduces the number of prototypes to encourage
the emergence of semantic and objectness at patch-level token representations (see Fig. 1). Building
on these semantically enriched patch tokens, we apply attentive pooling over the learned patch-level
features, using prototypes to initialize object representations, thereby grouping patches into object-
level slots and decomposing an image into object representations. Contrastive learning (Chen et al.,
2021) is further applied to these slots to promote the discriminativeness of the learned representations.
Together, these designs enable us to perform effective representation learning from NOC data.

In our experiments, we pretrain on a diverse range of datasets, including object-centric, scene-centric,
web-crawled, and ego-centric data. We evaluate the pre-trained models on various tasks such as
ImageNet linear probing and fine-tuning, ADE20K semantic segmentation, COCO detection/instance
segmentation, and visuomotor control for robotics. Across all these evaluations, our method con-
sistently outperforms existing approaches by a significant margin, showing 1) Data efficiency: It
maximizes the utility of available data, reducing the dependency on continually scaling up data
collection; 2) Domain adaptability: SlotMIM shows superior adaptability to datasets that are closer to
the downstream application domains and potentially richer in information; and 3) Scalability: The
method not only performs well at smaller scales but also scales efficiently with increasing data size.

In summary, our contributions can be summarized as follows:

• We conducted a comprehensive revisiting study across three non-object-centric datasets. Our
findings reveal that non-object-centric (NOC) data is rich in information with vast potential,
yet it remains underutilized in current approaches (Secs. 3.2 and 3.3).

• We formalize representation learning from NOC data into two key sub-tasks: decomposition
and object-centric representation learning. By repurposing established techniques to target
these specific sub-tasks, we developed a unified approach that effectively works for both
non-object-centric and object-centric data, offering a robust solution that bridges the two
domains (Fig. 3).

• Our method maximizes data utilization, achieving both data efficiency and excellent scal-
ability. This contributes to the field of pre-training by exploring a new avenue for scaling
up models using NOC data. At the same time, our approach delivers pre-trained models
that are better suited for downstream tasks, including robotics, providing more relevant and
effective solutions for real-world applications (Secs. 3.4 and 3.5).

2 METHOD

2.1 PRELIMINARIES

Deep clustering as self-distillation. DINO (Caron et al., 2021) is a discriminative self-supervised
learning approach that learns a set of C prototypes online that clusters image embeddings. Let
x ∈ RH×W×3 be an input image, and fθ, fξ : RH×W×3 → Rd be student and teacher encoder
networks parameterized by θ and ξ respectively. Let zθ = fθ(x) and zξ = fξ(x) denote the
embeddings produced by the student and teacher networks (we omit the projector for simplicity).
The cluster assignments are computed as pθ(x) = softmax(zθ · C/τ), where C = {cc}Cc=1 are the

2
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prototypes, and τ is a temperature parameter. Then the loss is computed as cross-entropy between
predictions of student model and teacher model: LDINO(v

1,v2) = −
∑C

c=1 qξ(v
2)c log pθ(v

1)c,
where v1 and v2 are two augmented views of the same image. Since it resembles knowledge
distillation with soft labels produced by the model itself, it is also dubbed as self-distillation.

DINO on image patches with MIM. iBOT (Zhou et al., 2022) extends the DINO objective from
global image embeddings to local image patches with masked image modeling (MIM). Let M ∈
{0, 1}N be a binary mask indicating which patches are masked, where N is the total number of
patches. The masked input ṽ is defined as ṽi = m if Mi = 1, and ṽi = vi otherwise, where m is a
mask token. The iBOT loss predicts the clustering assignments of masked patches given unmasked
patches: LiBOT(v) =

∑
i:Mi=1 LDINO(ṽi,vi), where ṽi is the masked patch from the student model

and vi is the corresponding unmasked patch from the teacher model.

Slot attention (Locatello et al., 2020) is a variant of cross-attention that normalizes attention scores
on the query side instead of the key side, introducing competition between queries and encouraging
them to focus on different parts of the input. Our approach performs attentive pooling on patch
embeddings according to their clustering assignments, sharing high-level intuition with slot attention
if viewing the prototypes C as queries and patch embeddings zθ,i = fθ(xi) as keys. We thus follow
tradition and call the pooled object features slots – prototypes adapted to image patches.

2.2 MOTIVATION AND FRAMEWORK

Image

iBOT
C= 8192

iBOT
C= 512

SlotMIM

(a) Clustering assignment of patch tokens.

iBOT (C = 512) SlotMIM

(b) Top-5 segments retrieved by the prototypes (by column).

Figure 1: Comparison of concepts learned by iBOT and SlotMIM. iBOT’s prototypes can discover
fine-grained patterns, and the quality improves if a smaller vocabulary is used (left). But these patterns
are bottom-up and lack semantic meaning. In contrast, concepts with same tokens of SlotMIM are
semantically coherent and more suitable for building instance discrimination pretext tasks (right).

High-level intuition. We decouple self-supervised learning on non-object-centric data into two
subtasks: 1) learning to group image patches into objects (or stuff); and 2) learning to discriminate
objects as previous works have done on object-centric data. The major challenge here is unsupervised
object discovery, which we find could emerge from iBOT with a smaller number of prototypes.

Representation bottleneck induces objectness from iBOT. We first investigate the prototypes
of iBOT, which is a set of embeddings C = {cc}Cc=1 that clusters image patches into C clusters
and assigns each patch token a soft one-hot encoding pθ(xi) identifying its clustering assignment.
Conventionally, C is set to be 8192 to capture fine-grained patterns, which is good for learning
representations. But in our case, the role of representation learning would be taken by another
objective (contrastive learning between slots) and the prototypes are designated to focus on object
discovery. We find a much smaller C, e.g., 512 for COCO, would suit this goal better because it
can build a very compact information bottleneck that forces the model to learn highly compositional
concepts – objects. As shown in Fig. 1a, the clusters discovered by iBOT are very fine-grained (2nd
row), and objectness emerges if a small vocabulary is used (3rd row). However, these patterns still
lack semantic meaning and could split the same object into multiple parts. Also, it remains hard to
match discovered objects between views as their semantics vary a lot despite having the same token
(Fig. 1b, left). Both issues call for a set of semantic-level prototypes.

3
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Figure 2: Overview of SlotMIM. We repurpose iBOT’s within-view patch-level loss for object
discovery, add a cross-view objective for semantic guidance, and build object-centric contrastive
learning on top of object features (slots) grouped from patches with identical clustering assignments.

Cross-view consistency lifts object discovery to semantic-level. A key factor contributing to
the lack of semantic meaning is that the iBOT loss LiBOT is computed between patches within the
same view. Consequently, there is no explicit guidance for learning invariant representations across
different views of the same object or scene. We apply a simple yet effective fix: adding a cross-view
consistency objective Lcross

patch that enforces patches undergone different photometric and geometric
transformations to have the same token. To match patches between views, we adopt a SlotCon-style
mechanism that crops & resizes the overlapping regions of two views (using ROIAlign). Formally,
let v1 and v2 be two augmented views of the same image, and z̃1

θ,i = fθ(ṽ
1
i ) and z2

ξ,j = fξ(v
2
j ) be

the corresponding patch embeddings. The cross-view consistency loss is defined as:

Lcross
patch(v

1,v2) = − 1

|P|
∑

(i,j)∈P

C∑
c=1

q2
ξ,i,c log p̃

1
θ,j,c , (1)

where p̃1
θ = softmax(z̃1

θ · Cθ/τs) and q2
ξ = softmax(z2

ξ · Cξ/τt) are the cluster assignments of the
student and teacher models respectively, τs and τt are temperature parameters of the student and
teacher models respectively, and P is the set of matched patch pairs between views.

Object-level constrastive learning. Now that we have a set of object features that are aligned
between views, we can apply a contrastive learning objective to perform object-centric learning. Not
all slots are used. We only keep the slots that at least occupy one patch and we filter out the redundant
ones by computing the following binary indicator: 1i = ∃j such that argmaxc(pθ(v

1
j )c) = i. Those

with the same tokens form positive pairs and others form negative pairs. We adopt a MoCo-style
contrastive learning approach. Let s1θ,i =

∑
j pθ(v

1
j )iz

1
θ,j and s2ξ,i =

∑
j qξ(v

2
j )iz

2
ξ,j be the slots

from the student and teacher models respectively. The contrastive loss is defined as:

Lslot(s̃
1
θ, s

2
ξ) = − 1

K

C∑
i=1

log
11
i1

2
i exp(hθ(s

1
θ,i) · s2ξ,i/τ)∑C

j=1 1
1
i1

2
j exp(hθ(s1θ,i) · s2ξ,j/τ)

, (2)

where hθ is a predictor MLP, K =
∑

i 1
1
i1

2
i is the number of positive pairs and τ is a temperature

parameter set to 0.2 following Chen et al. (2021). ℓ2-normalization is applied to both slots and their
predictions before computing the inner product. The final loss is a combination of these objectives:

Lθ,ξ(ṽ
1,v2) = λ1Lwithin

patch (ṽ1,v2) + λ1Lcross
patch(ṽ

1,v2) + λ2Lslot(s̃
1
θ, s

2
ξ) , (3)

where Lwithin
patch is exactly the same as LiBOT and λ1 = 0.5 and λ2 = 1 are weighting coefficients. In

practice the symmetrized objective Lθ,ξ(ṽ
1,v2) + Lθ,ξ(ṽ

2,v1) is optimized.

4
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Table 1: Holistic comparison with previous methods.

Method mask Lcross
patch Lwithin

patch Lslot k-NN ADE Jacc Loc

MoCo v3 ✗ ✗ ✗ △ 43.3 41.3 – –
DINO ✗ ✗ ✗ ◦ 46.3 40.5 – –
SlotCon ✗ ✓ ✗ ✓ 42.9 47.1 40.1 59.6
iBOT ✓ ✗ ✓ ◦ 45.3 44.5 – –
SlotMIM ✓ ✓ ✓ ✓ 46.2 49.1 43.9 62.5
△: contrastive learning on image crops
◦: self-distillation on image crops

Connection to previous work. As shown in
Tab. 1, SlotMIM shares key ideas with previ-
ous self-supervised learning methods. MoCo
v3 (Chen et al., 2021) and DINO (Caron et al.,
2021) perform instance discrimination on im-
age crops. SlotCon (Wen et al., 2022) per-
forms contrastive learning between slots, but
its objectness only receives high-level signals.
This worked well for ResNet since the net-
work architecture provided strong inductive
bias for objectness. But when applied to ViT,
MIM-like low-level signal is needed. Regard-
ing iBOT, its patch-level and global self-distillation loss are built on the same set of prototypes, which
however requires different levels of complexity. Our design allows the prototypes to focus on learning
fine-grained patterns for patch-level loss, and semantic learning is achieved by other modules.

3 EXPERIMENTS

3.1 SETTING

Table 2: Overview of pre-training datasets. We uniformly sample
subsets of 241K1images from ImageNet, CC12M, and Ego4D. COCO+
is formed by combining train and unlabeled subsets of COCO. For
Ego4D we first extract frames at 0.2 fps and then sample image subsets.

Pre-train Data Source #Image #Obj/Img #Class Type Video

INet-241K ImageNet 241K 1.7 1000 OC ✗

COCO+ COCO 241K 7.3 80 SC ✗

CC-241K CC12M 241K – – Web ✗

Ego-241K Ego4D 241K – – Ego ✓

OC: Object-centric; SC: Scene-centric; Web: Web-crawled; Ego: Ego-centric

Object-centric Scene-centric

Ego-centricWeb-crawled

Dataset. We consider pre-training on four types of datasets, including object-centric ImageNet (Deng
et al., 2009), scene-centric COCO (Lin et al., 2014), web-crawled CC12M (Changpinyo et al., 2021),
and ego-centric Ego4D (Grauman et al., 2022). For the baseline setting, we uniformly sample 241K
images from each dataset to form the training sets. See Tab. 2 for details. For larger-scale pre-training,
we sample 1.28M images from the same sources, except for scene-centric data where we switch to
Open Images (Kuznetsova et al., 2020).

Methods. We compare with a variety of ViT pre-training methods, including BEiT (Bao et al.,
2022), SplitMask (El-Nouby et al., 2021), MAE (He et al., 2022), DINO (Caron et al., 2021),
iBOT (Zhou et al., 2022), and DINOv2 (Oquab et al., 2024). We train with official code and
suggested hyperparameters. For DINO and iBOT, training instability is observed when training on
NOC data, and we tuned the teacher temperature if necessary for convergence.

Pre-training setting. We use ViT-B/16 (Dosovitskiy et al., 2021) as the backbone. At 241K data
scale, all methods are trained for 800 epochs by default. At 1.28M data scale, we train for 400 epochs.
The optimization hyperparameters follow Zhou et al. (2022).

Evaluation setting. We evaluate models on ImageNet-1K (Deng et al., 2009) and ADE20K (Zhou
et al., 2017) following He et al. (2022). For ImageNet linear probing, we sweep between [CLS]
token and average pooling and report best results of each model. For ImageNet fine-tuning, all models
use the average-pooled token. Under both settings, we report top-1 validation accuracy of a single
224× 224 center crop. ADE20K semantic segmentation experiments use UperNet (Xiao et al., 2018)
and train for 160K iterations with batch size 16. Additionally, COCO object detection and instance
segmentation is also considered to evaluate the transferability of pre-trained models. We follow the

11.28M subsets are also considered. For scene-centric data, we use Open Images dataset to scale up.
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same setting in (Zhou et al., 2022) to train a Cascade Mask R-CNN (Cai & Vasconcelos, 2019) with
1× schedule (12 epochs), and report box and mask AP.

Analytical metrics. We also introduce some numeric indicators to help analyze some properties
of pre-trained models. This includes k-NN ImageNet classification (k = 20) following Caron et al.
(2021), and object discovery metrics evaluated on Pascal VOC 2012 following Venkataramanan et al.
(2024); Siméoni et al. (2021). Jaccard similarity measures the overlap between predicted mask P
and the ground truth mask G as J(P,G) = G∩P

G∪P . We also compute CorLoc, which measures the
percentage of correctly located boxes, where a predicted box is correct if it’s IoU ≥ 0.5. Additionally,
we maintain a running mean of the average number of active slots K in an image during training.

3.2 RESULTS UNDER BASELINE PRE-TRAINING BUDGET

40 60
INet Lin. Probe (Top-1 Acc.)

BEiT

SplitMask

MAE

DINO

iBOT

DINOv2

SlotMIM
81 82 83

INet Finetune (Top-1 Acc.)

BEiT

SplitMask

MAE

DINO

iBOT

DINOv2

SlotMIM
35 40 45

ADE20K Sem. Seg. (mIoU)

BEiT

SplitMask

MAE

DINO

iBOT

DINOv2

SlotMIM

INet-241K COCO+ CC-241K Ego-241K

Figure 3: Different models learn different levels of information from different datasets. SlotMIM
consistently outperforms prior arts whether pre-trained on object-centric data or not. Notably, when
trained on COCO+, it transfers better than most ImageNet models despite the domain gap (middle).
When evaluated on segmentation, the superiority of our method is even more pronounced (right).

We first evaluate models pre-trained on 241K-scale datasets, and show that NOC data can be good
learning resources if used properly. The results are present in Fig. 3. Overall, SlotMIM achieves the
best performance across classification and segmentation tasks, no matter learning from object-centric
data or not. Below, we discuss some other interesting findings.

Features learned from NOC data can be linear separatable on ImageNet. From Fig. 3 (left), our
models trained on COCO and CC achieve similarly good linear probing performance on ImageNet
with best prior ImageNet-trained methods. As a clear contrast, all previous methods trained on NOC
datasets (COCO, CC, and Ego4D) fall behind best ImageNet counterpart.

NOC data can be worth more than ImageNet for ImageNet. As shown in Fig. 3 (middle),
under ImageNet fine-tuning setting, the top-3 methods (BEiT, SplitMask, and SlotMIM) have best
performance when trained on COCO+ instead of ImageNet. For MAE and DINO, training on CC
also transfers better than ImageNet. Note that this is uncommon given the domain gap between
NOC pre-training data and OC downstream task, demonstrating that NOC data are information-rich
learning resources.

NOC data is significantly beneficial for similar-domain downstream tasks. In Fig. 3 (right), we
evaluate the models on ADE20K semantic segmentation. SlotMIM trained on COCO+ achieves the
best performance, and our CC and ImageNet-trained models also surpass prior models by a large
margin. This suggests that NOC data can be particularly useful for scene-understanding tasks.

Ego-centric data solely is not suitable for general-purpose models. In Fig. 3, we observe that
models trained on Ego4D generally perform worse than those trained on other datasets. This is
possibly due to video-based ego-centric data’s redundancy and suggests that data diversity matters
more for general-purpose pre-training. Still, as will be discussed in Sec. 3.5, ego-centric data can be
effective for robot learning and SlotMIM learns the best representations from it.

6
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3.3 SCALING UP PRE-TRAINING SCHEDULE
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Figure 4: A convergence check on COCO+ with longer training. Existing methods either ex-
perience performance degradation or stagnate, or require significantly more epochs to reach better
performance. SlotMIM achieves leading performance with shorter training (also without multi-crop).

SlotMIM is not only efficient in the need of data scale, but also in the need of training epochs. We take
training on COCO+ as an example, and compare SlotMIM with other methods considering longer
training schedules. For a fair comparison, we follow previous literature (Zhou et al., 2022) to calculate
effective pre-training epochs for each method, which is 3.84× for methods using multi-crop (DINO,
iBOT, and DINOv2), 2× for contrastive methods including SlotMIM, and 1× for non-contrastive
methods (e.g., BEiT and MAE). The results are shown in Fig. 4. We observe that SlotMIM achieves
the best performance with the shortest training schedule, and other methods either require significantly
more epochs to reach better performance or experience performance degradation or stagnation.

3.4 SCALING UP PRE-TRAINING DATA
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Figure 5: Scaling laws on different data sources. We scale up object-centric, scene-centric, and
web-crawled data, and highlight the best (model, data) combinations. Our method learns strong and
transferable representations with significant data efficiency and continues to improve with more data.

Superior data efficiency allows us to explore larger-scale pre-training data. In Fig. 5, we show that
SlotMIM achieves strong performance with remarkable data efficiency.

Comparable or better performance with small data scale. As shown in Figure 5, SlotMIM
achieves comparable or superior performance to other methods using significantly less data. Our
INet-241K model for ImageNet linear probing, and COCO+/INet-241K models for ImageNet fine-
tuning and ADE20K semantic segmentation outperform or match most models trained on 1.28M
ImageNet images across various tasks. This remarkable data efficiency demonstrates our approach’s
effectiveness in extracting rich, transferable features from limited data.

NOC pre-training rivals ImageNet pre-training for ImageNet. Interestingly, we observe that pre-
training on NOC datasets like OpenImages-1.28M can lead to performance better than pre-training
on ImageNet for the ImageNet classification task (fine-tuning setting). When scaled up to 4M scale,
this trend becomes more pronounced. This aligns with the trend in Fig. 3 that NOC data can provide
more information-rich features, which can be better-utilized by models like SlotMIM.
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NOC data also possesses stronger scalability. We extend experiments to the 4M scale by combining
INet-1.28M (Deng et al., 2009), COCO+ (Lin et al., 2014), OpenImages (Kuznetsova et al., 2020),
Objects365 (Shao et al., 2019), and LVIS (Gupta et al., 2019b). Compared with previous efforts on
scaling up with ImageNet-22K (12M images) (Russakovsky et al., 2015), the performance of our
SlotMIM models continues to improve and surpasses them with 3× less data. This suggests that
NOC data can be a more scalable learning resource.

3.4.1 OBJECT DETECTION AND INSTANCE SEGMENTATION

Figure 6: Transfer learning ex-
periments on COCO object de-
tection and instance segmenta-
tion. SlotMIM shows better data
efficiency with both OC and NOC
data, and the performance contin-
ually grows with more data, sur-
passing all prior SoTA models by
a notable margin.
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In Fig. 6, we also present an evaluation on COCO object detection and instance segmentation. The
superiority of SlotMIM is clear and remains improving with increased data scale.

3.5 PRE-TRAINED VISION MODELS FOR MOTOR CONTROL

Previous sections showed that 1) NOC data offers rich, transferable features for image recognition
and scene understanding tasks, and 2) its advantages are especially evident when there is strong
alignment between pre-training data and target downstream tasks. In this section, we analyze the
effects of OC/NOC data types (ego-centric and scene-centric) on robot manipulation benchmarks and
the data efficiency of SlotMIM.

Table 3: Overview of robot manipulation tasks.
Right: example tasks of each benchmark suite.

Bench. Suite RGB Proprio. #Task #Demo #Seed

Franka Kitchen ✓ ✗ 5 25 3
Meta-World ✓ ✗ 8 25 3

Open Slide Cabinet Close Drawer

Franka Kitchen Meta-WorldFranka Kitchen Meta-World

Turn on Knob Pick Bin

Attn
Pooling

policy

action

demo

observation

action

environment

action

MSE Loss

encoder

Figure 7: Behavior cloning
with attentive probing.

Imitation learning setups. Following Hu et al. (2023), we compared
our methods across two robot manipulation benchmarks using behavior
cloning: Franka-kitchen (Gupta et al., 2019a) and Meta-world (Yu et al.,
2019). We focus on efficient real-world learning with behavior cloning
(BC) using a few human demonstrations per task in each benchmark
suite. For each pre-trained vision model and task, we run 3 seeds of BC
due to the result’s high variability. Detailed setups for behavior cloning
and example tasks are shown in Tab. 3. One-image observation for its
comparable performance to stacks of images and higher computational
efficiency. All tasks and environments use 224×224 RGB images
without proprioceptive input. No image augmentations, such as random
shifts, are applied. The policy training includes a few modifications:
The policy network is trained for 20,000 steps, following R3M (Nair
et al., 2023). We employ attentive pooling, as in V-Cond (Karamcheti
et al., 2023), which is shown to be the better choice than the default
[CLS] embedding head and provides better comparisons between
pre-trained frozen visual representations.

Baselines. As shown in Fig. 8, MAE regime (blue line) including MVP (Radosavovic et al., 2023)
and VC-1 (Majumdar et al., 2023) that leverages MAE (He et al., 2022) to pre-train the model
across a massive collection of ego-centric videos (Grauman et al., 2022) and Internet data. V-
Cond (Karamcheti et al., 2023) (purple point) further proposes language-driven representation
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learning from human videos and associated captions. DINO (Caron et al., 2021) (orange line) is
based on self-distillation and iBOT (Zhou et al., 2022) (green line) further combines MIM with
self-distillation.

Figure 8: Pre-training for robot
manipulation tasks. This evalu-
ation considers three factors that
influence manipulation success
rates: data types (ego-centric
◆, object-centric ●, and scene-
centric ■), pre-training methods,
and data scale. Dark lines rep-
resent the best-performing data
scaling for each pre-training
method, while light lines indicate
sub-optimal performance.
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Fig. 8 examines the relationship between manipulation success rates and pre-training methods,
comparing the trend of scaling dataset size across different data types: ego-centric ◆, object-centric
●, and scene-centric ■. Notably, increasing dataset size does not always improve performance across
benchmarks, as also reported by VC-1(Majumdar et al., 2023).

Different scaling behaviors of OC/SC vs. ego-centric data. In object manipulation tasks as shown
in Fig. 8, scaling scene-centric and object-centric data to the million level can lead to performance
drops for methods like MAE, DINO, and iBOT. We hypothesize that self-supervised representation
learning, including MIM, aims to learn invariance, where the feature extractor pulls images with
similar visual content together in the embedding space, compressing the visual data. However, scaling
up data may result in over-compression, causing performance drops in visuomotor control tasks.

By contrast, using ego-centric data for pre-training, MAE (blue line) and SlotMIM (red line) show
positive data scaling effects. Unlike SC/OC data from vast Internet sources, ego-centric images
are sampled from consecutive human videos that share contextual backgrounds or scenarios. The
ego-centric data are among daily scenarios such as household, outdoor, workplace, and leisure etc.
that are contextually similar to the robot manipulation scenarios (Grauman et al., 2022). Thus,
invariance learning in ego-centric data tends to focus more on the differences within the same video or
scenario, particularly in the foreground objects. This focus is critical for robot manipulation learning,
as it requires effective interaction with these foreground objects.

SlotMIM is more data efficient in leveraging ego-centric data. Compared to general-purpose
pre-trained models and state-of-the-art (SoTA) robot learning methods (e.g., MVP (Radosavovic
et al., 2023) and VC-1 (Majumdar et al., 2023)), we demonstrate that SlotMIM (dark red ◆ line),
pre-trained with just 241K data samples, can surpass prior methods that utilized over 1 million
samples. When scaled to 1 million ego-centric data, it achieves the highest success rates compared to
all other methods in the figure.

3.6 ABLATION STUDY Table 4: Ablation study on effective modules.

mask Lcross
patch Lwithin

patch Lslot k-NN ADE Jacc Loc K

1 ✗ ✓ ✗ ✗ 45.1 47.4 42.5 55.6 8.3
2 ✓ ✓ ✗ ✗ 44.9 48.6 42.3 60.7 10.3
3 ✓ ✗ ✓ ✗ 27.7 45.7 39.3 65.5 20.7
4 ✓ ✓ ✗ ✓ 45.3 47.5 42.9 63.6 8.4
5 ✓ ✓ ✓ ✓ 46.2 49.1 43.9 62.5 9.4

This section presents an ablation study on
key SlotMIM design choices. Models are
trained on COCO+ for 800 epochs. Tab. 4
demonstrates the impact of different mod-
ules, comparing k-NN ImageNet classifica-
tion, ADE20K semantic segmentation, Jac-
card similarity, and CorLoc for object discov-
ery mask quality and localization recall. We
report the average number of objects/stuff discovered per image. Results show Jaccard similarity
correlates with representation quality, suggesting better object discovery improves representation
learning. Introducing MIM enhances object localization and benefits segmentation tasks (rows 1 and
2). Cross-view consistency and slot contrastive losses contribute to improved object discovery (rows
2, 3, 5). The within-view loss can serve as a regularizer and improve representations (rows 4, 5).
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Table 5: Ablation studies on hyperparameters. Default values are marked with a cyan background.

(a) Number of prototypes

C k-NN ADE Jacc Loc K

256 45.3 49.1 42.2 61.2 7.8
512 46.2 49.1 43.9 62.5 9.4
1024 45.6 48.4 42.8 62.6 10.8

(b) Mask ratio (±0.2)

k-NN ADE Jacc Loc K

0.3 46.2 49.1 43.9 62.5 9.4
0.4 45.8 48.6 45.0 62.6 8.1
0.5 44.3 48.2 45.7 64.8 7.1

(c) Patch loss

Type k-NN ADE Jacc Loc K

center 46.2 49.1 43.9 62.5 9.4
SH 45.1 49.3 40.8 68.5 15.2

In Tab. 5 we present ablations on some numeric design choices. Generally speaking, a smaller
number of prototypes, a higher mask ratio, and the use of centering (Caron et al., 2021) instead of
Sinkhorn-Knopp algorithm (Caron et al., 2020) encourage the network to discover more holistic
concepts/objects, while the opposite discovers more fine-grained ones. Optimal representation is
highly related to object discovery quality.

4 RELATED WORK

Self-supervised representation learning. Self-supervised representation learning aims to extract
transferrable features from unlabeled data (Tian et al., 2020a; Caron et al., 2018; 2020; 2021; Asano
et al., 2020; Chen et al., 2020). Two primary approaches have emerged: contrastive learning (Tian
et al., 2020a; Chen et al., 2020; He et al., 2020), which learns by comparing positive and negative
examples, and masked image modeling (He et al., 2022; Xie et al., 2022), which reconstructs masked
regions of images. While these methods have shown success, they’ve primarily been tested on object-
centric datasets like ImageNet-1K. Our study extends this by exploring self-supervised learning on
large-scale non-object-centric datasets, demonstrating superior data efficiency compared to previous
pre-training methods across various downstream applications. Additionally, we provide insights into
the scalability and generalizability of these methods across diverse data types.

Learning on non-object centric data. Recent works have addressed the challenge of self-supervised
learning on non-object centric data (Van Gansbeke et al., 2021; Oquab et al., 2024; Xie et al.,
2021; Wang et al., 2021; Hénaff et al., 2021; 2022). These efforts include dense contrastive learn-
ing approaches (Wang et al., 2021; Xie et al., 2021), object-centric methods for dense prediction
tasks (Hénaff et al., 2022), and slot-based contrastive learning frameworks (Wen et al., 2022). Ad-
ditionally, some methods focus on learning from uncurated datasets (Caron et al., 2019; Tian et al.,
2021; Bai et al., 2022). In our work, we decompose object representations to leverage established
techniques that enable fine-grained pattern learning through patch-level target design, facilitating
effective pre-training.

Scaling vision pre-training. Scaling vision pre-training to larger datasets and models has become
a significant focus in recent years (Tian et al., 2021; Caron et al., 2019; Mu et al., 2022; Radford
et al., 2021; Dehghani et al., 2023; Gadre et al., 2023; Schuhmann et al., 2022). The creation and use
of massive datasets like LVD-142M (Oquab et al., 2024) and LAION-5B (Schuhmann et al., 2022)
have also played a crucial role. Our method examines how non-object-centric datasets influence
data scaling and the transferability of learned representations across downstream tasks, focusing on
fine-grained data types: object-centric, scene-centric, ego-centric, and mixed.

5 CONCLUSION

This work revisits the use of non-object-centric (NOC) data for self-supervised visual representation
learning. Our comprehensive study demonstrated that NOC data holds immense potential due to
its rich information, which has been largely underutilized. To harness this potential, we formalized
learning from NOC data into two sub-tasks: scene decomposition and object-centric representation
learning. By repurposing and integrating established techniques to target these sub-tasks, we devel-
oped SlotMIM, a unified framework capable of effectively handling both NOC and object-centric data.
Through extensive experiments across diverse datasets and downstream tasks, including robotics,
we demonstrated the consistent superiority of our approach over existing methods. We hope our
promising results open new avenues for scaling self-supervised learning using large volumes of NOC
data, overcoming the limitations posed by conventional datasets in representation learning.
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Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and
no labels. arXiv preprint arXiv:2109.14279, 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
Conference on Computer Vision, pp. 776–794, 2020a.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in Neural Information Processing
Systems, pp. 6827–6839, 2020b.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 PRE-TRAINING

Architecture. We use ViT-B/16 (Dosovitskiy et al., 2021) as our backbone. The projector g and
predictor h are 3-layer MLPs with hidden dimension 4096 and output dimension 256.

Optimization. We use AdamW optimizer with a cosine learning rate schedule, peak learning rate of
1.5e-4, and weight decay of 0.05. The learning rate is linearly ramped up during the first 10 epochs to
its base value scaled with the total batch size: lr = lrbase × batch size/256. We train for 800 epochs
on 241K-scale datasets and 400 epochs on 1.28M-scale datasets, with a batch size of 1024 distributed
across 8 A100 GPUs. For experiments on 4M-scale datasets, we train 200 epochs.

Augmentation and masking. We use the same augmentation strategy as in iBOT (Zhou et al., 2022)
except not using small local crops. The masking strategy follows (Zhou et al., 2022), with prediction
ratio r uniformly sampled from range [0.3− 0.2, 0.3 + 0.2].

Hyperparameters. We set τs = 0.1, τt = 0.07. The number of prototypes is set to 512 for COCO
and 1024 for other datasets.
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A.1.2 EVALUATION

Linear probing and fine-tuning on ImageNet-1K. We follow (He et al., 2022) for details on
ImageNet evaluations. For linear probing, we insert an extra BatchNorm layer without affine
transformation between the features and the linear classifier. We train with batch size 4096, initial
learning rate 0.1, and optimize using SGD for 90 epochs. We sweep between [CLS] token and
average pooling and report the best results of pre-trained models. For fine-tuning, We train a linear
classifier on frozen features for 100 epochs using SGD with momentum 0.9, batch size 1024, and
initial learning rate 1e-3 with cosine decay. For both settings, accuracy is evaluated on a single
224×224 crop.

Semantic segmentation on ADE20K. We use UperNet Xiao et al. (2018) implemented in MMSeg-
mentation following Zhou et al. (2022). Specifically, we fine-tune for 160k iterations with stochastic
gradient descent, with a batch size of 16 and weight decay of 0.0005. The learning rate is 0.01 and
decays following the poly schedule with power of 0.9 and min lr of 0.0001.

Object detection and instance segmentation on COCO. COCO object detection and instance
segmentation setting also follows Zhou et al. (2022), where the pre-trained model initialized a Cascade
Mask R-CNN (Cai & Vasconcelos, 2019). The image scale is [640, 800] during training and 800 at
inference. We fine-tune all layers end-to-end on COCO Lin et al. (2014) train2017 set with the
standard 1× schedule and report AP for boxes and masks on the val2017 set.

Robot manipulation tasks. Following the setup of Hu et al. (2023), the policy network of behavior
cloning includes a LayerNorm layer before the MLP. The policy training involves mini-batches of
128 samples, conducted over 20,000 steps with the Adam optimizer set to a learning rate of 0.0001.
For each pre-trained vision model and task, we run 3 seeds of BC due to the result’s high variability.
One-image observation for its comparable performance to stacks of images and higher computational
efficiency. All tasks and environments use 224×224 RGB images without proprioceptive input.
No image augmentations, such as random shifts, are applied. We employ attentive pooling, as in
V-Cond (Karamcheti et al., 2023), which is shown to be the better choice than the default [CLS]
embedding head and provides better comparisons between pre-trained frozen visual representations.
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