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Abstract

Cross-frequency transfer learning (CFTL) has emerged as a popular framework for
curating large-scale time series datasets to pre-train foundation forecasting models
(FFMs). Although CFTL has shown promise, current benchmarking practices
fall short of accurately assessing its performance. This shortcoming stems from
many factors: an over-reliance on miniature-scale evaluation datasets; inadequate
treatment of sample size when computing summary statistics; reporting of subopti-
mal statistical models; and failing to account for non-negligible risks of overlap
between pre-training and test datasets. To address these limitations, we introduce a
unified reimplementation of widely-adopted neural forecasting networks, adapting
them for the CFTL setup; we pre-train only on proprietary and synthetic data,
being careful to prevent test leakage; and we evaluate on 15 large, diverse public
forecast competition datasets. Our empirical analysis reveals that statistical models’
accuracy is frequently underreported. Notably, we confirm that statistical models
and their ensembles consistently outperform existing FFMs by more than 8.2% in
sCRPS, and by more than 20% MASE, across datasets. However, we also find that
synthetic dataset pre-training does improve the accuracy of a FFM by 7% percent.

1 Introduction

Access to billions of temporal observations offers exciting opportunities for training foundation
forecasting models (FFMs); and yet significant challenges remain. For example, the method known as
cross-frequency transfer learning (CFTL) combines series of measurements at different frequencies
to train global models [26} 43]; and, as such, it is an intuitive approach to increase time series dataset
sizes. As shown in Figure 1, a key challenge in CFTL is the imbalance of observations across
series: high-frequency series vastly outnumber lower-frequency ones, causing the model to become
saturated and dominated by abundant high-frequency data. Similarly, differences in scale across series
bias gradient updates toward larger-scaled series, preventing the model from learning a common
representation that performs well across all scales.

*These authors contributed equally.
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Figure 1: Naively padding and combining series of different frequencies to train global models leads
to two challenges: (a) the unbalanced observations of series of different frequencies, saturate learning
signals and induce inverse frequency aliasing effects; and (b) heterogeneous time series scales, that
bias gradient optimization. These unresolved challenges still prevent FFMs to replace statistical
models and neural forecasting models specialized on each frequency.

Recent work has suggested that zero-shot CFTL can significantly outperform both traditional statisti-
cal models as well as full-shot neural forecast models trained on frequency-specific data. TabPFN [12],
TimesFM [5], Chronos [3l], Moirai [43] researchers report improvements of over 35% in probabilis-
tic forecasting accuracy compared to traditional approaches like ARIMA [17]] and statistical ensembles,
and more than 15% relative to smaller deep learning architectures such as NBEATS [33]]. However,
practical adoption of FFMs as out-of-the-box replacements for statistical or frequency-specific neural
forecast models remains low, and forecasting practitioners have questioned the validity of these
improvement claims and the experimental conditions under which they were obtained [28]].

In this paper we argue that the appropriate criterion for assessing the success of CFTL FFMs is their
ability to outperform well-established, frequency-specialized statistical models in zero-shot settings
that closely resemble the conditions under which practitioners operate. We also explore the question:
Are current celebrations of CFTL’s superiority over statistical methods premature?

Our key contributions include the following.

(i) Unified CFTL Framework. We re-implement a collection of well-established neural fore-
casting models and adapt them to share optimization, forecast outputs and evaluation pipeline.
Our framework enables controlled comparisons by standardizing the pre-training data, model
estimation strategy, model outputs, and hyperparameter tuning budget.

(i1) Careful Pre-Train Dataset Curation. To prevent any test data leakage in our transfer learning
task, we pre-train exclusively on proprietary and synthetic datasets, and evaluate on 15 large-
scale forecasting competition datasets. Our pre-train corpus comprises over 1.58 billion time
series, spanning frequencies from daily to yearly. We further demonstrate that, even with
extensive proprietary data, the inclusion of simple synthetic datasets improves CFTL’s sCRPS
accuracy by 7%. and MASE by 20%.

(iii) Fair Comparison of CFTL and statistical models. We benchmark our FFMs against automatic
statistical models [[15]], and ensure their specialization in each series, by properly defining its
hyperparameter search space based on their frequency. Furthermore, rather than relying solely
on aggregate metrics - which can bias the evaluation toward smaller datasets - we report
disaggregated results and use weighted averages to provide a more balanced and representative
assessment across datasets. We release the evaluation of our statistical models at https:
//anonymous .4open.science/r/neurips_baselines-4BC5.

The paper is structured as follows: Section[2]introduces the CFTL methodology and reviews relevant
literature; Section [3|presents our main experiments and summarizes our main empirical findings; and
Section [ concludes.
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Figure 2: Three-layer fully connected network predictive function. Classic forecasting applications
optimize distinct model parameters for source D) and target D(T) datasets, a) and b) columns.
Parameter-based transfer-learning leverages source dataset knowledge by using a pre-trained model’s

parameters 01(8)’ to initialize another model’s parameters OI(T) that can specialize on a target dataset.

2 Methodology

We consider the univariate forecasting task. Let’s start by introducing its mathematical notation. Let
the forecast creation dates be [t] = [1, ..., 7| and the forecast horizon be denoted by [h] = [1,2, ..., H].
Given a time series target variable y = Y, and target history y ., the forecasting task estimates
the following conditional probability:

P(Yum |0, yi) - )

Model Estimation. Consider a source forecast dataset D(°), defined as the set of realization tuples
DY) = {(x,y)] x € Vie—r:4), Y € Yy} where the Vyjpp) and V1.4 are the target variable
and regressor support space. We estimate each forecasting model parameters @ by minimizing the
empirical risk based on Quantile Loss (QL; [19]).

Transfer Learning Forecasting Task. As shown in Figure 2| the zero-shot forecast task distin-
guishes the source data sets D(%) and target D7), the task indirectly uses the information from the
source domain by using the transfered parameters [44] as the forecasting function from Equation ().
Literature review for forecasting transfer learning is available in Appendix [A]

3 Experiments

Pre-train Datasets. To pretrain our models, we use a diverse collection of 1.58 billion large
online retail time series spanning daily, weekly, monthly, quarterly, and yearly frequencies. These
datasets include demand data from cashierless convenience stores, grocery delivery services, and
physical grocery stores. We augment the large-scale online retail demand data with a synthetic dataset
composed using a combination of Fourier harmonic signals to mimic seasonalities, polynomial trends,
Gaussian processes that we depict in Figure[3] Dataset details in Appendix [B

M-series Evaluation Datasets. We consider 15 large scale forecast datasets comprising over
100,000 time series, curated from major forecasting competitions: M1 [22], M3 [23], M4 [25]], and
Tourism [4)]. These datasets, represent a broad range of domains and temporal frequencies. To ensure
comparability with recent neural forecasting literature, we adopt the data handling and pre-processing
practices of ChronosB [2}|3] and NBEATS [33]]. Importantly, we use the datasets solely for evaluation
purposes — excluding them from model optimization — to assess their true zero-shot forecasting
capabilities of our models and avoid any potential test leakage.



Table 1: Empirical evaluation of probabilistic forecasts. Mean scaled continuous ranked probability
score (SCRPS) averaged over 5 runs. The best united CFTL framework result is highlighted (lower
measurements are preferred). The methods without standard deviation have deterministic solutions.
iChronosB-S stands for the pretrained ChronosBolt-Small. Zero-shot predictions correspond to the original Hugging face model published by Fatir et al [3].
“ChronosB is trained in our unified CFTL framework, without being full-shot we are able to replicate or improve ChronosB-$8 accuracy in various datasets.
“*Neither TimesFM nor ChronosB-§ are zero-shot forecasting models as they are trained on the M4 dataset [3[5].

| StatsForecast | Unified CFTL framework | External FFMs (not zero-shot)
Freq | ARIMA  SiCoUM | Best NBEATS MQCNN  PatchTST  ChronosB | Moirai-S  TabPFN  ChronosB-S°  TimesFM
M 0.154 0.168 0.152 0.152 0.155 0.156 0.156 0.135 0.168 0.173 0.130
© © © ©014) ©001) ©.003) ©0008) 6] ©.003) © 8]
w9 0.088 0084 | 0.083 0087  0.083 0.107 0.133 0.077 0.095 0.084 0.113
8 O o 0015 ©001) ©.007) ©0024) O ©o114) o ¢
Y 0.133 0.129 0.134 0.151 0.182 0.137 0.163 0.210 0.143 0.119 0.145
©) ©) ©) 0.016) 0.022) 0.011) 0.023) ©) (0.012) ©) ©)
o) 0.034 0034 | 0045 0052 0045 0.073 0.077 0.035 0.038 0.036 0.040
©) © © ©.021) (0.008) (0.010) 0.03) © (0.008) © ©
M 0.098 0.095 0.104 0.111 0.117 0.105 0.104 0.093 0.107 0.113 0.089
M3 © © © (0.0010) (0.008) (0.002) (0.004) © (©.001) © ©
Q 0.077 0.073 0.080 0.083 0.080 0.103 0.121 0.077 0.077 0.074 0.075
o O o ©016) ©009) ©.006) ©0025) ¢ ©.005) 8 O
Y 0.156 0.144 | 0127  0.127 0.167 0.129 0.156 0.135 0.132 0.114 0.144
© © © 0.012) ©.017) (0.008) (0.020) © (0.007) ©) ©
D 0.024 0.024 0.023 0.077 0.023 0.021 0.019 0.033 0.023 0.028 0.021
o © © (0.003) 0.001) (0.001) 0.001) ) (0.001) © ©
A\ 0.046 0.049 0.047 0.067 0.047 0.050 0.050 0.071 0.046 0.053 0.042
©) ©) ©) (0.002) (0.005) (0.002) (0.001) ©) 0.001) ©) ©
Ma M 0.096 0.096 0.101 0.105 0.108 0.095 0.097 0.117 0.101 0.108 0.066
o O © ©.001) ©004) ©.002) ©0003) ¢ ©.001) o ©
Q 0.079 0.078 0.085 0.090 0.085 0.092 0.081 0.151 0.084 0.080 0.062
© © © (0.001) (0.005) (0.005) (0.002) © (0.002) ©) ©
Y 0.125 0.115 0.133 0.133 0.159 0.121 0.144 0.187 0.121 0.106 0.091
o O 8] ©010) ©017) ©.010) ©019) O ©.008) o 8
M 0.0910 0.082 0.122 0.211 0.122 0.201 0.194 0.275 0.193 0.155 0.085
g © © © (0.007) (0.009) (0.005) (0.010) © (0.004) © ©
A 0.099 0.075 0.116 0.140 0.116 0.141 0.141 0.251 0.162 0.148 0.070
5 5 o) o ©.007) ©012) ©0.006) ©013) 5 0.0034) o e)
I 0.128 0.1450 0.116 0.116 0.157 0.119 0.156 0.275 0.141 0.103 0.167
©) ©) ©) 0.011) (0.002) 0.011) (0.030)y ©) (0.000) ©) ©)

Forecasting Baselines. We compare FFMs with two statistical models: AutoARIMA [9.[17], and the
Simple Combination of Univariate Models (SiCoUM, [34]), using the StatsForecast library [8}[15]].
Details of the implementation can be found in Appendix [E] In addition, we consider the following
neural forecasting baselines NBEATS [33],[29] , MQCNN [41} 31]], PatchTST [27], ChronosBolt [3],
and Moirai [43]]. Details on the unified CFTL framework implementation and hyperparameters are
available in Appendix

Although we are unable to control hyperparameters or ensure the zero-shot regime (as external
FFMs used M-competitions to train), we still evaluate external FFMs from the original TabPFN [12],
Moirai [43]], TimesFM [5], and ChronosB [3] publications. Regarding Moirai, reasonable accuracy
requires manual selection of patch sizes and context lengths, as the automatic heuristic frequently
leads to catastrophic results. For longer daily/weekly series, the memory footprint scaled unfavorably
with sequence length, causing out-of-memory failures even with batch size 1, which prevented us
from evaluating daily and weekly settings with constant contexts.

We evaluate the accuracy of the forecasts using scaled Continuous Ranked Probability Score (sCRPS,
[10]), defined as follows:

Zi,t,h CRPS(y“,h, Y/i,t,h)
Zz’,t,h |Yi.tnl

sCRPS (y, Y) - @)

We use a Riemann integral approximation technique that uniformly averages the quantile loss over a
discrete set of quantiles.

CRPS(y,Y) = 2/QLq(y,F;1(Q))dq,

where  QL,(y, Fy'(9) = a(y — Fy '(@)+ + (1= ) (Fy (@) — )+
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Summary of Results. Table [I| shows that ARIMA and SiCoUM consistently outperform FFMs,
achieving the lowest errors across for 11 of 15 datasets. Neural architectures occasionally match
or surpass the baselines, but they never achieve the best score across all frequencies of an entire
competition. We complement Table [T] with point forecast evaluations using the mean average scaled
error (MASE), reported in Appendix [C]

Overall, confirming observations from the forecasting community [28]], and in contrast to recent claims
of major advances over statistical models [43, 3} [14} 5], our results show that ARIMA and SiCoUM
outperform CFTL-FFMs in both probabilistic and point forecasting tasks. Excluding TimesFM (non-
zero-shot), the statistical models and best FFMs performance differs by 8.2% in weighted sCRPS and
by 20% in weighted MASE.

4 Discussion and Conclusion

Our study covers 15 large-scale datasets, representing a substantial portion of the GIFT-eval col-
lection [1]]. In contrast to the recent GIFT-eval trend of testing methods on artificially extended
horizons of the M-series datasets, we deliberately preserve horizons that are consistent with the
original Makridakis competitions. The M-series horizons horizons were carefully chosen to reflect
the planning needs of practitioners across different domains, and inflating them 10x or 15x beyond
their intended range transforms the evaluation into a purely academic exercise, with limited relevance
for real-world forecasting applications.

We have conducted a comprehensive evaluation of CFTL. Overall, our results serve as a surprising
reality check for current claims regarding FFMs. However, they also point to promising directions for
improvement. As Appendix [F shows, augmenting the pretraining datasets with synthetic time series
improves NBEATS’s sSCRPS performance by 7%. Similar gains are observed for MQCNN, PatchTST,
and ChronosB. Synthetic data generation is a line of research [21] that will likely be able to bridge
the gap between statistical models and FFMs in their CFTL zero-shot regime.
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A Forecasting Transfer Learning

In this section, we summarize the large body of related work on transfer learning for time series
forecasting.

A.1 Single-Frequency Transfer Learning

Recent advancements in neural forecasting have addressed earlier concerns around computational
cost and predictive accuracy, enabling models to consistently outperform traditional statistical
approaches [24]]. A key driver of this progress is the adoption of cross-learning strategies [37]], where
global models are trained on large collections of related time series to extract shared patterns. The
cross-learning paradigm underpinned the success of top-performing models in competitions like M4
and M5 [38133]], as well as industry models such as DeepAR, MQCNN, TFT and SPADE [36} 411120, 142].

Transfer learning offers two key practical advantages. First, it enables accurate forecasting in scenarios
with limited data. Second, it streamlines forecasting workflows by reducing the need for extensive
model design and hyperparameter tuning, allowing practitioners to obtain strong performance with
minimal customization. In this sense, transfer learning extends forecasting research agenda initiated
by the automation of the Box-Jenkins methodology, which led to models such as AutoARIMA [17,[15].

The early approaches to transfer learning in time series forecasting focused on one global model per
frequency, where success was measured by the model’s ability to outperform traditional statistical
baselines—such as ARIMA, ETS, and Theta—in zero-shot settings [[17, [13,16,[15]. In deep learning
forecasting literature, this line of research was pioneered by the introduction of meta-learning ap-
proach and zero-shot experiments with NBEATS [32]], which laid the groundwork for transfer learning
in forecasting. Since then, a series of pre-trained models have emerged, including TimeGPT [7],
TimesFM [5], LagLlama [35], and ChronosB [3]].

A.2 Cross-Frequency Transfer Learning

The first attempt to relax the same-frequency constraint in transfer learning was conducted by
Van Ness et al. [20], testing the generalization capabilities of neural forecasting models when the
source and target datasets differ in frequency. However, their primary results only compared their
proposed meta-learning approach, Cross-Frequency Adapter (CFA), and other neural forecasting
models such as LSTM and NBEATS. Their evaluation left unanswered the critical question of whether
CFTL outperforms traditional statistical baselines.

Woo et al. [43]], introduced Moirai, a Universal Time Series Forecasting model capable of cross-
frequency transferability. By pretraining on their LOTSA dataset, Moirai claims that CFTL improved
upon fully trained neural forecasting models and statistical baselines. While the paper’s primary focus
is on long-horizon forecasting tasks, they report aggregated results from the Monash Time Series
Forecasting Benchmark [[11]], using the normalized Mean Absolute Error (nMAE) as the evaluation
metric. In these evaluations, Moirai claimed to achieve relative improvements over Theta, ARIMA,
and ETS, by an average of 38%, 36%, and 35%, and 15% upon fully trained NBEATS. A revision
of Moirai’s Table 20 on disaggregated evaluation on the Monash repository revealed suspiciously
volatile measurements where they improve performance by 94% upon ETS on M4-hourly, while
degrade performance by 77.24% on Tourism-Quarterly. This raises questions on the execution of
their statistical baselines.

In a parallel line of work, Fatir et al. introduced ChronosB, a model also designed to perform CFTL.
In their experiments, they evaluate ChronosB’s zero-shot accuracy across 27 datasets, including the
M-forecasting competitions, Tourism and Dominick datasets, as well as long-horizon datasets [45]].
With sCRPS measures, ChronosB asserts improved average performance upon Theta, ARIMA, and
ETS by 47%, 35%, and 47%. A potential issue with the statement of their performance gains lies
in the uniformly averaged performance calculation across datasets; such a reporting is convenient
and common, but it disproportionately skews the measurements towards the smaller datasets like
long-horizon [43].



B Dataset Details
In this section, we provide a summary of the data we used in our evaluation.

B.1 Pre-Training Datasets

Here, we describe the datasets we used in our pre-training. See Table [2]and Figure [3|for a summary.

Real-world data. The primary source of data for our pre-training consisted of several real-world
datasets, which we summarize here.

Table 2: Summary of forecasting datasets used for pre-training.

Frequency Horizon  Series Min Length  Max-Length

Daily 24 65K 1 1857
Dataset A piy 24 28K 1 1857
Dataset B Weekly 24 4MM 1 262
Dataset C  Daily 24 900K 1 1857
Daily 24 350K 1 1857
Dataset D  Daily 24 320K 1 1857
Daily 24 1.5MM 1 1857
Daily 24 290MM 1 1834
Dataset F  Weekly 24 290MM 1 262
Monthly 24 290MM 1 58
Dataset E = Weekly 24 700MM 1 314

Dataset A comes from a chain of convenience stores operating in multiple countries. The dataset
contains demand data for various consumer products including food items.

Dataset D represents daily demand from a grocery delivery service operating in multiple regions
globally. The service offers various food and household products to subscribers.

Dataset C originates from a hybrid retail format that combines multiple fulfillment methods. It
includes daily demand data from stores in North America, supporting both in-store shopping and
delivery options.

Dataset B contains weekly demand data from a third-party fulfillment service operating across six
developed countries. The service handles all aspects of product storage and delivery for external
sellers.

Dataset F comprises national-level demand data from a major retail platform, including information
from multiple countries around the world. Dataset E is a more granular version of Dataset F’s
data for one country, broken down by postal code prefixes. It shows more irregular demand patterns
than the national-level data.
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Date

(a) Sample from Pretraining Dataset (b) Synthetic Dataset

Figure 3: For our CFTL task, we use two datasets: (a) a set of real-world datasets composed of
large-scale online retail demand; and (b) a set of synthetic dataset composed of Gaussian processes,
Fourier harmonic signals, and polynomial trends.

Synthetic Datasets. We also used carefully-constructed synthetic data for pre-training.

Dataset G was artificially generated to supplement the training data, incorporating various time series
patterns. These include basic constants, sinusoidal and cosinusoidal seasonalities, linear trends,
polynomial trends, frequency drift curves, gaussian waves, exponential trend, and logistic growth
curves across different time granularities as seen in Figure The patterns were combined and
modified with random noise to create realistic variations. The basic component signal equations are
provided below:

yve=k ye =sin(rm*xaxt+0b) vyt =cos(m*xaxt+Db)
t—b)?
yi=axt+b yt:sin(ﬂ-:aﬁ—b) yt:a*exp<—()>
¢
yi =axexp (bxt) yi=axt?+bxt+c yi = ¢

1+exp(=bx*(t—c))
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B.2 Evaluation Datasets
Here, we describe the datasets we used in our evaluation. See Table E]for a summary.

Table 3: Summary of forecasting datasets we used in our evaluation.

Frequency Seasonality Horizon  Series Min Length Max Length % Erratic

Monthly 12 18 617 48 150 0
M1 Quarterly 4 8 203 18 114 0
Yearly 1 6 181 15 58 0
Other 4 8 174 71 104 0
M3 Monthly 12 18 1428 66 144 2
Quarterly 4 8 756 24 72 1
Yearly 1 6 645 20 47 10
Hourly 24 48 414 748 1008 17
Daily 1 14 4,227 107 9933 2
M4 Weekly 1 13 359 93 2610 16
Monthly 12 18 48,000 60 2812 6
Quarterly 4 8 24,000 24 874 11
Yearly 1 6 23,000 19 841 18
Monthly 12 24 366 91 333 51
Tourism  Quarterly 4 8 427 30 130 39
Yearly 1 4 518 11 47 23

M1 Dataset Details. The early M1 competition [22], organized by Makridakis et al., focused on
1,001 time series drawn from demography, industry, and economics, with lengths ranging from 9 to
132 observations and varying in frequency (monthly, quarterly, and yearly). A key empirical finding
of this competition was that simple forecasting methods, such as ETS [13]], often outperformed more
complex approaches. These results had a lasting impact on the field, initiating a research legacy that
emphasized accurate forecasting, model automation, and caution against overfitting. The competition
also marked a conceptual shift, helping to distinguish time-series forecasting from traditional time
series analysis.

M3 Dataset Details. The M3 competition [23]], held two decades after the M1 competition, featured
a dataset of 3,003 time series spanning business, demography, finance and economics. These series
ranged from 14 to 126 observations and included monthly, quarterly, and yearly frequencies. All se-
ries had positive values, with only a small proportion displaying erratic behavior and none exhibiting
intermittency [40]. The M3 competition reinforced the trend of simple forecasting methods outper-
forming more complex alternatives, with the Theta method [16] emerging as the best performing
approach.

M4 Dataset Details. The M4 competition marked a substantial increase in both the size and diversity
of the M competition datasets, comprising 100,000 time series across six frequencies: hourly, daily,
weekly, monthly, quarterly, and annual. These series covered a wide range of domains, including
demography, finance, industry, and both micro- and macroeconomic indicators. The competition
also introduced the evaluation of prediction intervals in addition to point forecasts, broadening the
assessment criteria. M4’s proportion of non-smooth or erratic time series increased to 18 percent [40].
For the first time, a neural forecasting model - ESRNN[38]] - outperformed traditional methods. The
competition also helped popularize cross-learning [37] in global models.

Tourism Dataset Details. The Tourism dataset [4] was designed to evaluate forecasting methods
applied to tourism demand data across multiple temporal frequencies. It comprises 1,311 time series
at monthly, quarterly, and yearly frequencies. This competition introduced the Mean Absolute Scaled
Error (MASE) as an alternative metric to evaluate scaled point forecasts, alongside the evaluation of
forecast intervals. Notably, 36% of the series were classified as erratic or intermittent. Due to this
high proportion of irregular data, the Naivel method proved particularly difficult to outperform at the
yearly frequency.
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Table 4: Empirical evaluation of point forecasts. Mean absolute scaled error (MASE) averaged over
5 runs. The best united CFTL framework result is highlighted (lower measurements are preferred).
The methods without standard deviation have deterministic solutions.

ChronosB-S stands for a pretrained Chronos-Bolt-Small. Zero-shot predictions correspond to the original Hugging face model published by Fatir et al [3].
" ChronosB was, trained in our unified CFTL framework, without being full-shot we are able to replicate or improve ChronosB-S accuracy in various datasets.
“*Neither TimesFM nor ChronosB-S are zero-shot forecasting models as they are trained on the M4 dataset [3][3].

| StatsForecast | NF (unified CFTL framework) | NF (external train)

Freq ‘ ARIMA SiCoUM ‘ Best NBEATS MQCNN PatchTST ChronosB " ‘ Moirai-S TabPFN ChronosB-S TimesFM

M 0.759 0.765 0.715 0.896 0.745 0.715 1.048 0.659 0.838 0.834 0.655
© © © (0.039) (0.002) 0.007) ©.018) o o © ©
M1 Q 0.889 0.801 0.699 1.026 0.791 0.707 1.078 0.778 0.972 0.818 1.039
©) ©) ©) (0.176) (0.007) (0.028) (0.125) ©) ©) ©) ©)
Y 0.718 0.686 0.632 0.672 0.977 0.629 0.993 1.289 0.830 0.723 0.803
© © © 0.092) ©.012) (0.009) ©.072) © © © ©
o 0.738 0.693 0.784 1.040 0.968 0.822 0.784 0.725 0.866 0.729 0.853
©) ©) ) (0.592) 0.021) (0.165) (0.143) ©) ©) ©) ©
M 0.775 0.721 0.795 0.861 0.888 0.795 0.860 0.936 0.838 0.880 0.709
M3 ©) ©) ©) (0.150) (0.002) (0.002) (0.006) ©) ©) ©) ©)
Q 0.905 0.821 0.856 0.959 0.937 0.852 1.394 1.008 0.941 0.879 0.882
© © © (0.252) (0.005) 0.032) 0.083) o o O o
Y 1.104 0.998 0.736 0.887 1.212 0.743 1.141 1.045 0.957 0.841 1.023
©) ©) ©) (0.106) (0.019) (0.038) (0.070) ©) ©) ) ©)
D 0.977 0.962 1.041 3.007 1.041 0.847 0.974 1.323 1.055 1.087 0.965
© © © (0.196) (0.192) 0.008) (0.030) ©) © © ©
w 0.886 0.931 0.861 1.281 0.861 0.890 1.128 1.378 0.903 1.004 0.814
© © © ©.061) 0.063) (0.009) ©.014) © © © ©
Ma M 0.839 0.811 0.864 0.898 0.911 0.800 0.864 1.102 0.895 0.948 0.605
©) ©) ©) (0.016) (0.005) 0.007) 0.005) ©) ©) © ©
Q 0.874 0.838 0.936 0.936 0.970 0.795 1.082 1.234 0.953 0.887 0.695
©) ©) ©) 0.019) 0.072) (0.015) (O.114) ©) ©) © ©)
Y 0.921 0.814 0.944 0.944 1.043 0.700 0.988 1.464 0.924 0.789 0.667
©) © ©) 0.093) ©.118) (0.046) 0.128) ©) ©) © ©)
M 0.368 0.333 0.509 0.881 0.509 0.865 0.842 1.148 0.860 0.636 0.357
© © © ©.018) ©.007) ©.019 0044 8 8 © )
Q 0.727 0.539 0.843 1.026 0.843 0.912 1.105 1.840 1.142 1.028 0.539
©) ©) ©) (0.059) (0.007) (0.032) (0.105) ©) ©) ©) ©)
Y 0.744 0.791 0.577 0.672 0.880 0.588 0.773 1.558 0.842 0.562 0.924
©) © ©) 0.092) ©0.012) 0.052) 0.159) ©) ©) ©) ©)

C Point Forecast Results

In this section, we complement our evaluation of probabilistic forecasts (from the main text) with
a set of point forecast results. We consider the Mean Absolute Scaled Error (MASE, [18])), that
considers the ratio between mean absolute error of forecasts over mean absolute error of the Naive
forecast ¢; 1 5, (i.€., a point forecast using the last observation on the previous season), as described by

Zi,t,h Yi,t.h — Jit,nl

MASE (y, §, §) = Jithl
& ) it Vit — Uianl

“

Table [ reports mean point forecast performances of our statistical baselines and neural forecast
models using the MASE across the five best checkpoints during the training process. The lowest value
in every dataset-frequency cell again belongs to a statistical baseline method. On M3-Other, SiCoUM
reaches a MASE of 0.515 against ChronosB-P’s 0.637; on M4-Daily, the exponential-smoothing
family (ARIMA, Theta, ETS) MASE ranges from 0.963-0.977 while the best neural forecasts range
from 3.000-3.330.

While gaps are smaller for lower frequency data, classical models still lead: CES reports a MASE
of 0.636 on M1-Quarterly compared to the zero-shot ChronosB-P network’s MASE of 0.766, and
Theta has a MASE of 0.625 on Tourism-Quarterly versus the 1.332 of MQCNN; neural forecasters
never obtain the minimum MASE in any dataset or frequency, and exceed 1.0 in most rows. On the
other hand, SiCoUM, (Ensemble of CES, ETS, Theta, and ARIMA) stay below the 1.0 threshold in all
but a few yearly series.

These results mirror our results for probabilistic scores; and they confirm that, also for point forecasts,
traditional statistical like ARIMA, and SiCoUM methods remain the most accurate choice on the four
benchmark suites.
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D Training Methodology and Hyperparameters

Table 5: NBEATS

HYPERPARAMETER VALUES
Single GPU SGD Batch Size”. 32 (32%8)
Initial learning rate. 0.001
Maximum Training steps Sy qz- 60,000
Learning rate decay. 0.1

Learning rate steps.

40,000; 50,000

Input size. 48
Main Activation Function. ReLU
Number of Stacks 4
Number of Blocks within Stacks. 3
MLP layers within Blocks. 2
Coefficients hidden size. 512
Degree of Trend Polynomials (interpretable). N/A
Number of Fourier Basis (interpretable). N/A

Table 7: PatchTST

HYPERPARAMETER VALUES
Single GPU SGD Batch Size". 32 (32*8)
Initial learning rate. 0.001
Maximum Training steps Sy qaq - 100,000
Learning rate decay. 0.1
Learning rate steps. 100,000/ 5
Input Size. 128
Main Activation Function ReLU
Patching Length. 16
Patching Stride. 8
Number of Attention Heads. 16
Encoder Hidden Size. 128
Decoder Hidden Size. 256
Apply Revin. True
Residualized Attention. True

Table 6: MQCNN

HYPERPARAMETER VALUES
Single GPU SGD Batch Size”. 32 (32%8)
Initial learning rate. 0.001
Maximum Training steps Sinqz - 400,000
Learning rate decay. 0.1
Learning rate steps. 400,000/ 2
Main Activation Function ReLU
Temporal Convolution Kernel Size 2
Temporal Convolution Dilations. [1,2,4,8,16, 32]
Historic Encoder Dimension. 30
Future Encoder Dimension (h f1). 50
Static Encoder D.Multip. (o x |/Z(*]) 30
H-Agnostic Decoder Dimension. 100
H-Specific Decoder Dimension. 20
Table 8: ChronosBolt
HYPERPARAMETER VALUES
Single GPU SGD Batch Size”. 4 (96)
Initial learning rate. 0.0005
Maximum Training steps Sy, qq - 50,000
Learning rate decay. 0.1
Learning rate steps. 50,000/5
Input Size. 2048
Main Activation Function ReLU
Encoder/Decoder Hidden Size. 256
Encoder Type. T5Stack
Decoder Type. T5Stack
Patch Size 16
Patch Stride 16
Encoder Number of Layers. 4
Decoder Number of Layers. 4
Number of Attention Heads. 4
Attention Dropout Rate. 0.1

In this section, we provide details on the training methodology, outlined in Section[3] The optimization
of all models is based on the definition of training, validation, and test datasets, depicted in Figure E}
For all our pre-training datasets, we keep the 24 observations immediately following the training
data as validation. Given the scale of our evaluation, we focused our hyperparameter optimization
solely on the selection of training steps and learning rate, and we rely principally on the default
hyperparameters implementation for each baseline. See Tables 3] [6] [7} [}] Hyperparameters not
specified in these tables are set to the defaults of the original implementations in the NeuralForecast

library [30]], or the Chronos repository [3]].

We conducted all neural network experiments using a single AWS p4d.24xlarge with 1152 GiB of
RAM and 96 vCPUs. Training times mostly depend on the architecture, however we restrict the SGD

training steps to 100K per architectures.
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E Implementation Details of the Simple Combination of Univariate Models

In this section, we provide details on the implementation of the statistical ensemble used to generate
the point and probabilistic forecasts evaluated in TableT|and Table [}

As discussed in Section [3] we employ the Simple Combination of Univariate Models (SiCoUM;
[34]) framework. This ensemble method aggregates forecasts from four classical statistical models.
Complex Exponential Smoothing (CES; [39]), Dynamic Optimized Theta (Theta; [6]), Automatic
Autoregressive Integrated Moving Average (ARIMA; [[17]), and Exponential Smoothing (ETS; [13]).
For all the models, we use the implementations of the StatsForecast library [8} [15]].

Each model is independently fitted to the time series, producing Gaussian-distributed forecasts. As-
suming Normality and independence among model forecast distributions, we construct the ensemble
by aggregating the means and variances of the individual forecasts. Let CES, Theta, ARIMA, and ETS
denote the constituent models, the ensemble forecast is computed as:

.1 N . .

f=7 (ficEs + [Theta + LARIMA + AETS) ©)
~2 1 ~2 ~2 ~2 ~2 6
=7 (68Es + 0Fheta + FArMA + ORTs) (6)

We generate the final quantile predictions using the percent point function:
§9 = i+ 62

| . )
with 290 —inflyeR : ¢ < B(y)}
To run the statistical baselines we used a single AWS c5.18xlarge instance with 72 vCPUs and 137 GiB
of RAM. To ensure the reproducibility of our experimental results, we provide the implementation of
the statistical baselines at the following link: https://anonymous.4open.science/r/neurips_
baselines-4BC5.
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F Ablation Study on Synthetic Data in our Pre-training Datasets

metric = sCRPS metric = MASE
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Figure 4: Pre-training datasets ablation, with and without the use of synthetic data. Shown are metrics
with (red) and without (green) synthetic data for pre-training, for the NBEATS model.

Our re-implementation of well-established univariate forecasting algorithms, adapted for the CFTL
task, enabled us to isolate a primary driver of accuracy improvements across architectures: dataset
quality. As shown in Figure d our CFTL-adapted NBEATS model improved its SCRPS score from
0.116 to 0.108 - a notable 7% gain - when synthetic data was added to the pre-training set. Similar
improvements were observed across other architectures. For this and other models, our results
demonstrated that dataset composition, rather than architectural choices, was the primary driver of
sCRPS improvements.

Importantly, even in the presence of huge pre-training datasets, of 1.58 billion series, synthetic
data are still capable of improving the zero-shot performance of NBEATS, MQCNN, ChronosB, and
PatchTST (as shown in Table[T|and Table ), reinforcing the central role of training data in model
performance even at large scales. This suggests that better synthetic data generation methodologies
will be important to the future advancements of CFTL and FFMs.
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