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Abstract

Cross-frequency transfer learning (CFTL) has emerged as a popular framework for1

curating large-scale time series datasets to pre-train foundation forecasting models2

(FFMs). Although CFTL has shown promise, current benchmarking practices fall3

short of accurately assessing its performance. This shortcoming stems from many4

factors: an over-reliance on small-scale evaluation datasets; inadequate treatment5

of sample size when computing summary statistics; reporting of suboptimal sta-6

tistical models; and failing to account for non-negligible risks of overlap between7

pre-training and test datasets. To address these limitations, we introduce a unified8

reimplementation of widely-adopted neural forecasting networks, adapting them9

for the CFTL setup; we pre-train only on proprietary and synthetic data, being10

careful to prevent test leakage; and we evaluate on 15 large, diverse public fore-11

cast competition datasets. Our empirical analysis reveals that statistical models’12

accuracy is frequently underreported. Notably, we confirm that statistical models13

and their ensembles consistently outperform existing FFMs by more than 8.2% in14

sCRPS, and by more than 20% MASE, across datasets. However, we also find that15

synthetic dataset pre-training does improve the accuracy of a FFM by 7% percent.16

1 Introduction17

Access to billions of temporal observations offers exciting opportunities for training foundation18

forecasting models (FFMs); and yet significant challenges remain. For example, the method known as19

cross-frequency transfer learning (CFTL) combines series of measurements at different frequencies20

to train global models [26, 43]; and, as such, it is an intuitive approach to increase time series dataset21

sizes. As shown in Figure 1, a key challenge in CFTL is the imbalance of observations across22

series: high-frequency series vastly outnumber lower-frequency ones, causing the model to become23

saturated and dominated by abundant high-frequency data. Similarly, differences in scale across series24

bias gradient updates toward larger-scaled series, preventing the model from learning a common25

representation that performs well across all scales.26

Recent work has suggested that zero-shot CFTL can significantly outperform both traditional statisti-27

cal models as well as full-shot neural forecast models trained on frequency-specific data. TabPFN [12],28

TimesFM [5], Chronos [3], Moirai [43] researchers report improvements of over 35% in probabilis-29

tic forecasting accuracy compared to traditional approaches like ARIMA [17] and statistical ensembles,30

and more than 15% relative to smaller deep learning architectures such as NBEATS [33]. However,31

practical adoption of FFMs as out-of-the-box replacements for statistical or frequency-specific neural32

forecast models remains slow, and forecasting practitioners have questioned the validity of these33

improvement claims and the experimental conditions under which they were obtained [28].34

In this paper we argue that the appropriate criterion for assessing the success of CFTL FFMs is their35

ability to outperform well-established, frequency-specialized statistical models in zero-shot settings36

that closely resemble the conditions under which practitioners operate. And explore the question: are37

current celebrations of CFTL’s superiority over statistical methods premature?38
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Figure 1: Naively padding and combining series of different frequencies to train global models leads
to two challenges: (a) the unbalanced observations of series of different frequencies, saturate learning
signals and induce inverse frequency aliasing effects; and (b) heterogeneous time series scales, that
bias gradient optimization. These unresolved challenges still prevent FFMs to replace statistical
models specialized on each frequency.

Our key contributions include the following.39

(i) Unified CFTL Framework. We re-implement a collection of well-established neural fore-40

casting models and adapt them to share optimization, forecast outputs and evaluation pipeline.41

Our framework enables controlled comparisons by standardizing the pre-training data, model42

estimation strategy, model outputs, and hyperparameter tuning budget.43

(ii) Careful Pre-Train Dataset Curation. To prevent any test data leakage in our transfer learning44

task, we pre-train exclusively on proprietary and synthetic datasets, and evaluate on 15 large-45

scale forecasting competition datasets. Our pre-train corpus comprises over 1.58 billion time46

series, spanning frequencies from daily to yearly. We further demonstrate that, even with47

extensive proprietary data, the inclusion of simple synthetic datasets improves CFTL’s sCRPS48

accuracy by 7%. and MASE by 20%.49

(iii) Fair Comparison of CFTL and statistical models. We benchmark our FFMs against automatic50

statistical models [15], and ensure their specialization in each series, by properly defining its51

hyperparameter search space based on their frequency. Furthermore, rather than relying solely52

on aggregate metrics - which can bias the evaluation toward smaller datasets - we report53

disaggregated results and use weighted averages to provide a more balanced and representative54

assessment across datasets. We release the evaluation of our statistical models at https:55

//anonymous.4open.science/r/neurips_baselines-4BC5.56

The paper is structured as follows: Section 2 introduces the CFTL methodology and reviews relevant57

literature; Section 3 presents our main experiments and summarizes our main empirical findings; and58

Section 4 concludes.59

2 Methodology60

We consider the univariate forecasting task. Let’s start by introducing its mathematical notation. Let61

the forecast creation dates be [t] = [1, ..., T ] and the forecast horizon be denoted by [h] = [1, 2, ...,H].62

Given a time series target variable y = Y[t][h] and target history y[:t], the forecasting task estimates63

the following conditional probability:64

P
(
Y[t][h] | θ, y[:t]

)
. (1)

Model Estimation. Consider a source forecast dataset D(S), defined as the set of realization tuples65

D(S) = {(x,y)| x ∈ Y[t−L:t], y ∈ Y[t][h]}, where the Y[t][h] and Y[t−L:t] are the target variable66

and regressor support space. We estimate each forecasting model parameters θ by minimizing the67

empirical risk based on Quantile Loss (QL; [19]).68
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Figure 2: Three-layer fully connected network predictive function. Classic forecasting applications
optimize distinct model parameters for source D(S) and target D(T ) datasets, a) and b) columns.
Parameter-based transfer-learning leverages source dataset knowledge by using a pre-trained model’s
parameters θ(S)

l , to initialize another model’s parameters θ(T )
l that can specialize on a target dataset.

Transfer Learning Forecasting Task. As shown in Figure 2, the zero-shot forecast task distin-69

guishes the source data sets D(S) and target D(T ), the task indirectly uses the information from the70

source domain by using the transfered parameters [44] as the forecasting function from Equation (1).71

Literature review for forecasting transfer learning is available in Appendix A.72

3 Experiments73

Pre-train Datasets. To pretrain our models, we use a diverse collection of 1.58 billion large74

online retail time series spanning daily, weekly, monthly, quarterly, and yearly frequencies. These75

datasets include demand data from cashierless convenience stores, grocery delivery services, and76

physical grocery stores. We augment the large-scale online retail demand data with a synthetic dataset77

composed using a combination of Fourier harmonic signals to mimic seasonalities, polynomial trends,78

Gaussian processes that we depict in Figure 3. Dataset details in Appendix B.79

Evaluation Datasets. We consider 15 large scale forecast datasets comprising over 100,000 time80

series, curated from major forecasting competitions: M1 [22], M3 [23], M4 [25], and Tourism [4].81

These datasets, represent a broad range of domains and temporal frequencies. To ensure comparability82

with recent neural forecasting literature, we adopt the data handling and pre-processing practices of83

Chronos [2, 3] and NBEATS [33]. Importantly, we use the datasets solely for evaluation purposes –84

excluding them from model optimization – to assess their true zero-shot forecasting capabilities of85

our models and avoid any potential test leakage.86

Forecasting Baselines. We compare FFMs with two statistical models: AutoARIMA [9, 17], and the87

Simple Combination of Univariate Models (SiCoUM, [34]), using the StatsForecast library [8, 15].88

Details of the implementation can be found in Appendix E. In addition, we consider the following89

neural forecasting baselines NBEATS [33, 29] , MQCNN [41, 31], PatchTST [27], ChronosBolt [3],90

and Moirai [43]. Details on the unified CFTL framework implementation and hyperparameters are91

available in Appendix D.92

Although we are unable to control hyperparameters or ensure the zero-shot regime (as external93

FFMs used M-competitions to train), we still evaluate external FFMs from the original TabPFN [12],94

Moirai [43], TimesFM [5], and Chronos [3] publications. Regarding Moirai, reasonable accuracy95

requires manual selection of patch sizes and context lengths, as the automatic heuristic frequently96

leads to catastrophic results. For longer daily/weekly series, the memory footprint scaled unfavorably97

with sequence length, causing out-of-memory failures even with batch size 1, which prevented us98

from evaluating daily and weekly settings with constant contexts.99

3



Table 1: Empirical evaluation of probabilistic forecasts. Mean scaled continuous ranked probability
score (sCRPS) averaged over 5 runs. The best united CFTL framework result is highlighted (lower
measurements are preferred). The methods without standard deviation have deterministic solutions.
*Chronos-S stands for a pretrained Chronos-Bolt-Small. Zero-shot predictions correspond to the original Hugging face model published by Fatir et al [3]. *Chronos
is trained in our unified CFTL framework, we are able to replicate or improve Chronos-S accuracy on the majority of datasets.
**Neither TimesFM nor Chronos-S are zero-shot forecasting models as they are trained on the M4 dataset [3, 5].

StatsForecast Unified CFTL framework External FFMs

Freq ARIMA SiCoUM Best NBEATS MQCNN PatchTST Chronos * Moirai-S TabPFN Chronos-S * TimesFM **

M1

M 0.154 0.168 0.152 0.152 0.155 0.156 0.156 0.135 0.168 0.173 0.130
(-) (-) (-) (0.014) (0.001) (0.003) (0.008) (-) (0.003) (-) (-)

Q 0.088 0.084 0.083 0.087 0.083 0.107 0.133 0.077 0.095 0.084 0.113
(-) (-) (-) (0.015) (0.001) (0.007) (0.024) (-) (0.0114) (-) (-)

Y 0.133 0.129 0.134 0.151 0.182 0.137 0.163 0.210 0.143 0.119 0.145
(-) (-) (-) (0.016) (0.022) (0.011) (0.023) (-) (0.012) (-) (-)

M3

O 0.034 0.034 0.045 0.052 0.045 0.073 0.077 0.035 0.038 0.036 0.040
(-) (-) (-) (0.021) (0.008) (0.010) (0.03) (-) (0.008) (-) (-)

M 0.098 0.095 0.104 0.111 0.117 0.105 0.104 0.093 0.107 0.113 0.089
(-) (-) (-) (0.0010) (0.008) (0.002) (0.004) (-) (0.001) (-) (-)

Q 0.077 0.073 0.080 0.083 0.080 0.103 0.121 0.077 0.077 0.074 0.075
(-) (-) (-) (0.016) (0.009) (0.006) (0.025) (-) (0.005) (-) (-)

Y 0.156 0.144 0.127 0.127 0.167 0.129 0.156 0.135 0.132 0.114 0.144
(-) (-) (-) (0.012) (0.017) (0.008) (0.020) (-) (0.007) (-) (-)

M4

D 0.024 0.024 0.023 0.077 0.023 0.021 0.019 0.033 0.023 0.028 0.021
(-) (-) (-) (0.003) (0.001) (0.001) (0.001) (-) (0.001) (-) (-)

W 0.046 0.049 0.047 0.067 0.047 0.050 0.050 0.071 0.046 0.053 0.042
(-) (-) (-) (0.002) (0.005) (0.002) (0.001) (-) (0.001) (-) (-)

M 0.096 0.096 0.101 0.105 0.108 0.095 0.097 0.117 0.101 0.108 0.066
(-) (-) (-) (0.001) (0.004) (0.002) (0.003) (-) (0.001) (-) (-)

Q 0.079 0.078 0.085 0.090 0.085 0.092 0.091 0.151 0.084 0.080 0.062
(-) (-) (-) (0.001) (0.005) (0.005) (0.002) (-) (0.002) (-) (-)

Y 0.125 0.115 0.133 0.133 0.159 0.121 0.144 0.187 0.121 0.106 0.091
(-) (-) (-) (0.010) (0.017) (0.010) (0.019) (-) (0.008) (-) (-)

M 0.0910 0.082 0.122 0.211 0.122 0.201 0.194 0.275 0.193 0.155 0.085
(-) (-) (-) (0.007) (0.009) (0.005) (0.010) (-) (0.004) (-) (-)

Q 0.099 0.075 0.116 0.140 0.116 0.141 0.141 0.251 0.162 0.148 0.070
(-) (-) (-) (0.007) (0.012) (0.006) (0.013) (-) (0.0034) (-) (-)

Y 0.128 0.1450 0.116 0.116 0.157 0.119 0.156 0.275 0.141 0.103 0.167
(-) (-) (-) (0.011) (0.002) (0.011) (0.030) (-) (0.000) (-) (-)

Probabilistic Forecast Results. We evaluate the accuracy of the forecasts using scaled Continuous100

Ranked Probability Score (sCRPS, [10]), defined as follows.101

sCRPS
(
y, Ŷ

)
=

∑
i,t,h CRPS(yi,t,h, Ŷi,t,h)∑

i,t,h |yi,t,h|
. (2)

Summary of Results. Table 1 shows that ARIMA and SiCoUM consistently outperform FFMs,102

achieving the lowest errors across all frequencies for the 11 of 15 datasets. Neural architectures103

occasionally match or surpass the baselines, but they never achieve the best score for an entire104

competition. We complement Table 1 with point forecast evaluations using the mean average scaled105

error (MASE), reported in Appendix C.106

Overall, confirming observations from the forecasting community [28], and in contrast to recent claims107

of major advances over statistical models [43, 3, 14, 5], our results show that ARIMA and SiCoUM108

outperform CFTL-FFMs in both probabilistic and point forecasting tasks. Excluding TimesFM (non-109

zero-shot), the statistical models and best FFMs performance differs by 8.2% in weighted sCRPS and110

by 20% in weighted MASE.111

Although this study already covers 15 large-scale datasets, we view it as a step toward a more112

representative assessment. We plan to extend our evaluation with the missing datasets from the113

GIFT-eval collection [1], as well as new FFMs.114

4 Discussion and Conclusion115

We have conducted a comprehensive evaluation of CFTL. Overall, our results serve as a surprising116

reality check for current claims regarding FFMs. However, they also point to promising directions for117

improvement. As Appendix F shows, augmenting the pretraining datasets with synthetic time series118

improves NBEATS’s sCRPS performance by 7%. Similar gains are observed for MQCNN, PatchTST,119

and Chronos. Synthetic data generation is a line of research [21] that will likely be able to bridge the120

gap between statistical models and FFMs in their CFTL zero-shot regime.121
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A Forecasting Transfer Learning247

In this section, we summarize the large body of related work on transfer learning for time series248

forecasting.249

A.1 Single-Frequency Transfer Learning250

Recent advancements in neural forecasting have addressed earlier concerns around computational251

cost and predictive accuracy, enabling models to consistently outperform traditional statistical252

approaches [24]. A key driver of this progress is the adoption of cross-learning strategies [37], where253

global models are trained on large collections of related time series to extract shared patterns. The254

cross-learning paradigm underpinned the success of top-performing models in competitions like M4255

and M5 [38, 33], as well as industry models such as DeepAR, MQCNN, TFT and SPADE [36, 41, 20, 42].256

Transfer learning offers two key practical advantages. First, it enables accurate forecasting in scenarios257

with limited data. Second, it streamlines forecasting workflows by reducing the need for extensive258

model design and hyperparameter tuning, allowing practitioners to obtain strong performance with259

minimal customization. In this sense, transfer learning extends forecasting research agenda initiated260

by the automation of the Box-Jenkins methodology, which led to models such as AutoARIMA [17, 15].261

The early approaches to transfer learning in time series forecasting focused on one global model per262

frequency, where success was measured by the model’s ability to outperform traditional statistical263

baselines—such as ARIMA, ETS, and Theta—in zero-shot settings [17, 13, 6, 15]. In deep learning264

forecasting literature, this line of research was pioneered by the introduction of meta-learning ap-265

proach and zero-shot experiments with NBEATS [32], which laid the groundwork for transfer learning266

in forecasting. Since then, a series of pre-trained models have emerged, including TimeGPT [7],267

TimesFM [5], LagLlama [35], and Chronos [3].268

A.2 Cross-Frequency Transfer Learning269

The first attempt to relax the same-frequency constraint in transfer learning was conducted by270

Van Ness et al. [26], testing the generalization capabilities of neural forecasting models when the271

source and target datasets differ in frequency. However, their primary results only compared their272

proposed meta-learning approach, Cross-Frequency Adapter (CFA), and other neural forecasting273

models such as LSTM and NBEATS. Their evaluation left unanswered the critical question of whether274

CFTL outperforms traditional statistical baselines.275

Woo et al. [43], introduced Moirai, a Universal Time Series Forecasting model capable of cross-276

frequency transferability. By pretraining on their LOTSA dataset, Moirai claims that CFTL improved277

upon fully trained neural forecasting models and statistical baselines. While the paper’s primary focus278

is on long-horizon forecasting tasks, they report aggregated results from the Monash Time Series279

Forecasting Benchmark [11], using the normalized Mean Absolute Error (nMAE) as the evaluation280

metric. In these evaluations, Moirai claimed to achieve relative improvements over Theta, ARIMA,281

and ETS, by an average of 38%, 36%, and 35%, and 15% upon fully trained NBEATS. A revision282

of Moirai’s Table 20 on disaggregated evaluation on the Monash repository revealed suspiciously283

volatile measurements where they improve performance by 94% upon ETS on M4-hourly, while284

degrade performance by 77.24% on Tourism-Quarterly. This raises questions on the execution of285

their statistical baselines.286

In a parallel line of work, Fatir et al. introduced Chronos, a model also designed to perform CFTL.287

In their experiments, they evaluate Chronos’s zero-shot accuracy across 27 datasets, including the288

M-forecasting competitions, Tourism and Dominick datasets, as well as long-horizon datasets [45].289

With sCRPS measures, Chronos asserts improved average performance upon Theta, ARIMA, and290

ETS by 47%, 35%, and 47%. A potential issue with the statement of their performance gains lies291

in the uniformly averaged performance calculation across datasets; such a reporting is convenient292

and common, but it disproportionately skews the measurements towards the smaller datasets like293

long-horizon [45].294
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B Dataset Details295

In this section, we provide a summary of the data we used in our evaluation.296

B.1 Pre-Training Datasets297

Here, we describe the datasets we used in our pre-training. See Table 2 and Figure 3 for a summary.298

Real-world data. The primary source of data for our pre-training consisted of several real-world299

datasets, which we summarize here.300

Table 2: Summary of forecasting datasets used for pre-training.

Frequency Horizon Series Min Length Max-Length

Dataset A Daily 24 65K 1 1857
Daily 24 28K 1 1857

Dataset B Weekly 24 4MM 1 262

Dataset C Daily 24 900K 1 1857

Dataset D
Daily 24 350K 1 1857
Daily 24 320K 1 1857
Daily 24 1.5MM 1 1857

Dataset F
Daily 24 290MM 1 1834
Weekly 24 290MM 1 262
Monthly 24 290MM 1 58

Dataset E Weekly 24 700MM 1 314

Dataset A comes from a chain of convenience stores operating in multiple countries. The dataset301

contains demand data for various consumer products including food items.302

Dataset D represents daily demand from a grocery delivery service operating in multiple regions303

globally. The service offers various food and household products to subscribers.304

Dataset C originates from a hybrid retail format that combines multiple fulfillment methods. It305

includes daily demand data from stores in North America, supporting both in-store shopping and306

delivery options.307

Dataset B contains weekly demand data from a third-party fulfillment service operating across six308

developed countries. The service handles all aspects of product storage and delivery for external309

sellers.310

Dataset F comprises national-level demand data from a major retail platform, including information311

from multiple countries around the world. Dataset E is a more granular version of Dataset F’s312

data for one country, broken down by postal code prefixes. It shows more irregular demand patterns313

than the national-level data.314
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(a) Sample from Pretraining Dataset (b) Synthetic Dataset

Figure 3: For our CFTL task, we use two datasets: (a) a set of real-world datasets composed of
large-scale online retail demand; and (b) a set of synthetic dataset composed of Gaussian processes,
Fourier harmonic signals, and polynomial trends.

Synthetic Datasets. We also used carefully-constructed synthetic data for pre-training.315

Dataset G was artificially generated to supplement the training data, incorporating various time series316

patterns. These include basic constants, sinusoidal and cosinusoidal seasonalities, linear trends,317

polynomial trends, frequency drift curves, gaussian waves, exponential trend, and logistic growth318

curves across different time granularities as seen in Figure 3(b). The patterns were combined and319

modified with random noise to create realistic variations. The basic component signal equations are320

provided below:321

yt = k yt = sin(π ∗ a ∗ t+ b) yt = cos(π ∗ a ∗ t+ b)

yt = a ∗ t+ b yt = sin(
π ∗ a
t

+ b) yt = a ∗ exp

(
− (t− b)

c

2
)

yt = a ∗ exp (b ∗ t) yt = a ∗ t2 + b ∗ t+ c yt =
a

1 + exp (−b ∗ (t− c))
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B.2 Evaluation Datasets322

Here, we describe the datasets we used in our evaluation. See Table 3 for a summary.323

Table 3: Summary of forecasting datasets we used in our evaluation.

Frequency Seasonality Horizon Series Min Length Max Length % Erratic

M1
Monthly 12 18 617 48 150 0
Quarterly 4 8 203 18 114 0
Yearly 1 6 181 15 58 0

M3

Other 4 8 174 71 104 0
Monthly 12 18 1428 66 144 2
Quarterly 4 8 756 24 72 1
Yearly 1 6 645 20 47 10

M4

Hourly 24 48 414 748 1008 17
Daily 1 14 4,227 107 9933 2
Weekly 1 13 359 93 2610 16
Monthly 12 18 48,000 60 2812 6
Quarterly 4 8 24,000 24 874 11
Yearly 1 6 23,000 19 841 18

Tourism
Monthly 12 24 366 91 333 51
Quarterly 4 8 427 30 130 39
Yearly 1 4 518 11 47 23

M1 Dataset Details. The early M1 competition [22], organized by Makridakis et al., focused on324

1,001 time series drawn from demography, industry, and economics, with lengths ranging from 9 to325

132 observations and varying in frequency (monthly, quarterly, and yearly). A key empirical finding326

of this competition was that simple forecasting methods, such as ETS [13], often outperformed more327

complex approaches. These results had a lasting impact on the field, initiating a research legacy that328

emphasized accurate forecasting, model automation, and caution against overfitting. The competition329

also marked a conceptual shift, helping to distinguish time-series forecasting from traditional time330

series analysis.331

M3 Dataset Details. The M3 competition [23], held two decades after the M1 competition, featured332

a dataset of 3,003 time series spanning business, demography, finance and economics. These series333

ranged from 14 to 126 observations and included monthly, quarterly, and yearly frequencies. All se-334

ries had positive values, with only a small proportion displaying erratic behavior and none exhibiting335

intermittency [40]. The M3 competition reinforced the trend of simple forecasting methods outper-336

forming more complex alternatives, with the Theta method [16] emerging as the best performing337

approach.338

M4 Dataset Details. The M4 competition marked a substantial increase in both the size and diversity339

of the M competition datasets, comprising 100,000 time series across six frequencies: hourly, daily,340

weekly, monthly, quarterly, and annual. These series covered a wide range of domains, including341

demography, finance, industry, and both micro- and macroeconomic indicators. The competition342

also introduced the evaluation of prediction intervals in addition to point forecasts, broadening the343

assessment criteria. M4’s proportion of non-smooth or erratic time series increased to 18 percent [40].344

For the first time, a neural forecasting model - ESRNN[38] - outperformed traditional methods. The345

competition also helped popularize cross-learning [37] in global models.346

Tourism Dataset Details. The Tourism dataset [4] was designed to evaluate forecasting methods347

applied to tourism demand data across multiple temporal frequencies. It comprises 1,311 time series348

at monthly, quarterly, and yearly frequencies. This competition introduced the Mean Absolute Scaled349

Error (MASE) as an alternative metric to evaluate scaled point forecasts, alongside the evaluation of350

forecast intervals. Notably, 36% of the series were classified as erratic or intermittent. Due to this351

high proportion of irregular data, the Naïve1 method proved particularly difficult to outperform at the352

yearly frequency.353
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Table 4: Empirical evaluation of point forecasts. Mean absolute scaled error (MASE) averaged over
5 runs. The best united CFTL framework result is highlighted (lower measurements are preferred).
The methods without standard deviation have deterministic solutions.
*Chronos-S *stands for a pretrained Chronos-Bolt-Small. Zero-shot predictions correspond to the original Hugging face model published by Fatir et al [3].
*Chronos was, trained in our unified CFTL framework, with the exception of M1 we are able to replicate or improve accuracy Chronos-S accuracy.
**Neither TimesFM nor Chronos-S are zero-shot forecasting models as they are trained on the M4 dataset [3, 5].

StatsForecast NF (unified CFTL framework) NF (external train)

Freq ARIMA SiCoUM Best NBEATS MQCNN PatchTST Chronos * Moirai-S TabPFN Chronos-S * TimesFM **

M1

M 0.759 0.765 0.715 0.896 0.745 0.715 1.048 0.659 0.838 0.834 0.655
(-) (-) (-) (0.039) (0.002) (0.007) (0.018) (-) (-) (-) (-)

Q 0.889 0.801 0.699 1.026 0.791 0.707 1.078 0.778 0.972 0.818 1.039
(-) (-) (-) (0.176) (0.007) (0.028) (0.125) (-) (-) (-) (-)

Y 0.718 0.686 0.632 0.672 0.977 0.629 0.993 1.289 0.830 0.723 0.803
(-) (-) (-) (0.092) (0.012) (0.009) (0.072) (-) (-) (-) (-)

M3

O 0.738 0.693 0.784 1.040 0.968 0.822 0.784 0.725 0.866 0.729 0.853
(-) (-) (-) (0.592) (0.021) (0.165) (0.143) (-) (-) (-) (-)

M 0.775 0.721 0.795 0.861 0.888 0.795 0.860 0.936 0.838 0.880 0.709
(-) (-) (-) (0.150) (0.002) (0.002) (0.006) (-) (-) (-) (-)

Q 0.905 0.821 0.856 0.959 0.937 0.852 1.394 1.008 0.941 0.879 0.882
(-) (-) (-) (0.252) (0.005) (0.032) (0.083) (-) (-) (-) (-)

Y 1.104 0.998 0.736 0.887 1.212 0.743 1.141 1.045 0.957 0.841 1.023
(-) (-) (-) (0.106) (0.019) (0.038) (0.070) (-) (-) (-) (-)

M4

D 0.977 0.962 1.041 3.007 1.041 0.847 0.974 1.323 1.055 1.087 0.965
(-) (-) (-) (0.196) (0.192) (0.008) (0.030) (-) (-) (-) (-)

W 0.886 0.931 0.861 1.281 0.861 0.890 1.128 1.378 0.903 1.004 0.814
(-) (-) (-) (0.061) (0.063) (0.009) (0.014) (-) (-) (-) (-)

M 0.839 0.811 0.864 0.898 0.911 0.800 0.864 1.102 0.895 0.948 0.605
(-) (-) (-) (0.016) (0.005) (0.007) (0.005) (-) (-) (-) (-)

Q 0.874 0.838 0.936 0.936 0.970 0.795 1.082 1.234 0.953 0.887 0.695
(-) (-) (-) (0.019) (0.072) (0.015) (0.114) (-) (-) (-) (-)

Y 0.921 0.814 0.944 0.944 1.043 0.700 0.988 1.464 0.924 0.789 0.667
(-) (-) (-) (0.093) (0.118) (0.046) (0.128) (-) (-) (-) (-)

M 0.368 0.333 0.509 0.881 0.509 0.865 0.842 1.148 0.860 0.636 0.357
(-) (-) (-) (0.018) (0.007) (0.019) (0.044) (-) (-) (-) (-)

Q 0.727 0.539 0.843 1.026 0.843 0.912 1.105 1.840 1.142 1.028 0.539
(-) (-) (-) (0.059) (0.007) (0.032) (0.105) (-) (-) (-) (-)

Y 0.744 0.791 0.577 0.672 0.880 0.588 0.773 1.558 0.842 0.562 0.924
(-) (-) (-) (0.092) (0.012) (0.052) (0.159) (-) (-) (-) (-)

C Point Forecast Results354

In this section, we complement our evaluation of probabilistic forecasts (from the main text) with355

a set of point forecast results. We consider the Mean Absolute Scaled Error (MASE, [18]), that356

considers the ratio between mean absolute error of forecasts over mean absolute error of the Naive357

forecast ỹi,t,h (i.e., a point forecast using the last observation on the previous season), as described by358

MASE (y, ŷ, ỹ) =

∑
i,t,h |yi,t,h − ŷi,t,h|∑
i,t,h |yi,t,h − ỹi,t,h|

. (3)

Table 4 reports mean point forecast performances of our statistical baselines and neural forecast359

models using the MASE across the five best checkpoints during the training process. The lowest value360

in every dataset-frequency cell again belongs to a statistical baseline method. On M3-Other, SiCoUM361

reaches a MASE of 0.515 against Chronos-P’s 0.637; on M4-Daily, the exponential-smoothing family362

(ARIMA, Theta, ETS) MASE ranges from 0.963-0.977 while the best neural forecasts range from363

3.000-3.330.364

While gaps are smaller for lower frequency data, classical models still lead: CES reports a MASE of365

0.636 on M1-Quarterly compared to the zero-shot Chronos-P network’s MASE of 0.766, and Theta366

has a MASE of 0.625 on Tourism-Quarterly versus the 1.332 of MQCNN; neural forecasters never367

obtain the minimum MASE in any dataset or frequency, and exceed 1.0 in most rows. On the other368

hand, SiCoUM, (Ensemble of CES, ETS, Theta, and ARIMA) stay below the 1.0 threshold in all but a369

few yearly series.370

These results mirror our results for probabilistic scores; and they confirm that, also for point forecasts,371

traditional statistical like ARIMA, and SiCoUM methods remain the most accurate choice on the four372

benchmark suites.373
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D Training Methodology and Hyperparameters374

Table 5: NBEATS

HYPERPARAMETER VALUES

Single GPU SGD Batch Size*. 32 (32*8)
Initial learning rate. 0.001
Maximum Training steps Smax. 60,000
Learning rate decay. 0.1
Learning rate steps. 40,000; 50,000

Input size. 48
Main Activation Function. ReLU
Number of Stacks 4
Number of Blocks within Stacks. 3
MLP layers within Blocks. 2
Coefficients hidden size. 512
Degree of Trend Polynomials (interpretable). N/A
Number of Fourier Basis (interpretable). N/A

Table 6: MQCNN

HYPERPARAMETER VALUES

Single GPU SGD Batch Size*. 32 (32*8)
Initial learning rate. 0.001
Maximum Training steps Smax. 400,000
Learning rate decay. 0.1
Learning rate steps. 400,000 / 2

Main Activation Function ReLU
Temporal Convolution Kernel Size 2
Temporal Convolution Dilations. [1, 2, 4, 8, 16, 32]
Historic Encoder Dimension. 30
Future Encoder Dimension (hf1). 50
Static Encoder D.Multip. (α × |

√
x(s)|) 30

H-Agnostic Decoder Dimension. 100
H-Specific Decoder Dimension. 20

Table 7: PatchTST

HYPERPARAMETER VALUES

Single GPU SGD Batch Size*. 32 (32*8)
Initial learning rate. 0.001
Maximum Training steps Smax. 100,000
Learning rate decay. 0.1
Learning rate steps. 100,000 / 5

Input Size. 128
Main Activation Function ReLU
Patching Length. 16
Patching Stride. 8
Number of Attention Heads. 16
Encoder Hidden Size. 128
Decoder Hidden Size. 256
Apply Revin. True
Residualized Attention. True

Table 8: ChronosBolt

HYPERPARAMETER VALUES

Single GPU SGD Batch Size*. 4 (96)
Initial learning rate. 0.0005
Maximum Training steps Smax. 50,000
Learning rate decay. 0.1
Learning rate steps. 50,000 / 5

Input Size. 2048
Main Activation Function ReLU
Encoder/Decoder Hidden Size. 256
Encoder Type. T5Stack
Decoder Type. T5Stack
Patch Size 16
Patch Stride 16
Encoder Number of Layers. 4
Decoder Number of Layers. 4
Number of Attention Heads. 4
Attention Dropout Rate. 0.1

In this section, we provide details on the training methodology, outlined in Section 3. The optimization375

of all models is based on the definition of training, validation, and test datasets, depicted in Figure 3.376

For all our pre-training datasets, we keep the 24 observations immediately following the training377

data as validation. Given the scale of our evaluation, we focused our hyperparameter optimization378

solely on the selection of training steps and learning rate, and we rely principally on the default379

hyperparameters implementation for each baseline. See Tables 5, 6, 7, 8. Hyperparameters not380

specified in these tables are set to the defaults of the original implementations in the NeuralForecast381

library [30], or the Chronos repository [3].382

We conducted all neural network experiments using a single AWS p4d.24xlarge with 1152 GiB of383

RAM and 96 vCPUs. Training times mostly depend on the architecture, however we restrict the SGD384

training steps to 100K per architectures.385

13



E Implementation Details of the Simple Combination of Univariate Models386

In this section, we provide details on the implementation of the statistical ensemble used to generate387

the point and probabilistic forecasts evaluated in Table 1 and Table 4.388

As discussed in Section 3, we employ the Simple Combination of Univariate Models (SiCoUM;389

[34]) framework. This ensemble method aggregates forecasts from four classical statistical models.390

Complex Exponential Smoothing (CES; [39]), Dynamic Optimized Theta (Theta; [6]), Automatic391

Autoregressive Integrated Moving Average (ARIMA; [17]), and Exponential Smoothing (ETS; [13]).392

For all the models, we use the implementations of the StatsForecast library [8, 15].393

Each model is independently fitted to the time series, producing Gaussian-distributed forecasts. As-394

suming Normality and independence among model forecast distributions, we construct the ensemble395

by aggregating the means and variances of the individual forecasts. Let CES, Theta, ARIMA, and ETS396

denote the constituent models, the ensemble forecast is computed as:397

µ̂ =
1

4
(µ̂CES + µ̂Theta + µ̂ARIMA + µ̂ETS) (4)

σ̂2 =
1

4

(
σ̂2
CES + σ̂2

Theta + σ̂2
ARIMA + σ̂2

ETS

)
(5)

We generate the final quantile predictions using the percent point function:398

ŷ(q) = µ̂+ σ̂z(q)

with z(q) = inf{y ∈ R : q ≤ Φ(y)}
(6)

To run the statistical baselines we used a single AWS c5.18xlarge instance with 72 vCPUs and 137 GiB399

of RAM. To ensure the reproducibility of our experimental results, we provide the implementation of400

the statistical baselines at the following link: https://anonymous.4open.science/r/neurips_401

baselines-4BC5.402
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F Ablation Study on Synthetic Data in our Pre-training Datasets403
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Figure 4: Pre-training datasets ablation, with and without the use of synthetic data. Shown are metrics
with (red) and without (green) synthetic data for pre-training, for the NBEATS model.

Our re-implementation of well-established univariate forecasting algorithms, adapted for the CFTL404

task, enabled us to isolate a primary driver of accuracy improvements across architectures: dataset405

quality. As shown in Figure 4, our CFTL-adapted NBEATS model improved its sCRPS score from406

0.116 to 0.108 - a notable 7% gain - when synthetic data was added to the pre-training set. Similar407

improvements were observed across other architectures. For this and other models, our results408

demonstrated that dataset composition, rather than architectural choices, was the primary driver of409

sCRPS improvements.410

Importantly, even in the presence of huge pre-training datasets, of 1.58 billion series, synthetic411

data are still capable of improving the zero-shot performance of NBEATS, MQCNN, Chronos, and412

PatchTST (as shown in Table 1 and Table 4), reinforcing the central role of training data in model413

performance even at large scales. This suggests that better synthetic data generation methodologies414

will be important to the future advancements of CFTL and FFMs.415

15



NeurIPS Paper Checklist416

1. Claims417

Question: Do the main claims made in the abstract and introduction accurately reflect the418

paper’s contributions and scope?419

Answer:[Yes]420

Justification: [NA]421

2. Limitations422

Question: Does the paper discuss the limitations of the work performed by the authors?423

Answer: [Yes]424

Justification: [NA]425

3. Theory Assumptions and Proofs426

Question: For each theoretical result, does the paper provide the full set of assumptions and427

a complete (and correct) proof?428

Answer: [Yes]429

Justification: [NA]430

4. Experimental Result Reproducibility431

Question: Does the paper fully disclose all the information needed to reproduce the main ex-432

perimental results of the paper to the extent that it affects the main claims and/or conclusions433

of the paper (regardless of whether the code and data are provided or not)?434

Answer: [Yes]435

Justification: [NA]436

5. Open access to data and code437

Question: Does the paper provide open access to the data and code, with sufficient instruc-438

tions to faithfully reproduce the main experimental results, as described in supplemental439

material?440

Answer: [Yes]441

Justification: [NA]442

6. Experimental Setting/Details443

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-444

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the445

results?446

Answer: [Yes]447

Justification: [NA]448

7. Experiment Statistical Significance449

Question: Does the paper report error bars suitably and correctly defined or other appropriate450

information about the statistical significance of the experiments?451

Answer: [Yes]452

Justification: [NA]453

8. Experiments Compute Resources454

Question: For each experiment, does the paper provide sufficient information on the com-455

puter resources (type of compute workers, memory, time of execution) needed to reproduce456

the experiments?457

Answer: [Yes]458

Justification: [NA]459

9. Code Of Ethics460

Question: Does the research conducted in the paper conform, in every respect, with the461

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?462

16

https://neurips.cc/public/EthicsGuidelines


Answer: [Yes]463

Justification: [NA]464

10. Broader Impacts465

Question: Does the paper discuss both potential positive societal impacts and negative466

societal impacts of the work performed?467

Answer: [Yes]468

Justification: [NA]469

11. Safeguards470

Question: Does the paper describe safeguards that have been put in place for responsible471

release of data or models that have a high risk for misuse (e.g., pretrained language models,472

image generators, or scraped datasets)?473

Answer: [NA]474

Justification: [NA]475

12. Licenses for existing assets476

Question: Are the creators or original owners of assets (e.g., code, data, models), used in477

the paper, properly credited and are the license and terms of use explicitly mentioned and478

properly respected?479

Answer: [NA]480

Justification: [NA]481

13. New Assets482

Question: Are new assets introduced in the paper well documented and is the documentation483

provided alongside the assets?484

Answer: [NA]485

Justification: [NA]486

14. Crowdsourcing and Research with Human Subjects487

Question: For crowdsourcing experiments and research with human subjects, does the paper488

include the full text of instructions given to participants and screenshots, if applicable, as489

well as details about compensation (if any)?490

Answer: [NA]491

Justification: [NA]492

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human493

Subjects494

Question: Does the paper describe potential risks incurred by study participants, whether495

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)496

approvals (or an equivalent approval/review based on the requirements of your country or497

institution) were obtained?498

Answer: [NA]499

Justification: [NA]500

17


	Introduction
	Methodology
	Experiments
	Discussion and Conclusion
	Forecasting Transfer Learning
	Single-Frequency Transfer Learning
	Cross-Frequency Transfer Learning

	Dataset Details
	Pre-Training Datasets
	Evaluation Datasets

	Point Forecast Results
	Training Methodology and Hyperparameters
	Implementation Details of the Simple Combination of Univariate Models
	Ablation Study on Synthetic Data in our Pre-training Datasets 

