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Abstract

The ability to identify and control different
kinds of linguistic information encoded in vec-
tor representations of words has many use
cases, especially for explainability and bias re-
moval. This is usually done via a set of simple
classification tasks, termed probes, to evalu-
ate the information encoded in the embedding
space. However, the involvement of a trainable
classifier leads to entanglement between the
probe’s results and the classifier’s nature. As a
result, contemporary works on probing include
tasks that do not involve training of auxiliary
models. In this work we introduce the term
indicator tasks for non-trainable tasks which
are used to query embedding spaces for the ex-
istence of certain properties, and claim that this
kind of tasks may point to a direction opposite
to probes, and that this contradiction compli-
cates the decision on whether a property exists
in an embedding space. We demonstrate our
claims with two test cases, one dealing with
gender debiasing and another with the erasure
of morphological information from embedding
spaces. We show that the application of a suit-
able indicator provides a more accurate picture
of the information captured and removed com-
pared to probes. We thus conclude that indica-
tor tasks should be implemented and taken into
consideration when eliciting information from
embedded representations.

1 Introduction

Pre-trained vector representations of words have in-
troduced a stark improvement in the performances
of any NLP task they have been applied to, and
proved to be effective in classification and predic-
tion of real world tasks (Peters et al., 2018; Devlin
et al., 2018; Liu et al., 2019b; Zeng et al., 2021).
This has led researchers to grow interest in ana-
lyzing the encoded linguistic features in the rep-
resentations. To this end, probing tasks, initially
proposed by Köhn (2016) and Adi et al. (2016), are
frequently used.

Probing tasks (henceforth probes) are designed
to evaluate the information existing in represen-
tations by training a simple classification model
(Conneau et al., 2018; Niven and Kao, 2019). The
existence of a probing model that can classify the
queried linguistic property is assumed to imply that
the respective linguistic information exists in the
representations (Alain and Bengio, 2017; Belinkov
and Glass, 2019).

However, probes have several, frequently con-
templated, drawbacks. Generally, probes are meant
to ‘un-black-box’ word representations, that is, to
act as lenses into what information exists in the
representations. Yet the actual relation between
the probe’s results and the representations thereof
remains unclear. This has led some researchers to
claim that the probing classifiers should be kept
simple (Conneau et al., 2018), others are in favor
of complex ones (Pimentel et al., 2020a), and a few
advocate for dispensing with probing classifiers
altogether (Immer et al., 2022).

A solution frequent in the literature (Wu et al.,
2020; Zhou and Srikumar, 2022; Ravfogel et al.,
2022, inter alia) is to accompany the results of
probes that involve training an auxiliary classifica-
tion model, with results over substantially different
kind of tasks that are designed to query linguis-
tic information directly from the representations,
and do not require training another model. In this
work we propose to collectively refer to such tasks
by the name indicator tasks, as they provide di-
rect indication of the stored information. We claim
that indicator tasks are generally superior to train-
able probing models, and provide more faithful
information regarding the complex structure of the
embedding spaces.

We substantiate our claim with two test cases
that involves concept erasure: gender debiasing
(Bolukbasi et al., 2016) and morphological prop-
erty removal. We show that in both cases the evalu-
ation of erasures with indicators provides a fuller



picture of the information erased and retained. Our
two test cases are dissimilar in many ways. Gen-
der debaising involves a single, binary, unwanted,
social bias that models learn implicitly from the
distribution of words in the corpus. Morphological
features, on the other hand, are a series of multi-
valued grammatical properties, expressed explicitly
in the text, and are not undesired per se, yet their
erasure may benefit processing tasks in morpholog-
ically rich languages.

We apply two different concept erasure meth-
ods to them, respectively: RLACE (Ravfogel et al.,
2022) for gender debiasing, and INLP (Ravfogel
et al., 2020) expanded to multiple features for mor-
phological features removal. We evaluate the suc-
cess of these methods with standard linear probes,
as well as with suitable indicator tasks: Word Em-
bedding Association Test (WEAT, Caliskan et al.,
2017) and KNN-bias correlation (Gonen and Gold-
berg, 2019) for gender debiasing, and for morpho-
logical information removal we present a novel
Double Edged Outlier Detection (DEOD) that indi-
cates on both morphological and lexical semantic
information. All representations are obtained from
contextualized BERT models (Devlin et al., 2018).

The results in both test cases, despite their dis-
similarities, point to the same direction. They show
that the conclusions pointed to by the indicators
are contradictory to those obtained from the probes.
When removing gender bias from the representa-
tions we found probes to report complete erasure
of the bias while our indicators still manage to pick
it up from the vectors. In the second test case, we
compared two possible extensions of INLP and
found that probes point to one extension possibil-
ity as superior, while the indicator points to the
other, not only by indicating the removal of the
morphological properties, but also by examining
the overlapping dimension of semantics.

We therefore conclude that when eliciting lin-
guistic information from embedded spaces, results
from indicator tasks should be presented alongside
standard probes, and results from probes should
not be overstated.

2 Background: The Probing Conundrum

The question of evaluating linguistic properties in
dense word representations has been a long stand-
ing one, entering alongside the introduction of
static word embeddings (Mikolov et al., 2013).
Nowadays, probing tasks are generally accepted

as the primary method for querying linguistic in-
formation in dense vectors. A probe is a classifier
designed to elicit a property of interest directly
from the representation (Adi et al., 2016; Alain and
Bengio, 2017). Their simplicity and speed are ap-
pealing as opposed to the alternative of comparing
performance over downstream tasks. However, re-
searchers are yet to reach a consensus regarding
several problems with probes (Immer et al., 2022).

Many issues with probes are derived from their
usage of linear or neural models. Most prominently
are the two interleaved problems of classifier and
task selection. It is well received that a probing
classifier should be simple (Liu et al., 2019a), since
as Hewitt and Liang (2019) stressed, with enough
training data, a sufficiently expressive probe could
solve any task regardless of the representations.
On the other hand, Pimentel et al. (2020a) have
shown that simple tasks are not informative enough
when applied to contextual representations. Thus
a probing task should not be simplistic. However,
researchers found that complex tasks often require
a complex classifier (Belinkov and Glass, 2019),
which are not recommended, as mentioned above.

We are thus led to a three-way trade off between
the complexity of the task, the complexity of the
classifier, and the efficacy of the probe. Given
that simple models do not fare well on complex
tasks, we cannot prefer a simple probing model
and a complex task simultaneously. However, opt-
ing for either a more complex model or a simpler
task would limit the reliability and quality of in-
formation given by the probe on the existence of a
property in the embedded space.

Previous works suggested various solutions to
mend these problems. Hewitt and Liang (2019)
suggested to examine probes on control tasks, in
which labels are distributed randomly, in addition
to testing the probes on the desired task. Probes
are then considered successful only if they perform
well on the target task while failing on the control
task. Alternatively, Elazar et al. (2021) suggested
amnesic probing, in which a probe is considered
successful only if it is possible to erase the informa-
tion from the representations and make the same
probe fail. The problem with these methods is that
they take a process with complex problems and
only complicate the process further, making it even
harder to determine what in the results of a given
probe is ascribable to representations, to the probe,
or to the suggested new mechanism.



Another line of works suggested amending the
output of the probing process itself by adding de-
scription length (Voita and Titov, 2020), mutual
information (Pimentel et al., 2020b) or Pareto hy-
pervolume (Pimentel et al., 2020a) to provide an
indication on the ease of extraction of properties
rather than on their existence. These methods,
while useful, embrace the aforementioned trade
off and relinquish the attempt of solving it. We, on
the other hand, advocate for a completely different
approach that bypasses the entire debate.

In general, the probing conundrum seems to stem
from the presence of a train set which makes it un-
clear whether the probe employs artifacts in the
training data to solve the task or evaluates the en-
coded information itself. Therefore an alternative
that does not require a training set and a trainable
model is warranted.

3 Introducing: Indicators

As a result of these various issues with probing,
previous works had suggested to elicit linguistic
properties from embedding spaces without the in-
volvement of a trainable auxiliary model. These
studies mostly relied on the similarity between vec-
tors, either between the representations themselves
(Wu et al., 2020) or between attention weights (Htut
et al., 2019). In addition, clustering was also taken
as a possible task derived from vectors alone (Zhou
and Srikumar, 2021). Here we propose to refer to
the different kinds of such tasks with the umbrella
term indicator tasks, as they indicate the presence
or absence of a property in the representation with-
out any intervention or entanglement of the task
itself with the vectors it is supposed to study.

By virtue of not involving a trainable classifier,
indicators cancel out many of the arguments against
probes. The tasks can be complex but still fast to
devise and cheap to implement and run, without a
risk of over-fitting the training data — as there is
none. Most importantly, there is no other model
that interjects, ascribing the performance directly
to the embedded representations, where the task is
essentially performed in a zero-shot setting. All it
takes is to design or select the indicator that suits
your needs. In a sense, indicators can be perceived
as a resurgence of intrinsic evaluation methods that
were popular with static representations. These
methods were typically formulated as word simi-
larity tasks, either explicitly (Hill et al., 2015, in-
ter alia) or implicitly (Levy and Goldberg, 2014).

Thus, in order to formulate the indicators in our
case studies we draw inspiration from such tasks.

The advantages of indicators have led to their use
in various works, usually to complement the picture
painted by standard probes. For example, Zhou
and Srikumar (2022) used “DirectProbe” (Zhou
and Srikumar, 2021) as an indicator in addition to
a 2-layered non-linear classifier to reinforce and ex-
plain their conclusion that fine-tuning BERT does
not always improve performance. Similarly, Mer-
chant et al. (2020) used an MLP-based probe in
addition to an indicator named “structural probe”
(Hewitt and Manning, 2019) to show that after
fine-tuning, word representations keep the linguis-
tic structure they learn during pre-training. They
completed the picture by showing with the indi-
cator task of representational similarity analysis
(Kriegeskorte et al., 2008) that fine-tuning affects
the top layers more than the bottom layers. Lastly,
the work presenting the concept erasure method
RLACE Ravfogel et al. (2022), used in our first
test case below, demonstrated its effectiveness by
utilizing both probes and indicators.

Here we demonstrate that despite having a
shared goal, i.e., querying information from dense
representations, probes and indicators may result in
contradicting conclusions. The implication of such
disharmonious results is that if we want a fuller
picture of the information existing in the represen-
tations, probing results must be accompanied with
those obtained by indicators.

As will be demonstrated in the test cases below,
the specific modus operandi of trainable probes
makes them less likely to detect signals that exist
in the embedding space but deviate from the pattern
they were made to spot. We will demonstrate that
by pitting linear probes, that were selected due to
their simplicity in accordance with the issues laid
out in the previous section, against simple similarly-
based indicators. We will show that this difference
is significant enough to make indicator tasks detect
gender bias and morphological information that are
undetectable by a probe.

4 Concept Erasure

Concept erasure methods are aimed at remov-
ing information from word representations. For-
mally, their objective is, given a set of word
representations X = {x1, ...xn ∈ Rd} and a
corresponding property distributed over words
P = {p1, ...pn}, to learn a function r(·) such that



r(X) = {r(x1), ...r(xn)} are not predicative of P ,
but preserve as much information as possible from
X (Ravfogel et al., 2022).

However, there is no consensus on how to evalu-
ate the success of the erasure procedure. The evalu-
ation methods presented in previous works usually
rely specifically on the nature of the erasure method
and the nature of the target property. In addition,
timely field tendencies or “trends" are also influen-
tial, with earlier works devising intrinsic evaluation
methods (Bolukbasi et al., 2016; Zhao et al., 2018;
Gonen and Goldberg, 2019) and more recent works
utilizing probes (Ravfogel et al., 2020, 2022).

Our case studies, presented in detail in the fol-
lowing sections, systematically compare both eval-
uation methodologies, with an added effort of ad-
justing the former to contextualized embeddings.
Each of these test cases involves a different erasure
method, a different property to be erased, and, to
evaluate the success of the erasure method, differ-
ent indicator(s) in addition to probes. Common to
both cases is the contradicting conclusions drawn
from evaluating the erasure method with probes
compared to its evaluation with indicators.

5 Case Study 1: Gender Debiasing

Of all unwanted social biases in word represen-
tations (e.g, Nadeem et al., 2021), gender bias is
the most researched both as an end goal in and of
itself, and as a test case for information removal.
We adopt gender debiasing as a simple test case of
removing a binary unwanted property from word
representations, and we examine the efficacy of a
recent state-of-the-art concept erasure method on
contextualized embeddings.

5.1 RLACE

Relaxed Linear Adversarial Concept Erasure
(RLACE, Ravfogel et al., 2022) is a post hoc adver-
sarial method for removing a single binary property
from an embedding space. Unlike other adversar-
ial methods that incorporate changes to the model
during training, this method operates on the embed-
ded vectors after the training is complete. It aims
to identify a linear subspace from the representa-
tion and remove it, by solving a linear minimax
game and projecting the vectors using the resulted
matrix.

Examples for male biased words
successful, general, earned, president,

politician, engineer, captain, fatal
Examples for female biased words

aesthetic, looks, singer, lipstick, pink,
smiled, skirts, pretty

Figure 1: Examples from the 100 most biased words in
the unperturbed embedding space induced by BERT.

5.2 Experiments
We assess the success of RLACE in removing gen-
der bias from representations obtained from BERT
(Devlin et al., 2018).1 We use a standard probe
to classify words as masculine or feminine, and
compare it to indicators from Gonen and Goldberg
(2019) that are used to identify bias, and that were
originally executed over non-contextualized em-
beddings.

Data To create the contextualized vocabulary we
used GUM (Zeldes, 2017), an English universal
dependencies dataset (Nivre et al., 2020). Note
that every word has several representations, each
for every context. As is customary in gender bias
works, we excluded from the vocabulary words that
are explicitly gendered, such as man, queen and the
like, in order to examine only unjustified gender
bias.2

Tagging biased words In order to apply the in-
dicator tasks, presented below, we first need to tag
a set of words that are gender biased in the unper-
turbed space. Following Bolukbasi et al. (2016),
we tag words as gender biased if their vectors are
similar to those of explicitly gendered words. In
practice, this is done by projecting the vectors of
all non-explicitly-gendered words onto a “gender
direction”, calculated by a 1D-PCA on a sub space
spanned by the difference vectors of several gen-
dered word pairs, e.g., ⃗she− h⃗e, ⃗woman− m⃗an,
etc. The words corresponding to the 10,000 vec-
tors with the highest positive projection are tagged
feminine while those with the highest negative pro-
jection are tagged as masculine. Figure 1 exempli-
fies some of the words that appear to be with the
strongest bias.

1We used HuggingFace implemented bert-base-uncased
(Wolf et al., 2020).

2In addition, we excluded sentences in which at least one
word is explicitly gendered, since, in the contextualized em-
bedding case, other words in a sentence could legitimately
inherit gender-related properties from these gendered neigh-
boring words.



The list of biased words is fixed throughout the
experiments. That is to say, both probes and indi-
cators were tasked with discerning between biased
and unbiased words that were tagged only based
on the original BERT representations.

Probes We train and test a linear classifier (Per-
ceptron; Pedregosa et al., 2011) to predict mascu-
line and feminine of the words in the list.

Indicators Our indicators for this tasks are the
ones used by Gonen and Goldberg (2019), extended
here to a contextualized setting.

One indicator is the Word Embedding Associ-
ation Test (WEAT), introduced by Caliskan et al.
(2017). It fixes a set of words related to stereotyp-
ically gendered occupations and traits, and tests
whether a group of words suspected as biased has
a tendency for uneven association with one of the
fixed word sets. We experimented with the sets
related to career (stereotypically male) and fam-
ily (female).3 The metric reported is the standard
WEAT’s d, see Caliskan et al. (2017) for details.

Another indicator, devised by Gonen and Gold-
berg (2019), is meant to detect implicit bias, i.e.,
the situation in which words are not more simi-
lar to explicitly gendered words, but they may be
similar among themselves. For example, an era-
sure method may move the word "nurse" further
from "woman", but its neighbors may still include
high abundance of stereotypically gendered words
like "receptionist". Therefore, the KNN-bias cor-
relation indicator checks the Pearson correlation
between the percentage of biased words in the 100
nearest neighbors of a target word and the bias in
the target word itself, i.e., its projection onto the
gender direction.

5.3 Results

Table 1 includes the results for both probes and in-
dicators before and after the application of RLACE.
It shows that the probe’s classification accuracy
drops from an almost perfect accuracy before the
erasure to to 48.7% after it, faring a bit worse than
a random guess. On the other hand, the indicators’
drop in performance after the RLACE application
is far less impressive, with minor drops of 0.04 in
WEAT’s d and 0.037 drop in the KNN-bias’ Pear-
son correlation. In absolute terms, the indicators

3Caliskan et al. (2017) have a couple of more fixed sets:
art related words for female bias and mathematics and science
for male. However, there was no bias detected with respect to
these sets even before debiasing.

Method Original RLACE
Probe (Accuracy) 99.95 48.7

WEAT (d) 1.17 1.13
KNN-Bias (Pearson) 0.638 0.601

Table 1: Measuring gender bias in BERT’s embedding
space before and after RLACE projection. Both the
probes and the indicators should not detect bias after the
application of RLACE, so lower is better. While probes
point to no bias at all, both indicators point only to a
small drop.

results still detect a bias, as 0.601 is by no means
a negligible correlation and a d score that is above
0.8 is considered high (Caliskan et al., 2017). Both
results are significant with p-values of 0.

When judging the success of RLACE, it is clear
that the probe and the indicators lead to markedly
different conclusions. While the linear probe indi-
cates the successful removal of the bias, it is only
able to tell whether there is a linear separation be-
tween the potentially biased words. The indicators,
on the other hand, are able to detect biases that are
expressed by means that are not necessarily linear.

5.4 Discussion
All in all, this test case demonstrates that indicators
were able to expose information that linear probes
could not. This should not surprise us as the prob-
ing model is quite simple with the ability to detect
only a very specific kind of separation.

Most probably RLACE was able to erase linear
gender bias since it was designed primarily for
linear concept erasure. However, as mentioned in
Section 2, using a more complex probe that could
detect non-linear separation would have come at a
price of opacity. The indicators, on the other hand,
were able to surface biases that were expressed
in non-linear terms while still being simple and
transparent due to the lack an auxiliary model.

In the next section we present a more compli-
cated test case that involves the erasure of multiple
properties, and therefore includes multiple probes
whose results are less easily interpretable.

6 Case Study 2: Morphological Properties

In our second test case, we aim for representations
that are ignorant of morphological features, such
as tense, person etc. Using such representations
can make the treatment of morphologically rich
languages with many inflections per lemma simpli-
fied to a great extent, with models for downstream
tasks not needing to worry about unseen inflections



(Gong et al., 2018; Czarnowska et al., 2019). As
success criteria for removing morphological knowl-
edge from word representations, we utilize probes
and a novel indicator.

To this end, we extend an existing concept era-
sure method, Iterative Nullspace Projection (INLP,
Ravfogel et al., 2020), to accommodate the erasure
of multiple properties. We propose two possible,
and novel, extensions and test these alternatives
for their efficacy using standard probes, and using
a novel indicator task that we design, which indi-
cates on the presence of morphological and lexical
semantic information simultaneously.

6.1 Iterative Nullspace Projection
INLP is a linear concept erasure method, with the
objective that no linear classifier could do better
than guess. The method constructs a subspace ig-
norant of a property P (e.g tense) by iteratively
training linear classifiers predicting p ∈ P (e.g
past) and projecting the representations unto their
nullspace. The process sets to eliminate the entries
used to predict the features by various classifiers.
For more details see (Ravfogel et al., 2020). While
INLP is designed for a single property, here we
would like to use it for a complete feature bundle.

Multi-Class Setting INLP is intended to remove
a single property P which can correspond to any
morphological property we choose. However, we
would like to erase as many properties as possi-
ble. We therefore extend INLP by iterating over a
set of morphological properties by applying INLP
for each property in a procedure we term Iterative
Iterative Nullspace Projection or I2NLP.

Although intuitive, extending INLP in this man-
ner could damage the embeddings beyond usability,
as each removed property reduces the dimensional-
ity rank of the vectors. Moreover, repeated multipli-
cations could be numerically unstable. Therefore
we explore two possible variants of I2NLP.

In the first variant, Regressive, the representa-
tions are projected after each property removal,
before moving on to remove the next property. In
the Non-Regressive variant, the representations are
only projected after a projection matrix is calcu-
lated for all properties, at the end of the procedure.

Choosing a Variant At first glance, the differ-
ence between the variants may seem small, but
manipulating the input representations after each
iteration, as done in the regressive variant, could af-
fect the removal of the next properties significantly.

The representations could encode properties using
overlapping entries, which upon removal in prior
iterations, cannot be relied on. This fact also leads
this variant to be order dependant — it is unclear
how would the removal of property P1 affect the
removal of property P2 and vise-versa. The non-
regressive variant, on the other hand, is indifferent
to order, but multiplying the projection matrices
one after another could be numerically unstable.

In order to decide between the variants we test
both of them using both a probe and an indicator
task we designed, presented in the next section.

6.2 The Morpho-Semantic Indicator

Consider the quadruple (walked, hiked, strolling,
bumped). Semantically, the words (walked, hiked,
strolling) are related and (bumped) is the seman-
tic outlier. Morphologically, the words (walked,
hiked, bumped) are related as they share the -ed
inflectional form, and (strolling) gerund is the mor-
phological outlier. We follow this general scheme
of quadruples with both a morphological and a
semantic outliers to create a novel indicator task:
double edged outlier detection (DEOD).

Outlier detection is an intrinsic method proposed
by Camacho-Collados and Navigli (2016) with the
objective of identifying a single outlier in a set of
words. In our case the set contains two outliers, one
semantic and the other morphological. By predict-
ing a single outlier from each set, models take part
in a zero sum game, and we get to evaluate which
of the two dimensions of meaning is prioritized in
the representations.

In the case of morphological erasure, this in-
dicator task is also used to verify that the repre-
sentations keep as much of the lexical semantic
information as possible. It is important to note
that attempting a similar approach with probes, i.e.,
eliciting information of the interplay between two
partially overlapping dimensions of word-level in-
formation, is tough to envision.

Task Definition Given a quadruple Q =
{w1, w2, w3, w4}, the task is to identify (one of)
the outliers in a procedure based on cosine simi-
larity. Our working hypothesis is that embedding
spaces are capable to encode both lexical semantics
and morphology to some extent and the interplay
between them is affecting the decisions taken by
the model when picking an outlier.

We use the two metrics termed hard and soft out-
lier detection, proposed by Camacho-Collados and



Navigli (2016). Hard outlier detection is measured
with accuracy. It is the percentage of quadruples
in which the semantic (morphological) outlier was
chosen. Soft outlier detection, measured with Out-
lier Position Percentage (OPP), is based on the
position of the true outlier in the ranked quadru-
ple and not only reflecting whether it was ranked
first. See Camacho-Collados and Navigli (2016)
for further details about these metrics.

Data Generation In order to generate data for
the DEOD task we used UniMorph (Batsuren et al.,
2022) to determine what words are of the same
morphological category, and FastText embeddings
(Bojanowski et al., 2017), to assess semantic simi-
larity between words.4

Specifically, from UniMorph we sampled a word
with a certain morphological characterization T,
e.g., walked which is characterized as a past tense
form. Then, using the word embeddings, we add
the 2 most similar words with the same morphologi-
cal characterization, for example hiked and strolled,
and one dissimilar word as the semantic outlier, like
bumped. The morphological outlier is then created
by inflecting one of the semantically similar words
to another morphological category, for example we
could replace strolled with strolling. The result is
the quadruple (walked, hiked, strolling, bumped).
This procedure is repeated until enough quadru-
ples are sampled. Since this method is language
agnostic, it can be applied for different languages.

All in all, we created 2,000 quadruples for each
language. Since both UniMorph and FastText cover
many languages, the data generation method is
easily applicable to many languages.

6.3 Experiments

The Languages We experimented with three lan-
guages: English, Spanish and Hebrew, these lan-
guages are typologically different both in the num-
ber of morphological features they express and in
the means they employ to express them; with one
isolating, one suffixing and one templatic language.

Probes In order to ascribe morphological infor-
mation to words in their context we used the mor-
phological layer of Universal Dependencies (UD;
Nivre et al., 2020) as our data set.5 This data

4Static representations are used instead of contextualized
ones since we need for the DEOD task a representations of
complete words out of context.

5In cases where UD breaks white-spaced words to multiple
units we merged the morphological tags of all subwords.

was used both for determining what morpholog-
ical properties are to be erased with I2NLP and for
training the probes over the final projected repre-
sentations. The calculation of projection matrices
as part of I2NLP is done only using the train and
dev sets, and the reported scores of the final probes
are calculated over a test set of sentences that were
not seen during training.

The linear probing model for each morpholog-
ical category is a multi-class version of an SGD
linear classifier (Pedregosa et al., 2011).

Language Models For the contextualized repre-
sentations we used the following models:

• Hebrew: AlephBERTGimmel (Guetta et al.,
2022)

• English: bert-base-uncased (HuggingFace im-
plementation; Wolf et al., 2020)

• Spanish: Beto (Cañete et al., 2020)

Since the indicator requires words to be represented
out of context, a single representation per word was
obtained by averaging the contextualized represen-
tations of all its occurrences in the UD sentences.

Metrics For evaluating the I2NLP variants using
probes we report the classifier F1 score averaged
over all morphological properties. We expect classi-
fiers to perform poorly on representations that were
obtained by a good I2NLP variant. The evaluation
of the I2NLP variants using the DEOD indicator
task is done using the task’s own metrics: accuracy
for hard outlier detection and OPP for soft outlier
detection. We expect a successful I2NLP to pre-
vent the detection of the morphological outlier. On
the other hand, we expect higher performance in
detecting the semantic outlier.

Baseline and Skyline For both the probe and the
indicator we provide as a baseline the respective
metric assessed over the original representation,
without application of any I2NLP variant.

As a skyline we evaluate the respective metric
as it would be in an ideal situation, where all mor-
phological information is completely erased from
the representations. For the probe we provide the
averaged F1 expected from a classifier that ran-
domly guesses the morphological label. For the
indicator we replaced all word vectors with those
of the respective lemmas to ensure erasure of all
morphological information.



Lang Before Reg Non-Reg Skyline
Heb 94.52 61.89 79.62 40.28
Spa 92.99 50.32 76.88 33.89
Eng 92.80 46.39 64.24 37.5

Table 2: Before and after projection in average F1
scores on classifying Tense, Gender, Number, Person,
Case and VerbForm. The better I2NLP variant prevents
classification so lower is better. The regressive variant
appears as the better method.

Lang Morphological
Before Reg Non-Reg Skyline

Hard Outlier Detection
Heb 8.91 15.22 3.49 0.36
Spa 14.37 17.64 4.72 0.36
Eng 9.40 20.20 3.60 0.16

Soft Outlier Detection
Heb 56.74 56.20 49.73 26.97
Spa 61.26 56.95 52.44 27.71
Eng 58.59 59.50 50.00 26.77

(a) Morphological outlier detection

Lang Semantic
Before Reg Non-Reg Skyline

Hard Outlier Detection
Heb 74.41 49.56 84.11 85.34
Spa 70.85 44.82 86.58 86.28
Eng 77.45 41.10 88.70 87.76

Soft Outlier Detection
Heb 91.45 78.43 95.13 96.06
Spa 90.13 75.99 95.73 96.53
Eng 92.27 74.36 96.3 96.94

(b) Semantic outlier detection

Table 3: Before and after projection indicator results.
While Regressive distorts the embedding space com-
pletely, Non-Regressive achieves our goal - reducing
the morphological affinity of the space while not harm-
ing the lexical semantics encoded.

6.4 Results

Table 2 shows the average F1 scores of probes in
predicting morphological features for both I2NLP
variants. It is apparent that the regressive I2NLP is
more effective than the non-regressive in removing
morphological properties.

Table 3 shows the results for the indicator task.
The morphological outlier detection results in Ta-
ble 3a show that the non-regressive I2NLP variant
is better in removing morphological properties as
the performance after the projection is worse both
in term of hard and soft detection.6 Note that when
compared to the performance over the original vec-
tors, applying the regressive I2NLP makes it easier
to spot the morphological outlier, in terms of hard

6For soft outlier detection, the average OPP of a guess is
50% so the table points to an almost complete erasure.

outlier detection. This is the opposite of what is
expected of a good morphological erasure method.

This picture is reinforced by the results for the
semantic outlier detection in Table 3b, showing
that the non-regressive variant is also better at pre-
serving the semantic affinities of the space. Its
results are impressively similar to those of the sky-
line, while the regressive variant hinders the per-
formance even comparing to the baseline. This is
in stark contradiction to the results of the probes
on the same projected spaces, that pointed to the
regressive I2NLP variant as the superior one.

6.5 Discussion

As with the previous test case, here as well probes
and indicators point in polar opposite directions,
with probes giving the advantage to the regressive
I2NLP while the DEOD indicator showing that the
non-regressive is the superior variant. Also simi-
lar to the previous test case is the probes’ lack of
ability to detect non-linearly expressed information.
However, unlike the gender bias case, the probes
are still doing better than guessing, since even the
results for the regressive variant show worse era-
sure than the skyline. That is to say that the probes
were still able to detect residual linearly expressed
morphological information.

The indicator task, on the other hand, is much
more complex than the indicators used for gender
bias detection. It is not restricted to linear separa-
tion and it indicates simultaneously on two types
of information in the representations: morpholog-
ical and lexical semantics. The indicator allows
us to verify that the non-regressive I2NLP erases
better the information it is supposed to erase, while
preserving better the information it is supposed to
preserve. The indicator’s double purpose allows
evaluation of more aspects of the space and exam-
ine the I2NLP variants not only from the morpho-
logical angle, and for this reason we argue in favor
of preference to the non-regressive variant.

7 Conclusions

In this work we compare probes that do and do not
require training an auxiliary classification model,
offering indicator tasks as a term that covers the
latter kind. We show, in two different test cases,
that although it is tempting to think of probes and
indicators as complementary in understanding the
inner structure of embedding spaces, sometimes
the methods result in contradictory conclusions.



We claim that the inherent problems with probes
and the flexibility of indicators should lead to pri-
oritizing the latter in interpreting the results of
property removal procedures. Nevertheless, probes
are of course still useful in inspecting embedding
spaces, but their results should not be overstated
and they should be used only when interested in
the specific insights they hold, e.g., the existence
of a linear separation in case of linear probes.

Although the design of indicators requires more
creativity and result in tasks that are mostly tailored
for specific kinds of questions under investigation,
we assert that the advantage they give in better
understanding the information, that does and does
not exist in word representations, is worth the effort.
We therefore conclude that indicators should at
the very least be presented alongside probes when
examining embedding spaces.

Limitations

The use of indicator tasks, as presented in this pa-
per, solves many problems existing in the current
use of probes to query linguistic information from
embedded representations. However, there are of
course issues that remain unsolved and may require
further research.

For example, the interpretability of the absolute
results is still unclear with indicators as it is with
probes. Suppose we ran a probing experiment or an
indicator task and got 87%. Is it good? How could
we tell? Could we safely declare the information
exists in the representation? (Belinkov, 2022)

Another issue that may arise with the usage of
indicator tasks is the lack of a simple recipe for the
creation of such tasks. Despite their disadvantages,
the design of probing tasks is simple and merely
requires picking a target property and a classifier.
On the other hand, the design of indicator tasks
remains a tougher mission. In this paper we pointed
to similarities between vectors as the main source
of information for indicator tasks, and indeed from
it can be derived many tasks such as clustering and
comparison to other sources of similarity. However,
the details may require some tailor-made decisions.

In addition, as a conceptual continuation of in-
trinsic evaluation methods, the indicator DEOD
task may suffer from the same problems that
haunted intrinsic tasks, mostly with regards of the
definition of similarity (Faruqui et al., 2016). How-
ever, our indicator is based on the outlier detection
task that tended to these issues by examining simi-

larity not in absolute terms but in relation to sim-
ilarities between other pairs of words (Camacho-
Collados and Navigli, 2016). Another problem of
intrinsic evaluation is the lack of guaranteed cor-
relation with performance on downstream tasks
(Chiu et al., 2016). However, this problem exists
for probes as well (Conneau et al., 2018).

Lastly, it is unclear whether indicator tasks in
general, and our DEOD task in particular, can de-
tect linear separability in the representations, which
is the most common use of probes. For this reason
we do not advocate for the abandonment of probes,
but rather for limiting their usage to specific goals,
like detection of linear separation.
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