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ABSTRACT

Adversarial Imitation Learning (AIL) methods, while effective in settings with
limited expert demonstrations, are often considered unstable. These approaches
typically decompose into two components: Density Ratio (DR) estimation ρE

ρπ
,

where a discriminator estimates the relative occupancy of state-action pairs un-
der the policy versus the expert; and Reward Assignment (RA), where this ra-
tio is transformed into a reward signal used to train the policy. While signifi-
cant research has focused on improving density estimation, the role of reward as-
signment in influencing training dynamics and final policy performance has been
largely overlooked. RA functions in AIL are typically derived from divergence
minimization objectives, relying heavily on human design and ingenuity. In this
work, we take a different approach: we investigate the discovery of data-driven
RA functions, i.e, based directly on the performance of the resulting imitation
policy. To this end, we leverage an LLM-guided evolutionary framework that ef-
ficiently explores the space of RA functions, yielding Discovered Adversarial Im-
itation Learning (DAIL), the first meta-learnt AIL algorithm. Remarkably, DAIL
generalises across unseen environments and policy optimization algorithms, out-
performing the current state-of-the-art of human-designed baselines. Finally, we
analyse why DAIL leads to more stable training, offering novel insights into the
role of RA functions in the stability of AIL.
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Figure 1: Visualization of the different reward assignment functions.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved impressive results across a range of complex do-
mains(Mnih et al., 2015; Silver et al., 2016), conditioned on the availability of well-defined and in-
formative reward functions. However, in many real-world settings, specifying such reward functions
is either prohibitively difficult or entirely infeasible, whereas providing demonstrations of the de-
sired behavior is often easier and cost-effective. This motivates the paradigm of Imitation Learning
(IL) (Argall et al., 2009; Schaal, 1999), which seeks to learn policies directly from expert demonstra-
tions. IL is particularly well-suited to applications such as autonomous driving (Pomerleau, 1988)
and robotic manipulation (Argall et al., 2009), where hand-crafting precise reward functions poses
a significant challenge.

A notably effective approach within imitation learning is Adversarial Imitation Learning (AIL) (Ho
& Ermon, 2016), which draws inspiration from Generative Adversarial Networks (GANs) (Good-
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fellow et al., 2014) and is recognized for its strong performance when expert demonstrations are
limited. Similar to GANs, AIL formulates the learning process as a two-player adversarial game
between a generator (i.e., the policy network) and a discriminator network. The policy aims to gen-
erate trajectories that are indistinguishable from those of the expert, while the discriminator learns
to distinguish between expert and policy-generated trajectories.

Since it shares a similar objective to GANs, AIL inherits some of the training challenges associated
with adversarial methods (Arjovsky et al., 2017), most notably issues related to instability. In this
work, we focus on one critical factor underpinning stable and effective training: the quality of the
learning signal. Prior research in GANs (Goodfellow et al., 2014; Arjovsky et al., 2017) has shown
that providing strong and informative gradient signals to the generator is essential for improving its
performance and ensuring convergence of the adversarial game. In the context of AIL, this learning
signal manifests as the rewards given to states-action pairs visited by the policy. While recent non-
adversarial approaches (e.g., (Kostrikov et al., 2020; Garg et al., 2021)) have shown promise, their
empirical performance remains mixed (Jain et al., 2024; Lai et al., 2024), and offer less flexibility
(eg. for reward shaping (Sapora et al., 2024)), motivating the need to stabilize adversarial imitation
learning through more informative reward signals for policy optimization.

We first introduce AIL and reward assignment through the lens of divergence minimization between
expert and policy occupancy measures as highlighted in (Ghasemipour et al., 2020). This perspective
reveals a natural two-stage decomposition of the reward assignment process: (a) Density Ratio (DR)
estimation, where the ratio of occupancy measures for each state-action pair is estimated, and (b)
Reward Assignment (RA), which maps this ratio to scalar rewards for policy optimization. While
prior work has improved stage (a) through better stabilization of the discriminator training (Luo
et al., 2024; Wang et al., 2024; Lai et al., 2024) (b) has attracted considerably less attention (Fu
et al., 2018; Ghasemipour et al., 2020). Following Ghasemipour et al. (2020), we highlight how
RA functions (Figure 1) influence policy learning dynamics in adversarial training, and propose
an LLM-based meta learning framework to discover reward assignment functions for improved
performance.

This optimization produces a RA function which, when integrated into the AIL framework, results
in Discovered Adversarial Imitation Learning (DAIL) (Figure 1). When evaluated on unseen en-
vironments from the Brax (Freeman et al., 2021) and Minatar (Young & Tian, 2019) suites, DAIL
outperforms state-of-the-art baselines, including GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018),
FAIRL (Ghasemipour et al., 2020) and GAIL-heuristic (Orsini et al., 2021). To the best of our
knowledge, DAIL is the first meta-learned AIL algorithm. We further demonstrate that it also gen-
eralizes to policy optimization algorithms not seen during discovery. Finally, by examining DAIL’s
training dynamics, we show that DAIL enhances performance by producing more informative learn-
ing signals.

2 RELATED WORK

Learning from Demonstrations In settings where reward design is challenging (Argall et al.,
2009) or exploration is hard (Nair et al., 2018), learning from expert demonstrations offers a com-
pelling alternative. The simplest approach, Behavior Cloning (BC) (Pomerleau, 1988; Torabi et al.,
2018), treats imitation as supervised learning but struggles in low-data regimes due to compound-
ing errors outside the training distribution. In contrast, distribution-matching methods explicitly
align the expert and policy state-action distributions, which helps mitigate distributional shift and
improves robustness. Among them, Adversarial Imitation Learning (Ho & Ermon, 2016; Fu et al.,
2018; Ghasemipour et al., 2020; Orsini et al., 2021)—inspired by GANs—has shown strong results
but suffers from instability. Prior work has focused on stabilizing the discriminator via improved
loss functions (Luo et al., 2024; Wang et al., 2024), architectures (Lai et al., 2024), and regular-
izers (Orsini et al., 2021; Xiao et al., 2019). However, reward assignment—the mapping from
discriminator logits to the reward—has received little attention. Fu et al. (2018) first highlighted the
impact of RA, showing that performance can vary with the structure of the underlying MDP, and
proposed methods such as incorporating absorbing states to mitigate this dependence. Ghasemipour
et al. (2020); Zhang et al. (2020) highlight the impact of RA functions on policy optimization and
along with Ke et al. (2021) unify various RA functions as instances of divergence minimization
within the distribution-matching IL framework, while Orsini et al. (2021) empirically benchmark
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these functions across multiple tasks. This work is, to the best of our knowledge, the first that
explores the discovery of novel reward assignment functions, as an alternative to relying on the
existing human-derived ones. Recent non-adversarial distribution-matching IL methods, such as
ValueDICE (Kostrikov et al., 2020) and IQ-Learn (Garg et al., 2021), have demonstrated promise
but show mixed empirical performance, with AIL variants performing comparably or better across
multiple benchmarks (Lai et al., 2024; Jain et al., 2024). Additionally, unlike AIL approaches, they
provide limited flexibility in accommodating scenarios such as state-only demonstrations (Torabi
et al., 2018; Jain et al., 2024) and reward shaping (Sapora et al., 2024). Another closely related
area is Inverse Reinforcement Learning (Ng & Russell, 2000), which seeks to infer the underlying
reward function that best explains the expert policy (Skalse & Abate, 2023; Chirra et al., 2024).
This contrasts with our narrower focus on directly optimizing imitation policies and designing re-
ward assignment functions that ensure their stable training. On the other hand, works such as (Ma
et al., 2024a;b; Li et al., 2025) directly tackle the problem of reward design in MDPs by leveraging
LLM-based evolution, ultimately outperforming human-designed rewards.

Meta Learning Meta-Learning (also known as ‘learning to learn’) aims to automatically discover
learning algorithms through end-to-end optimization (Schmidhuber, 1987; Thrun & Pratt, 1998)
and has seen extensive application in reinforcement learning (RL) (Beck et al., 2025). Histori-
cally, RL training pipelines have been limited by CPU-bound environments, however, the advent
of GPU-accelerated environments has enabled up to 1000× speedups—revitalizing Meta-RL. This
has subsequently facilitated the discovery of novel loss functions (Lu et al., 2022; Jackson et al.,
2024), activation functions (Nadimpalli et al., 2025), and optimizers (Goldie et al., 2024) for Deep
RL. Differentiating through the learning process of an RL algorithm remains a challenging prob-
lem, which has motivated the use of black-box optimization methods (Salimans et al., 2017; Chen
et al., 2023b). However, these approaches typically suffer from high sample complexity and lim-
ited interpretability. Large language models (LLMs) provide a promising alternative, leveraging
broad domain knowledge and code-generation capabilities to produce more interpretable and effec-
tive learning algorithms (Goldie et al., 2025). Beyond RL, LLM-based black box optimization has
demonstrated success across a wide range of domains, including environment generation (Faldor
et al., 2024), neural architecture search (Chen et al., 2023a), combinatorial optimization (Ye et al.,
2024), mathematics (Romera-Paredes et al., 2024), and more (Novikov et al., 2025).

3 BACKGROUND

Preliminaries We consider a Markov Decision Process (MDP) M defined by the tuple
(S,A,P, r, γ, µ), where S denotes the set of states, A is the set of actions, P(s′|s, a) ∈ [0, 1]
is the transition probability, r(s, a) ∈ R is the reward function, γ ∈ [0, 1] is the discount fac-
tor and µ(s) ∈ ∆(S) is the initial state distribution. A policy π(.|s) ∈ ∆(A) is a distribution
over the set of valid actions for state s. A trajectory τ = {(st, at)} denotes the state-action
pairs encountered by executing π in M. For a given policy π, the occupancy measure ρπ(s, a)
is defined as ρπ(s, a) = (1 − γ)Eτ∼π[

∑∞
t=0 γ

tP (st = s, at = a)]. Intuitively, it can be in-
terpreted as the distribution over state-action pairs that the agent encounters while following pol-
icy π. A one-to-one correspondence exists between π and ρπ (Syed et al., 2008), allowing us to
use them interchangeably. For functions f(s, a) dependent only on state-action pairs, we have
Eτ∼π [

∑∞
t=0 γ

tf(st, at)] = 1
1−γE(s,a)∼ρπ

[f(s, a)]. We leverage this identity to use the two ex-
pectations interchangeably when optimizing over f .

Distribution Matching IL The goal of distribution-matching imitation learning is to find a policy
π∗ whose occupancy measure ρπ closely aligns with that of the expert ρE . In this paper, we focus
on f -divergence minimization—a unifying framework encompassing many distribution-matching
IL algorithms (Ghasemipour et al., 2020). Formally,

π∗ = argmin
π

Df (ρE∥ρπ), (1)

where the f -divergence Df is defined as

Df (ρE∥ρπ) = E(s,a)∼ρπ

[
f

(
ρE(s, a)

ρπ(s, a)

)]
, (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with f : R+ → R convex and satisfying f(1) = 0. The ratio ρE

ρπ
, known as the density ratio, is

formally the Radon–Nikodym derivative (Halmos, 1950), which quantifies the pointwise discrepancy
between ρE and ρπ . In practice, we only have access to a finite set of expert demonstrations rather
than the true occupancy measure ρE .

Adversarial Imitation Learning An adversarial approach to solving Equation 1 involves the fol-
lowing iterative steps: (1) Policy Rollouts: Generate trajectories by executing the current policy π.
(2) Density Ratio Estimation: Multiple approaches have been proposed to estimate the density ratio
ρE

ρπ
(Wang et al., 2024; Lai et al., 2024). In this work, we adopt the most common approach (Orsini

et al., 2021) of training a classifier (discriminator) to distinguish expert from policy-generated (s, a)
pairs via binary cross-entropy loss. An optimal discriminator’s logits (pre-softmax) would then
correspond to log

(
ρE

ρπ

)
(refer to Appendix A.1 for derivation) and (3) Reward Assignment and

Policy Improvement: Depending on the f -divergence being minimized, each (s, a) pair visited
by π receives a reward r(s, a) = rf

(
ρE(s,a)
ρπ(s,a)

)
, where rf : R+ → R is defined as the reward

assignment function. Table 1 summarizes common divergences and their corresponding reward as-
signment functions. The rewards are then used to update the policy, and Steps 1-3 are repeated
until convergence.

Table 1: Reward assignment functions for different f -divergences, where ℓ = log ρE(s,a)
ρπ(s,a)

Divergence Algorithm Reward Assignment Function

Forward KL FAIRL (Ghasemipour et al., 2020) −ℓ(s, a) · eℓ(s,a)
Backward KL AIRL (Fu et al., 2018) ℓ(s, a)
Jensen-Shannon GAIL (Ho & Ermon, 2016) softplus(ℓ(s, a))
Unnamed f -div GAIL-heuristic (Orsini et al., 2021) −softplus(−ℓ(s, a))

4 PROBLEM DEFINITION

Adversarial methods are often considered unstable due to their reliance on optimizing min-max
objectives, akin to GANs (Goodfellow et al., 2014). To mitigate this instability, prior work has
predominantly focused on Step 2 by improving discriminator training (Luo et al., 2024; Wang et al.,
2024).

In this paper, we focus on Step 3, highlighting that providing an informative learning signal is
crucial for effective policy improvement and overall adversarial training. Originally discussed by
Ghasemipour et al. (2020), Figure 1 illustrates how the reward assignment function shapes the pol-
icy’s learning dynamics. The AIRL RA function encourages the policy to visit state-action pairs
where expert visitation exceeds its own and penalizes it equally when it surpasses the expert. In
contrast, the GAIL RA function only incentivizes matching the expert on underrepresented pairs,
while its heuristic variant does the opposite. FAIRL employs a more nuanced approach: it rewards
the policy for slightly exceeding expert visitation but imposes steep penalties when the expert dom-
inates. (Ghasemipour et al., 2020) reason this drives the policy to gradually expand and cover the
expert distribution from the outside in. Furthermore, although existing RA functions (Table 1) derive
from well-established f -divergence theory, they neglect the practical stability challenges that arise
during training.

This raises the question: Can we meta-learn a reward assignment function that results in stable
and effective adversarial training? To evaluate training quality, we measure the divergence between
the expert and the policy after training. Specifically, we use the Wasserstein distance (Rubner et al.,
1998), computed between rollouts generated by the policy and expert demonstrations. We select this
metric due to its robustness and sensitivity in measuring distances between occupancy distributions
in RL settings (Luo et al., 2023; Rupf et al., 2024).

While the original convex function f can be applied directly, most approaches utilize the function derived
from its variational representation, as detailed in the Appendix A

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

EnvironmentRollouts

Expert 
Demonstrations

Discriminator

Reward Function

action

agent

log ratios

binary 
cross 
entropy 
loss

Fitness

convergence

Reward Function:

def reward_fn(logits):

  return softplus(logits)

Divergence: 10 

LLM
Reward Function:

def reward_fn(logits):

  return tanh(logits)

Divergence: 15 

Reward Function:

def reward_fn(logits):

  return softplus(tanh(logits))

Reward Function:

def reward_fn(logits):

  return exp(-logits**2)

Divergence: 10 

crossover
sample
parents

Population

LLM Generated Mutation

Inner Training Loop

Top Candidates

Figure 2: Visualization of the LLM-guided evolution. Appendix B contains the pseudocode of the
framework.

4.1 FORMAL DEFINITION

We formalize the meta-learning problem of discovering RA functions as:

min
f
W(ρE , ρπ∗ ; f) s.t. π∗ = argmax

π
rf (ρE∥ρπ), (3)

whereW denotes the Wasserstein distance, and π∗ is the optimal policy obtained by iterating over
Steps 1–3 with reward assignment function rf . We remove additional constraints on rf (such as
convexity), to enable the exploration of more expressive RA functions beyond those derivable from
classical f -divergences. While this approach foregoes theoretical convergence guarantees, the trade-
off is justified by the empirical feedback that rf receives with policy training. As our results show,
the discovered reward assignment functions exhibit robust generalization properties.

5 DISCOVERING RA FUNCTIONS VIA EVOLUTIONARY SEARCH

Optimizing Equation 3 is challenging because it requires backpropagating gradients through the
entire adversarial training loop, which is generally computationally intractable. Consequently, prior
work has typically relied on black-box methods for such bilevel optimization problems (Goldie et al.,
2024; Lu et al., 2022). In this work, we adopt an LLM-guided evolutionary framework—shown
to be sample-efficient, interpretable, and capable of discovering generalizable algorithms in meta-
RL (Goldie et al., 2025).

The RA function rf is represented directly as code, enabling expressive and interpretable formula-
tions. To evolve new candidate functions, we prompt the LLM to intelligently combine and mutate
parent programs, guided by their structural and behavioral characteristics. LLMs are particularly
well-suited for this setting for two key reasons: (1) code (Python) is Turing-complete (Faldor et al.,
2024), allowing the search space to encompass a rich class of reward assignment functions and (2)
the pretrained knowledge encoded in LLMs provides a strong inductive bias, helping to navigate the
vast search space more effectively.

Next, we describe the LLM-guided search algorithm used in our work. Importantly, our main con-
tribution lies not in the evolutionary algorithm itself, but in the formulation and optimization of

5
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the meta-learning objective (Eq. 3). LLM-guided black-box optimization does not follow a rigid
standard—many approaches share a common structure but differ in finer details. For completeness,
we outline the variant adopted in this work, which closely resembles EvolveAct (Nadimpalli et al.,
2025), Evo-prompting (Chen et al., 2023a), and FunSearch (Romera-Paredes et al., 2024). More so-
phisticated strategies (Fernando et al., 2024; Novikov et al., 2025) are complementary to this work.

5.1 COMPONENTS OF THE EVOLUTIONARY SEARCH

0 2 4 6 8 10
Generation

0.80

0.83

0.85

0.88

0.90

0.93

N
or

m
al

iz
ed

 R
et

ur
n

0.92

0.94

0.96

0.98

1.00

N
or

m
al

iz
ed

 
 D

is
ta

nc
e

Figure 3: Performance across generations on the
Minatar SpaceInvaders environment. We report
the best-performing member per generation, with
Generation 0 denoting the base population. W
distance is normalized relative to the best base
member (GAIL).

Base Population. We initialize the search
with reward assignment functions from estab-
lished f -divergences—GAIL, FAIRL, AIRL,
and GAIL-heuristics (Table 1)—to provide a
robust foundation for the evolutionary search.

Fitness Evaluation. Each candidate function
rf is evaluated by training a policy to conver-
gence using rf as the reward assignment func-
tion, then measuring the Wasserstein distance
between its rollouts and the expert’s. This score
serves as the fitness criterion for selection.

Crossover. To generate new candidate func-
tions, we sample parent pairs {rf1 , rf2} from
the current population and pass them to the
LLM along with their fitness scores. The LLM
is then prompted to synthesize a new func-
tion rf3 that combines desirable properties of
the parents, with the goal of improving perfor-
mance (e.g., by blending their functional forms). The detailed prompt format and representative
examples of generated candidates are provided in Appendix C.

5.2 SEARCH PROCEDURE

The LLM-guided evolutionary framework unfolds over multiple iterations as follows:

Initial Population: Initialize the search with a base population of reward assignment functions
derived from known f -divergence formulations.

Iterative Evolution: At each generation: (1) Randomly sample M pairs of reward assignment
functions from the current population. (2) For each pair, use the LLM to generate N new candidate
functions by recombining and refining the parent functions. (3) Evaluate all M × N candidates
using the distribution-matching fitness score. (4) Select the top K candidates to populate the next
generation.

Termination: Repeat until a stopping criterion is achieved (e.g., performance plateau).

6 EMPIRICAL STUDIES

We begin by outlining the experimental setup, after which we present the results. We conduct our
experiments on two benchmark suites: MuJoCo control tasks (Todorov et al., 2012) (Ant, Reacher,
Walker2d, HalfCheetah, and Hopper) and Minatar (Young & Tian, 2019) (Asterix, SpaceInvaders,
and Breakout). For each task, we collect 10 successful expert demonstrations from a PPO-trained
policy (Schulman et al., 2017), and subsample every 20th transition—following standard prac-
tice (Ho & Ermon, 2016). Unless stated otherwise, we optimize the policy using PPO and regularize
the discriminator with a gradient penalty (Gulrajani et al., 2017). Consistent with prior work in IL,
we adopt fixed-length episodes of 1000 timesteps for MuJoCo environments (Gleave et al., 2022).
However, we do not enforce this for the Minatar tasks since doing so significantly degraded perfor-
mance. Our implementation is fully written in JAX (Bradbury et al., 2018), using PureJaxRL (Lu
et al., 2022), Brax (Freeman et al., 2021) for MuJoCo environments, Gymnax (Lange, 2022) for

6
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Brax

MinAtar

Normalized Returns

Figure 4: Aggregate performance on the Brax and Minatar suites (excluding SpaceInvaders).

Minatar, and OTT-JAX (Cuturi et al., 2022) for computing Wasserstein distance. Full training hy-
perparameters are provided in Appendix D. We normalize returns using min-max scaling between
random and expert policy performance, with all results averaged over 16 independent seeds.

6.1 EVOLUTIONARY SEARCH

We conduct the evolutionary search on the Minatar SpaceInvaders environment, which has previ-
ously been shown to facilitate the discovery of generalizable meta-RL algorithms (Jackson et al.,
2024). For the search, we use GPT-4.1-mini, selected for its strong performance–cost tradeoff.
Throughout evolution, we fix the PPO and discriminator hyperparameters, evaluating 200 candi-
date RA functions over a span of three hours. Full details of the evolutionary hyperparameters are
provided in Appendix D.

The evolutionary trajectory is shown in Figure 3. The best-performing reward assignment function
discovered at the end of the search is:

rdisc(x) = 0.5 · sigmoid(x) · [tanh(x) + 1]. (4)

Building on this, we introduce Discovered Adversarial Imitation Learning (DAIL), which applies a
standard imitation learning loop with rdisc as the reward assignment function. Remarkably, DAIL
reduces the W-distance to expert trajectories by 20% and improves normalized returns by 12.5%
compared to the best baseline (GAIL).

6.2 GENERALIZATION

We now turn to the out-of-distribution performance of DAIL. As a first step, we benchmark our
method against prior RA functions (Table 1) on Brax and Minatar environments (excluding Mi-
natar SpaceInvaders). All methods share identical hyperparameters, differing only in the choice
of RA function. Aggregated scores (Agarwal et al., 2021) are shown in Figure 4. Among the base-
lines, AIRL performs slightly better than GAIL on Brax but—along with GAIL-heuristic—performs
poorly on Minatar, likely because their reward assignment functions yield predominantly negative
rewards, incentivizing agents to terminate episodes early. FAIRL performs poorly across both suites,
likely due to its exponential, unbounded reward decay for positive log-ratios, which destabilizes
training. Overall, the baseline trends align with observations from (Orsini et al., 2021).

Figure 4 demonstrates DAIL’s effectiveness across both benchmark suites. On Minatar, DAIL sig-
nificantly outperforms all baselines across all evaluation metrics. On Brax, DAIL outperforms base-
lines on most metrics, with a slightly lower median than AIRL and statistically significant gains
in mean performance. To quantify the robustness of these improvements on Brax, we employ the
probability of improvement (PI) (Agarwal et al., 2021)—a metric that estimates the probability of

7
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Figure 5: (Left) Probability of improvement of DAIL over baselines on Brax. (Right) Performance
comparison between DAIL and GAIL (on Minatar SpaceInvaders) using A2C. We report the mean
and standard error (SEM).

DAIL outperforming a baseline on a randomly chosen task. The results in Figure 5 (left) show sta-
tistically significant PI values higher than 0.5, providing further evidence of DAIL’s superiority over
existing methods. To assess DAIL’s generalization beyond the policy optimizer (PPO) used during
evolution, we evaluate its performance with A2C (Mnih et al., 2016). As shown in Figure 5 (right),
DAIL maintains significant performance advantages over GAIL showcasing its effectiveness across
different policy optimization algorithms. Finally, we assess DAIL’s generalization performance un-
der various discriminator regularization strategies proposed by Orsini et al. (2021), including weight
decay, an additional entropy bonus, and spectral normalization of the discriminator weights. We also
consider the case without any regularization. As shown in Table 2, DAIL outperforms GAIL across
3/5 regularization regimes.

Algo Env none w-decay entropy spectral grad-pen

DAIL

Asterix 0.88 ± 0.03 1.33 ± 0.03 0.12 ± 0.01 0.92 ± 0.03 0.66 ± 0.03

Breakout 0.81 ± 0.07 0.74 ± 0.08 0.91 ± 0.02 0.77 ± 0.07 1.01 ± 0.00

SpaceInvaders 0.71 ± 0.07 0.81 ± 0.01 0.80 ± 0.01 0.70 ± 0.09 0.90 ± 0.00

Overall 0.80 ± 0.03 0.96 ± 0.03 0.61 ± 0.01 0.80 ± 0.04 0.85 ± 0.01

GAIL

Asterix 1.18 ± 0.03 1.44 ± 0.03 0.48 ± 0.03 0.22 ± 0.03 0.52 ± 0.04

Breakout 0.76 ± 0.07 0.52 ± 0.10 0.89 ± 0.01 0.33 ± 0.10 0.85 ± 0.07

SpaceInvaders 0.61 ± 0.09 0.34 ± 0.09 0.81 ± 0.00 0.42 ± 0.08 0.81 ± 0.03

Overall 0.85 ± 0.04 0.76 ± 0.04 0.73 ± 0.01 0.32 ± 0.05 0.73 ± 0.03

Table 2: Performance of DAIL and GAIL under different discriminator regularization strategies.
Hyperparameters are adopted from Orsini et al. (2021). Reported values denote the mean and stan-
dard error across runs.

6.3 ANALYSIS

Next, we investigate why DAIL leads to such strong performance. As shown in Figure 1, rdisc
exhibits an S-shape with a sharper gradient and a slight rightward shift compared to a standard
sigmoid. Importantly, it is bounded within the interval [0, 1], unlike existing baselines. Prior work
has shown that bounding rewards can stabilize Deep RL (Mnih et al., 2015; Van Hasselt et al., 2016),
which we hypothesize contributes to DAIL’s performance.

We assess training stability by tracking policy entropy and comparing it to a PPO agent with ac-
cess to simulator rewards. As shown in Figure 6 (left), policies trained with rdisc converge to lower
entropy, closely matching the PPO baseline. This suggests that rdisc delivers a rich and informa-
tive signal, enabling sharper action distributions that reflect confident behavior and effective reward
maximization. In contrast, GAIL’s RA function produces noisier signals, leading to higher-entropy
policies and greater uncertainty in action selection.
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Figure 6: (Left) Policy entropy during training (on HalfCheetah) with different RA functions; PPO
with simulator rewards is presented as reference. Results show mean ± SEM. (Right) Distribution
of log-density ratios during training on Minatar SpaceInvaders, estimated via kernel density fitting.

Figure 7: (Left) Log-density ratio distributions during training (Minatar SpaceInvaders), estimated
via kernel density estimation. (Right) rdisc vs. component function performance (Minatar SpaceIn-
vaders).

To gain deeper insight, we examine the distribution of log density ratios log ρE

ρπ
of state-action pairs

visited during training. We compare the distributions between DAIL and GAIL and analyze the
interaction with their respective RA functions. Figure 6 (right) shows that a large fraction of the log-
ratios lie within the interval [−1, 0] for both methods, with a long tail extending to approximately
−2—a region we identify as indicative of random policy behavior. rdisc saturates near zero for x ≲
−1.8, effectively filtering out noisy or low-quality state-action pairs while maintaining informative
gradients for moderately performing ones. In contrast, GAIL’s reward function assigns high positive
values even at x = −2, thereby rewarding state-actions pairs corresponding to near-random policies.
We posit that this over-sensitivity to low-quality behavior contributes to the noisier reward signals
and instability observed in GAIL’s training dynamics. Note that the findings in Figure 6 generalize
across all test environments; results for which are omitted due to space constraints.

To further test this hypothesis, we conduct an ablation study on the individual components of rdisc,
comparing it against sigmoid(x) and 0.5 · [tanh(x) + 1]. All three functions map to [0,1] and
exhibit S-shaped curves, but differ in their response characteristics: rdisc closely follows the tail
of the density ratio distribution, while the other two functions provide noisier reward signals that
remain positive around x = −1.8, with sigmoid(x) being the least responsive due to its relatively
flat profile. These differences are validated empirically (Figure 7), where rdisc achieves the best
performance, followed by 0.5 · [tanh(x) + 1], with sigmoid(x) performing worst.

6.4 STABILITY

To assess the stability of the evolutionary process, we conduct an additional independent evolution-
ary run on the Minatar SpaceInvaders environment. The top-5 RA functions discovered in both

9
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runs are presented in Table 8 and the top-3 are plotted in Figure 8. We see that the 6 evolved RA
functions exhibit highly similar structures. Further, they maintain informative gradients within the
range [−1, 0] and saturate rapidly thereafter, consistent with our analysis in Section 6.3. Further-
more, we conduct an evolutionary run in the MinAtar Breakout environment and find that DAIL
emerges among the top-5 RA functions in the final generation, demonstrating both the stability of
the evolutionary process and the effectiveness of DAIL.

7 CONCLUSION

3 2 1 0 1
Log-Ratio
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1.0

1.5
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Run 1 - #3
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Figure 8: Comparing the top-3 discovered RA
functions across two independant evolutionary
runs. Note that Run 1 - #1 corresponds to DAIL.

Summary This work highlights the impor-
tance of the RA functions in influencing both
policy optimization and the overall stability of
AIL—an aspect that has received relatively lit-
tle attention. We introduce a novel approach
using LLM-guided evolutionary search to auto-
matically discover optimal reward assignment
functions, resulting in DAIL, the first meta-
learned AIL algorithm. Experimental valida-
tion demonstrates DAIL’s superior and consis-
tent performance across unseen environments
and policy optimization algorithms. Through
analysis of DAIL’s discovered reward function
rdisc and its impact on training dynamics, we
provide novel insights into these performance
improvements.

Limitations and Future Work While DAIL
demonstrates strong generalization, the discov-
ered RA function rdisc does not correspond to a
valid f -divergence and therefore lacks theoretical guarantees. Moreover, despite its strong perfor-
mance, the RA function of DAIL remains static throughout training and does not adapt to the train-
ing state (e.g., number of updates remaining, loss, observed log-ratios). Exploring time-aware RA
functions—those that condition on the training state—could yield richer, more informative learning
signals, similar to (Jackson et al., 2024). Additionally, including more information into the LLM’s
context such as environment information and training state may facilitate more effective crossovers.

Finally, it would be valuable to evaluate DAIL’s generalization to more complex benchmarks, such
as the Atari-57 (Bellemare et al., 2013) and Procgen (Cobbe et al., 2020) suites. Prior work in meta-
learning Oh et al. (2020) has demonstrated that training across a diverse set of environments yields
more robust algorithms—for example, Oh et al. (2025) introduced the Disco57 and Disco103 suites,
consisting of 57 and 103 environments, respectively. Investigating the discovery of AIL algorithms
meta-trained on such large-scale environment collections is an exciting direction for future research,
though it currently lies beyond our computational budget.

8 ETHICS STATEMENT

As with other meta-learning approaches, the automated discovery of the algorithms (DAIL) obscures
its properties and behavior, making analyses like those in Section 6.3 both challenging and essential
for understanding such algorithms. Additionally, as with other IL algorithms, these advances hold
promise for safer and more capable AI systems but also introduce risks, including misuse (e.g.,
imitation of harmful behaviors) and bias (inherited from expert data).

9 REPRODUCIBILITY STATEMENT

All hyperparameters and experimental details are reported in Section 6 and Appendix D, with com-
plete information on prompts and the LLM in Appendix C. The supplementary material provides
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code (including plotting scripts) and evaluation data to fully reproduce all the main results in this
work.
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A ON f -DIVERGENCE MINIMIZATION

We present key preliminary results that will support the derivations in later sections.

A.1 BACKGROUND

Note that the results presented here assume a discounted infinite-horizon setting in a discrete MDP
for simplicity, but they can be extended to other settings such as finite-horizon problems or continu-
ous state-action spaces.

Definition (Occupancy Measure) For a policy π, the occupancy measure ρπ is defined as:

ρπ(s, a) = (1− γ)Eτ∼π

[ ∞∑
t=0

γtP(st = s, at = a)

]
(1)

Lemma 1 (Interchange of Expectations). For any scalar function f : S × A → R and discount
factor γ ∈ [0, 1),

Eτ∼π

[ ∞∑
t=0

γtf(st, at)

]
=

1

1− γ
E(s,a)∼ρπ

[
f(s, a)

]
. (2)

Proof. Starting from the definition of the left-hand side, we have

Eτ∼π

[ ∞∑
t=0

γtf(st, at)
]
= Eτ∼π

[ ∞∑
t=0

γt

(∑
s,a

P(st = s, at = a)f(s, a)

)]
(3)

=
∑
s,a

[(
Eτ∼π

∞∑
t=0

γtP(st = s, at = a)

)
f(s, a)

]
(4)

=
∑
s,a

ρπ(s, a)

1− γ
f(s, a) (using Eq. 1) (5)

=
1

1− γ
E(s,a)∼ρπ

[
f(s, a)

]
(6)

Lemma 2 (Optimal Discriminator). Let P and Q be two distributions over a random variable X .
Consider a discriminator parameterized as D(X) = σ(ℓ(X)), where σ denotes the sigmoid func-
tion and D(X) represents the predicted probability that X is drawn from P . If the discriminator is
trained via likelihood maximization (i.e., using binary cross-entropy loss), then the optimal discrim-
inator satisfies:

ℓ∗(X) = log

(
P (X)

Q(X)

)
. (7)

Proof. The discriminator is trained using the binary cross-entropy loss:
LBCE = EX∼P [logD(X)] + EX∼Q[log(1−D(X))]. (8)

To find the optimal discriminator, we maximize LBCE with respect to D(X) pointwise. Taking the
derivative of the pointwise objective and setting it to zero yields:

D∗(X) =
P (X)

P (X) +Q(X)
. (9)

Substituting D∗(X) = σ(ℓ∗(X)), we get:

σ(ℓ∗(X)) =
1

1 + e−ℓ∗(X)
=

P (X)

P (X) +Q(X)
. (10)

Solving for ℓ∗(X) gives:

ℓ∗(X) = log

(
P (X)

Q(X)

)
. (11)
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A.2 FAIRL REWARD ASSIGNMENT FUNCTION

The f -divergence between two distributions P and Q is defined as:

Df (P∥Q) = EX∼Q

[
f

(
P (X)

Q(X)

)]
, (12)

where f : R+ → R is a convex function satisfying f(1) = 0. The ratio P (X)
Q(X) is referred to as the

density ratio, and is formally defined as the Radon-Nikodym derivative (Halmos, 1950) of P with
respect to Q.

In the context of f -divergence-based imitation learning, the objective is to find a policy π that
minimizes the divergence between the expert and policy occupancy measures:

π∗ = argmin
π

Df (ρE∥ρπ) (13)

= argmin
π

E(s,a)∼ρπ

[
f

(
ρE(s, a)

ρπ(s, a)

)]
(14)

= argmin
π

(1− γ) · Eτ∼π

[
f

(
ρE(s, a)

ρπ(s, a)

)]
(using Lemma 1) (15)

= (1− γ) · argmax
π

Eτ∼π [rf (s, a)] , (16)

where the reward function rf is defined as:

rf (s, a) = −f
(
ρE(s, a)

ρπ(s, a)

)
(17)

This formulation establishes that minimizing an f -divergence is equivalent to maximizing the ex-
pected return under a reward assignment function rf which is a mapping from the density ratio ρE

ρπ

to a scalar reward.

In the case of reverse KL divergence, the corresponding f -function is f(x) = x log x. Defining the
log-density ratio as ℓ(s, a) = log

(
ρE(s,a)
ρπ(s,a)

)
, the resulting reward assignment becomes:

rf -RKL(s, a) = −eℓ(s,a) · ℓ(s, a) (18)

which corresponds to the reward used in FAIRL (Ghasemipour et al., 2020).

A.3 REWARD ASSIGNMENT FUNCTIONS IN GAIL AND AIRL

The f -divergence admits a variational representation:

Df (P∥Q) = sup
g:X→R

EX∼P [g(X)]− EX∼Q[f
∗(g(X))], (19)

where f∗ denotes the convex conjugate of f , defined by

f∗(u) = sup
v∈dom(f)

{uv − f(v)} .

To understand the structure of the optimal function g, we consider the pointwise optimization of the
integrand in Eq. equation 19. Letting u = g(X) and c = P (X)

Q(X) , the first-order optimality condition
becomes:

∇uf
∗(u) = c. (20)

Under the assumption that f is differentiable and strictly convex, the gradient of the convex conju-
gate satisfies the inverse relationship:

∇f∗(u) = (∇f)−1
(u). (21)
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Substituting into the optimality condition, we obtain:
(f ′)−1(u) = c (22)

⇒ u = f ′(c). (23)

Thus, we have,

g∗(X) = f ′
(
P (X)

Q(X)

)
(24)

In the context of f -divergence based imitation learning, we have,
π∗ = argmin

π
Df (ρπ∥ρE) (25)

= argmin
π

sup
g

E(s,a)∼ρπ
[g(s, a)]− E(s,a)∼ρπe

[f∗(g(s, a))] (26)

= argmin
π

E(s,a)∼ρπ

[
f ′
(
ρπ(s, a)

ρE(s, a)

)]
(using Eq. 24) (27)

= (1− γ) · argmax
π

Eτ∼π[rf -var(s, a)] (28)

where the reward function rf -var is defined as:

rf -var(s, a) = −f ′

(
ρE(s, a)

ρπ(s, a)

−1
)

(29)

This establishes that minimizing the f -divergence between ρπ and ρE via its variational formulation
is equivalent to maximizing the expected return under a reward assignment function defined by
rf -var.

In the case of reverse-KL divergence, the corresponding f -function is f(x) = x · log x, and thus
f ′(x) = 1 + log x. Plugging this into the reward assignment gives:

rf -var-RKL(s, a) = −

(
1 + log

((
ρE(s, a)

ρπ(s, a)

)−1
))

(30)

= log

(
ρE(s, a)

ρπ(s, a)

)
− 1 (31)

Ignoring the additive constant, the reward assignment under the reverse-KL divergence simplifies
to:

rf -var-RKL(s, a) = ℓ(s, a) (32)

which corresponds to the reward used in AIRL (Fu et al., 2018).

In the case of Jensen-Shannon divergence, the corresponding f -function is f(x) = −(x +

1) log (x+1
2 ) + x log x, and its derivative f ′(x) = log

(
2x
x+1

)
. Hence the variational reward as-

signment becomes:

rf -var-JS(s, a) = − log

(
2 (ρπ(s, a)/ρE(s, a))

1 + ρπ(s, a)/ρE(s, a)

)
(33)

= log
1

2

(
1 +

ρE(s, a)

ρπ(s, a)

)
(34)

Ignoring the additive constant, the reward assignment under the JS divergence simplifies to:

rf -var-JS(s, a) = log(1 + eℓ(s,a)) (35)

which corresponds to the reward used in GAIL (Ho & Ermon, 2016).

By plugging the f -functions of other commonly used f -divergences into Eq. 29, we can derive their
corresponding reward assignment functions, as summarized in Table 3. While no formal adversarial
imitation learning (AIL) methods explicitly employ these divergences, they have been explored in
the context of non-adversarial imitation learning algorithms such as IQ-Learn (Garg et al., 2021).
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Table 3: Reward assignment functions derived from different f -divergences

Divergence f(x) rf -var

Forward KL − log x ρE

ρπ

Reverse KL x log x log ρE

ρπ
− 1

Jensen-Shannon x log x− (x+ 1) log
(
x+1
2

)
log 1

2

(
1 + ρE

ρπ

)
Squared Hellinger (

√
x− 1)2

√
ρE

ρπ
− 1

Pearson χ2 (x− 1)2 2
(
1− ρπ

ρE

)
Total Variation 1

2 |x− 1| 1
2 · sign

(
1− ρπ

ρE

)

A.4 OPTIMIZATION

In the adversarial imitation learning (AIL) framework, optimizing the f -divergence objective in
Eq. 13 corresponds to the following iterative procedure that alternates between training a discrimi-
nator and updating the policy.

Assume a discriminator of the form D(s, a) = σ(ℓ(s, a)), where ℓ(s, a) is a learned logit function
and σ(·) denotes the sigmoid function. The goal of the discriminator is to distinguish between state-
action pairs sampled from the expert occupancy measure ρE and those induced by the current policy
π, denoted ρ.

Step 1: Discriminator Update. The discriminator is trained by maximizing the binary cross-
entropy objective:

D∗(s, a) = argmax
D

E(s,a)∼ρE
[logD(s, a)] + E(s,a)∼ρ [log(1−D(s, a))] . (36)

Step 2: Policy Update. The policy is then updated to maximize the expected return, where the
reward is derived from the discriminator output via a function rf/f -var(s, a), which typically corre-
sponds to a variational lower bound on the chosen f -divergence:

π∗ = argmax
π

E(s,a)∼π

[
rf/f -var(s, a)

]
. (37)

where the choice of the reward assignment function rf/f -var depends on the f -divergence used.

Iterate between Steps 1 and 2 until convergence.

Convergence. As highlighted in (Ghasemipour et al., 2020), under the assumption that the dis-
criminator is optimized to its optimum D∗ at each iteration, the overall procedure converges to
a fixed point where the occupancy measure of the learned policy matches that of the expert, i.e.,
ρπ = ρE .

B PSEUDO-CODE

The complete pseudo-code for f-AIL is provided in Algorithm 1, while the LLM-guided evolution-
ary search is detailed in Algorithm 2.
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Algorithm 1 f-AIL: Adversarial Imitation Learning via f -Divergence Minimization
Require: Expert trajectories τE ∼ πE ; initial policy, discriminator parameters θ0, ϕ0; λ entropy

coefficient, number of updates T
1: for iteration i = 0, 1, . . . , T do
2: Sample trajectories τi ∼ πθi
3: Update discriminator parameters ϕi → ϕi+1 using the gradient:

∇ϕ E(s,a)∼τE [logDϕ(s, a)] + E(s,a)∼τi [log(1−Dϕ(s, a))]

4: Construct rewards using the discriminator logit: r(s, a)← rf (ℓϕi+1(s, a))
5: Compute advantage estimates A(s, a) from trajectories τi using r(s, a)
6: Update policy parameters θi → θi+1 via PPO by optimizing

∇θE(s,a)∼τi

[
min

(
rt(θ)A(s, a), clip(rt(θ), 1− ϵ, 1 + ϵ)A(s, a)

)]
− λ∇θH(πθ)

where rt(θ) =
πθ(a|s)
πθi

(a|s) is the likelihood ratio, andH is the causal entropy.
7: end for
8: Sample trajectories τ ∼ πθT
9: Calculate Wasserstein distance between occupancy measures:

Dwasserstein =W
(
{(s, a)πθT

}, {(s, a)πE
}
)

where (s, a)πT
∼ τ and (s, a)πE

∼ τE

10: return πθ, Dwasserstein

Algorithm 2 LLM-Guided Evolutionary Search

Require: Initial population of reward functions P0 = {r(j)f }Pj=1, number of generations G, number
of pairs M , candidates per pair N , selection size K

1: for generation g = 1, . . . , G do
2: Randomly sample M pairs {(r(p1)

f , r
(p2)
f )} from current population Pg−1

3: # Crossover Generation
4: for each pair m = 1, . . . ,M do
5: Use LLM to generate N candidate reward functions {r(m,n)

f }Nn=1

6: end for
7: # Fitness Evaluation
8: for each candidate (m,n) do
9: Run Algorithm 1 with reward assignment function r

(m,n)
f

10: Obtain policy π
(m,n)
θT

and Wasserstein distance D
(m,n)
wasserstein

11: end for
12: # Selection
13: Select top K candidates {r∗f} with least divergence from the union of the current population

Pg−1 and generated crossovers {r(m,n)
f }:

Pg ← {r∗f}Kk=1

14: end for
15: return Best reward function(s) r∗f and corresponding learned policies π∗

θT
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C PROMPT STRATEGY

C.1 TEMPLATE

We use the following prompt to instruct the LLM to generate crossover RA functions:

Prompt for Crossover Generation

Role: AI Research Assistant (Imitation Learning)
Overall Objective: Collaborate to discover novel reward functions for Adversarial Imitation Learning (AIL) that improve training
stability and final policy performance. Performance is measured by a performance score (higher is better).
Background: Adversarial Imitation Learning Setting
You have a policy π and expert transitions (s, a) stored in a dataset DE . The typical learning loop involves:

1. Sampling transitions (s, a) into a dataset Dπ using the current policy π.
2. Training a discriminator D(s, a) to distinguish between expert transitions (DE) and policy transitions (Dπ) using

a standard binary cross-entropy loss:

L = −E(s,a)∼DE
[log(D(s, a))] − E(s,a)∼Dπ [log(1 − D(s, a))]

3. The discriminator’s output logits, l(s, a), approximate the log-density ratio:

l(s, a) ≈ log
ρE(s, a)

ρπ(s, a)
.

4. Policy transitions (s, a) in Dπ are assigned rewards based on these logits using a reward function r(s, a) =
f(l(s, a)). Examples include:

• GAIL: r(s, a) = − log(1 − D(s, a)) = softplus(l(s, a)) (Smooth rectifier: near 0 for negative logits,
linear for positive).

• AIRL: r(s, a) = logD(s, a) − log(1 − D(s, a)) = l(s, a) (Linear everywhere).
• FAIRL: r(s, a) = −l(s, a) · exp(l(s, a)) (Rises from 0 to 1/e at l = −1, then drops sharply).
• LOGD: r(s, a) = logD(s, a) = −softplus(−l(s, a)) (Linear for negative logits, near 0 for positive).

5. The policy π is updated using reinforcement learning (e.g., PPO, SAC) with these calculated rewards.
6. Steps 1–5 are repeated.

Your Task in This Interaction:
You will be presented with two reward functions, f1 and f2 (defined based on logits l), along with their observed performance.
Your goal is to propose a *new* function (not the same as GAIL, AIRL, FAIRL, LOGD), f3, that aims to perform better (higher
score).
Instructions:

1. Analyze f1 and f2:
• Consider their mathematical shapes and properties (e.g., monotonicity, bounds, smoothness).
• Consider their behavior when the logits are near zero, positive, and negative. What signal do they provide?
• Relate these properties to the provided performance data. Why might one function have performed better/worse?

2. Design f3 = reward fn(logits):
• Based on your analysis, propose a *new* function f3.
• Aim for diversity: Propose a mix of novel functions and variations on the provided examples.

3. Implementation Requirements:
• Input: logits (a JAX array).
• Output: reward (a JAX array of the same shape).
• Language: JAX.
• Function Name: reward fn.
• Clarity: Ensure the code is clean, well-commented (if necessary), and easily extractable. Include necessary

imports (jax.numpy as jnp, jax.nn etc.).
• Enclose in Code Block: Use a code block with the language python.
• Jittable: Ensure the function is jittable by JAX.

Response Format:

import jax.numpy as jnp
# from jax import nn # Uncomment or add other imports if needed

def reward_fn(logits):
"""
[Brief description of the function’s logic/intent]
"""
# [Your implementation here]
reward = ...
return reward

Pair of Reward Functions:
Function 1:

[Code]

Score: [score]
Function 2:

[Code]

Score: [score]
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C.2 GENERATED EXAMPLE:

Below is an example RA function generated by the LLM using the previously described prompt.

Parent 1

import jax
import jax.numpy as jnp
import jax.nn

def reward_fn(logits):
"""
Softplus function, but clipped at a maximum value (e.g., 5.0).
Prevents potentially destabilizing large positive rewards.
r = min(softplus(logits), CLIP_VALUE)
"""
CLIP_VALUE = 5.0
return jnp.minimum(jax.nn.softplus(logits), CLIP_VALUE)

Score: -10.0

Parent 2

import jax.numpy as jnp

def reward_fn(logits):
reward = -logits*jnp.exp(logits)
return reward

Score: -15.0

Generated Crossover

import jax.numpy as jnp
import jax.nn

def reward_fn(logits):
"""
Combines a smooth non-linear shaping with symmetric bounds:
- Uses tanh scaled by softplus to keep rewards smooth and bounded.
- For negative logits, rewards are near zero but smoothly increase toward small
positive values, avoiding harsh penalties.
- For positive logits, rewards grow but saturate due to tanh,
mitigating exploding positive rewards that cause instability.

Intuition:
- This function gently encourages the policy towards regions where logits are positive,
but heavily penalizing large values is avoided by the tanh saturation.

- Provides smoother gradients near zero by multiplying softplus(logits) which behaves
like ReLU.
"""
# Softplus ensures smooth soft-rectifier for logits, avoiding zero-gradient dead zones.
sp = jax.nn.softplus(logits) # ˜0 for large negative, linear for large positive

# tanh bounds output between -1 and 1, adding mild negative rewards for
# strongly negative logits
# Scale tanh(logits) to control sharpness:
scaled_tanh = jnp.tanh(logits / 2.0)

# Combine signals multiplicatively:
reward = sp * scaled_tanh

return reward

D HYPERPARAMETERS

The hyperparameters used across different components are summarized below. Table 4 contains
the parameters for the LLM evolution process. The PPO hyperparameters used to train both the
expert and the AIL policy are listed in Table 5, and the discriminator-specific settings are provided
in Table 6. The hyperparameters for the A2C algorithm are reported in Table 7.
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Table 4: LLM Evolution hyperparameters
Parameter Value
LLM Model GPT-4.1-mini
Number of Generations 10
Number of Pairs 20
Candidates per Pair 1
Selection Size 10
Number of evaluation seeds 16

Table 5: PPO hyperparameters for MinAtar and Brax
Hyperparameter MinAtar Brax
Number of Environments 64 2048
Number of Env Steps 128 10
Total Timesteps 1× 107 5× 107

Number of Minibatches 8 32
Number of Epochs 4 4
Discount Factor 0.99 0.99
GAE λ 0.95 0.95
PPO Clip 0.2 0.2
Value Function Coefficient 0.5 0.5
Entropy Coefficient 0.01 0
Max Gradient Norm 0.5 0.5
Layer Width 64 256
Number of Hidden Layers 2 2
Activation relu relu
LR 0.005 0.0003
Anneal LR linear none
Optimizer adam adam

E INDIVIDUAL TRAINING CURVES

Figure 9 presents the training curves for DAIL, and baseline methods. DAIL consistently outper-
forms the baselines across all evaluated environments, with the exception of AIRL outperforming
DAIL on Reacher. Additionally, DAIL exhibits faster convergence even when final returns are
comparable, underscoring the training stability introduced by its meta-learned reward assignment
function.

F DISCOVERED REWARD ASSIGNMENT FUNCTIONS

The top five reward assignment functions discovered are shown in Table 8. While the resulting
functions are complex, they are partly composed of primitives found in the base population, such as
x, log x and ex along with new ones such as |x|,min(x, y) and max(x, y).

G RUNTIME AND COMPUTE USED

Our experiments were conducted using a mix of GPUs available on our compute cluster, including
NVIDIA L40, A100, 3090, and H100 NVL. Each AIL evaluation involved training 16 agents in
parallel, distributed equally across two GPUs. The wall-clock time for each evaluation is reported
in Table 9.

H COMPARISON WITH OPEN-ES
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DAIL GAIL GAIL-h AIRL FAIRL Expert

Figure 9: Mean normalized returns across all evaluated environments. DAIL consistently outper-
forms baseline methods, with the exception of AIRL on Reacher.
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Table 6: Discriminator hyperparameters for Brax and Minatar.
Hyperparameter MinAtar Brax
Layer Width 64 128
Number of Hidden Layers 1 1
Activation relu relu
Learning Rate (LR) 0.0003 0.0003
Gradient Penalty Weight 0.1 1.0
Number of Epochs 1 1
Number of Minibatches 8 32
Activation relu relu
Optimizer adam adam

Table 7: A2C hyperparameters for MinAtar SpaceInvaders
Hyperparameter Value
Number of Environments 64
Number of Env Steps 16
Total Timesteps 1× 107

Number of Minibatches 8
Discount Factor 0.99
GAE λ 0.95
Value Function Coefficient 5.0
Entropy Coefficient 0.01
Max Gradient Norm 10.0
Layer Width 64
Number of Hidden Layers 2
Activation relu
LR 0.005
Anneal LR linear
Optimizer adam

3 2 1 0 1
log ( E(s, a)

(s, a) )

5
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15
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Figure 10: RA function generated by OpenES

We evaluate the contribution of the LLM in
guiding the evolutionary search by comparing
it to a widely used baseline for optimizing the
outer-loop objective (Eq.3): OpenAI Evolution
Strategies (ES) Salimans et al. (2017). OpenAI-
ES is a black-box, gradient-free optimization
algorithm known for its strong performance on
similar classes of problems Goldie et al. (2024);
Sapora et al. (2024). For a fair comparison,
both methods are given the same computational
budget (200 inner-loop evaluations). From Ta-
ble 10, we observe that OPEN-ES underper-
forms DAIL both on the training environment
(SpaceInvaders) and on the test environments
overall, consistent with the findings reported by
Goldie et al. (2025). Figure 10 visualizes the
discovered RA function, which appears irregular and non-smooth—likely contributing to its inferior
performance.

I COMPARISON WITH ADDITIONAL DIVERGENCE BASED METHODS

We evaluate RA functions derived from alternative f -divergences, as summarized in Table 3—which
has not been explored in prior work Ghasemipour et al. (2020); Orsini et al. (2021). We also compare
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Table 8: Top 5 reward assignment functions discovered generated after evolution. Each function is
expressed in terms of discriminator logits l.

Environment Reward Assignment Functions

SpaceInvaders-Run 1 1. σ(l) · 0.5 ·
(
tanh(l) + 1

)

2. min

(
1.5,max

(
0,


0.5 + 0.8 l − softplus

(
1.5(−l−0.8)

)
1.5 , l ≤ −0.8

0.5 + 0.8 l, −0.8 < l < 0.8

0.5 + 0.8 · 0.8 + softplus
(
1.5(l−0.8)

)
1.5 , l ≥ 0.8

))

3. softplus(l) · σ(1.5l) + 0.5 · gelu(l)

4.
l

1 + |l|
· σ(3l) · 0.5 ·

(
tanh(l) + 1

)
5. 0.5 ·

(
l

1 + |l|
+ 1

)
· σ(3l)

SpaceInvaders-Run 2 1. clip
(
0.5 ·

(
tanh(l) + 1

)
· softplus(l)− 0.1 softplus(−l), 0, ∞

)
2. softplus(l) ·

(
1− tanh2

( l − 3

1.5

))
3. σ(3l) · softplus(l)

4. σ
(
3(l − 1)

)
· σ
(
5(2.5− |l|)

)
5. clip

(( l

1 + |l|
+ 0.2

(
l

1 + |l|

)3
+ 0.3

)
· exp

(
− 0.2 max(l, 0)

)
, 0,∞

)
Breakout 1. 0.5 ·

(
tanh(1.5 · l) + 1

)
2. softplus(l) · l · σ(l) + 1

2
3.
(
tanh(l) + 1

)
· σ(l)

4.
tanh(2.0 · l)

2.0
+ 0.3 · softplus(l) + 0.5

5. (1− σ(2.0 · l)) · 0.7 · softplus(l) + σ(2.0 · l) ·
(
softplus(l) + clip(0.3 · l,−1, 2)

)

Table 9: Compute usage across environments. All reported times reflect wallclock time using 2
H100 NVL GPUs.

Environment Inner Loop (16 agents)
Wallclock time (s)

Ant 346.53
HalfCheetah 1034.86
Hopper 585.97
Walker2d 701.22
Reacher 290.54
Breakout 55.07
Asterix 97.34
SpaceInvaders 52.57

DAIL to Wasserstein-GAIL (WGAIL) , which corresponds to replacing the discriminator objective
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Table 10: Comparison between DAIL and OPEN-ES across MinAtar and Brax environments. Re-
ported values denote mean ± standard error over evaluation runs. †Note that DAIL and OPEN-ES
were meta-trained on MinAtar SpaceInvaders.

Environment DAIL OPEN-ES

SpaceInvaders† 0.90 ± 0.00 0.73 ± 0.05

Asterix 0.66 ± 0.03 1.27 ± 0.04

Breakout 1.01 ± 0.00 0.38 ± 0.10

HalfCheetah 0.90 ± 0.00 0.62 ± 0.02

Walker2d 0.95 ± 0.00 0.73 ± 0.02

Hopper 1.65 ± 0.01 1.09 ± 0.03

Reacher 0.63 ± 0.01 0.83 ± 0.01

Ant 0.85 ± 0.02 0.51 ± 0.03

Table 11: Comparison with additional divergence-based AIL methods across MinAtar and Brax
environments. Reported values denote mean ± standard error.

Environment DAIL Pearson Sq-Hellinger TV WGAIL

Asterix 0.66 ± 0.03 -0.03 ± 0.00 -0.02 ± 0.00 -0.01 ± 0.00 0.52 ± 0.04

Breakout 1.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 0.91 ± 0.06

Ant 0.85 ± 0.02 0.57 ± 0.02 0.82 ± 0.03 0.19 ± 0.05 0.80 ± 0.02

HalfCheetah 0.90 ± 0.00 0.49 ± 0.04 0.86 ± 0.01 -0.01 ± 0.01 0.87 ± 0.01

Hopper 1.65 ± 0.01 0.90 ± 0.11 1.49 ± 0.04 1.59 ± 0.04 1.50 ± 0.01

Reacher 0.63 ± 0.01 0.88 ± 0.05 0.94 ± 0.01 0.86 ± 0.07 0.42 ± 0.01

Walker2d 0.95 ± 0.00 0.54 ± 0.05 0.98 ± 0.00 0.91 ± 0.01 0.89 ± 0.01

(36) with:

D∗(s, a) = arg max
D∈{f :∥f∥L≤1}

E(s,a)∼ρE
[D(s, a)]− E(s,a)∼ρ [D(s, a)] (38)

Note that we already employ gradient penalty as a regularizer, enforcing the discriminator to be 1-
Lipschitz. After a hyperparameter sweep over the discriminator learning rate, we find that 3× 10−3

performs best for WGAIL. From Table 11, we observe that DAIL outperforms the divergence-based
AIL baselines on 5 out of 7 test environments.

J COMPARISON WITH NON-ADVERSARIAL METHODS

We additionally compare DAIL with non-adversarial methods, namely Behavior Cloning
(BC) Pomerleau (1988) and IQ-Learn Garg et al. (2021), a state-of-the-art non-adversarial algo-
rithm. For IQ-Learn, we use the official implementation provided by Garg et al. (2021). Results are
reported in Table 12. DAIL consistently outperforms both BC and IQ-Learn. Interestingly, IQ-Learn
fails to surpass BC in 3 of the 4 tested environments, a phenomenon also observed in prior work Lai
et al. (2024); Jain et al. (2024), highlighting stability challenges inherent in non-adversarial imitation
learning methods as well.

Table 12: Comparison with non-adversarial imitation learning algorithms. Reported values are
mean returns ± 95% confidence intervals across 4 random seeds for each environment.

Method Ant HalfCheetah Hopper Walker2d
BC 0.23 ± 0.04 0.09 ± 0.02 0.23 ± 0.09 0.04 ± 0.01

IQ-learn −0.32 ± 0.01 −0.02 ± 0.00 0.02 ± 0.06 0.03 ± 0.01

DAIL 0.88 ± 0.06 0.90 ± 0.01 1.72 ± 0.04 0.97 ± 0.01
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K LLM USAGE

LLMs have been used in the writing of this paper, primarily to refine the quality of the text through
prompt-based polishing of author-written drafts.
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