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ABSTRACT

Deep Research Agents (DRAs) are emerging as one of the most practical classes
of LLM-based agents. Given an open-ended research task, they find, analyze, and
synthesize large numbers of online sources to produce a comprehensive report at
the level of a research analyst. This can compress hours of manual desk research
into minutes. However, a comprehensive benchmark for systematically evaluat-
ing the capabilities of these agents remains absent. To bridge this gap, we intro-
duce DeepResearch Bench, a benchmark consisting of 100 PhD-level research
tasks, each meticulously crafted by domain experts across 22 distinct fields. To
evaluate DRAs comprehensively, we propose two complementary and fully au-
tomated methodologies. The first is a reference-based method with adaptive cri-
teria to assess the quality of generated research reports. The second evaluates
a DRA’s information-retrieval and collection capabilities by assessing its effec-
tive citation count and overall citation accuracy. By conducting extensive human
consistency experiments, we demonstrate that our evaluation methods are highly
aligned with expert judges and faithfully reflect human judgments of quality dif-
ferences among DRA-generated content. We are open-sourcing DeepResearch
Bench and key components of these frameworks to accelerate the development of
practical LLM-based agents.

Figure 1: Overview of four Deep Research Agents’ performance on DeepResearch Bench. The left
figure shows the report quality scores achieved by the DRAs. The right figure shows each agent’s
citation accuracy and the average number of effective citations.
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1 INTRODUCTION

We are now entering a new phase of AI (Yao, 2025), a period marked by comprehensive advances
in Large Language Model (LLM) capabilities (DeepSeek-AI, 2025b; OpenAI, 2024). These ad-
vancements enable the construction of LLM-based Agent systems designed to tackle increasingly
complex tasks (Masterman et al., 2024; Hong et al., 2024; Yang et al., 2024). In this evolving
landscape, defining tasks that genuinely reflect real-world demands and designing robust evaluation
methodologies to measure the progress of these Agent systems are becoming critically important.
Deep research represents one such well-defined task domain, with Deep Research Agents (DRAs)
(Li et al., 2025; Zheng et al., 2025; Schmidgall et al., 2025) emerging as the most widely utilized
LLM-based agents today.

However, comprehensively evaluating DRAs is challenging. Because their internal reasoning and
retrieval are opaque, the final report is the primary observable. Moreover, for complex research
tasks, establishing a definitive ground truth is often infeasible.

These demanding evaluation requirements for DRAs pose a significant challenge for existing eval-
uation frameworks, which often fall short of offering a dedicated assessment of the multifaceted
capabilities of such agents (Liu et al., 2023). Current benchmarks typically focus on assessing iso-
lated capabilities—such as web browsing and information retrieval (Wei et al., 2025; Zhou et al.,
2025; 2024), or generative abilities disconnected from real-time information acquisition (Que et al.,
2024; Bai et al., 2024; Wu et al., 2025b).

To bridge this gap, we introduce DeepResearch Bench, a 100-task benchmark across 22 domains,
with each task crafted and iteratively refined by domain experts. To reflect real research needs, we
allocate per-domain task counts via a statistical analysis of over 96,000 user queries, following the
pipeline in Figure 2(a).

Building on this dataset, we introduce two novel, highly human-aligned evaluation methodologies.
The first one is a Reference-based and Adaptive Criteria-driven Evaluation framework with Dynamic
Weighting (denoted as RACE for ease of subsequent reference), which targets the assessment of
report generation quality. And the other one is a framework for Factual Abundance and Citation
Trustworthiness (denoted as FACT), which focuses on evaluating information retrieval and citation
accuracy. Overview results are shown in figure 1. Furthermore, we believe these methodologies
are not confined to deep research scenarios; see Appendix K for broader discussion.

Our primary contributions are as follows:

• We present DeepResearch Bench, the first specialized benchmark for evaluating Deep
Research Agents, built via large-scale analysis of real user queries and close collaboration
with domain experts, balancing challenge while faithfully reflecting authentic user needs.

• We further propose RACE and FACT, two novel evaluation frameworks that respectively
assess the report generation quality and the information retrieval abilities of Deep Research
Agents.

• We conduct comprehensive human studies to validate the reliability of our frameworks,
and will publicly release the benchmark and evaluation protocols upon acceptance to foster
future research.

2 DEEPRESEARCH BENCH CONSTRUCTION

2.1 TOPIC DISTRIBUTION ANALYSIS

Deep Research Agents (DRAs) are intended to serve actual human research needs. Therefore, to
effectively test their capabilities, the design of DeepResearch Bench is grounded in the real-world
distribution of human research task demands. To obtain this distribution, we collected an in-house
dataset of 96,147 raw user queries from interactions with web search-enabled Chatbots. To ensure
user privacy, all raw query logs underwent rigorous anonymization. Further details of the in-house
data are provided in Appendix B.

Following the pipeline shown in Figure 2(a), we then defined the concept of Deep Research tasks as
problems requiring agents to conduct multiple rounds of web searches, gather information, perform
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Figure 2: Overview of DeepResearch Bench. (a) Distribution analysis and dataset construction
pipeline. (b) RACE framework. (c) FACT framework.

analysis, and produce high-quality reports. Guided by this definition, we employed DeepSeek-
V3-0324 (DeepSeek-AI, 2025a) to conduct filtering, identifying queries that aligned with our deep
research requirements. This process ultimately yielded a dataset of 44,019 queries conforming to
our deep research task definition.

To categorize the deep research queries, we adopted the topic taxonomy proposed by WebOrganizer
(Wettig et al., 2025), selecting 22 distinct topic domains for this classification. We then employed
DeepSeek-V3-0324 to classify these 44,019 queries into the 22 selected topic domains. By statis-
tically aggregating the LLM’s classification results, we obtained the distribution of these queries
across the various topics. This distribution, visualized in Figure 3, indicates the real-world user
demand for deep research within these domains.

2.2 BENCHMARK TASK COLLECTION

Guided by the observed user-demand distribution, we set the target number of tasks per domain
and proportionally compressed it to a final set of 100 tasks (50 Chinese, 50 English), preserving
the topical balance. The dataset size was limited because running a single deep-research task is
resource-intensive; moreover, many frontier benchmarks, such as xbench-DeepSearch (Chen et al.,
2025a) and Mind2Web 2 (Gou et al., 2025), contain roughly one hundred tasks, indicating that this
scale represents a practical trade-off between quality and stability.

Once the target task count of the topic domain is determined, our focus shifted to constructing re-
search tasks that are both highly challenging and firmly grounded in authentic research demands.
This process specifically aims to test the upper limits of the Deep Research Agents’ capabilities.
We invited PhD holders or senior practitioners with over five years of relevant domain experience to
propose candidate tasks, as shown in Figure 4. All submissions underwent manual screening by our
team to verify their quality, clarity, complexity, and alignment with our definition of deep research.
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Figure 3: Topic distribution of the filtered deep-research tasks. Left: donut chart showing topic
share. Right: bar chart of absolute task counts in 22 domains.

This rigorous vetting process resulted in the 100 high-quality benchmark tasks that constitute Deep-
Research Bench.

Figure 4: Two example tasks from DeepResearch Bench.

3 EVALUATION METHODOLOGY

Our evaluation methodology focuses on two critical aspects: their capabilities in information re-
trieval and collection, and the quality of the final reports they generate. To assess these respective
dimensions, we developed two complementary frameworks, RACE and FACT.

3.1 RACE: A FRAMEWORK FOR REPORT QUALITY EVALUATION

Evaluating long-form research reports presents significant challenges. Existing approaches using
fixed checklists Que et al. (2024) or static rubrics Shao et al. (2024); Bai et al. (2024) struggle to
adapt to diverse tasks, specialized domains, and nuanced quality aspects of deep research tasks. To
address this, we introduce our Reference-based Adaptive Criteria-driven Evaluation framework with
Dynamic Weighting (RACE), leveraging the LLM-as-a-Judge method Zheng et al. (2023). RACE
offers a more adaptive and robust evaluation by first dynamically generating task-specific weights
and criteria. It then employs a reference-based scoring approach, comparing the target report to a
high-quality reference. Finally, a relative score is computed to assess the target report’s quality.

3.1.1 DYNAMIC WEIGHT & ADAPTIVE CRITERIA GENERATION.

Directly prompting LLMs to generate task-specific criteria from scratch can lead to results that de-
viate significantly from the intended assessment goals. Following Google’s Gemini Deep Research
guidance (Google, 2025), we adopt similar high-level design principles and establish four orthogo-
nal top-level dimensions based on domain expertise: Comprehensiveness (COMP), Insight/Depth
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(DEPTH), Instruction-Following (INST), and Readability (READ). Detailed definitions are pro-
vided in Appendix C.

As illustrated in Figure 2(b), for each task t, the Judge LLM is prompted to produce task-specific
weights Wd for the four dimensions d ∈ {COMP, DEPTH, INST, READ}. These weights ensure
the evaluation aligns with the task’s intent. Subsequently, for each dimension d, the Judge LLM
generates a set of tailored criteria {cd,k} with corresponding weights {wd,k} (where

∑Kd

k=1 wd,k =
1), which are clear and actionable for evaluating the report within that dimension.

3.1.2 REFERENCE-BASED SCORING.

Preliminary experiments indicated that scoring reports in isolation often yields insufficiently dis-
criminative results; models tend to assign uniformly high scores, masking genuine quality variations.
To mitigate this, RACE adopts a reference-based scoring strategy. For each task t, a high-quality
report Rref is selected as a reference. All generated criteria {cd,k} across all dimensions are ag-
gregated into a comprehensive list Ct. The Judge LLM then analyzes the target report Rtgt and the
reference report Rref against each criterion c ∈ Ct. This yields lists of scores for both reports for
each criterion, which are then used for final score calculation:

({stgt,c}c∈Ct
, {sref,c}c∈Ct

) = JudgeLLM(t, Rtgt, Rref , Ct) (1)

3.1.3 OVERALL SCORE CALCULATION.

Finally, we compute the overall quality score of the target report. First, dimension-level scores
Sd(R) are calculated by weighting criterion-level scores sR,cd,k with criterion weights wd,k. Sec-
ond, these Sd(R) scores are combined using the task-specific dimension weights Wd to produce
intermediate overall scores Sint(R). Finally, the target report’s score Sfinal(Rtgt) is determined
relative to the reference report’s score:

Sfinal(Rtgt) =
Sint(Rtgt)

Sint(Rtgt) + Sint(Rref)
(2)

3.2 FACT: A FRAMEWORK FOR WEB RETRIEVAL EVALUATION

To assess the factual grounding of report content and the agent’s effectiveness in retrieving and
utilizing web-based information, we introduce a framework for Factual Abundance and Citation
Trustworthiness(FACT). This framework evaluates DRAs through the following automated steps:

3.2.1 STATEMENT-URL PAIR EXTRACTION AND DEDUPLICATION.

We employ a Judge LLM to extract discrete statements from reports generated by DRAs with their
corresponding cited source URLs. Then, the Judge LLM examines the pairs to identify cases where
multiple statements associated with the same URL describe the same fact. In such cases, only one
representative Statement-URL pair is retained, ensuring each unique factual claim is represented
only once.

3.2.2 SUPPORT JUDGMENT.

Each unique Statement-URL pair undergoes a support evaluation. We retrieve the textual content
of the webpage using the Jina Reader API, and then the Judge LLM assesses whether this content
provides sufficient evidence for the statement. This results in a binary judgment (’support’ or ’not
support’) for each pair, determining whether the citation accurately grounds the claim.

3.2.3 CALCULATION OF CITATION METRICS.

Based on these support judgments, we calculate two primary metrics. Citation Accuracy (C. Acc.)
measures the precision of an agent’s citations, reflecting its ability to ground statements with appro-
priate sources correctly. And Average Effective Citations per Task (E. Cit.) quantifies the average
amount of useful, verifiably supported information an agent retrieves and presents per task. For
detailed calculation methodologies, please refer to Appendix E.
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Table 1: Overall evaluation results of DeepResearch Bench. Bold denotes the highest score in each
column for Deep Research Agents (and for LLM with Search Tools within their respective section).
Underlined denotes the second highest.

Model RACE FACT

Overall Comp. Depth Inst. Read. C. Acc. E. Cit.

Deep Research Agent

Claude Research 45.00 45.34 42.79 47.58 44.66 – –
Grok Deeper Search 38.22 36.08 30.89 46.59 42.17 73.08 8.58
LangChain Open Deep Research 43.44 42.97 39.17 48.09 45.22 49.10 29.49
Perplexity Deep Research 40.46 39.10 35.65 46.11 43.08 82.63 31.20
Doubao Deep Research 44.34 44.84 40.56 47.95 44.69 52.86 52.62
Gemini-2.5-Pro Deep Research 49.71 49.51 49.45 50.12 50.00 78.30 165.34
Kimi Researcher 44.64 44.96 41.97 47.14 45.59 – –
OpenAI Deep Research 46.45 46.46 43.73 49.39 47.22 75.01 39.79

LLM with Search Tools

Claude-3.7-Sonnet w/Search 40.67 38.99 37.66 45.77 41.46 93.68 32.48
Claude-3.5-Sonnet w/Search 28.48 24.82 22.82 35.12 35.08 94.04 9.78
Perplexity-Sonar-Reasoning-Pro 40.22 37.38 36.11 45.66 44.74 39.36 8.35
Perplexity-Sonar-Reasoning 40.18 37.14 36.73 45.15 44.35 48.67 11.34
Perplexity-Sonar-Pro 38.93 36.38 34.26 44.70 43.35 78.66 14.74
Perplexity-Sonar 34.54 30.95 27.51 42.33 41.60 74.42 8.67
Gemini-2.5-Pro-Grounding 35.12 34.06 29.79 41.67 37.16 81.81 32.88
Gemini-2.5-Flash-Grounding 32.39 31.63 26.73 38.82 34.48 81.92 31.08
GPT-4o-Search-Preview 35.10 31.99 27.57 43.17 41.23 88.41 4.79
GPT-4o-Mini-Search-Preview 31.55 27.38 22.64 40.67 39.91 84.98 4.95
GPT-4.1 w/Search 33.46 29.42 25.38 42.33 40.77 87.83 4.42
GPT-4.1-mini w/Search 30.26 26.05 20.75 39.65 39.33 84.58 4.35

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 IMPLEMENTATION DETAILS

When employing the RACE framework, a pre-processing step involves cleaning citation formatting
from the generated reports, as overly lengthy or complex citation styles can adversely affect the
Judge LLM’s scoring process. For RACE evaluation tasks, we utilize Gemini-2.5-pro as the Judge
LLM. As for the FACT framework, Gemini-2.5-flash is employed for both Statement-URL pair ex-
traction and support judgment, which is sufficient in capabilities while more economic for the token-
consuming citation verification task. The reference reports used in RACE’s scoring methodology
were selected from deep research articles generated by the Gemini-2.5-pro-based Deep Research, as
available in April 2025.

4.1.2 EVALUATED MODELS

In our work, we broadly evaluate leading commercial Deep Research Agents, including OpenAI
Deep Research, Gemini-2.5-pro-based Deep Research, and so on. Due to the lack of transparency
regarding the iteration cycles of these commercial products, we specify the data collection time-
frames in Appendix F. In the open-source domain, we reproduce and evaluate LangChain’s Open
Deep Research(LangChain et al., 2025), which is widely followed by the community. We use its
default configuration (research with GPT-4.1; summarization with GPT-4.1-mini), with details pro-
vided in Appendix G. We also evaluate strong LLMs with built-in search tools under standardized
conditions by setting the search context size to high; see Appendix H.2.
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4.2 MAIN RESULTS

4.2.1 EVALUATION ON RACE FRAMEWORK

As shown in Table 1, within the DRA category, Gemini-2.5-Pro Deep Research achieved the highest
overall performance, while OpenAI Deep Research also demonstrated strong capabilities. Notably,
the open-source LangChain Open Deep Research (ODR) further exhibited competitive results, sur-
passing several proprietary DRAs in our evaluation. The scores for these top agents are relatively
close, which is characteristic of the reference-based relative scoring employed by RACE. However,
this should not be concerning, as subsequent experiments 4.3 revealed a strong linear correlation
between these RACE scores and human judgments, suggesting the framework effectively captures
meaningful performance differences between models. In fact, these scores are highly linearly cor-
related with human evaluations, just mapped to a different reference frame (similar to how scores
of 45 and 50 versus human scores of 90 and 100). Therefore, we should focus on rankings and
proportional differences between scores rather than absolute score values.

In contrast, traditional LLMs with built-in search (often limited to single-round or a few simple
search turns) now struggle to compete with modern DRAs under identical evaluation settings.

4.2.2 EVALUATION ON FACT FRAMEWORK

Viewing evaluation results by FACT in Table 1, Deep Research Agents (except Grok) tend to include
more Effective Citations than LLMs with Search Tools. Notably, Gemini-2.5-Pro Deep Research
achieved an average of 165.34 effective citations in its final reports, significantly outperforming
other models. This suggests that it can retrieve and integrate more information from a larger amount
of evidence, potentially enabled by a longer context window and stronger context understanding.
However, its citation accuracy is lower than that of Perplexity Deep Research and far below Claude-
3.7 w/Search, indicating a trade-off between citation accuracy and effective citation counts to some
extent.

We also note that Claude Research and Kimi Research do not have FACT scores because we were
unable to parse citation links from their official UI. Meanwhile, LangChain ODR and Doubao show
relatively low FACT scores; based on our inspection, many webpages reachable by their built-in
browse tools were inaccessible to our Jina-based crawling pipeline, and even for accessible pages,
the fetched contents sometimes differed, which likely affected the measured metrics.

Overall, the FACT framework is designed to offer a complementary observation to RACE; given the
lack of transparency and variability of built-in search/browse tools across DRAs, we use FACT as an
observational dimension for analysis, while our benchmark’s overall rankings rely on RACE scores.

4.3 HUMAN CONSISTENCY

Evaluating the quality of deep research reports remains an open-ended task. Therefore, to validate
the effectiveness of our proposed RACE framework, we must rely on assessing its human consis-
tency. We conducted experiments using 50 Chinese tasks from DeepResearch Bench, with reports
generated by four distinct agents. For each task, three domain-expert annotators scored these reports.
Further details are provided in Appendix H.1.

4.3.1 HUMAN DATA COLLECTION

To gather human judgments, we recruited 70+ annotators with Master’s degrees and relevant do-
main expertise. Using a custom interface, they evaluated reports across four dimensions and overall
performance, guided only by basic scoring criteria to minimize bias. Each annotator was limited to
three queries maximum to ensure diverse perspectives.

4.3.2 EVALUATION METRICS

To validate the consistency between evaluation methods and human judgment, we designed four
metrics that quantify different aspects of alignment with human evaluations. The detailed calculation
processes for all metrics are provided in Appendix I.
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Pairwise Agreement Rate (PAR) This metric measures how often our evaluation method’s pref-
erences match human experts’ preferences when comparing pairs of reports. It reflects the reliability
of our framework in replicating human comparative judgments across all tasks.

Overall Pearson Correlation (OPC) This metric quantifies the linear relationship between av-
erage model scores from our evaluation method and those from human experts. It demonstrates
how well our framework’s absolute scoring aligns with human evaluation across all deep research
assistant models.

Filtered Average Pearson & Spearman Correlation When computing per-task average corre-
lation coefficients, individual inconsistencies can have a more pronounced impact on the results
compared to global correlations. To address this issue, we first filter out tasks where expert judg-
ments show low agreement by removing tasks with negative Intraclass Correlation Coefficients (ICC
<0). The ICC is a statistical measure of rater consistency, and negative values indicate poor inter-
rater reliability. After applying this filtering criterion, 37 tasks (out of the original set) remained
in our experiment, forming a subset with demonstrably higher expert consensus. We then compute
two complementary metrics: the Filtered Average Pearson Correlation(FAP) and the Filtered Aver-
age Spearman Correlation(FAS). Together, these filtered metrics provide a more robust assessment
of how well automated evaluation aligns with consistent human judgment across different tasks.
Detailed definitions and formulas are provided in Appendix I.

Table 2: Comparison of human consistency scores across different evaluation methods. Prefixed
with ’-’, indicating removal of specific components from the full framework. Best scores for each
metric among automated methods are in bold.
Evaluation Method PAR OPC FAP FAS Overall Score

Vanilla Prompt 58.89 98.89 40.30 43.75 60.46

RACE(Full) 71.33 99.54 60.24 59.12 72.56
- No Criteria Weights 70.67 99.62 59.83 56.27 71.60
- No Dim Weights 70.89 99.54 60.11 57.22 71.94
- No Weights 71.11 99.69 59.46 58.17 72.11
- No Reference 66.56 97.46 57.51 51.23 68.19

Reverse Position 69.56 97.20 56.75 55.49 69.75
Static Criteria 68.33 98.73 57.86 57.70 70.65

Human Inter-Agreement 68.44 - - - -

4.3.3 COMPARISON OF DIFFERENT EVALUATION METHODS

Given that existing evaluation methods are generally unsuitable for assessing DRAs, we compare
RACE(Full) and several ablation variants against a Vanilla Prompt baseline (direct scoring by the
Judge LLM). As shown in Table 3, RACE(Full) achieves the best overall performance, significantly
exceeding the baseline and other variants. Notably, its Pairwise Agreement Rate also surpasses hu-
man inter-agreement, indicating reliable and efficient human-aligned evaluation. We further include
robustness experiments on reference selection, article length, and judge model choice in Appendix J.

Table 3: Comparison of human consistency scores, and average cost per task using different Judge
LLMs within the RACE(Full) framework. The best for each metric are in bold
Judge LLM License PAR OPC FAP FAS Overall Cost ($)

Gemini 2.5 Pro Proprietary 71.33 99.54 60.24 59.12 72.56 0.13
o3 Proprietary 68.11 96.22 57.64 52.36 68.58 0.37
o4-mini Proprietary 70.89 97.06 59.54 59.02 71.63 0.04
Claude 3.7 Sonnet Proprietary 70.78 96.53 58.22 63.61 72.28 0.47
Qwen3-235B-Thinking Apache 2.0 70.78 84.47 56.80 56.94 67.25 –
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4.3.4 COMPARISON OF DIFFERENT JUDGE LLM

Leveraging the RACE framework, we further compare the performance and cost of several leading
LLMs when used as the Judge LLM. As detailed in Table 3, Gemini 2.5 Pro achieves the best
overall performance and maintains a competitive average cost ($0.13 per query), only higher than
that of o4-mini. In addition, we experimented with an open-source alternative, Qwen3-235B-A22B-
Thinking-2507, as the Judge LLM. While its human consistency lags behind closed-source models,
the gap is not large, suggesting it can serve as a feasible open-source substitute. Moreover, with
Qwen3 as the Judge, the relative ranking across the four DRAs remains consistent with the Gemini-
based results, indicating that RACE is robust to the choice of Judge backbone. Further details on
using open-source judges are provided in Appendix J.3. To balance performance and cost in our
main results, we selected Gemini 2.5 Pro as the Judge LLM in our final framework.

5 RELATED WORK

LLM-based Agent Evaluation With the comprehensive advancement of LLM capabilities, LLM-
based Agents are increasingly being applied to real-world scenarios Mon-Williams et al. (2025);
Wang et al. (2025), promising to alter many aspects of daily life and professional work significantly.
Yao’s blog Yao (2025) highlights that defining more realistic problems and designing novel evalua-
tion methods are critical for constructing more practical AI Agent systems. Numerous evaluations
have already been designed specifically for Agents, targeting diverse capabilities. These include
evaluations for agents in scientific domains Chan et al. (2025); Laurent et al. (2024); Mitchener
et al. (2025); Chen et al. (2025b), creative writing Wu et al. (2025b); Bai et al. (2024); Que et al.
(2024), code generation and software engineering Jimenez et al. (2024); Zhuo et al. (2025); Quan
et al. (2025); Jain et al. (2024); Xiao et al. (2025), and in their roles as human assistants, often en-
hanced by capabilities such as web browsing and tool-use Wei et al. (2025); Zhou et al. (2025); Yan
et al. (2024); Deng et al. (2024); Wang et al. (2024). Closest to our setting, Xu et al. (2025) focuses
on a single scientific domain and does not reflect real-world user demand, while Bosse et al. (2025)
adopts an offline RetroSearch setting and reports process-oriented metrics (e.g., hallucination/tool
usage) rather than evaluating report quality or citation fidelity. This perspective underscores our
belief that constructing benchmarks specifically designed for Deep Research Agent, grounded in
real-world scenarios, alongside developing human-aligned evaluation methods, is urgently needed
to guide the development of AI agent systems.

Deep Research Agent After the release of Deep Research Agents (DRAs) by OpenAI OpenAI
(2025) and Google’s Gemini Google (2025), such agents have attracted significant attention and
have become one of the most widely deployed LLM-based agent categories. Subsequently, related
works LangChain et al. (2025); Li et al. (2025); Zheng et al. (2025) quickly followed up, also intro-
ducing their own designed DRA frameworks. However, the field still lacks a standardized evalua-
tion methodology for these DRAs, preventing meaningful comparative analysis of their capabilities.
Among these works, some use QA datasets Phan et al. (2025); Mialon et al. (2023); Wu et al. (2025a)
as evaluation metrics, but this approach neither aligns with real-world DRA applications nor com-
prehensively assesses their broader capabilities. Others employ the LLM-as-a-judge methodology
Zheng et al. (2023), yet these efforts lack both a comprehensive framework design and verifica-
tion of human consistency. In contrast, our DeepResearch Bench addresses this gap by providing a
systematic, unified evaluation method with strong human consistency, supporting subsequent DRA
development and assessment.

6 CONCLUSION

In this work, we introduce DeepResearch Bench, the first comprehensive benchmark for evaluating
the report generation and web retrieval capabilities of Deep Research Agents. Comprising 100
high-quality research tasks across 22 distinct domains, this benchmark is meticulously curated to
reflect authentic user needs. Our key evaluation frameworks, RACE and FACT, have demonstrated
high consistency with human judgments, affirming their reliability. We hope DeepResearch Bench
will guide developers and researchers in constructing more powerful and human-centric AI agent
systems, truly addressing genuine user requirements.
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A LIMITATIONS

While DeepResearch Bench and the RACE/FACT frameworks offer a comprehensive evaluation
of Deep Research Agents, several limitations remain. (1) Benchmark scale: Curating expert-level,
distribution-grounded tasks is labor-intensive; our 100-task set prioritizes quality and topic balance
over scale. (2) Domain coverage: Despite multi-domain design, residual coverage bias may ex-
ist; future versions will broaden reviewer pools and domains. (3) Human evaluation throughput:
Expert judging is costly, limiting sample sizes; we plan larger studies to further tighten confidence
intervals. (4) Tooling opacity: FACT depends on each system’s built-in search/browse stack and
external fetchers; differences in reachability and page variants can affect effective-citation measure-
ment. (5) Judge dependence: RACE relies on a Judge LLM via proprietary APIs. In the paper
and Appendix, we report results with open-source judges (e.g., Qwen3) and find they can serve as
practical substitutes to a certain extent, offering a more open alternative.

B IN-HOUSE DATA DETAILS

At the time of constructing DeepResearch Bench, there was no open-source dataset that directly
captured real user interactions with production DRAs. Consequently, to support the analysis of real-
istic topic distributions, we resorted to an in-house log of user interactions with a search-augmented
chatbot. We then applied a multi-stage post-processing pipeline, including anonymization, filtering
to extract deep-research style tasks, and topic categorization, to approximate the domain distribution
of real-world DRA tasks.

The collected queries cover a wide range of real information needs, for example: “analyze the time-
series trend of used-car prices for a specific brand in my city,” and “investigate a product’s R&D
team, development timeline, and estimate its ARR.” This diversity, together with careful identifica-
tion of deep-research tasks, leads us to believe that the resulting distribution is a close proxy to real
user demand.

As the closest public reference, we also examined the recently released Search Arena 24K dataset.
Using exactly the same filtering and categorization pipeline as in the main paper, we derived a
deep-research domain distribution from Search Arena 24K and compared it against our in-house
distribution (Table 4).

As we can see, the two distributions share the same top-5 domains and are overall similar across
major categories, which supports the reasonableness of using our in-house data as a surrogate for
real-world DRA usage.

Table 4: Major topic distribution comparison (%) between our in-house data and the open-source
Search Arena 24K dataset.
Category Sci & Tech Fin & Biz Soft Dev Edu & Jobs Health Literature

Our In-house Data 17.80 14.45 11.59 8.38 8.02 5.01
Search Arena 24K 13.68 17.74 15.81 4.97 10.47 4.54

Category History Hardware Industrial Art & Design Games

Our In-house Data 4.23 3.68 3.49 3.24 3.22
Search Arena 24K 4.42 3.19 4.10 1.54 2.57

C DIMENSION DEFINITIONS

The RACE framework evaluates research reports based on four top-level dimensions. Their defini-
tions are provided in Table 5.
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Table 5: Definitions of Core Evaluation Dimensions for Report Quality
Dimension Description

Comprehensiveness (COMP) Article covers key areas of the industry, ensures overall under-
standing, and does not omit important parts.

Insight/Depth (DEPTH) Article deeply analyzes causes, impacts, and trends, providing
valuable insights.

Instruction-Following/Relevance (INST) Article closely follows the research topic and directly answers
questions.

Readability (READ) Article has a clear structure, fluent language, and is easy to un-
derstand.

D JUDGE LLM SELECTION FOR THE FACT FRAMEWORK

The FACT framework employs a Judge LLM for crucial automated steps: Statement-URL Pair
Extraction and Deduplication, followed by Support Judgment. The selection of this Judge LLM is
pivotal, aiming to balance evaluation accuracy with operational costs, especially given the significant
token consumption inherent in these processes. To determine an optimal model for these tasks, we
specifically evaluated Gemini-2.5-Flash. Its judgments were compared against human evalu-
ations on a randomly sampled set of 100 statement-URL pairs derived from our benchmark tasks.
This comparison demonstrated strong agreement with human annotators: Gemini-2.5-Flash’s
judgment aligned with human ’support’ determinations in 96% of cases and with ’not support’ de-
terminations in 92% of cases.

We further find out that the accuracy of Gemini-2.5-Flash in these FACT-specific evaluation
steps is very close to that of Gemini-2.5-Pro. The operations within the FACT framework (such
as extracting statements from full reports and analyzing webpage content for support) are known to
be token-intensive, making cost-effectiveness a critical consideration. Since Gemini-2.5-Flash
demonstrated comparable accuracy to Gemini-2.5-Pro for these specific tasks but at a more
advantageous cost, we select Gemini-2.5-Flash as the Judge LLM for the FACT framework.
This choice enables us to maintain high evaluation reliability while managing operational costs
effectively.

E DETAILED CALCULATION OF CITATION METRICS

This appendix provides the detailed definitions and calculation methods for the Citation Accuracy
(C. Acc.) and Average Effective Citations per Task (E. Cit.) metrics used within the FACT frame-
work.

Let T denote the set of all tasks in the benchmark, and |T | be the total number of tasks. For each
task t ∈ T :

• Let Ut be the set of unique statement-URL pairs extracted for task t after the deduplication
process.

• Let Nu,t = |Ut| be the total number of unique statement-URL pairs for task t that undergo
support judgment.

• For each statement-URL pair in Ut, a support judgment is rendered, which can be either
’support’ or ’not support’.

• Let Ns,t be the number of statement-URL pairs that are judged as ’support’ for task t.

E.1 CITATION ACCURACY (C. ACC.)

Citation Accuracy (C. Acc.) assesses the Deep Research Agent’s (DRA) ability to accurately apply
retrieved information for precise statements. It is calculated by first determining the proportion of
’support’ statement-URL pairs for each individual task, and then averaging these per-task accuracies
across all tasks in the benchmark.
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The accuracy for a single task t, denoted as Acct, is defined as:

Acct =

{
Ns,t

Nu,t
if Nu,t > 0

0 if Nu,t = 0
(3)

This definition ensures that tasks for which the agent produces no citable statements (i.e., Nu,t = 0)
contribute an accuracy of 0 to the overall average, reflecting a failure to provide supported informa-
tion for that task.

The overall Citation Accuracy (C. Acc.) is then computed as the average of these per-task accura-
cies over all tasks in the benchmark:

C. Acc. =
1

|T |
∑
t∈T

Acct (4)

E.2 AVERAGE EFFECTIVE CITATIONS PER TASK (E. CIT.)

Average Effective Citations per Task (E. Cit.) evaluates, on average, how much useful and relevant
information the agent retrieves and correctly supports with evidence for each task. It is computed
by summing the total number of ’support’ statement-URL pairs across all tasks and then dividing by
the total number of tasks in the benchmark.

The Average Effective Citations per Task (E. Cit.) is calculated as:

E. Cit. =
∑

t∈T Ns,t

|T |
(5)

This metric provides a direct measure of the average quantity of verifiably supported statements an
agent generates per task.

F DATA COLLECTION TIMEFRAMES

The data for the commercial models evaluated in this paper were collected during specific time-
frames in 2025, as detailed in Table 6. These dates indicate when the model outputs used in our
experiments were generated.

Table 6: Data Collection Timeframes for Evaluated Models (2025)
Model Category / Provider Group Data Collection Date Range

Deep Research Agents (DRAs)
OpenAI Deep Research April 1 – May 8
Gemini 2.5 Pro Deep Research April 27 – April 29
Perplexity Deep Research April 1 – April 29
Grok Deeper Search April 27 – April 29
Claude Research June 23 – June 25
Doubao Deep Research June 29 – July 1
Kimi Researcher June 29 – July 1
LangChain Open Deep Research June 29 – July 1

LLM with Search Tools (Grouped by Provider)
Claude Models (w/Search) May 12 – May 13
Perplexity Models May 11 – May 12
GPT Models (w/Search) May 11 – May 12
Gemini Models (Grounding/w/Search) May 12 – May 13

G OPEN DEEP RESEARCH REPRODUCTION DETAILS

We evaluate the open-source LangChain Open Deep Research (ODR) implementation using its de-
fault settings. Specifically, the research model is set to GPT-4.1 and the summarization model is
set to GPT-4.1-mini, following the project’s recommended defaults. Unless otherwise stated, no
additional modifications are applied to the configuration.
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H EXPERIMENT DETAIL

H.1 HUMAN EVALUATION EFFORT

The human evaluation process required considerable time investment to ensure thorough assessment.
On average, each expert annotator spent approximately 1.5 hours per query to evaluate the reports
from the four agents. This meticulous process resulted in a total of 225 person-hours of human
evaluation across all tasks and annotators. This substantial effort provided a robust and reliable
dataset of human judgments, forming the basis for our human consistency analysis.

H.2 CONFIGURATION OF LLMS WITH WEB SEARCH TOOLS

To ensure a standardized and comparable evaluation environment for Large Language Models
(LLMs) equipped with built-in web search tools, the following configurations were uniformly ap-
plied:

• Thinking Budget/Computational Resources: For models that support a configurable
“thinking budget” or a similar computational resource limit for generation, this was uni-
formly set to a high value, equivalent to 16,000 tokens where applicable. This allowed
models ample processing capacity for complex queries.

• Search Context Size: In cases where models offered a parameter to control the amount
of information retrieved and utilized from web searches (e.g., the search context -
size option as found in the Perplexity AI API), this was consistently set to “high”. This
configuration aimed to maximize the contextual information available to the LLM from its
search activities.

• Maximum Search Iterations: The maximum number of web search queries, or “search
turns,” permitted during the generation process was standardized to five for all LLMs that
provided such a configurable limit. This ensured a comparable depth of web exploration
across these models.

• Output Length: To accommodate potentially comprehensive responses while maintaining
consistency, the maximum output token limit for all LLMs was set to 36,000 tokens. If a
model’s inherent maximum output capacity was less than this 36,000-token threshold, its
specific native maximum limit was adhered to.

• Citation Formatting and Standardization: A critical aspect of our methodology was
the standardization of citation presentation to facilitate consistent downstream evaluation,
particularly when employing frameworks like FACT for factual assessment. Citations as
provided by each LLM were parsed in accordance with their respective official API docu-
mentation. Subsequently, the generated reports were systematically restructured: citation
markers were inserted in the format ‘[1][2]‘ at the end of the relevant sentences, and a
consolidated “References” list, compiling all unique cited sources, was appended to the
conclusion of each article. This uniform approach to citation structure was essential for
equitable and rigorous factual verification.

These standardized settings were implemented to minimize variability arising from differing default
configurations and to enable a more direct comparison of the models’ capabilities in the context of
deep research tasks.

I DETAILED CALCULATION OF HUMAN CONSISTENCY METRICS

This appendix provides the detailed calculation methods for the four metrics used to validate the
consistency between our RACE framework and human judgment, as introduced in Section 4.3.2.

I.1 PAIRWISE AGREEMENT RATE

The Pairwise Agreement Rate measures the proportion of report pairs (across all tasks) where the
evaluation method’s preference matches the human preference.
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For each of the Nt = 50 tasks in our study, four generated deep research reports result in Np =(
4
2

)
= 6 unique pairs per task. Human preference for each pair (e.g., Report A is better than Report

B, or they are tied) is established from the average overall scores assigned to each report by three
domain experts.

Let I(t, p) be an indicator function for task t and pair p:

I(t, p) =
{
1 if the method’s preference matches the human preference for pair p of task t

0 otherwise.
(6)

The Pairwise Agreement Rate is then calculated as:

Pairwise Agreement Rate =

∑Nt

t=1

∑Np

p=1 I(t, p)
Nt ×Np

. (7)

This metric reflects the evaluation method’s reliability in replicating human comparative judgments.

I.2 OVERALL PEARSON CORRELATION

This metric quantifies the linear relationship between average model scores from the evaluation
method and those from human experts, aggregated across all Nt = 50 tasks.

Let X be a vector of average scores per model (e.g., for the different DRAs evaluated) obtained
from our method, aggregated across all tasks. Let Y be the corresponding vector of average scores
per model obtained from human experts, also aggregated across all tasks. The Overall Pearson
Correlation is the standard Pearson correlation coefficient r(X,Y ) calculated between these two
vectors. This reflects the overall score correlation between the method and human experts for the
evaluated DRAs.

I.3 FILTERED AVERAGE PEARSON CORRELATION

This metric calculates the average of per-task Pearson correlations (rt) between the method’s scores
and mean human scores, specifically on tasks where human judgment is more consistent.

Given that human scores are from a limited number of experts (k = 3) for the n = 4 reports per task,
expert inconsistencies can affect task-level metric stability. To mitigate this, tasks are filtered based
on inter-rater reliability using the Intraclass Correlation Coefficient (ICC). For each task, ICC(1,1)
(a one-way random effects model) is computed from the k = 3 human experts’ scores for the n = 4
reports:

ICC(1, 1) =
MSB − MSW

MSB + (k − 1)MSW
, (8)

where MSB is the mean square between reports and MSW is the mean square within reports. Tasks
with poor inter-rater reliability (e.g., ICC(1, 1) < 0) are excluded. This yields a filtered subset of
Nfiltered tasks, denoted as Tfiltered (37 in our experiments).

The Filtered Average Pearson correlation is then the average of per-task Pearson correlations (rt)
between the method’s scores and mean human scores over Tfiltered:

Filtered Avg Pearson =
1

Nfiltered

∑
t∈Tfiltered

rt. (9)

This procedure provides a more robust assessment of absolute-score correlation.

I.4 FILTERED AVERAGE SPEARMAN CORRELATION

Using the same filtering method and the subset Tfiltered, this metric evaluates model ranking consis-
tency.

For each task t ∈ Tfiltered, the Spearman rank correlation coefficient ρt is calculated between model
rankings derived from our evaluation method and those from average human scores. The Filtered
Average Spearman Correlation is then the average of these ρt values:

Filtered Avg Spearman =
1

Nfiltered

∑
t∈Tfiltered

ρt. (10)
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This reflects how well the method preserves relative model ordering compared to humans, specifi-
cally on tasks with more consistent human judgments.

J ANALYSIS OF RACE ROBUSTNESS

J.1 ROBUSTNESS TO REFERENCE SELECTION

To assess sensitivity to the choice of reference article, we replace the default Gemini-2.5-Pro Deep
Research reference with reports from Claude-Research and Kimi-Researcher across the full task set.
The ranking remains identical (Gemini > OpenAI > Perplexity > Grok), indicating that RACE is
robust to reference selection.

Table 7: RACE results with Claude-Research as reference.
Overall Comp. Insight Inst. Read.

Gemini-2.5-Pro Deep Research 55.30 (1st) 55.56 56.22 52.89 56.55
OpenAI Deep Research 52.27 (2nd) 52.70 50.73 52.80 54.41
Perplexity Deep Research 44.11 (3rd) 43.16 39.71 48.47 47.80
Grok Deeper Search 42.53 (4th) 41.29 35.96 48.89 47.29

Table 8: RACE results with Kimi-Researcher as reference.
Overall Comp. Insight Inst. Read.

Gemini-2.5-Pro Deep Research 55.22 (1st) 55.27 57.08 52.71 55.04
OpenAI Deep Research 52.38 (2nd) 52.48 52.21 52.49 52.91
Perplexity Deep Research 44.24 (3rd) 43.28 40.49 48.53 46.66
Grok Deeper Search 41.15 (4th) 39.31 34.64 48.13 45.72

J.2 ROBUSTNESS TO LENGTH INFLATION

To evaluate robustness to length-based bias, we start from Gemini-2.5-Pro Deep Research articles
and segment them into paragraphs. For each paragraph, we prompt Gemini-2.5-Pro to rewrite
it by expanding length while preserving the original information and maintaining logical coherence
with the surrounding context. We perform this process iteratively, yielding average article lengths
of approximately ×1.47 (expand) and ×2.19 (expand2) the original. Subsequent RACE evaluations
show that scores do not increase with length; under higher expansion they decline, indicating that
RACE is resilient to simple length-inflation attacks.

Table 9: Length bias analysis under controlled expansions.
Target Avg. Length Overall Comp. Insight Inst. Read.

Gemini-DeepResearch 33.4k 48.92 48.45 48.30 49.29 49.77
Gemini-DeepResearch (expand) 49.0k (×1.47) 48.68 48.78 48.49 49.12 47.57
Gemini-DeepResearch (expand2) 73.2k (×2.19) 47.07 48.32 47.19 48.30 40.49

J.3 OPEN-SOURCE JUDGE LLM

We additionally evaluated an open-source Judge LLM, Qwen3-235B-A22B-Thinking-2507,
as a substitute for proprietary models in the RACE framework. The Judge LLM performed the same
steps as in our main setup: dynamic dimension weighting, task-specific criteria generation, and
reference-based scoring. Hyperparameters and prompts were kept aligned with the Gemini-based
setup where applicable.

Using Qwen3 as the Judge, the relative ranking across the four DRAs remains identical to the
Gemini-based setup, demonstrating that RACE is robust to the choice of Judge backbone. Com-
pared with closed-source judges, Qwen3 yields lower human-consistency metrics on the correlation
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scale; however, the gap is moderate, and Qwen3 remains a practical open-source alternative when
access or cost constraints arise.

Table 10: Overall RACE scores of four DRAs under different Judge LLMs.
Judge Gemini-2.5-Pro DR OpenAI DR Perplexity DR Grok DS

Gemini-2.5-pro 48.88 46.98 42.25 40.24
Qwen3-235b-thinking 50.17 46.88 41.25 38.04

K ANALYSIS OF RACE GENERALIZABILITY

RewardBench 2 evaluates reward/judge models in generative settings with accuracy-based, multi-
skill preference judgments across Factuality, Precise Instruction-Following, Math, Safety, Focus,
and handling Ties (Lambert et al., 2024; Malik et al., 2025).

We apply RACE as a general reward-modeling method by using DeepSeek-R1 as the judge and
replacing vanilla direct scoring with RACE’s pipeline: (1) dynamically generate evaluation dimen-
sions weights, (2) generate task-specific, executable criteria, and (3) perform reference-based com-
parative scoring. Other settings follow the RewardBench 2 protocol. With RACE, DeepSeek-R1
shows substantial gains and approaches leading proprietary judges, indicating that RACE strength-
ens reward modeling and transfers beyond deep research, consistent with our rebuttal analysis.

Table 11: RewardBench-v2 (Generative) results with and without RACE.
Model Score Factuality Precise IF Math Safety Focus Ties

LMunit (SOTA) 82.1 87.2 54.4 72.7 91.3 96.8 90.1
Claude-Opus-4 76.5 82.7 41.9 74.9 89.5 86.2 83.7
Gemini-2.5-pro 74.8 71.2 52.1 68.3 88.7 79.4 81.2
DeepSeek-R1 w/o RACE 51.5 44.4 19.9 46.2 70.1 55.5 47.7
DeepSeek-R1 w/ RACE 74.4 72.9 45.6 74.3 90.9 76.8 47.6

L ADDITIONAL DEEP RESEARCH TASK EXAMPLES

Here are more examples of deepresearch bench tasks.

• “Investigate how, under chronic antigen stimulation (e.g., the tumor micro-environment or
latent HIV infection), mitochondrial dynamics (fusion–fission balance) in CD8+ T cells
drive bifurcation into terminally exhausted and tissue-resident memory (Trm) fates via epi-
genetic reprogramming (e.g., m6A modification, lactate-mediated histone lactylation). De-
velop quantitative models based on metabolic–epigenetic interaction networks.”

• “Analyze liability allocation in accidents involving vehicles with advanced driver-
assistance systems (ADAS) operating in a shared human–machine driving context. In-
tegrate technical principles of ADAS, existing legal frameworks, and relevant case law to
systematically examine the boundaries of responsibility between the driver and the system.”

• “How can we conduct comprehensive and accurate situational awareness of space targets
in cislunar space, and support the effectiveness of short-term cislunar tracking and mon-
itoring tasks? Compare existing sensing architectures, data-fusion pipelines, and control
strategies.”
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M PROMPT TEMPLATES

Clean Article Prompt

¡system role¿
You are a professional article editor who is good at cleaning and refining article content.
¡/system role¿
¡user prompt¿
Please help me clean the following research article, removing all citation links, citation
marks (such as [1], [2], 1, 2, etc. or other complex citation formats), reference lists, foot-
notes, and ensuring the content is coherent and smooth. Keep all other original content of
the article, removing only the citations. If the content of the citation mark is used as part of
a sentence in the article, keep the text content and remove other marks.
Article content: ”{article}”
Please return the cleaned article in full, without adding any additional comments or expla-
nations.
¡/user prompt¿

Generate Dynamic Dimension Weight Prompt

¡system role¿
You are an experienced research article evaluation expert. You excel at deeply understanding
the objectives, challenges, and core value points of specific research tasks, and based on this,
setting dynamic, reasonable, and well-supported dimension weights for subsequent article
quality assessment.
¡/system role¿
¡user prompt¿
There is a deep research task as follows:
¡task¿
”{task prompt}”
¡/task¿
¡instruction¿
Background: The research team will conduct in-depth and comprehensive research based
on the ‘¡task¿‘ above and ultimately produce a high-quality research article.
Your Task: As an evaluation expert, you need to set the evaluation criteria weights for
this specific ‘¡task¿‘ for our assessment team. The evaluation will be conducted across the
following four dimensions:

1. Comprehensiveness: The breadth, depth, and relevance of information coverage.
2. Insight: The depth, originality, logic, and value of the analysis and conclusions.
3. Instruction Following: Whether the report accurately and completely responds to

all requirements and constraints of the task.
4. Readability: Clarity of structure, fluency of language, effectiveness of data pre-

sentation, and overall ease of understanding.
Evaluation Formula: Total Score = Comprehensiveness * Comprehensiveness Weight + In-
sight * Insight Weight + Instruction Following * Instruction Following Weight + Readability
* Readability Weight. (Note: The sum of all weights must be exactly 1.0)
Core Requirements:

1. In-depth Task Analysis: Carefully study the specific content of the ‘¡task¿‘, its
implicit goals, potential difficulties, and the core value of its outcomes.

2. Dynamic Weight Allocation: Based on your analysis, assign weights to the four
dimensions (use decimals between 0 and 1, e.g., 0.3). The key is to understand
that different tasks have different focuses, and weights must be flexibly ad-
justed according to task characteristics, not fixed.
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3. Justify Allocation Reasons: Your analysis (‘¡analysis¿‘) must clearly and specif-
ically explain why each dimension is given a particular weight, and directly
link the reasons to the requirements and characteristics of the ¡task¿. This is
crucial for evaluating the quality of your work.

4. Standard Format Output: Strictly follow the format of the example below, first
outputting the ‘¡analysis¿‘ text with detailed reasons, and then immediately provid-
ing the ‘¡json output¿‘ with the weight allocation results.

¡/instruction¿
¡examples rationale¿
The following two examples are provided to demonstrate how to adjust evaluation dimen-
sion weights and explain the reasons based on changes in task nature. Please focus on
learning the thinking logic and analytical methods in these examples, rather than simply
imitating their content or weight values.
¡/examples rationale¿
¡example 1¿
¡task¿
”Analyze the feasibility of investing in electric vehicle (EV) charging infrastructure in sub-
urban areas.”
¡/task¿
¡output¿
¡analysis¿
This task’s core is to provide a clear feasibility analysis for a specific investment. The value
lies in the thoroughness of the assessment and the practicality of its conclusions. Therefore,
evaluation emphasizes insight and comprehensiveness.

• Insight (0.35): The task requires a deep analysis of feasibility. The quality of the
strategic recommendations derived from this analysis is key.

• Comprehensiveness (0.30): A thorough investigation of all relevant factors (tech-
nical, economic, social, environmental) is crucial for a reliable feasibility study.

• Instruction Following (0.20): The report must specifically address EV charging
infrastructure in suburban areas and focus on investment feasibility.

• Readability (0.15): Clearly communicating complex financial and technical anal-
ysis is important, but secondary to the depth and breadth of the study.

¡/analysis¿
¡json output¿
{{ ”comprehensiveness”: 0.30, ”insight”: 0.35, ”instruction following”: 0.20, ”readability”:
0.15 }}
¡/json output¿
¡/output¿
¡/example 1¿
Please strictly follow the above instructions and methods. Now, begin your work on the
following specific task:
¡task¿
”{task prompt}”
¡/task¿
Please output your ‘¡analysis¿‘ and ‘¡json output¿‘.
¡/user prompt¿

Generate Comprehensiveness Criteria Prompt

¡system role¿
You are an experienced research article evaluation expert. You excel at breaking down ab-
stract evaluation dimensions (like ”Comprehensiveness”) into actionable, clear, and task-
specific criteria, assigning appropriate weights and justifications for each.
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¡/system role¿
¡user prompt¿
Background: We are evaluating a deep research article written for the following task across
four dimensions: Comprehensiveness, Insight, Instruction Following, and Readability.

1. Comprehensiveness: The breadth, depth, and relevance of information coverage.
2. Insight: The depth, originality, logic, and value of the analysis and conclusions.
3. Instruction Following: Whether the report accurately and completely responds to

all requirements and constraints of the task.
4. Readability: Clarity of structure, fluency of language, effectiveness of data pre-

sentation, and overall ease of understanding.
¡task¿
”{task prompt}”
¡/task¿
¡instruction¿
Your Goal: For the Comprehensiveness dimension of this research article, develop a set of
detailed, specific, and highly task-relevant evaluation criteria. You need to:

1. Analyze Task: Deeply analyze the ‘¡task¿‘ to identify key information areas, per-
spectives, and depths that must be covered to achieve ”comprehensiveness.”

2. Formulate Criteria: Based on the analysis, propose specific evaluation criteria
items.

3. Explain Rationale: Provide a brief explanation (‘explanation‘) for each criterion,
stating why it is important for assessing the comprehensiveness of this ‘¡task¿‘.

4. ...
Core Requirements:

1. Task-Centric: Analysis, criteria, explanations, and weights must directly relate to
the core requirements and characteristics of the ‘¡task¿‘.

2. Well-Justified: The ‘¡analysis¿‘ section must clearly articulate the overall thinking
behind setting these criteria and weights, linking it to the ‘¡task¿‘. The ‘explana-
tion‘ for each criterion must justify its specific relevance.

3. ...
¡/instruction¿
¡example rational¿
The following example demonstrates how to formulate comprehensiveness criteria based
on task requirements. Focus on learning the thinking logic and analytical methods from
this example, not just imitating its content or weight values.
¡/example rational¿
¡example¿
¡task¿
”Analyze the impact of remote work trends on commercial real estate in major US cities and
recommend investment strategies.”
¡/task¿
¡output¿
¡analysis¿
To comprehensively evaluate a research article on ”the impact of remote work on commercial
real estate in major US cities and recommended investment strategies,” considerations must
span multiple dimensions.
Specifically, evaluation criteria need to cover:

1. Remote Work Trends & Adoption Data: Coverage of current and projected re-
mote/hybrid work models, adoption rates across industries and demographics.

2. Impact on Commercial Real Estate Sectors: Analysis of effects on office, retail,
and industrial spaces, including vacancy rates, leasing trends, and property valua-
tions in major US cities.
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3. Geographical Variations: Examination of how impacts differ across various major
US cities (e.g., tech hubs vs. financial centers, downtown vs. suburban).

4. ...
Weight allocation should be balanced between the impact analysis...
¡/analysis¿
¡json output¿
[
{{
”criterion”: ”Analysis of Remote Work Trends and Adoption”,
”explanation”: ”Assesses if the article thoroughly examines current and projected re-
mote/hybrid work models...”,
”weight”: 0.15
}},
{{
”criterion”: ”Comprehensive Coverage of CRE Sector Impacts”,
”explanation”: ”...”,
”weight”: 0.20
}},
{{
”criterion”: ”Examination of Geographical Variations and Nuances”,
”explanation”: ”...”,
”weight”: 0.15
}},
{{
”criterion”: ”Discussion of Broader Economic and Social Consequences”,
”explanation”: ”...”,
”weight”: 0.10
}},
...
]
¡/json output¿
¡/output¿
¡/example¿
Please strictly follow the above instructions and methods. Now, begin your work on the
following specific task:
¡task¿
”{task prompt}”
¡/task¿
Please output your ‘¡analysis¿‘ and ‘¡json output¿‘.
¡/user prompt¿
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Score Prompt In RACE(Full)

¡system role¿
You are a strict, meticulous, and objective research article evaluation expert. You excel at
using specific assessment criteria to deeply compare two articles on the same task, providing
precise scores and clear justifications.
¡/system role¿
¡user prompt¿
Task Background
There is a deep research task, and you need to evaluate two research articles written for
this task. We will assess the articles across four dimensions: Comprehensiveness, Insight,
Instruction Following, and Readability. The content is as follows:
¡task¿
”{task prompt}”
¡/task¿
Articles to Evaluate
¡article 1¿
”{article 1}”
¡/article 1¿
¡article 2¿
”{article 2}”
¡/article 2¿
Evaluation Criteria Now, you need to evaluate and compare these two articles based on
the following evaluation criteria list, providing comparative analysis and scoring each on
a scale of 0-10. Each criterion includes an explanation, please understand carefully.
¡criteria list¿
{criteria list}
¡/criteria list¿
¡Instruction¿
Your Task
Please strictly evaluate and compare ‘¡article 1¿‘ and ‘¡article 2¿‘ based on each criterion
in the ‘¡criteria list¿‘. You need to:

1. Analyze Each Criterion: Consider how each article fulfills the requirements of
each criterion.

2. Comparative Evaluation: Analyze how the two articles perform on each criterion,
referencing the content and criterion explanation.

3. Score Separately: Based on your comparative analysis, score each article on each
criterion (0-10 points).

Scoring Rules
For each criterion, score both articles on a scale of 0-10 (continuous values). The score
should reflect the quality of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion
requirements.

• 2-4 points: Poor performance. Minimally meets the criterion requirements with
significant deficiencies.

• 4-6 points: Average performance. Basically meets the criterion requirements, nei-
ther good nor bad.

• 6-8 points: Good performance. Largely meets the criterion requirements with no-
table strengths.

• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the crite-
rion requirements.

Output Format Requirements
Please strictly follow the ‘¡output format¿‘ below for each criterion evaluation. Do not
include any other unrelated content, introduction, or summary. Start with ”Standard 1”
and proceed sequentially through all criteria:
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¡/Instruction¿
¡output format¿
{{
”comprehensiveness”: [
{{
”criterion”: [Text content of the first comprehensiveness evaluation criterion],
”analysis”: [Comparative analysis],
”article 1 score”: [Continuous score 0-10],
”article 2 score”: [Continuous score 0-10]
}},
{{
”criterion”: [Text content of the second comprehensiveness evaluation criterion],
”analysis”: [Comparative analysis],
”article 1 score”: [Continuous score 0-10],
”article 2 score”: [Continuous score 0-10]
}},
...
],
”insight”: [
{{
”criterion”: [Text content of the first insight evaluation criterion],
”analysis”: [Comparative analysis],
”article 1 score”: [Continuous score 0-10],
”article 2 score”: [Continuous score 0-10]
}},
...
],
...
}}
¡/output format¿
Now, please evaluate the two articles based on the research task and criteria, providing de-
tailed comparative analysis and scores according to the requirements above. Ensure your
output follows the specified ‘¡output format¿‘ and that the JSON format is parsable, with all
characters that might cause JSON parsing errors properly escaped.
¡/user prompt¿
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Static Score Prompt

¡system role¿
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to deeply compare two articles on the same
task, providing precise scores and clear justifications.
¡/system role¿
¡user prompt¿
Task Background
There is a deep research task, and you need to evaluate two research articles written for this
task.
We will assess the articles across four dimensions: Comprehensiveness, Insight, Instruction
Following, and Readability.
The content is as follows:
¡task¿
”{task prompt}”
¡/task¿
Articles to Evaluate
¡article 1¿
”{article 1}”
¡/article 1¿
¡article 2¿
”{article 2}”
¡/article 2¿
Evaluation Criteria
Now, you need to evaluate and compare these two articles based on the following fixed
evaluation criteria list, providing comparative analysis and scoring each on a scale of 0-10.
Each criterion includes an explanation, please understand carefully.
¡criteria list¿
# Comprehensiveness
[ {{ ”criterion”: ”Information Coverage Breadth”,
”explanation”: ”Evaluates whether the article covers all key areas and aspects related to the
topic without omitting important information.”,
”weight”: 0.25
}},
{{
”criterion”: ”Information Depth and Detail”,
”explanation”: ”...”,
”weight”: 0.25
}},
{{ ”criterion”: ”Data and Factual Support”,
”explanation”: ”...”,
”weight”: 0.25
}},
{{
”criterion”: ”Multiple Perspectives and Balance”,
”explanation”: ”...”,
”weight”: 0.25
}} ]
# Insight
[ {{ ”criterion”: ”Analysis Depth and Originality”,
”explanation”: ”...”,
”weight”: 0.25
}},
... ]
...
¡/criteria list¿
¡Instruction¿
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Your Task
Please strictly evaluate and compare ‘¡article 1¿‘ and ‘¡article 2¿‘ based on each criterion
in the ‘¡criteria list¿‘.
You need to:

1. Analyze Each Criterion: Consider how each article fulfills the requirements of
each criterion.

2. Comparative Evaluation: Analyze how the two articles perform on each criterion,
referencing the content and criterion explanation.

3. Score Separately: Based on your comparative analysis, score each article on each
criterion (0-10 points).

Scoring Rules
For each criterion, score both articles on a scale of 0-10 (continuous values).
The score should reflect the quality of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion
requirements.

• ...
• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the crite-

rion requirements.
Output Format Requirements
Please strictly follow the ‘¡output format¿‘ below for each criterion evaluation.
Do not include any other unrelated content, introduction, or summary.
Start with ”Standard 1” and proceed sequentially through all criteria:
¡/Instruction¿
¡output format¿
{{
”comprehensiveness”: [
{{
”criterion”: [Text content of the first comprehensiveness evaluation criterion],
”analysis”: [Comparative analysis],
”article 1 score”: [Continuous score 0-10],
”article 2 score”: [Continuous score 0-10]
}},
{{
...
}},
...
], ”insight”: [
{{
”criterion”: [Text content of the first insight evaluation criterion],
”analysis”: [Comparative analysis],
”article 1 score”: [Continuous score 0-10],
”article 2 score”: [Continuous score 0-10]
}},
...
],
...
}}
¡/output format¿
Now, please evaluate the two articles based on the research task and criteria, providing de-
tailed comparative analysis and scores according to the requirements above.
Ensure your output follows the specified ‘¡output format¿‘ and that the JSON format is
parsable, with all characters that might cause JSON parsing errors properly escaped.
¡/user prompt¿
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Point-wise Score Prompt

¡system role¿
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to thoroughly evaluate research articles, pro-
viding precise scores and clear justifications.
¡/system role¿
¡user prompt¿
Task Background
There is a deep research task, and you need to evaluate a research article written for this task.
We will assess the article across four dimensions: Comprehensiveness, Insight, Instruction
Following, and Readability.
The content is as follows:
¡task¿
”{task prompt}”
¡/task¿
Article to Evaluate
¡target article¿
”{article}”
¡/target article¿
Evaluation Criteria
Now, you need to evaluate this article based on the following evaluation criteria list, pro-
viding analysis and scoring each on a scale of 0-10.
Each criterion includes an explanation, please understand carefully.
¡criteria list¿
{criteria list}
¡/criteria list¿
¡Instruction¿
Your Task
Please strictly evaluate ‘¡target article¿‘ based on each criterion in the ‘¡criteria list¿‘.
You need to:

1. Analyze Each Criterion: Consider how the article fulfills the requirements of each
criterion.

2. Analysis and Evaluation: Analyze the article’s performance on each criterion,
referencing the content and criterion explanation, noting strengths and weaknesses.

3. Score: Based on your analysis, score the article on each criterion (0-10 points).
Scoring Rules
For each criterion, score the article on a scale of 0-10 (continuous values).
The score should reflect the quality of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion
requirements.

• 2-4 points: Poor performance. Minimally meets the criterion requirements with
significant deficiencies.

• 4-6 points: Average performance. Basically meets the criterion requirements, nei-
ther good nor bad.

• 6-8 points: Good performance. Largely meets the criterion requirements with no-
table strengths.

• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the crite-
rion requirements.

Output Format Requirements
Please strictly follow the ‘¡output format¿‘ below for each criterion evaluation.
Do not include any other unrelated content, introduction, or summary.
Start with ”Standard 1” and proceed sequentially through all criteria:
¡/Instruction¿
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¡output format¿
{{
”comprehensiveness”: [
{{
”criterion”: [Text content of the first comprehensiveness evaluation criterion],
”analysis”: [Analysis],
”target score”: [Continuous score 0-10]
}},
{{
”criterion”: [Text content of the second comprehensiveness evaluation criterion],
”analysis”: [Analysis],
”target score”: [Continuous score 0-10]
}},
...
],
”insight”: [
{{
”criterion”: [Text content of the first insight evaluation criterion],
”analysis”: [Analysis],
”target score”: [Continuous score 0-10]
}},
...
],
...
}}
¡/output format¿
Now, please evaluate the article based on the research task and criteria, providing detailed
analysis and scores according to the requirements above.
Ensure your output follows the specified ‘¡output format¿‘ and that the JSON format is
parsable, with all characters that might cause JSON parsing errors properly escaped.
¡/user prompt¿
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Vanilla Prompt

¡system role¿
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to thoroughly evaluate research articles, pro-
viding precise scores and clear justifications.
¡/system role¿
¡user prompt¿
Task Background
There is a deep research task, and you need to evaluate a research article written for this task.
¡task¿
”{task prompt}”
¡/task¿
Article to Evaluate
¡target article¿
”{article}”
¡/target article¿
¡Instruction¿
Your Task
Please evaluate the overall quality of the above ‘¡target article¿‘ as a response to ‘¡task¿‘.
Please provide an overall score between 0 and 10.
Also, provide a brief justification for your score.
Output Format Requirements
Please strictly follow the ‘¡output format¿‘ below for your evaluation result.
Do not include any other unrelated content, introduction, or summary.
¡/Instruction¿
¡output format¿
{{ ”overall score”: [Continuous score 0-10], ”justification”: ”[Scoring justification]” }}
¡/output format¿
Now, please evaluate the article based on the task and provide your score and justification
according to the specified format.
Ensure your output is valid JSON format and escape any special characters as needed.
¡/user prompt¿
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