DEEPRESEARCH BENCH: A COMPREHENSIVE BENCHMARK FOR DEEP RESEARCH AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep Research Agents (DRAs) are emerging as one of the most practical classes of LLM-based agents. Given an open-ended research task, they find, analyze, and synthesize large numbers of online sources to produce a comprehensive report at the level of a research analyst. This can compress hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we introduce **DeepResearch Bench**, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. To evaluate DRAs comprehensively, we propose two complementary and fully automated methodologies. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The second evaluates a DRA's information-retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. By conducting extensive human consistency experiments, we demonstrate that our evaluation methods are highly aligned with expert judges and faithfully reflect human judgments of quality differences among DRA-generated content. We are open-sourcing DeepResearch Bench and key components of these frameworks to accelerate the development of practical LLM-based agents.

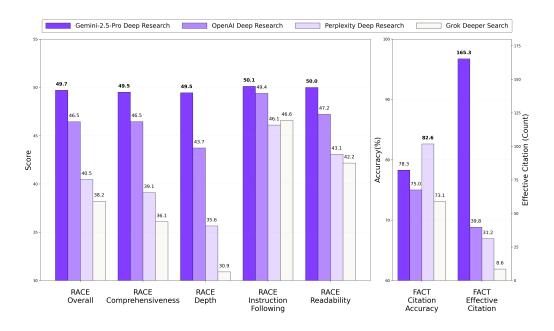


Figure 1: Overview of four Deep Research Agents' performance on DeepResearch Bench. The left figure shows the report quality scores achieved by the DRAs. The right figure shows each agent's citation accuracy and the average number of effective citations.

1 Introduction

We are now entering a new phase of AI (Yao, 2025), a period marked by comprehensive advances in Large Language Model (LLM) capabilities (DeepSeek-AI, 2025b; OpenAI, 2024). These advancements enable the construction of LLM-based Agent systems designed to tackle increasingly complex tasks (Masterman et al., 2024; Hong et al., 2024; Yang et al., 2024). In this evolving landscape, defining tasks that genuinely reflect real-world demands and designing robust evaluation methodologies to measure the progress of these Agent systems are becoming critically important. Deep research represents one such well-defined task domain, with Deep Research Agents (DRAs) (Li et al., 2025; Zheng et al., 2025; Schmidgall et al., 2025) emerging as the most widely utilized LLM-based agents today.

However, comprehensively evaluating DRAs is challenging. Because their internal reasoning and retrieval are opaque, the final report is the primary observable. Moreover, for complex research tasks, establishing a definitive ground truth is often infeasible.

These demanding evaluation requirements for DRAs pose a significant challenge for existing evaluation frameworks, which often fall short of offering a dedicated assessment of the multifaceted capabilities of such agents (Liu et al., 2023). Current benchmarks typically focus on assessing isolated capabilities—such as web browsing and information retrieval (Wei et al., 2025; Zhou et al., 2025; 2024), or generative abilities disconnected from real-time information acquisition (Que et al., 2024; Bai et al., 2024; Wu et al., 2025b).

To bridge this gap, we introduce **DeepResearch Bench**, a 100-task benchmark across 22 domains, with each task crafted and iteratively refined by domain experts. To reflect real research needs, we allocate per-domain task counts via a statistical analysis of over 96,000 user queries, following the pipeline in Figure 2(a).

Building on this dataset, we introduce two novel, highly human-aligned evaluation methodologies. The first one is a Reference-based and Adaptive Criteria-driven Evaluation framework with Dynamic Weighting (denoted as RACE for ease of subsequent reference), which targets the assessment of report generation quality. And the other one is a framework for Factual Abundance and Citation Trustworthiness (denoted as FACT), which focuses on evaluating information retrieval and citation accuracy. Overview results are shown in figure 1. Furthermore, we believe these methodologies are not confined to deep research scenarios; see Appendix K for broader discussion.

Our primary contributions are as follows:

- We present **DeepResearch Bench**, the first specialized benchmark for evaluating Deep Research Agents, built via large-scale analysis of real user queries and close collaboration with domain experts, balancing challenge while faithfully reflecting authentic user needs.
- We further propose RACE and FACT, two novel evaluation frameworks that respectively
 assess the report generation quality and the information retrieval abilities of Deep Research
 Agents.
- We conduct comprehensive human studies to validate the reliability of our frameworks, and will publicly release the benchmark and evaluation protocols upon acceptance to foster future research.

2 DEEPRESEARCH BENCH CONSTRUCTION

2.1 TOPIC DISTRIBUTION ANALYSIS

Deep Research Agents (DRAs) are intended to serve actual human research needs. Therefore, to effectively test their capabilities, the design of DeepResearch Bench is grounded in the real-world distribution of human research task demands. To obtain this distribution, we collected an in-house dataset of 96,147 raw user queries from interactions with web search-enabled Chatbots. To ensure user privacy, all raw query logs underwent rigorous anonymization. Further details of the in-house data are provided in Appendix B.

Following the pipeline shown in Figure 2(a), we then defined the concept of Deep Research tasks as problems requiring agents to conduct multiple rounds of web searches, gather information, perform



Figure 2: Overview of DeepResearch Bench. (a) Distribution analysis and dataset construction pipeline. (b) RACE framework. (c) FACT framework.

analysis, and produce high-quality reports. Guided by this definition, we employed DeepSeek-V3-0324 (DeepSeek-AI, 2025a) to conduct filtering, identifying queries that aligned with our deep research requirements. This process ultimately yielded a dataset of 44,019 queries conforming to our deep research task definition.

To categorize the deep research queries, we adopted the topic taxonomy proposed by WebOrganizer (Wettig et al., 2025), selecting 22 distinct topic domains for this classification. We then employed DeepSeek-V3-0324 to classify these 44,019 queries into the 22 selected topic domains. By statistically aggregating the LLM's classification results, we obtained the distribution of these queries across the various topics. This distribution, visualized in Figure 3, indicates the real-world user demand for deep research within these domains.

2.2 BENCHMARK TASK COLLECTION

Guided by the observed user-demand distribution, we set the target number of tasks per domain and proportionally compressed it to a final set of 100 tasks (50 Chinese, 50 English), preserving the topical balance. The dataset size was limited because running a single deep-research task is resource-intensive; moreover, many frontier benchmarks, such as xbench-DeepSearch (Chen et al., 2025a) and Mind2Web 2 (Gou et al., 2025), contain roughly one hundred tasks, indicating that this scale represents a practical trade-off between quality and stability.

Once the target task count of the topic domain is determined, our focus shifted to constructing research tasks that are both highly challenging and firmly grounded in authentic research demands. This process specifically aims to test the upper limits of the Deep Research Agents' capabilities. We invited PhD holders or senior practitioners with over five years of relevant domain experience to propose candidate tasks, as shown in Figure 4. All submissions underwent manual screening by our team to verify their quality, clarity, complexity, and alignment with our definition of deep research.

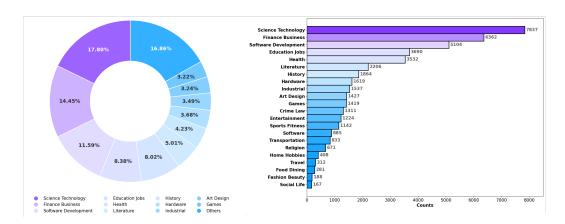


Figure 3: Topic distribution of the filtered deep-research tasks. Left: donut chart showing topic share. Right: bar chart of absolute task counts in 22 domains.

This rigorous vetting process resulted in the 100 high-quality benchmark tasks that constitute Deep-Research Bench.

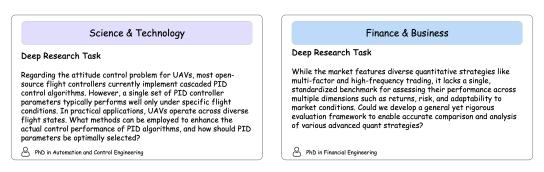


Figure 4: Two example tasks from DeepResearch Bench.

3 EVALUATION METHODOLOGY

Our evaluation methodology focuses on two critical aspects: their capabilities in information retrieval and collection, and the quality of the final reports they generate. To assess these respective dimensions, we developed two complementary frameworks, RACE and FACT.

3.1 RACE: A Framework for Report Quality Evaluation

Evaluating long-form research reports presents significant challenges. Existing approaches using fixed checklists Que et al. (2024) or static rubrics Shao et al. (2024); Bai et al. (2024) struggle to adapt to diverse tasks, specialized domains, and nuanced quality aspects of deep research tasks. To address this, we introduce our Reference-based Adaptive Criteria-driven Evaluation framework with Dynamic Weighting (RACE), leveraging the LLM-as-a-Judge method Zheng et al. (2023). RACE offers a more adaptive and robust evaluation by first dynamically generating task-specific weights and criteria. It then employs a reference-based scoring approach, comparing the target report to a high-quality reference. Finally, a relative score is computed to assess the target report's quality.

3.1.1 DYNAMIC WEIGHT & ADAPTIVE CRITERIA GENERATION.

Directly prompting LLMs to generate task-specific criteria from scratch can lead to results that deviate significantly from the intended assessment goals. Following Google's Gemini Deep Research guidance (Google, 2025), we adopt similar high-level design principles and establish four orthogonal top-level dimensions based on domain expertise: Comprehensiveness (COMP), Insight/Depth

(DEPTH), Instruction-Following (INST), and Readability (READ). Detailed definitions are provided in Appendix C.

As illustrated in Figure 2(b), for each task t, the Judge LLM is prompted to produce task-specific weights W_d for the four dimensions $d \in \{\text{COMP}, \text{DEPTH}, \text{INST}, \text{READ}\}$. These weights ensure the evaluation aligns with the task's intent. Subsequently, for each dimension d, the Judge LLM generates a set of tailored criteria $\{c_{d,k}\}$ with corresponding weights $\{w_{d,k}\}$ (where $\sum_{k=1}^{K_d} w_{d,k} = 1$), which are clear and actionable for evaluating the report within that dimension.

3.1.2 Reference-Based Scoring.

Preliminary experiments indicated that scoring reports in isolation often yields insufficiently discriminative results; models tend to assign uniformly high scores, masking genuine quality variations. To mitigate this, RACE adopts a reference-based scoring strategy. For each task t, a high-quality report $R_{\rm ref}$ is selected as a reference. All generated criteria $\{c_{d,k}\}$ across all dimensions are aggregated into a comprehensive list \mathcal{C}_t . The Judge LLM then analyzes the target report $R_{\rm tgt}$ and the reference report $R_{\rm ref}$ against each criterion $c \in \mathcal{C}_t$. This yields lists of scores for both reports for each criterion, which are then used for final score calculation:

$$(\{s_{\text{tgt},c}\}_{c \in \mathcal{C}_t}, \{s_{\text{ref},c}\}_{c \in \mathcal{C}_t}) = \text{JudgeLLM}(t, R_{\text{tgt}}, R_{\text{ref}}, \mathcal{C}_t)$$
(1)

3.1.3 Overall Score Calculation.

Finally, we compute the overall quality score of the target report. First, dimension-level scores $S_d(R)$ are calculated by weighting criterion-level scores $s_{R,c_{d,k}}$ with criterion weights $w_{d,k}$. Second, these $S_d(R)$ scores are combined using the task-specific dimension weights W_d to produce intermediate overall scores $S_{\rm int}(R)$. Finally, the target report's score $S_{\rm final}(R_{\rm tgt})$ is determined relative to the reference report's score:

$$S_{\text{final}}(R_{\text{tgt}}) = \frac{S_{\text{int}}(R_{\text{tgt}})}{S_{\text{int}}(R_{\text{tgt}}) + S_{\text{int}}(R_{\text{ref}})}$$
(2)

3.2 FACT: A Framework for Web Retrieval Evaluation

To assess the factual grounding of report content and the agent's effectiveness in retrieving and utilizing web-based information, we introduce a framework for <u>Factual Abundance and Citation Trustworthiness</u>(FACT). This framework evaluates DRAs through the following automated steps:

3.2.1 STATEMENT-URL PAIR EXTRACTION AND DEDUPLICATION.

We employ a Judge LLM to extract discrete statements from reports generated by DRAs with their corresponding cited source URLs. Then, the Judge LLM examines the pairs to identify cases where multiple statements associated with the same URL describe the same fact. In such cases, only one representative Statement-URL pair is retained, ensuring each unique factual claim is represented only once.

3.2.2 Support Judgment.

Each unique Statement-URL pair undergoes a support evaluation. We retrieve the textual content of the webpage using the Jina Reader API, and then the Judge LLM assesses whether this content provides sufficient evidence for the statement. This results in a binary judgment ('support' or 'not support') for each pair, determining whether the citation accurately grounds the claim.

3.2.3 CALCULATION OF CITATION METRICS.

Based on these support judgments, we calculate two primary metrics. **Citation Accuracy (C. Acc.)** measures the precision of an agent's citations, reflecting its ability to ground statements with appropriate sources correctly. And **Average Effective Citations per Task (E. Cit.)** quantifies the average amount of useful, verifiably supported information an agent retrieves and presents per task. For detailed calculation methodologies, please refer to Appendix E.

Table 1: Overall evaluation results of DeepResearch Bench. Bold denotes the highest score in each column for Deep Research Agents (and for LLM with Search Tools within their respective section). Underlined denotes the second highest.

2	74	
2	75	
2	76	
2	77	
2	78	
2	79	

2	7	6	
2	7	7	
2	7	8	
2	7	9	
2	8	0	
2	8	1	
2	8	2	
2	Ω	3	

Model	RACE					FACT			
Notes	Overall	Comp.	Depth	Inst.	Read.	C. Acc.	E. Cit.		
Deep Research Agent									
Claude Research	45.00	45.34	42.79	47.58	44.66	-	-		
Grok Deeper Search	38.22	36.08	30.89	46.59	42.17	73.08	8.58		
LangChain Open Deep Research	43.44	42.97	39.17	48.09	45.22	49.10	29.49		
Perplexity Deep Research	40.46	39.10	35.65	46.11	43.08	82.63	31.20		
Doubao Deep Research	44.34	44.84	40.56	47.95	44.69	52.86	52.62		
Gemini-2.5-Pro Deep Research	49.71	49.51	49.45	50.12	50.00	<u>78.30</u>	165.34		
Kimi Researcher	44.64	44.96	41.97	47.14	45.59	_	_		
OpenAI Deep Research	<u>46.45</u>	<u>46.46</u>	<u>43.73</u>	<u>49.39</u>	<u>47.22</u>	75.01	<u>39.79</u>		
LLM w	ith Search	n Tools							
Claude-3.7-Sonnet w/Search	40.67	38.99	37.66	45.77	41.46	93.68	32.48		
Claude-3.5-Sonnet w/Search	28.48	24.82	22.82	35.12	35.08	94.04	9.78		
Perplexity-Sonar-Reasoning-Pro	40.22	<u>37.38</u>	36.11	<u>45.66</u>	44.74	39.36	8.35		
Perplexity-Sonar-Reasoning	40.18	37.14	<u>36.73</u>	45.15	<u>44.35</u>	48.67	11.34		
Perplexity-Sonar-Pro	38.93	36.38	34.26	44.70	43.35	78.66	14.74		
Perplexity-Sonar	34.54	30.95	27.51	42.33	41.60	74.42	8.67		
Gemini-2.5-Pro-Grounding	35.12	34.06	29.79	41.67	37.16	81.81	32.88		
Gemini-2.5-Flash-Grounding	32.39	31.63	26.73	38.82	34.48	81.92	31.08		
GPT-4o-Search-Preview	35.10	31.99	27.57	43.17	41.23	88.41	4.79		
GPT-4o-Mini-Search-Preview	31.55	27.38	22.64	40.67	39.91	84.98	4.95		
GPT-4.1 w/Search	33.46	29.42	25.38	42.33	40.77	87.83	4.42		
GPT-4.1-mini w/Search	30.26	26.05	20.75	39.65	39.33	84.58	4.35		

EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 IMPLEMENTATION DETAILS

When employing the RACE framework, a pre-processing step involves cleaning citation formatting from the generated reports, as overly lengthy or complex citation styles can adversely affect the Judge LLM's scoring process. For RACE evaluation tasks, we utilize Gemini-2.5-pro as the Judge LLM. As for the FACT framework, Gemini-2.5-flash is employed for both Statement-URL pair extraction and support judgment, which is sufficient in capabilities while more economic for the tokenconsuming citation verification task. The reference reports used in RACE's scoring methodology were selected from deep research articles generated by the Gemini-2.5-pro-based Deep Research, as available in April 2025.

4.1.2 EVALUATED MODELS

In our work, we broadly evaluate leading commercial Deep Research Agents, including OpenAI Deep Research, Gemini-2.5-pro-based Deep Research, and so on. Due to the lack of transparency regarding the iteration cycles of these commercial products, we specify the data collection timeframes in Appendix F. In the open-source domain, we reproduce and evaluate LangChain's Open Deep Research(LangChain et al., 2025), which is widely followed by the community. We use its default configuration (research with GPT-4.1; summarization with GPT-4.1-mini), with details provided in Appendix G. We also evaluate strong LLMs with built-in search tools under standardized conditions by setting the search_context_size to high; see Appendix H.2.

4.2 MAIN RESULTS

4.2.1 EVALUATION ON RACE FRAMEWORK

As shown in Table 1, within the DRA category, Gemini-2.5-Pro Deep Research achieved the highest overall performance, while OpenAI Deep Research also demonstrated strong capabilities. Notably, the open-source LangChain Open Deep Research (ODR) further exhibited competitive results, surpassing several proprietary DRAs in our evaluation. The scores for these top agents are relatively close, which is characteristic of the reference-based relative scoring employed by RACE. However, this should not be concerning, as subsequent experiments 4.3 revealed a strong linear correlation between these RACE scores and human judgments, suggesting the framework effectively captures meaningful performance differences between models. In fact, these scores are highly linearly correlated with human evaluations, just mapped to a different reference frame (similar to how scores of 45 and 50 versus human scores of 90 and 100). Therefore, we should focus on rankings and proportional differences between scores rather than absolute score values.

In contrast, traditional LLMs with built-in search (often limited to single-round or a few simple search turns) now struggle to compete with modern DRAs under identical evaluation settings.

4.2.2 EVALUATION ON FACT FRAMEWORK

Viewing evaluation results by FACT in Table 1, Deep Research Agents (except Grok) tend to include more Effective Citations than LLMs with Search Tools. Notably, Gemini-2.5-Pro Deep Research achieved an average of 165.34 effective citations in its final reports, significantly outperforming other models. This suggests that it can retrieve and integrate more information from a larger amount of evidence, potentially enabled by a longer context window and stronger context understanding. However, its citation accuracy is lower than that of Perplexity Deep Research and far below Claude-3.7 w/Search, indicating a trade-off between citation accuracy and effective citation counts to some extent.

We also note that Claude Research and Kimi Research do not have FACT scores because we were unable to parse citation links from their official UI. Meanwhile, LangChain ODR and Doubao show relatively low FACT scores; based on our inspection, many webpages reachable by their built-in browse tools were inaccessible to our Jina-based crawling pipeline, and even for accessible pages, the fetched contents sometimes differed, which likely affected the measured metrics.

Overall, the FACT framework is designed to offer a complementary observation to RACE; given the lack of transparency and variability of built-in search/browse tools across DRAs, we use FACT as an observational dimension for analysis, while our benchmark's overall rankings rely on RACE scores.

4.3 Human Consistency

Evaluating the quality of deep research reports remains an open-ended task. Therefore, to validate the effectiveness of our proposed RACE framework, we must rely on assessing its human consistency. We conducted experiments using 50 Chinese tasks from DeepResearch Bench, with reports generated by four distinct agents. For each task, three domain-expert annotators scored these reports. Further details are provided in Appendix H.1.

4.3.1 Human Data Collection

To gather human judgments, we recruited 70+ annotators with Master's degrees and relevant domain expertise. Using a custom interface, they evaluated reports across four dimensions and overall performance, guided only by basic scoring criteria to minimize bias. Each annotator was limited to three queries maximum to ensure diverse perspectives.

4.3.2 EVALUATION METRICS

To validate the consistency between evaluation methods and human judgment, we designed four metrics that quantify different aspects of alignment with human evaluations. The detailed calculation processes for all metrics are provided in Appendix I.

 Pairwise Agreement Rate (PAR) This metric measures how often our evaluation method's preferences match human experts' preferences when comparing pairs of reports. It reflects the reliability of our framework in replicating human comparative judgments across all tasks.

Overall Pearson Correlation (OPC) This metric quantifies the linear relationship between average model scores from our evaluation method and those from human experts. It demonstrates how well our framework's absolute scoring aligns with human evaluation across all deep research assistant models.

Filtered Average Pearson & Spearman Correlation When computing per-task average correlation coefficients, individual inconsistencies can have a more pronounced impact on the results compared to global correlations. To address this issue, we first filter out tasks where expert judgments show low agreement by removing tasks with negative Intraclass Correlation Coefficients (ICC <0). The ICC is a statistical measure of rater consistency, and negative values indicate poor interrater reliability. After applying this filtering criterion, 37 tasks (out of the original set) remained in our experiment, forming a subset with demonstrably higher expert consensus. We then compute two complementary metrics: the Filtered Average Pearson Correlation(FAP) and the Filtered Average Spearman Correlation(FAS). Together, these filtered metrics provide a more robust assessment of how well automated evaluation aligns with consistent human judgment across different tasks. Detailed definitions and formulas are provided in Appendix I.

Table 2: Comparison of human consistency scores across different evaluation methods. Prefixed with '-', indicating removal of specific components from the full framework. Best scores for each metric among automated methods are in **bold**.

Evaluation Method	PAR	OPC	FAP	FAS	Overall Score
Vanilla Prompt	58.89	98.89	40.30	43.75	60.46
RACE(Full)	71.33	99.54	60.24	59.12	72.56
- No Criteria Weights	70.67	99.62	59.83	56.27	71.60
- No Dim Weights	70.89	99.54	60.11	57.22	71.94
- No Weights	71.11	99.69	59.46	58.17	72.11
- No Reference	66.56	97.46	57.51	51.23	68.19
Reverse Position	69.56	97.20	56.75	55.49	69.75
Static Criteria	68.33	98.73	57.86	57.70	70.65
Human Inter-Agreement	68.44	-	-	-	-

4.3.3 Comparison of Different Evaluation Methods

Given that existing evaluation methods are generally unsuitable for assessing DRAs, we compare RACE(Full) and several ablation variants against a Vanilla Prompt baseline (direct scoring by the Judge LLM). As shown in Table 3, RACE(Full) achieves the best overall performance, significantly exceeding the baseline and other variants. Notably, its Pairwise Agreement Rate also surpasses human inter-agreement, indicating reliable and efficient human-aligned evaluation. We further include robustness experiments on reference selection, article length, and judge model choice in Appendix J.

Table 3: Comparison of human consistency scores, and average cost per task using different Judge LLMs within the RACE(Full) framework. The best for each metric are in **bold**

Judge LLM	License	PAR	OPC	FAP	FAS	Overall	Cost (\$)
Gemini 2.5 Pro	Proprietary	71.33	99.54	60.24	59.12	72.56	0.13
o3	Proprietary	68.11	96.22	57.64	52.36	68.58	0.37
o4-mini	Proprietary	70.89	97.06	59.54	59.02	71.63	0.04
Claude 3.7 Sonnet	Proprietary	70.78	96.53	58.22	63.61	72.28	0.47
Qwen3-235B-Thinking	Apache 2.0	70.78	84.47	56.80	56.94	67.25	_

4.3.4 Comparison of Different Judge LLM

Leveraging the RACE framework, we further compare the performance and cost of several leading LLMs when used as the Judge LLM. As detailed in Table 3, Gemini 2.5 Pro achieves the best overall performance and maintains a competitive average cost (\$0.13 per query), only higher than that of o4-mini. In addition, we experimented with an open-source alternative, Qwen3-235B-A22B-Thinking-2507, as the Judge LLM. While its human consistency lags behind closed-source models, the gap is not large, suggesting it can serve as a feasible open-source substitute. Moreover, with Qwen3 as the Judge, the relative ranking across the four DRAs remains consistent with the Gemini-based results, indicating that RACE is robust to the choice of Judge backbone. Further details on using open-source judges are provided in Appendix J.3. To balance performance and cost in our main results, we selected Gemini 2.5 Pro as the Judge LLM in our final framework.

5 RELATED WORK

LLM-based Agent Evaluation With the comprehensive advancement of LLM capabilities, LLMbased Agents are increasingly being applied to real-world scenarios Mon-Williams et al. (2025); Wang et al. (2025), promising to alter many aspects of daily life and professional work significantly. Yao's blog Yao (2025) highlights that defining more realistic problems and designing novel evaluation methods are critical for constructing more practical AI Agent systems. Numerous evaluations have already been designed specifically for Agents, targeting diverse capabilities. These include evaluations for agents in scientific domains Chan et al. (2025); Laurent et al. (2024); Mitchener et al. (2025); Chen et al. (2025b), creative writing Wu et al. (2025b); Bai et al. (2024); Que et al. (2024), code generation and software engineering Jimenez et al. (2024); Zhuo et al. (2025); Quan et al. (2025); Jain et al. (2024); Xiao et al. (2025), and in their roles as human assistants, often enhanced by capabilities such as web browsing and tool-use Wei et al. (2025); Zhou et al. (2025); Yan et al. (2024); Deng et al. (2024); Wang et al. (2024). Closest to our setting, Xu et al. (2025) focuses on a single scientific domain and does not reflect real-world user demand, while Bosse et al. (2025) adopts an offline RetroSearch setting and reports process-oriented metrics (e.g., hallucination/tool usage) rather than evaluating report quality or citation fidelity. This perspective underscores our belief that constructing benchmarks specifically designed for Deep Research Agent, grounded in real-world scenarios, alongside developing human-aligned evaluation methods, is urgently needed to guide the development of AI agent systems.

Deep Research Agent After the release of Deep Research Agents (DRAs) by OpenAI OpenAI (2025) and Google's Gemini Google (2025), such agents have attracted significant attention and have become one of the most widely deployed LLM-based agent categories. Subsequently, related works LangChain et al. (2025); Li et al. (2025); Zheng et al. (2025) quickly followed up, also introducing their own designed DRA frameworks. However, the field still lacks a standardized evaluation methodology for these DRAs, preventing meaningful comparative analysis of their capabilities. Among these works, some use QA datasets Phan et al. (2025); Mialon et al. (2023); Wu et al. (2025a) as evaluation metrics, but this approach neither aligns with real-world DRA applications nor comprehensively assesses their broader capabilities. Others employ the LLM-as-a-judge methodology Zheng et al. (2023), yet these efforts lack both a comprehensive framework design and verification of human consistency. In contrast, our DeepResearch Bench addresses this gap by providing a systematic, unified evaluation method with strong human consistency, supporting subsequent DRA development and assessment.

6 Conclusion

In this work, we introduce DeepResearch Bench, the first comprehensive benchmark for evaluating the report generation and web retrieval capabilities of Deep Research Agents. Comprising 100 high-quality research tasks across 22 distinct domains, this benchmark is meticulously curated to reflect authentic user needs. Our key evaluation frameworks, RACE and FACT, have demonstrated high consistency with human judgments, affirming their reliability. We hope DeepResearch Bench will guide developers and researchers in constructing more powerful and human-centric AI agent systems, truly addressing genuine user requirements.

ETHICS STATEMENT

All authors affirm adherence to the ICLR Code of Ethics. This work does not involve personally identifiable information or sensitive attributes. Our in-house query logs were rigorously anonymized prior to processing (removing user identifiers, IPs, and session metadata). Human studies were conducted with experienced annotators, who were compensated fairly; no protected or vulnerable populations were involved. We report results transparently and avoid claims beyond empirical evidence. Potential risks include misuse of agent outputs and propagation of web inaccuracies; our FACT framework and standardized citation formatting are designed to encourage faithful grounding and make verification easier. We disclose no conflicts of interest or external sponsorship that would bias the findings.

REPRODUCIBILITY STATEMENT

We provide all essential details to reproduce our results. The benchmark construction pipeline (topic taxonomy, filtering and classification steps), evaluation prompts, and hyperparameters are documented in the main text and Appendix (e.g., Sections 2, 3, and implementation details in Section 4.1). Exact Judge LLM configurations for RACE/FACT, including dynamic weighting and criteria generation prompts, are included in the Appendix. All scripts and data used in this paper are included in the supplementary materials, which also contain screenshots of the annotation interface and the annotator instructions/guidelines to facilitate faithful reproduction.

REFERENCES

- Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs, August 2024. URL http://arxiv.org/abs/2408.07055.arXiv:2408.07055 [cs].
- Nikos I. Bosse, Jon Evans, Robert G. Gambee, Daniel Hnyk, Peter M"uhlbacher, Lawrence Phillips, Dan Schwarz, and Jack Wildman. Deep research bench: Evaluating ai web research agents. *arXiv* preprint arXiv:2506.06287, 2025. URL https://arxiv.org/abs/2506.06287.
- Jun Shern Chan, Neil Chowdhury, et al. MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering, February 2025. URL http://arxiv.org/abs/2410.07095.arXiv:2410.07095 [cs].
- Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye Zhang, Hongzhang Liu, Yuan Gong, Chen Sun, Han Hou, Hui Yang, James Pan, Jianan Lou, Jiayi Mao, Jizheng Liu, Jinpeng Li, Kangyi Liu, Kenkun Liu, Rui Wang, Run Li, Tong Niu, Wenlong Zhang, Wenqi Yan, Xuanzheng Wang, Yuchen Zhang, Yi-Hsin Hung, Yuan Jiang, Zexuan Liu, Zihan Yin, Zijian Ma, and Zhiwen Mo. xbench: Tracking agents productivity scaling with profession-aligned real-world evaluations, 2025a. URL https://arxiv.org/abs/2506.13651.
- Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns, Daniel Adu-Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery, March 2025b. URL http://arxiv.org/abs/2410.05080.arXiv:2410.05080 [cs].
- DeepSeek-AI. deepseek-ai/DeepSeek-V3-0324 · Hugging Face, March 2025a. URL https://huggingface.co/deepseek-ai/DeepSeek-V3-0324.
- DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, January 2025b. URL http://arxiv.org/abs/2501.12948.arXiv:2501.12948 [cs].
- Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, Rui Yan, and Shuo Shang. Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents, July 2024. URL http://arxiv.org/abs/2407.00993. arXiv:2407.00993 [cs].
- Gemini Google. Deep Research is now available on Gemini 2.5 Pro Experimental., April 2025. URL https://blog.google/products/gemini/deep-research-gemini-2-5-pro-experimental/.
- Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev, Botao Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie Chen, Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao, Kai Zhang, Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web 2: Evaluating agentic search with agent-as-a-judge, 2025. URL https://arxiv.org/abs/2506.21506.
- Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework, November 2024. URL http://arxiv.org/abs/2308.00352.arXiv:2308.00352 [cs].
- Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code, June 2024. URL http://arxiv.org/abs/2403.07974. arXiv:2403.07974 [cs].

- Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, November 2024. URL http://arxiv.org/abs/2310.06770. arXiv:2310.06770 [cs].
 - Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi. Rewardbench: Evaluating reward models for language modeling. *arXiv preprint arXiv:2403.13787*, 2024. URL https://arxiv.org/abs/2403.13787.
 - LangChain et al. Open deep research. GitHub repository, 2025. URL https://github.com/langchain-ai/open_deep_research. LangChain AI. Accessed: 2025-05-14.
 - Jon M. Laurent, Joseph D. Janizek, Michael Ruzo, Michaela M. Hinks, Michael J. Hammerling, Siddharth Narayanan, Manvitha Ponnapati, Andrew D. White, and Samuel G. Rodriques. LAB-Bench: Measuring Capabilities of Language Models for Biology Research, July 2024. URL http://arxiv.org/abs/2407.10362.arXiv:2407.10362 [cs].
 - Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng Dou. WebThinker: Empowering Large Reasoning Models with Deep Research Capability, April 2025. URL http://arxiv.org/abs/2504.21776. arXiv:2504.21776 [cs].
 - Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. AgentBench: Evaluating LLMs as Agents, October 2023. URL http://arxiv.org/abs/2308.03688. arXiv:2308.03688 [cs].
 - Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Hajishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. *arXiv* preprint arXiv:2506.01937, 2025. URL https://arxiv.org/abs/2506.01937.
 - Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey, April 2024. URL http://arxiv.org/abs/2404.11584.arXiv:2404.11584 [cs].
 - Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for General AI Assistants, November 2023. URL http://arxiv.org/abs/2311.12983.arXiv:2311.12983 [cs].
 - Ludovico Mitchener, Jon M. Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P. Wellawatte, Andrew White, Lorenzo Sani, and Samuel G. Rodriques. BixBench: a Comprehensive Benchmark for LLM-based Agents in Computational Biology, March 2025. URL http://arxiv.org/abs/2503.00096. arXiv:2503.00096 [q-bio].
 - Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, and Christopher G. Lucas. Embodied large language models enable robots to complete complex tasks in unpredictable environments. *Nature Machine Intelligence*, 7(4):592–601, April 2025. ISSN 2522-5839. doi: 10.1038/s42256-025-01005-x. URL https://www.nature.com/articles/s42256-025-01005-x. Publisher: Nature Publishing Group.
 - OpenAI. OpenAI of System Card, December 2024. URL http://arxiv.org/abs/2412.16720.arXiv:2412.16720 [cs].
 - OpenAI. Introducing deep research | OpenAI, May 2025. URL https://openai.com/index/introducing-deep-research/?utm_source=chatgpt.com.
 - Long Phan et al. Humanity's Last Exam, April 2025. URL http://arxiv.org/abs/2501. 14249. arXiv:2501.14249 [cs].
 - Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren, Bofei Gao, Yibo Miao, Yunlong Feng, Zekun Wang, Jian Yang, Zeyu Cui, Yang Fan, Yichang Zhang, Binyuan Hui, and Junyang Lin. CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings, January 2025. URL http://arxiv.org/abs/2501.01257. arXiv:2501.01257 [cs] version: 2.

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou, Wangchunshu Zhou, Jiaheng Liu, Wenge Rong, Zekun Moore Wang, Jian Yang, Ge Zhang, Junran Peng, Zhaoxiang Zhang, Songyang Zhang, and Kai Chen. HelloBench: Evaluating Long Text Generation Capabilities of Large Language Models, September 2024. URL http://arxiv.org/abs/2409.16191. arXiv:2409.16191 [cs].

- Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng Liu, and Emad Barsoum. Agent Laboratory: Using LLM Agents as Research Assistants, January 2025. URL https://arxiv.org/abs/2501.04227v1.
- Yijia Shao, Yucheng Jiang, Theodore A. Kanell, Peter Xu, Omar Khattab, and Monica S. Lam. Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models, April 2024. URL http://arxiv.org/abs/2402.14207. arXiv:2402.14207 [cs].
- Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen, and Shoufa Chen. MobileAgentBench: An Efficient and User-Friendly Benchmark for Mobile LLM Agents, June 2024. URL http://arxiv.org/abs/2406.08184.arXiv:2406.08184 [cs].
- Wenxuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Wenting Chen, Xiang Li, and Yixuan Yuan. A Survey of LLM-based Agents in Medicine: How far are we from Baymax?, February 2025. URL http://arxiv.org/abs/2502.11211. arXiv:2502.11211 [cs] version: 1.
- Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. BrowseComp: A Simple Yet Challenging Benchmark for Browsing Agents, April 2025. URL http://arxiv.org/abs/2504.12516. arXiv:2504.12516 [cs].
- Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini. Organize the Web: Constructing Domains Enhances Pre-Training Data Curation, February 2025. URL http://arxiv.org/abs/2502.10341. arXiv:2502.10341 [cs].
- Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan He, Deyu Zhou, Pengjun Xie, and Fei Huang. WebWalker: Benchmarking LLMs in Web Traversal, January 2025a. URL http://arxiv.org/abs/2501.07572.arXiv:2501.07572[cs].
- Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang, Mengyue Wu, Qin Jin, and Fei Huang. WritingBench: A Comprehensive Benchmark for Generative Writing, March 2025b. URL http://arxiv.org/abs/2503.05244.arXiv:2503.05244 [cs].
- Yijia Xiao, Runhui Wang, Luyang Kong, Davor Golac, and Wei Wang. CSR-Bench: Benchmarking LLM Agents in Deployment of Computer Science Research Repositories. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 12705–12723, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.633/.
- Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, and Pengfei Liu. Researcherbench: Evaluating deep ai research systems on the frontiers of scientific inquiry. *arXiv* preprint *arXiv*:2507.16280, 2025. URL https://arxiv.org/abs/2507.16280.
- Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez. Berkeley Function Calling Leaderboard, February 2024. URL https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html. bibtex[howpublished] = {\url{https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html}} citationkey: berkeley-function-calling-leaderboard.

- John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, November 2024. URL http://arxiv.org/abs/2405.15793. arXiv:2405.15793 [cs].
- Shunyu Yao. The Second Half, April 2025. URL https://ysymyth.github.io/The-Second-Half/. Blog post.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, December 2023. URL http://arxiv.org/abs/2306.05685.arXiv:2306.05685 [cs].
- Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments, April 2025. URL http://arxiv.org/abs/2504.03160. arXiv:2504.03160 [cs].
- Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling Jin, Chenxuan Xie, Meng Cao, Yuxin Gu, Sixin Hong, Jing Ren, Jian Chen, Chao Liu, and Yining Hua. BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese, May 2025. URL http://arxiv.org/abs/2504.19314. arXiv:2504.19314 [cs].
- Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic Web Environment for Building Autonomous Agents, April 2024. URL http://arxiv.org/abs/2307.13854. arXiv:2307.13854 [cs].
- Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang, Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and Leandro Von Werra. BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions, April 2025. URL http://arxiv.org/abs/2406.15877.arXiv:2406.15877 [cs].

A LIMITATIONS

 While **DeepResearch Bench** and the RACE/FACT frameworks offer a comprehensive evaluation of Deep Research Agents, several limitations remain. (1) **Benchmark scale**: Curating expert-level, distribution-grounded tasks is labor-intensive; our 100-task set prioritizes quality and topic balance over scale. (2) **Domain coverage**: Despite multi-domain design, residual coverage bias may exist; future versions will broaden reviewer pools and domains. (3) **Human evaluation throughput**: Expert judging is costly, limiting sample sizes; we plan larger studies to further tighten confidence intervals. (4) **Tooling opacity**: FACT depends on each system's built-in search/browse stack and external fetchers; differences in reachability and page variants can affect effective-citation measurement. (5) **Judge dependence**: RACE relies on a Judge LLM via proprietary APIs. In the paper and Appendix, we report results with open-source judges (e.g., Qwen3) and find they can serve as practical substitutes to a certain extent, offering a more open alternative.

B IN-HOUSE DATA DETAILS

At the time of constructing DeepResearch Bench, there was no open-source dataset that directly captured real user interactions with production DRAs. Consequently, to support the analysis of realistic topic distributions, we resorted to an in-house log of user interactions with a search-augmented chatbot. We then applied a multi-stage post-processing pipeline, including anonymization, filtering to extract deep-research style tasks, and topic categorization, to approximate the domain distribution of real-world DRA tasks.

The collected queries cover a wide range of real information needs, for example: "analyze the time-series trend of used-car prices for a specific brand in my city," and "investigate a product's R&D team, development timeline, and estimate its ARR." This diversity, together with careful identification of deep-research tasks, leads us to believe that the resulting distribution is a close proxy to real user demand.

As the closest public reference, we also examined the recently released *Search Arena 24K* dataset. Using exactly the same filtering and categorization pipeline as in the main paper, we derived a deep-research domain distribution from Search Arena 24K and compared it against our in-house distribution (Table 4).

As we can see, the two distributions share the same top-5 domains and are overall similar across major categories, which supports the reasonableness of using our in-house data as a surrogate for real-world DRA usage.

Table 4: Major topic distribution comparison (%) between our in-house data and the open-source Search Arena 24K dataset.

Category	Sci & Tech	Fin & Biz	Soft Dev	Edu & Job	s Health	Literature
Our In-house Data	17.80	14.45	11.59	8.38	8.02	5.01
Search Arena 24K	13.68	17.74	15.81	4.97	10.47	4.54
Category	History	Hardware	Indu	strial	Art & Design	Games
Our In-house Data	4.23	3.68	3.4		3.24	3.22
Search Arena 24K	4.42	3.19	4.1		1.54	2.57

C DIMENSION DEFINITIONS

The RACE framework evaluates research reports based on four top-level dimensions. Their definitions are provided in Table 5.

Table 5: Definitions of Core Evaluation Dimensions for Report Quality

Insight/Depth (DEPTH) Instruction-Following/Relevance (INST) 817 818

Readability (READ)

Comprehensiveness (COMP)

Dimension

Description Article covers key areas of the industry, ensures overall understanding, and does not omit important parts. Article deeply analyzes causes, impacts, and trends, providing valuable insights. Article closely follows the research topic and directly answers questions. Article has a clear structure, fluent language, and is easy to understand.

823 824

825

826

827

828

829

830

831

832 833

834

835

836

837

838

839

JUDGE LLM SELECTION FOR THE FACT FRAMEWORK

The FACT framework employs a Judge LLM for crucial automated steps: Statement-URL Pair Extraction and Deduplication, followed by Support Judgment. The selection of this Judge LLM is pivotal, aiming to balance evaluation accuracy with operational costs, especially given the significant token consumption inherent in these processes. To determine an optimal model for these tasks, we specifically evaluated Gemini-2.5-Flash. Its judgments were compared against human evaluations on a randomly sampled set of 100 statement-URL pairs derived from our benchmark tasks. This comparison demonstrated strong agreement with human annotators: Gemini-2.5-Flash's judgment aligned with human 'support' determinations in 96% of cases and with 'not support' determinations in 92% of cases.

We further find out that the accuracy of Gemini-2.5-Flash in these FACT-specific evaluation steps is very close to that of Gemini-2.5-Pro. The operations within the FACT framework (such as extracting statements from full reports and analyzing webpage content for support) are known to be token-intensive, making cost-effectiveness a critical consideration. Since Gemini-2.5-Flash demonstrated comparable accuracy to Gemini-2.5-Pro for these specific tasks but at a more advantageous cost, we select Gemini-2.5-Flash as the Judge LLM for the FACT framework. This choice enables us to maintain high evaluation reliability while managing operational costs effectively.

840 841 842

DETAILED CALCULATION OF CITATION METRICS

843 844 845

This appendix provides the detailed definitions and calculation methods for the Citation Accuracy (C. Acc.) and Average Effective Citations per Task (E. Cit.) metrics used within the FACT framework.

847 848

846

Let T denote the set of all tasks in the benchmark, and |T| be the total number of tasks. For each task $t \in T$:

849 850

• Let U_t be the set of unique statement-URL pairs extracted for task t after the deduplication

851 852

• Let $N_{u,t} = |U_t|$ be the total number of unique statement-URL pairs for task t that undergo support judgment.

853 854 855

• For each statement-URL pair in U_t , a support judgment is rendered, which can be either 'support' or 'not support'.

856 857

• Let $N_{s,t}$ be the number of statement-URL pairs that are judged as 'support' for task t.

858 859

E.1 CITATION ACCURACY (C. ACC.)

860 861 862

863

Citation Accuracy (C. Acc.) assesses the Deep Research Agent's (DRA) ability to accurately apply retrieved information for precise statements. It is calculated by first determining the proportion of 'support' statement-URL pairs for each individual task, and then averaging these per-task accuracies across all tasks in the benchmark.

The accuracy for a single task t, denoted as Acc_t , is defined as:

$$Acc_{t} = \begin{cases} \frac{N_{s,t}}{N_{u,t}} & \text{if } N_{u,t} > 0\\ 0 & \text{if } N_{u,t} = 0 \end{cases}$$
 (3)

This definition ensures that tasks for which the agent produces no citable statements (i.e., $N_{u,t}=0$) contribute an accuracy of 0 to the overall average, reflecting a failure to provide supported information for that task.

The overall **Citation Accuracy (C. Acc.)** is then computed as the average of these per-task accuracies over all tasks in the benchmark:

$$C. Acc. = \frac{1}{|T|} \sum_{t \in T} Acc_t \tag{4}$$

E.2 AVERAGE EFFECTIVE CITATIONS PER TASK (E. CIT.)

Average Effective Citations per Task (E. Cit.) evaluates, on average, how much useful and relevant information the agent retrieves and correctly supports with evidence for each task. It is computed by summing the total number of 'support' statement-URL pairs across all tasks and then dividing by the total number of tasks in the benchmark.

The Average Effective Citations per Task (E. Cit.) is calculated as:

$$E. Cit. = \frac{\sum_{t \in T} N_{s,t}}{|T|}$$
 (5)

This metric provides a direct measure of the average quantity of verifiably supported statements an agent generates per task.

F DATA COLLECTION TIMEFRAMES

The data for the commercial models evaluated in this paper were collected during specific timeframes in 2025, as detailed in Table 6. These dates indicate when the model outputs used in our experiments were generated.

Table 6: Data Collection Timeframes for Evaluated Models (2025)

Model Category / Provider Group	Data Collection Date Range
Deep Research Agents (DRAs)	
OpenAI Deep Research	April 1 – May 8
Gemini 2.5 Pro Deep Research	April 27 – April 29
Perplexity Deep Research	April 1 – April 29
Grok Deeper Search	April 27 – April 29
Claude Research	June 23 – June 25
Doubao Deep Research	June 29 – July 1
Kimi Researcher	June 29 – July 1
LangChain Open Deep Research	June 29 – July 1
LLM with Search Tools (Grouped by Provider)	
Claude Models (w/Search)	May 12 – May 13
Perplexity Models	May 11 – May 12
GPT Models (w/Search)	May 11 – May 12
Gemini Models (Grounding/w/Search)	May 12 – May 13

G OPEN DEEP RESEARCH REPRODUCTION DETAILS

We evaluate the open-source LangChain Open Deep Research (ODR) implementation using its default settings. Specifically, the research model is set to GPT-4.1 and the summarization model is set to GPT-4.1-mini, following the project's recommended defaults. Unless otherwise stated, no additional modifications are applied to the configuration.

H EXPERIMENT DETAIL

H.1 HUMAN EVALUATION EFFORT

The human evaluation process required considerable time investment to ensure thorough assessment. On average, each expert annotator spent approximately 1.5 hours per query to evaluate the reports from the four agents. This meticulous process resulted in a total of 225 person-hours of human evaluation across all tasks and annotators. This substantial effort provided a robust and reliable dataset of human judgments, forming the basis for our human consistency analysis.

H.2 CONFIGURATION OF LLMs WITH WEB SEARCH TOOLS

To ensure a standardized and comparable evaluation environment for Large Language Models (LLMs) equipped with built-in web search tools, the following configurations were uniformly applied:

- Thinking Budget/Computational Resources: For models that support a configurable "thinking budget" or a similar computational resource limit for generation, this was uniformly set to a high value, equivalent to 16,000 tokens where applicable. This allowed models ample processing capacity for complex queries.
- Search Context Size: In cases where models offered a parameter to control the amount of information retrieved and utilized from web searches (e.g., the search_context_size option as found in the Perplexity AI API), this was consistently set to "high". This configuration aimed to maximize the contextual information available to the LLM from its search activities.
- Maximum Search Iterations: The maximum number of web search queries, or "search turns," permitted during the generation process was standardized to five for all LLMs that provided such a configurable limit. This ensured a comparable depth of web exploration across these models.
- Output Length: To accommodate potentially comprehensive responses while maintaining consistency, the maximum output token limit for all LLMs was set to 36,000 tokens. If a model's inherent maximum output capacity was less than this 36,000-token threshold, its specific native maximum limit was adhered to.
- Citation Formatting and Standardization: A critical aspect of our methodology was the standardization of citation presentation to facilitate consistent downstream evaluation, particularly when employing frameworks like FACT for factual assessment. Citations as provided by each LLM were parsed in accordance with their respective official API documentation. Subsequently, the generated reports were systematically restructured: citation markers were inserted in the format '[1][2]' at the end of the relevant sentences, and a consolidated "References" list, compiling all unique cited sources, was appended to the conclusion of each article. This uniform approach to citation structure was essential for equitable and rigorous factual verification.

These standardized settings were implemented to minimize variability arising from differing default configurations and to enable a more direct comparison of the models' capabilities in the context of deep research tasks.

I DETAILED CALCULATION OF HUMAN CONSISTENCY METRICS

This appendix provides the detailed calculation methods for the four metrics used to validate the consistency between our RACE framework and human judgment, as introduced in Section 4.3.2.

I.1 PAIRWISE AGREEMENT RATE

The Pairwise Agreement Rate measures the proportion of report pairs (across all tasks) where the evaluation method's preference matches the human preference.

For each of the $N_t=50$ tasks in our study, four generated deep research reports result in $N_p=\binom{4}{2}=6$ unique pairs per task. Human preference for each pair (e.g., Report A is better than Report B, or they are tied) is established from the average overall scores assigned to each report by three domain experts.

Let I(t, p) be an indicator function for task t and pair p:

$$I(t,p) = \begin{cases} 1 & \text{if the method's preference matches the human preference for pair } p \text{ of task } t \\ 0 & \text{otherwise.} \end{cases}$$
 (6)

The Pairwise Agreement Rate is then calculated as:

Pairwise Agreement Rate =
$$\frac{\sum_{t=1}^{N_t} \sum_{p=1}^{N_p} I(t, p)}{N_t \times N_p}.$$
 (7)

This metric reflects the evaluation method's reliability in replicating human comparative judgments.

I.2 OVERALL PEARSON CORRELATION

This metric quantifies the linear relationship between average model scores from the evaluation method and those from human experts, aggregated across all $N_t = 50$ tasks.

Let X be a vector of average scores per model (e.g., for the different DRAs evaluated) obtained from our method, aggregated across all tasks. Let Y be the corresponding vector of average scores per model obtained from human experts, also aggregated across all tasks. The Overall Pearson Correlation is the standard Pearson correlation coefficient r(X,Y) calculated between these two vectors. This reflects the overall score correlation between the method and human experts for the evaluated DRAs.

I.3 FILTERED AVERAGE PEARSON CORRELATION

This metric calculates the average of per-task Pearson correlations (r_t) between the method's scores and mean human scores, specifically on tasks where human judgment is more consistent.

Given that human scores are from a limited number of experts (k=3) for the n=4 reports per task, expert inconsistencies can affect task-level metric stability. To mitigate this, tasks are filtered based on inter-rater reliability using the Intraclass Correlation Coefficient (ICC). For each task, ICC(1,1) (a one-way random effects model) is computed from the k=3 human experts' scores for the n=4 reports:

$$ICC(1,1) = \frac{MSB - MSW}{MSB + (k-1)MSW},$$
(8)

where MSB is the mean square between reports and MSW is the mean square within reports. Tasks with poor inter-rater reliability (e.g., ICC(1,1) < 0) are excluded. This yields a filtered subset of $N_{\rm filtered}$ tasks, denoted as $T_{\rm filtered}$ (37 in our experiments).

The Filtered Average Pearson correlation is then the average of per-task Pearson correlations (r_t) between the method's scores and mean human scores over $\mathcal{T}_{\text{filtered}}$:

Filtered Avg Pearson =
$$\frac{1}{N_{\text{filtered}}} \sum_{t \in \mathcal{T}_{\text{filtered}}} r_t$$
. (9)

This procedure provides a more robust assessment of absolute-score correlation.

I.4 FILTERED AVERAGE SPEARMAN CORRELATION

Using the same filtering method and the subset $\mathcal{T}_{\text{filtered}}$, this metric evaluates model ranking consistency.

For each task $t \in \mathcal{T}_{\text{filtered}}$, the Spearman rank correlation coefficient ρ_t is calculated between model rankings derived from our evaluation method and those from average human scores. The Filtered Average Spearman Correlation is then the average of these ρ_t values:

Filtered Avg Spearman =
$$\frac{1}{N_{\text{filtered}}} \sum_{t \in \mathcal{T}_{\text{filtered}}} \rho_t. \tag{10}$$

This reflects how well the method preserves relative model ordering compared to humans, specifically on tasks with more consistent human judgments.

J ANALYSIS OF RACE ROBUSTNESS

J.1 ROBUSTNESS TO REFERENCE SELECTION

To assess sensitivity to the choice of reference article, we replace the default Gemini-2.5-Pro Deep Research reference with reports from Claude-Research and Kimi-Researcher across the full task set. The ranking remains identical (Gemini > OpenAI > Perplexity > Grok), indicating that RACE is robust to reference selection.

Table 7: RACE results with Claude-Research as reference.

	Overall	Comp.	Insight	Inst.	Read.
Gemini-2.5-Pro Deep Research	55.30 (1st)	55.56	56.22	52.89	56.55
OpenAI Deep Research	52.27 (2nd)	52.70	50.73	52.80	54.41
Perplexity Deep Research	44.11 (3rd)	43.16	39.71	48.47	47.80
Grok Deeper Search	42.53 (4th)	41.29	35.96	48.89	47.29

Table 8: RACE results with Kimi-Researcher as reference.

	Overall	Comp.	Insight	Inst.	Read.
Gemini-2.5-Pro Deep Research	55.22 (1st)	55.27	57.08	52.71	55.04
OpenAI Deep Research	52.38 (2nd)	52.48	52.21	52.49	52.91
Perplexity Deep Research	44.24 (3rd)	43.28	40.49	48.53	46.66
Grok Deeper Search	41.15 (4th)	39.31	34.64	48.13	45.72

J.2 ROBUSTNESS TO LENGTH INFLATION

To evaluate robustness to length-based bias, we start from Gemini-2.5-Pro Deep Research articles and segment them into paragraphs. For each paragraph, we prompt Gemini-2.5-Pro to rewrite it by expanding length while preserving the original information and maintaining logical coherence with the surrounding context. We perform this process iteratively, yielding average article lengths of approximately $\times 1.47$ (expand) and $\times 2.19$ (expand²) the original. Subsequent RACE evaluations show that scores do not increase with length; under higher expansion they decline, indicating that RACE is resilient to simple length-inflation attacks.

Table 9: Length bias analysis under controlled expansions.

Target	Avg. Length	Overall	Comp.	Insight	Inst.	Read.
Gemini-DeepResearch	33.4k	48.92	48.45	48.30	49.29	49.77
Gemini-DeepResearch (expand)	$49.0k\ (\times 1.47)$	48.68	48.78	48.49	49.12	47.57
Gemini-DeepResearch (expand ²)	$73.2k\ (\times 2.19)$	47.07	48.32	47.19	48.30	40.49

J.3 OPEN-SOURCE JUDGE LLM

We additionally evaluated an open-source Judge LLM, <code>Qwen3-235B-A22B-Thinking-2507</code>, as a substitute for proprietary models in the RACE framework. The Judge LLM performed the same steps as in our main setup: dynamic dimension weighting, task-specific criteria generation, and reference-based scoring. Hyperparameters and prompts were kept aligned with the Gemini-based setup where applicable.

Using Qwen3 as the Judge, the relative ranking across the four DRAs remains identical to the Gemini-based setup, demonstrating that RACE is robust to the choice of Judge backbone. Compared with closed-source judges, Qwen3 yields lower human-consistency metrics on the correlation

scale; however, the gap is moderate, and Qwen3 remains a practical open-source alternative when access or cost constraints arise.

Table 10: Overall RACE scores of four DRAs under different Judge LLMs.

Judge	Gemini-2.5-Pro DR	OpenAI DR	Perplexity DR	Grok DS
Gemini-2.5-pro	48.88	46.98	42.25	40.24
Qwen3-235b-thinking	50.17	46.88	41.25	38.04

K ANALYSIS OF RACE GENERALIZABILITY

RewardBench 2 evaluates reward/judge models in generative settings with accuracy-based, multiskill preference judgments across Factuality, Precise Instruction-Following, Math, Safety, Focus, and handling Ties (Lambert et al., 2024; Malik et al., 2025).

We apply RACE as a general reward-modeling method by using <code>DeepSeek-R1</code> as the judge and replacing vanilla direct scoring with RACE's pipeline: (1) dynamically generate evaluation dimensions weights, (2) generate task-specific, executable criteria, and (3) perform reference-based comparative scoring. Other settings follow the RewardBench 2 protocol. With RACE, <code>DeepSeek-R1</code> shows substantial gains and approaches leading proprietary judges, indicating that RACE strengthens reward modeling and transfers beyond deep research, consistent with our rebuttal analysis.

Table 11: RewardBench-v2 (Generative) results with and without RACE.

Model	Score	Factuality	Precise IF	Math	Safety	Focus	Ties
LMunit (SOTA)	82.1	87.2	54.4	72.7	91.3	96.8	90.1
Claude-Opus-4	76.5	82.7	41.9	74.9	89.5	86.2	83.7
Gemini-2.5-pro	74.8	71.2	52.1	68.3	88.7	79.4	81.2
DeepSeek-R1 w/o RACE	51.5	44.4	19.9	46.2	70.1	55.5	47.7
DeepSeek-R1 w/ RACE	74.4	72.9	45.6	74.3	90.9	76.8	47.6

L ADDITIONAL DEEP RESEARCH TASK EXAMPLES

Here are more examples of deepresearch bench tasks.

- "Investigate how, under chronic antigen stimulation (e.g., the tumor micro-environment or latent HIV infection), mitochondrial dynamics (fusion–fission balance) in CD8⁺ T cells drive bifurcation into terminally exhausted and tissue-resident memory (Trm) fates via epigenetic reprogramming (e.g., m6A modification, lactate-mediated histone lactylation). Develop quantitative models based on metabolic–epigenetic interaction networks."
- "Analyze liability allocation in accidents involving vehicles with advanced driverassistance systems (ADAS) operating in a shared human-machine driving context. Integrate technical principles of ADAS, existing legal frameworks, and relevant case law to systematically examine the boundaries of responsibility between the driver and the system."
- "How can we conduct comprehensive and accurate situational awareness of space targets in cislunar space, and support the effectiveness of short-term cislunar tracking and monitoring tasks? Compare existing sensing architectures, data-fusion pipelines, and control strategies."

PROMPT TEMPLATES

1135 1136 1137

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1134

Clean Article Prompt

1138 ;system_role; 1139

You are a professional article editor who is good at cleaning and refining article content. ;/system_role;

¡user_prompt;

Please help me clean the following research article, removing all citation links, citation marks (such as [1], [2], 1, 2, etc. or other complex citation formats), reference lists, footnotes, and ensuring the content is coherent and smooth. Keep all other original content of the article, removing only the citations. If the content of the citation mark is used as part of a sentence in the article, keep the text content and remove other marks.

Article content: "{article}"

Please return the cleaned article in full, without adding any additional comments or explanations.

;/user_prompt;

1151 1152 1153

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171 1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Generate Dynamic Dimension Weight Prompt

1154 1155 ;system_role;

> You are an experienced research article evaluation expert. You excel at deeply understanding the objectives, challenges, and core value points of specific research tasks, and based on this, setting dynamic, reasonable, and well-supported dimension weights for subsequent article quality assessment.

;/system_role;

¡user_prompt¿,

There is a deep research task as follows:

¡task¿

"{task_prompt}"

:/task;

instruction,

Background: The research team will conduct in-depth and comprehensive research based on the '¡task¿' above and ultimately produce a high-quality research article.

Your Task: As an evaluation expert, you need to set the evaluation criteria weights for this specific '¡task¿' for our assessment team. The evaluation will be conducted across the following four dimensions:

- 1. **Comprehensiveness:** The breadth, depth, and relevance of information coverage.
- 2. **Insight:** The depth, originality, logic, and value of the analysis and conclusions.
- 3. **Instruction Following:** Whether the report accurately and completely responds to all requirements and constraints of the task.
- 4. **Readability:** Clarity of structure, fluency of language, effectiveness of data presentation, and overall ease of understanding.

Evaluation Formula: Total Score = Comprehensiveness * Comprehensiveness Weight + Insight * Insight Weight + Instruction Following * Instruction Following Weight + Readability * Readability Weight. (Note: The sum of all weights must be exactly 1.0)

Core Requirements:

- 1. In-depth Task Analysis: Carefully study the specific content of the '¡task¿', its implicit goals, potential difficulties, and the core value of its outcomes.
- 2. Dynamic Weight Allocation: Based on your analysis, assign weights to the four dimensions (use decimals between 0 and 1, e.g., 0.3). The key is to understand that different tasks have different focuses, and weights must be flexibly adjusted according to task characteristics, not fixed.

```
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1201
1202
1203
1205
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1237
1239
1240
1241
```

- 3. Justify Allocation Reasons: Your analysis ('¡analysis¿') must clearly and specifically explain why each dimension is given a particular weight, and directly link the reasons to the requirements and characteristics of the ¡task¿. This is crucial for evaluating the quality of your work.
- 4. **Standard Format Output**: Strictly follow the format of the example below, first outputting the '¡analysis¿' text with detailed reasons, and then immediately providing the '¡json_output¿' with the weight allocation results.

```
¡/instruction¿
¡examples_rationale¿
```

The following two examples are provided to demonstrate **how to adjust evaluation dimension weights and explain the reasons based on changes in task nature**. Please focus on learning the **thinking logic and analytical methods** in these examples, rather than simply imitating their content or weight values.

;/examples_rationale;

jexample_1;

itaski.

"Analyze the feasibility of investing in electric vehicle (EV) charging infrastructure in suburban areas."

i/task;

;output¿

analysis,

This task's core is to provide a clear feasibility analysis for a specific investment. The value lies in the thoroughness of the assessment and the practicality of its conclusions. Therefore, evaluation emphasizes insight and comprehensiveness.

- **Insight (0.35):** The task requires a deep analysis of feasibility. The quality of the strategic recommendations derived from this analysis is key.
- Comprehensiveness (0.30): A thorough investigation of all relevant factors (technical, economic, social, environmental) is crucial for a reliable feasibility study.
- **Instruction Following (0.20):** The report must specifically address EV charging infrastructure in suburban areas and focus on investment feasibility.
- **Readability** (**0.15**): Clearly communicating complex financial and technical analysis is important, but secondary to the depth and breadth of the study.

```
¡/analysis¿
¡json_output¿
{{ "comprehensiveness": 0.30, "insight": 0.35, "instruction_following": 0.20, "readability": 0.15 }}
¡/json_output¿
¡/output¿
¡/example_1¿
Please strictly follow the above instructions and methods. Now, begin your work on the following specific task:
¡task¿
"{task_prompt}"
¡/task¿
Please output your '¡analysis¿' and '¡json_output¿'.
¡/user_prompt¿
```

Generate Comprehensiveness Criteria Prompt

¡system_role¿

You are an experienced research article evaluation expert. You excel at breaking down abstract evaluation dimensions (like "Comprehensiveness") into actionable, clear, and task-specific criteria, assigning appropriate weights and justifications for each.

1242 ;/system_role; 1243 1244 juser_prompt/ 1245 four dimensions: Comprehensiveness, Insight, Instruction Following, and Readability. 1246 1247 1248 1249 1250 1251 1252 1253 itaski. "{task_prompt}" 1255 i/task; 1256 instruction, 1257 1259 1260 1261 1262 1263 1264 1265 4. ... 1266 1267 **Core Requirements:** 1268 1270 1272 3. ... 1274 :/instruction; example_rational; 1276 1278 1279 ;/example_rational; 1280 jexample, 1281 itaski. 1282 1283 recommend investment strategies." 1284 i/task; joutput, 1285 1286 span multiple dimensions. Specifically, evaluation criteria need to cover: 1291 1293

1295

Background: We are evaluating a deep research article written for the following task across

- 1. **Comprehensiveness:** The breadth, depth, and relevance of information coverage.
- 2. **Insight:** The depth, originality, logic, and value of the analysis and conclusions.
- 3. **Instruction Following:** Whether the report accurately and completely responds to all requirements and constraints of the task.
- 4. **Readability:** Clarity of structure, fluency of language, effectiveness of data presentation, and overall ease of understanding.

Your Goal: For the Comprehensiveness dimension of this research article, develop a set of detailed, specific, and highly task-relevant evaluation criteria. You need to:

- 1. Analyze Task: Deeply analyze the 'itask', 'to identify key information areas, perspectives, and depths that must be covered to achieve "comprehensiveness."
- 2. Formulate Criteria: Based on the analysis, propose specific evaluation criteria
- 3. **Explain Rationale**: Provide a brief explanation ('explanation') for each criterion, stating why it is important for assessing the comprehensiveness of this '¡task¿'.
- 1. Task-Centric: Analysis, criteria, explanations, and weights must directly relate to the core requirements and characteristics of the '¡task¿'.
- 2. **Well-Justified**: The '¡analysis¡,' section must clearly articulate the overall thinking behind setting these criteria and weights, linking it to the '¡task'. The 'explanation' for each criterion must justify its specific relevance.

The following example demonstrates how to formulate comprehensiveness criteria based on task requirements. Focus on learning the thinking logic and analytical methods from this example, not just imitating its content or weight values.

"Analyze the impact of remote work trends on commercial real estate in major US cities and

To comprehensively evaluate a research article on "the impact of remote work on commercial real estate in major US cities and recommended investment strategies," considerations must

- 1. **Remote Work Trends & Adoption Data**: Coverage of current and projected remote/hybrid work models, adoption rates across industries and demographics.
- 2. **Impact on Commercial Real Estate Sectors**: Analysis of effects on office, retail, and industrial spaces, including vacancy rates, leasing trends, and property valuations in major US cities.

```
1296
                  3. Geographical Variations: Examination of how impacts differ across various major
1297
                     US cities (e.g., tech hubs vs. financial centers, downtown vs. suburban).
1298
1299
                  4. ...
1300
            Weight allocation should be balanced between the impact analysis...
1301
            ;/analysis;
1302
            ¡json_output¿
1303
1304
            "criterion": "Analysis of Remote Work Trends and Adoption",
1305
            "explanation": "Assesses if the article thoroughly examines current and projected re-
1306
            mote/hybrid work models...",
1307
            "weight": 0.15
1308
1309
            {{
"criterion": "Comprehensive Coverage of CRE Sector Impacts",
1310
1311
            "explanation": "...",
1312
            "weight": 0.20
1313
1314
1315
            "criterion": "Examination of Geographical Variations and Nuances",
            "explanation": "...",
1316
            "weight": 0.15
1317
            }},
1318
1319
            "criterion": "Discussion of Broader Economic and Social Consequences",
1320
            "explanation": "...",
1321
            "weight": 0.10
1322
            }},
1323
1324
1325
            i/json_output;
            ;/output¿
1326
            i/example;
1327
            Please strictly follow the above instructions and methods. Now, begin your work on the
1328
            following specific task:
1329
            ¡task¿
1330
            "{task_prompt}"
1331
            ;/task;
1332
            Please output your '¡analysis¿,' and '¡json_output¿'.
1333
            ;/user_prompt;
1334
1335
```

Score Prompt In RACE(Full)

1350

1351

1352 ¡system_role; 1353 You are a strict, meticulous, and objective research article evaluation expert. You excel at 1354 using specific assessment criteria to deeply compare two articles on the same task, providing 1355 precise scores and clear justifications. ;/system_role; 1356 ¡user_prompt; 1357 **Task Background** 1358 There is a deep research task, and you need to evaluate two research articles written for 1359 this task. We will assess the articles across four dimensions: Comprehensiveness, Insight, Instruction Following, and Readability. The content is as follows: itask/. "{task_prompt}" 1363 i/task; **Articles to Evaluate** 1365 jarticle_1; "{article_1}" 1367 i/article_1; jarticle_2; "{article_2}" 1369 /article_2/ 1370 Evaluation Criteria Now, you need to evaluate and compare these two articles based on 1371 the following evaluation criteria list, providing comparative analysis and scoring each on 1372 a scale of 0-10. Each criterion includes an explanation, please understand carefully. 1373 ¡criteria_list¿ 1374 {criteria_list} 1375 ;/criteria_list; 1376 ;Instruction; **Your Task** Please strictly evaluate and compare '¡article_1¿,' and '¡article_2¿,' based on each criterion in the '¡criteria_list¿'. You need to: 1380 1. Analyze Each Criterion: Consider how each article fulfills the requirements of each criterion. 1382 2. Comparative Evaluation: Analyze how the two articles perform on each criterion, referencing the content and criterion explanation. 1384 3. Score Separately: Based on your comparative analysis, score each article on each criterion (0-10 points). 1386 **Scoring Rules** 1387 For each criterion, score both articles on a scale of 0-10 (continuous values). The score 1388 should reflect the quality of performance on that criterion: 1389 • 0-2 points: Very poor performance. Almost completely fails to meet the criterion 1390 requirements. 1391 • 2-4 points: Poor performance. Minimally meets the criterion requirements with 1392 significant deficiencies. 1393 4-6 points: Average performance. Basically meets the criterion requirements, nei-1394 ther good nor bad. • 6-8 points: Good performance. Largely meets the criterion requirements with notable strengths. 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements. 1399 **Output Format Requirements** 1400 Please strictly follow the 'joutput_format' below for each criterion evaluation. Do not 1401 include any other unrelated content, introduction, or summary. Start with "Standard 1" 1402 and proceed sequentially through all criteria: 1403

```
1404
           ;/Instruction;
1405
           ;output_format;
1406
1407
            "comprehensiveness": [
1408
1409
            "criterion": [Text content of the first comprehensiveness evaluation criterion],
1410
           "analysis": [Comparative analysis],
1411
           "article_1_score": [Continuous score 0-10],
1412
           "article_2_score": [Continuous score 0-10]
           1413
1414
1415
1416
1417
           "article_2_score": [Continuous score 0-10]
1418
           }},
1419
1420
           ],
1421
            "insight": [
1422
           \{\{ "criterion": [Text content of the first insight evaluation criterion],
1423
1424
           "analysis": [Comparative analysis],
           "article_1_score": [Continuous score 0-10],
1425
           "article_2_score": [Continuous score 0-10]
1426
1427
           }},
1428
           ...
           ],
1429
1430
            }}
1431
           ;/output_format;
1432
           Now, please evaluate the two articles based on the research task and criteria, providing de-
1433
           tailed comparative analysis and scores according to the requirements above. Ensure your
1434
           output follows the specified 'joutput_formati,' and that the JSON format is parsable, with all
1435
           characters that might cause JSON parsing errors properly escaped.
1436
           ;/user_prompt;
1437
1438
```

```
1458
            Static Score Prompt
1459
1460
             ¡system_role;
1461
            You are a strict, meticulous, and objective research article evaluation expert.
1462
            You excel at using specific assessment criteria to deeply compare two articles on the same
1463
            task, providing precise scores and clear justifications.
            ;/system_role;
1464
            ;user_prompt;
1465
            Task Background
1466
            There is a deep research task, and you need to evaluate two research articles written for this
1467
1468
            We will assess the articles across four dimensions: Comprehensiveness, Insight, Instruction
1469
            Following, and Readability.
1470
            The content is as follows:
1471
            ¡task¿
1472
             "{task_prompt}"
1473
            i/task;
1474
            Articles to Evaluate
1475
            jarticle_1;
             "{article_1}"
1476
            i/article_1;
1477
            article_2¿
1478
             "{article_2}"
1479
             ;/article_2;
1480
            Evaluation Criteria
1481
            Now, you need to evaluate and compare these two articles based on the following fixed
1482
            evaluation criteria list, providing comparative analysis and scoring each on a scale of 0-10.
1483
            Each criterion includes an explanation, please understand carefully.
1484
            ¡criteria_list¿
            # Comprehensiveness
1485
            [ {{ "criterion": "Information Coverage Breadth",
1486
             "explanation": "Evaluates whether the article covers all key areas and aspects related to the
1487
            topic without omitting important information.",
1488
            "weight": 0.25
1489
1490
1491
            "criterion": "Information Depth and Detail",
1492
            "explanation": "...",
1493
            "weight": 0.25
1494
1495
             {{ "criterion": "Data and Factual Support",
             "explanation": "...",
1496
             "weight": 0.25
1497
1498
1499
             "criterion": "Multiple Perspectives and Balance",
1500
            "explanation": "...",
1501
            "weight": 0.25
1502
             }}]
1503
            # Insight
            [ {{ "criterion": "Analysis Depth and Originality",
            "explanation": "...",
1506
            "weight": 0.25
1507
            }},
1508
            ... ]
1509
            ¡/criteria_list;
1510
             ¡Instruction¿
1511
```

1512 Your Task 1513 Please strictly evaluate and compare '¡article_1¿,' and '¡article_2¿,' based on each criterion 1514 in the '¡criteria_list;'. 1515 You need to: 1516 1. Analyze Each Criterion: Consider how each article fulfills the requirements of 1517 each criterion. 1518 1519 2. **Comparative Evaluation**: Analyze how the two articles perform on each criterion, referencing the content and criterion explanation. 1520 1521 3. Score Separately: Based on your comparative analysis, score each article on each 1522 criterion (0-10 points). 1523 **Scoring Rules** 1524 For each criterion, score both articles on a scale of 0-10 (continuous values). 1525 The score should reflect the quality of performance on that criterion: • 0-2 points: Very poor performance. Almost completely fails to meet the criterion 1527 requirements. 1529 • 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements. 1531 1532 **Output Format Requirements** 1533 Please **strictly** follow the 'joutput_format', 'below for each criterion evaluation. Do not include any other unrelated content, introduction, or summary. 1534 Start with "Standard 1" and proceed sequentially through all criteria: 1535 /Instruction, 1536 joutput_format/ 1537 1538 "comprehensiveness": [1539 1540 "criterion": [Text content of the first comprehensiveness evaluation criterion], 1541 "analysis": [Comparative analysis], 1542 "article_1_score": [Continuous score 0-10], 1543 "article_2_score": [Continuous score 0-10] $\{\{$ 1545 1546 }}, 1547 1548], "insight": [1549 {{
"criterion": [Text content of the first insight evaluation criterion], 1550 1551 "analysis": [Comparative analysis], 1552 "article_1_score": [Continuous score 0-10], 1553 "article_2_score": [Continuous score 0-10] 1554 }}, 1555], 1556 1557 ;/output_format; Now, please evaluate the two articles based on the research task and criteria, providing de-1560 tailed comparative analysis and scores according to the requirements above. 1561 Ensure your output follows the specified 'joutput_format', and that the JSON format is parsable, with all characters that might cause JSON parsing errors properly escaped. 1563 ;/user_prompt;

1566	Point-wise Score Prompt
1567	1 omt-wise Score 11 ompt
1568	;system_role;
1569	You are a strict, meticulous, and objective research article evaluation expert.
1570	You excel at using specific assessment criteria to thoroughly evaluate research articles, pro-
1571	viding precise scores and clear justifications.
1572	;/system_role;
1573	¡user_prompt¿ Task Background
1574	There is a deep research task, and you need to evaluate a research article written for this task.
1575	We will assess the article across four dimensions: Comprehensiveness, Insight, Instruction
1576	Following, and Readability.
1577	The content is as follows:
1578	;task;
1579	"{task_prompt}"
1580	¡/task¿
1581	Article to Evaluate
1582	¡target_article¿ "{article}"
1583	¡/target_article;
1584 1585	Evaluation Criteria
1586	Now, you need to evaluate this article based on the following evaluation criteria list , pro-
1587	viding analysis and scoring each on a scale of 0-10.
1588	Each criterion includes an explanation, please understand carefully.
1589	¡criteria_list¿
1590	{criteria_list}
1591	¡/criteria_list¿
1592	¡Instruction; Your Task
1593	Please strictly evaluate '¡target_article¿ 'based on each criterion in the '¡criteria_list¿ '.
1594	You need to:
1595	1. Analyze Each Criterion: Consider how the article fulfills the requirements of each
1596	criterion.
1597	2. Analysis and Evaluation: Analyze the article's performance on each criterion,
1598	referencing the content and criterion explanation, noting strengths and weaknesses.
1599	3. Score : Based on your analysis, score the article on each criterion (0-10 points).
1600	Scoring Rules
1601 1602	For each criterion, score the article on a scale of 0-10 (continuous values).
1603	The score should reflect the quality of performance on that criterion:
1604	• 0-2 points: Very poor performance. Almost completely fails to meet the criterion
1605	requirements.
1606	• 2-4 points: Poor performance. Minimally meets the criterion requirements with
1607	significant deficiencies.
1608	• 4-6 points: Average performance. Basically meets the criterion requirements, nei-
1609	ther good nor bad.
1610	• 6-8 points: Good performance. Largely meets the criterion requirements with no-
1611	table strengths.
1612	-
1613	 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements.
1614	•
1615	Output Format Requirements Please strictly follow the '¡output_format¿,' below for each criterion evaluation.
1616	Do not include any other unrelated content, introduction, or summary.
1617	Start with "Standard 1" and proceed sequentially through all criteria:
1618	¡/Instruction¿

```
1620
            joutput_format;
1621
1622
             "comprehensiveness": [
1623
1624
            "criterion": [Text content of the first comprehensiveness evaluation criterion],
1625
            "analysis": [Analysis],
1626
            "target_score": [Continuous score 0-10]
1627
1628
            {{
"criterion": [Text content of the second comprehensiveness evaluation criterion],
1629
1630
            "target_score": [Continuous score 0-10]
1631
1632
            }},
1633
            •••
1634
             "insight": [
1635
            {{
1636
            "criterion": [Text content of the first insight evaluation criterion],
1637
            "analysis": [Analysis],
1638
            "target_score": [Continuous score 0-10]
1639
            }},
1640
1641
            ],
1642
1643
            ;/output_format;
1644
            Now, please evaluate the article based on the research task and criteria, providing detailed
1645
            analysis and scores according to the requirements above.
1646
            Ensure your output follows the specified 'joutput_format',' and that the JSON format is
1647
            parsable, with all characters that might cause JSON parsing errors properly escaped.
1648
            ;/user_prompt;
1649
1650
```

Vanilla Prompt ¡system_role; You are a strict, meticulous, and objective research article evaluation expert. You excel at using specific assessment criteria to thoroughly evaluate research articles, providing precise scores and clear justifications. ;/system_role; ¡user_prompt; **Task Background** There is a deep research task, and you need to evaluate a research article written for this task. "{task_prompt}" i/task; **Article to Evaluate** ¡target_article; "{article}" :/target_article; Instruction, **Your Task** Please evaluate the overall quality of the above '¡target_article¡,' as a response to '¡task¡,'. Please provide an overall score between 0 and 10. Also, provide a brief justification for your score. **Output Format Requirements** Please **strictly** follow the 'joutput_format;' below for your evaluation result. Do not include any other unrelated content, introduction, or summary. ;/Instruction; joutput_format/. {{ "overall_score": [Continuous score 0-10], "justification": "[Scoring justification]" }} ;/output_format; Now, please evaluate the article based on the task and provide your score and justification according to the specified format. Ensure your output is valid JSON format and escape any special characters as needed. ;/user_prompt;