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ABSTRACT

Counterfactual explanations (CE) identify data points that closely resemble the
observed data but produce different machine learning (ML) model outputs, offering
critical insights into model decisions. Despite the diverse scenarios, goals and tasks
to which they are tailored, existing CE methods often lack actionable efficiency
because of unnecessary feature changes included within the explanations that are
presented to users and stakeholders. We address this problem by proposing a
method that minimizes the required feature changes while maintaining the validity
of CE, without imposing restrictions on models or CE algorithms, whether instance-
or group-based. The key innovation lies in computing a joint distribution between
observed and counterfactual data and leveraging it to inform Shapley values for
feature attributions (FA). We demonstrate that optimal transport (OT) effectively
derives this distribution, especially when the alignment between observed and
counterfactual data is unclear in used CE methods. Additionally, a counterintuitive
finding is uncovered: it may be misleading to rely on a counterfactual distribution
defined by the CE generation mechanism in conducting FA. Our proposed method
is validated on extensive experiments across multiple datasets, showcasing its
effectiveness in refining CE towards greater actionable efficiency.

1 BACKGROUND

Explainable Artificial Intelligence (XAI) is essential for making artificial intelligence systems trans-
parent and trustworthy (Arrieta et al., 2020; Das & Rad, 2020). Within this area, feature attributions
(FA) methods, such as Shapley values (Sundararajan & Najmi, 2020; Lundberg & Lee, 2017), deter-
mine how much each input feature contributes to a machine learning (ML) model’s output. This helps
simplify complex models by highlighting the most influential features. For example, in a healthcare
model, Shapley values can identify key factors like age and medical history, assisting clinicians
in understanding the model’s decisions (Ter-Minassian et al., 2023; Nohara et al., 2022). Another
technique counterfactual explanations (CE) (Wachter et al., 2017; Guidotti, 2022) show how small
changes in input features can lead to different outcomes. While hundreds of CE algorithms have
been proposed (Guidotti, 2022; Verma et al., 2020) to date, it is hardly practical to find one single
CE algorithm that suits for all user cases, due to each of them is tailored particularly for their own
different scenarios, goals, and tasks. For instance, the objective in one CE algorithm can be defined
as finding a single counterfactual instance for each factual instance sometimes, while at othertimes,
it could be treating multiple instances as a group and seeking one or more/multiple counterfactual
instances for each factual observation. In some cases, the focus of a CE algorithm could be on the
entire dataset, aiming to identify global CE that indicate the direction to move the factual instances to
achieve the desired model output (Rawal & Lakkaraju, 2020; Ley et al., 2022; 2023; Carrizosa et al.,
2024). Yet in other scenarios, the group of factual instances is viewed as a distribution, aiming to
find a counterfactual distribution that remains similar in shape to the factual distribution (You et al.,
2024), and ensuring comparable costs. Besides, some CE algorithms assume differentiable models,
whereas others are designed specifically for tree-based or ensemble models.

Problem Description and Challenges Although both FA and CE are vital for making AI models
more interpretable and accountable, relying only on one of them will cause drawbacks. That is, FA
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alone may not provide actionable steps as explanations, and CE alone might include unnecessary
feature changes that are not practical. Therefore, we address a general and comprehensive problem in
this paper, which builds on the extensive foundations established in the literature (see Appendix A).
To be specific, we seek to answer the following question:

Given a (group of) factual instance(s), how can we devise an action plan that re-
quires the least feature modifications to achieve a desired counterfactual outcome?

x
Ç 
200 5 No
150 3 No
100 2 No
150 6 No

z′

Ç 
250 8 Yes
150 3 No
350 9 Yes
150 6 No

z′′

Ç 
200 5 No
150 7 Yes
100 2 No
350 6 Yes

y∗


Yes
Yes
Yes
Yes

Figure 1: [Example: User engagement on an e-commerce platform] A platform aims to increase
user registrations. The platform has collected data on user interactions, such as the amount of money
spent (Ç), the number of clicks (), and whether the user has registered (). In the original data
(x), no users are registered. Action plans z′ and z′′ adjust user characteristics to achieve the desired
outcome (y∗) of full registration. Both plans achieve a half counterfactual effect, but z′′ requires
fewer modifications compared to z′. This benefits customers by preserving their natural interaction
patterns, leading to a better user experience. For business operators, fewer modifications result in
more efficient resource allocation and cost-effective strategies, making the improvements easier to
implement and more sustainable.

Three major challenges remain in addressing this problem. First, it is unrealistic to expect a single CE
algorithm to meet all the needs universally, as the problem is often task-specific. Second, the approach
should not rely on strong assumptions about the model (for example, requiring differentiability or
special structures) to ensure its applicability across a wide range of models. Third, FA like feature
importance can be misleading due to the lack of coherence between the FA scores and the changes
for counterfactual effect. In other words, it is not effective to perform FA independently of CE to
select the most important features to change. We will demonstrate later that this decoupling can result
in counterproductive feature modifications (also referred to as actions from users/stakeholders) in
Result II of Section 6, as the features deemed important generally may not align with the specific
pathways to achieve the desired counterfactual outcomes.

Main Contributions Our main contributions are listed as follows.

• A versatile algorithmic framework “COunterfactuals with Limited Actions (COLA)” is proposed,
which adapts to various CE methods and ML models. Extensive simulations show that the
framework produces action plans that require significantly fewer feature changes to achieve
outcomes similar (or sometimes equal) to those generated by various CE algorithms. Especially,
COLA is shown to have near-optimal performance under certain circumstances.

• A new Shapley method “joint-probability-informed Shapley (p-SHAP)” is proposed, utilizing joint
distribution of factual and counterfactual and resulting in remarkably well-performed action plans.
We discover that other Shapley methods without incorporating counterfactual knowledge lead to
unproductive attribution results for the aforementioned problem.

• A counter-intuitive finding is identified, showing that associating each factual data instance with its
explicitly generated counterfactual (i.e. an exact alignment is known) may still underperform our
p-SHAP solution. This finding emphasizes the importance of the joint distribution of factual and
counterfactual instances, as a proper alignment serves as crucial knowledge for accurate contrastive
FA.

To our best knowledge, this is the first method proposed for systematically addressing the problem in
Figure 1 without specifying certain CE algorithms and models.
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2 PROBLEM FORMULATION

We formally formulate the problem described in Figure 1. Denote f : Rd → R as a black-box ML
model. Denote by x any observed (factual) data with n rows and d columns (x ∈ Rn×d, n ≥ 1, and
d ≥ 1). Let y∗ be the target model output (y∗ ∈ Rm, m ≥ 1). The optimization is to look for a
(group of) counterfactual data instance(s) z (z ∈ Rn×d) subject to a maximum number of allowed
feature changes, C, to achieve model output(s) as close as possible to y∗. Let D denote a divergence
function that measures the dissimilarity between two entities. The problem is below.

min
c,z

D (f(z),y∗) (1a)

s.t. D (z,x) ≤ ϵ (1b)
n∑

i=1

d∑
k=1

cik ≤ C (1c)

zik ≤ xik(1− cik) +Mcik i = 1, . . . n, k = 1, . . . d (1d)
zik ≥ xik(1− cik)−Mcik i = 1, . . . n, k = 1, . . . d (1e)

The objective equation 1a and the constraint equation 1b formulate the typical CE optimization.
Namely, z is expected to make f(z) close to y∗ yet stays close to x. Then z can be used as a
counterpart reference to explain why f(x) does not achieve y∗. We do not limit the function D to
any specific type of divergence function, allowing it to stay general. Example functions of D can be
Euclidean distance, optimal transport (OT), maximum mean discrepancy (MMD), or differences of
the model outcome in mean or median. Then, equation 1c–equation 1e compose the CE optimization
constrained by actions. On top of the counterfactual data z, we also optimize an indicator variable
c, such that zik is not allowed to change iff cik = 0. Maximum C changes are allowed as imposed
by equation 1c. Inspecting equation 1d and equation 1e, if cik = 0, xik equals zik and no changes
happen at (i, k). Otherwise, if cik = 1, remark that M is a sufficiently large constant such that zik
has good freedom to change.

To solve equation 1, we resort to FA to identify the most influential features to obtain the modification
indicator variable c. The next section introduces commonly used Shapley value methods for FA,
which, together with our later proposed one, are integrated into our algorithmic framework COLA, to
obtain the refined counterfactual z. The problem is computationally difficult even when d = 1 for
linear models, see Appendix B.

3 PRELIMINARIES ON SHAPLEY VALUE

This section introduces commonly used Shapley value methods for FA, which, together with our later
proposed one, are integrated into our algorithmic framework COLA. We first introduce the concept
of Shapley value in game theory, followed by a discussion on various commonly used Shapley
methods for FA. Readers could find in (Sundararajan & Najmi, 2020) for a comprehensive overview
of different Shapley value methods.

In cooperative game theory, a coalitional game is characterized by a finite set of players (in our
context, features), denoted by F = {1, 2, . . . d}, and a characteristic function v. This function
v : 2F → R maps each subset S ⊆ F to a real number v(S), representing the total payoff that can
be achieved by the members of S through cooperation, with the condition v(∅) = 0. The Shapley
value, as defined based on v later, is a fundamental concept in this framework, providing an equitable
method to distribute the overall payoff, v(F), of the grand coalition among the individual players.

Prior to defining the Shapley value, denote ∆(k, S) the incremental value produced by a player
(feature) k to a coalition S, aligning with the concept of marginal contribution. This is defined as the
additional payoff realized by the coalition due to the inclusion of the player k, i.e.,

∆(k, S) = v(S ∪ k)− v(S). (2)

The Shapley value ϕi for a player i in a cooperative game is defined in equation 3 below.

ϕk =
1

d

∑
S⊂F\{k}

(
d− 1
|S|

)−1

∆(k, S). (3)
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The value ϕk is computed by averaging the normalized marginal contributions ∆(k, S) of feature
k across all subsets S of the feature set excluding k. The normalization factor is the inverse of the
binomial coefficient

(
d−1
|S|
)
, where d is the total number of features. By summing these values for all

subsets and dividing by d, the equation provides a fair and axiomatic distribution of payoffs among
players, reflecting each features’s contribution among the whole collection of features.

For an arbitrary data point xi, we use xi,S to represent its part containing only the features in S,
and xi,F\S the other remaining part. The same rule applies for other notations as well. Below, we
introduce commonly used Shapley value methods.

Baseline Shapley (B-SHAP) . This approach relies on a specific baseline data point rj as the reference
for any xi. The set function is defined to be

v
(i)
B (S) = f(xi,S ; rj,F\S)− f(rj), (4)

where a feature’s absence is modeled using its value in the reference baseline data point r (Lundberg
& Lee, 2017; Sun & Sundararajan, 2011; Merrick & Taly, 2020). This method assumes an exact
alignment between x and r.

Random Baseline Shapley (RB-SHAP). This approach is a variant of BShap and is implicitly used in
(Lundberg & Lee, 2017) as well as the famous “SHAP” library. The equation is as follows.

v
(i)
RB(S) = Ex′∼D

[
f(xi,S ;x

′
F\S)

]
− Ex′∼D[f(x

′)]. (5)

whereD is the background distribution that is commonly selected to be the training dataset (Lundberg
& Lee, 2017; Merrick & Taly, 2020).

Counterfactual Shapley (CF-SHAP). This is an extension from RB-SHAP, by taking the distribution
D as the counterfactual distribution defined on every single factual instance xi (i = 1, 2, . . . n).

v
(i)
CF (S) = Er∼D(xi)

[
f(xi,S ; rF\S)

]
− Er∼D(xi)[f(r)]. (6)

This method has been adopted in (Albini et al., 2022; Kommiya Mothilal et al., 2021), demonstrated
with advantages for contrastive FA. This method assumes a probabilistic alignment between x and r.

4 THE PROPOSED p-SHAP AND ITS THEORETICAL ASPECTS

(Proposed) p-SHAP We generalize equation 4–equation 6 by integrating an algorithm AProb that
returns their joint probability. Our p-SHAP is defined as follows.

v(i)(S) = Er∼p(r|xi)

[
f(xi,S ; rF\S)

]
− Er∼p(r) [f(r)] (7a)

s.t. p = AProb(x, r) (7b)
The reason why p-SHAP is a generalization of the others is as follows: First, p-SHAP degrades to
B-SHAP in equation 4 when AProb defines a joint distribution between x and r that indicates an
i↔ j alignment of for any xi, rj . Second, p-SHAP degrades to RB-SHAP in equation 5 when AProb
is defined to be independent of CE but associates with an arbitrary distribution D. Third, p-SHAP
degrades to CF-SHAP in equation 6 when AProb is built upon a known distribution of CE, i.e. the
data generation probability r ∼ DCF(xi) (∀i) is used for AProb.

Interestingly, we emphasize that AProb does not necessarily require knowledge of the CE algorithm.
The key reason that p-SHAP does not require explicit knowledge of how r ∼ D is generated is that its
goal is to work directly with the factual data x, the model f , and the desired outcome y∗, independent
of the specific CE algorithm used to produce r. By focusing solely on these fixed components,
p-SHAP ensures consistency in FA without being influenced by the variability of different CE
generation processes, which is a major difference to CF-SHAP. Contrary to common expectations,
we demonstrate that OT can be more effective than relying on a counterfactual distribution defined by
a CE generation mechanism as done by Albini et al. (2022), in Result II of Section 6 later.

Especially, one of the focus in this paper is to consider the OT problem (also the 2-Wasserstein
divergence) defined below. And the transportation plan pOT obtained by solving OT is used as the
joint distribution of x and r in p-SHAP.

pOT = argmin
p∈Π(µ,ν)

n∑
i=1

m∑
j=1

pij∥xi − rj∥22 + ε

n∑
i=1

m∑
j=1

pij log

(
pij
µiνj

)
. (8)
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Note that µ and ν represent the marginal distributions of x and r respectively, and Π(µ,ν) the set
of joint distributions (i.e. all possible transport plans). The term ε

∑n
i=1

∑m
j=1 pij log(pij/(µiνj))

is the entropic regularization with ε ≥ 0 being the coefficient. Such regularization (ε > 0) helps
accelerate the computation of OT.

Theoretical Aspects of p-SHAP Intuitively, OT determines the most cost-effective way to move
x closer to r. We later prove that the transportation plan pOT, obtained by solving the OT problem,
effectively guides p-SHAP in identifying the key features of x that need to be modified to bring f(x)
closer to y∗. OT minimizes the total feature modification cost (i.e. modifying x towards r) under its
obtained alignment between factual x and counterfactual r. This directly corresponds to our objective
of finding feature modifications that achieve the counterfactual outcomes at minimal cost.

We can further strengthen this connection theoretically under the Lipschitz continuity assumption
of the predictive model f . In Theorem 4.1 below (proof in Appendix C), we establish that the
transportation plan pOT used in p-SHAP is effective in minimizing an upper bound on the divergence
between f(x) and y∗. Specifically, the 1-Wasserstein distance between f(x) and y∗, is bounded
by the Lipschitz constant (assuming Lipschitz continuity of f ) multiplied by the square root of the
minimized expected cost of changing x towards r, i.e.

∑
i,j pij∥xi−rj∥22 where pij (j = 1, 2, . . . ,m)

quantify how the feature values of xi should be adjusted towards those of one or multiple rj .
Practically, this means that in p-SHAP, the OT plan pOT provides a strategy to adjust the feature values
of x towards those of r in a way that minimizes the expected modification cost

∑
i,j pij∥xi − rj∥22.

Compared to other modification plans (p ∈ Π), pOT yields the minimal possible cost, which in
turn provides the tightest upper bound on the violation of the counterfactual effect W1(f(x),y

∗) in
proportion to this cost.

Theorem 4.1 (p-SHAP Towards Counterfactual Effect). Consider the 1-Wasserstein divergence W1,
i.e. W1(f(x),y

∗) = minπ∈Π

∑n
i=1

∑m
j=1 πij

∣∣f(xi)− y∗
j

∣∣. Suppose the counterfactual outcome
y∗ is fully achieved by r, i.e. y∗

j = f(rj) (j = 1, 2 . . .m). Assume that the model f : Rd → R is
Lipschitz continuous with Lipschitz constant L. The expected absolute difference in model outputs
between the factual and counterfactual instances, weighted by pOT (with ε = 0), is bounded by:

W1(f(x),y
∗) ≤ L

√√√√ n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22 ≤ L

√√√√ n∑
i=1

m∑
j=1

pij∥xi − rj∥22 ∀p ∈ Π.

Namely, pOT minimizes the upper bound of W1(f(x),y
∗), where the upper bound is based on the

expected feature modification cost.

In addition, p-SHAP is conceptually correct in attributing the causal behavior to the modifications of
the characteristics, stated in Theorem 4.2 below (proof in Appendix D).

Theorem 4.2 (Interventional Effect of p-SHAP). For any subset S ⊆ F and any xi (i = 1, 2, . . . , n),
v(i)(S) represents the causal effect of the difference between the expected value of f(r) under the
intervention on features S and the unconditional expected value of f(r). Mathematically, this is
expressed as:

E[f(r)] + v(i)(S) = E [f(r)|do (rS = xi,S)] .

Furthermore, we remark that p-SHAP preserves nice axioms of B-SHAP and RB-SHAP, which makes
it an effective tool for attributing features. We omit the proof but refer to (Sundararajan & Najmi,
2020; Lundberg & Lee, 2017) as a reference for axioms of Shapley.

5 THE ALGORITHMIC FRAMEWORK COLA

Sketch The algorithmic framework COLA, stated in Algorithm 1 below, aims to solve equation 1
and is established on four categories of algorithms. First, we resort to a CE algorithm ACE to solve
the problem defined by equation 1a and equation 1b, yielding counterfactual data r with y∗ = f(r)
and D(r,x) ≤ ϵ. Second, we seek a joint distribution of x and r by an algorithm AProb. Third, we
perform FA for x using a Shapley algorithm AShap, taking into account the joint probability. The

5
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p(x, r)← AProb

r← ACE

Lines 1–2 Lines 3–4

x

φ← AShap

px r

Line 5

q← Amax
Value

x rp

Lines 6–16

[
x11 x12

x21 x22

][r11 r12
r21 r22
r31 r32

]
φ =

[
φ11 φ12

φ21 φ22

]
q =

[
r11 r12
r31 r32

]
→ z =

[
x11 q12
q21 x22

]

[
φ11 = 0.2 φ12 = 0.4
φ21 = 0.3 φ22 = 0.1

]
C = 2
→ c ∼ {(1, 2), (2, 1)}

Obtain r and compute p Use p to compute Shapley Match xi to rargmaxjp(rj |xi)
Get c and z by φ and q

0.3

0.1

0.5

Figure 2: [An illustration of COLA] This figure shows how COLA gets c and z for equation 1. We
use Amax

Value for illustration in line 5 due to its simplicity. In lines 6–16, we assume C = 2, and the
sampling yields exactly two positions for modfications according to the probability matrix φ.

attributions contain the information that how large influence a row-column position would cause, if a
value change happens there. Fourth, we revise x in C positions according to the attributions, and
set their values to be the ones obtained by an algorithm AValue. This algorithm tries to ensure that
the refined counterfactual z stay not farther away from x than r. We explain Algorithm 1 in details
below, along with an illustration in Figure 2.

Algorithm 1 COunterfactuals with Limited Actions (COLA)

Require: Model f , factual x ∈ Rn×d, target y∗ ∈ Rm, ϵ, and C
Ensure: Action plan c ∈ Rn×d and correspondingly a refined counterfactual z ∈ Rn×d

1: Use ACE(f,x,y
∗, ϵ) to obtain r ∈ Rm×d, with y∗ = f(r) and D(r,x) ≤ ϵ.

2: Use AProb(x, r) to obtain the joint distribution matrix p ∈ Rn×m
+ .

3: Use AShap(x, r,p) to obtain the shapley values ϕ ∈ Rn×d for each element of x.
4: Normalize the element-wise absolute values of ϕ, i.e., φik ← |ϕik|/∥ϕ∥1 (φ ∈ Rn×d

+ ).
5: Use AValue(r,p) to obtain matrix q ∈ Rn×d.
6: For c ∈ {0, 1}n×d, cik ← 0 (i = 1 . . . n, k = 1, . . . d).
7: Sample C pairs (i, k) according to the probability matrix φ, and let cik = 1 for them.
8: Let z← x (z ∈ Rn×d).
9: for i← 1 to n do

10: for k ← 1 to d do
11: if cik = 1 then
12: zik ← qik
13: end if
14: end for
15: end for
16: return c and z

Line 1 (Applying a CE algorithm to find a counterfactual r). The CE algorithm ACE takes the
model f , the factual x, the target outcome y∗, and the tolerance ϵ as input. The algorithm returns a
counterfactual r staying close with x, with y∗ = f(r) and D(r,x) ≤ ϵ.

Line 2 (Seeking a joint distribution of x and r). We use an algorithm AProb for this task, which
takes x and r as input, and outputs a matrix representing the joint distribution of all n and m data
points in x and r, respectively. The joint distribution p represents an alignment relationship (or
matching) between the factual rows and counterfactual rows, and we use it in Line 5 to compute
the values that can be used for composing z later on. As discussed in Section 3, AProb can be based
on OT to compute a joint distribution that yields the smallest OT distance between x and r, if the
alignment relationship between their rows are unknown. Otherwise, it is recommended to select a
joint distribution that accurately reflects the alignment between the rows in x and r.

Lines 3–4 (p-SHAP FA). We apply equation 7 to compute the shapley value for x. The joint distribu-
tion p can be used here (without being forced) to properly align each row of x with its corresponding
counterfactual rows of r, such that the selected rows in r serve as the most representative contrastive
reference for the row in x. Numerically, this alignment significantly influences our contrastive FA.
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Then, the shapley values (as a matrix) of x is taken element-wisely with the absolute values and
normalized (such that all values sum up to one). The resulted matrix φ forms our FA.

Line 5 (Computing feature values). The algorithm AValue is used for this task, which takes the
counterfactual r and the joint distribution p as input. For any row i in x, AValue selects one or multiple
row(s) in r, used as references for making changes in x. The algorithm returns a matrix q ∈ Rn×d,
where each element qik serves as a counterfactual candidate for xik (∀i, k). Below, we introduce
Amax

Value and Aavg
Value, respectively for the cases of selecting single row and selecting multiple rows.

For any row xi, Amax
Value selects the row of r with the highest probability.

q = Amax
Value(r,p) where qik = rτ(i),k and τ(i) = argmax

j=1,2...m
pij . (9)

The algorithm Aavg computes qik as a convex combination as a weighted average of r1k, r2k, . . . rmk.

q = Aavg
Value(r,p) where qik =

m∑
j=1

(
pij∑m

j′=1 pij′

)
rjk. (10)

Lines 6–16. Recall that the non-negative matrix φ is normalized to have its summation being one.
We could hence treat it as a policy to select the positions in x for value replacement (i.e. cik = 1), as
what line 7 does. Then, for any i and k with cik = 1, xik gets modified to qik, and the modified matrix
is then returned as z together with c forming the optimized solutions of the problem in equation 1.

By Theorem 4.1, COLA is designed to minimize the dissimilarity between f(z) and y∗ by modifying
z based on feature attribution results, which identify the most important features to adjust to achieve
the desired counterfactual effect. The theorem below (proof in Appendix E) demonstrates that the
refined z, produced by the COLA framework, satisfies the constraint equation 1b in the typical
scenario where n = m, using the Frobenius norm as the distance measure. Empirical evidence
supporting the general applicability of this conclusion can be found in Table 3.

Theorem 5.1 (Counterfactual Proximity). Let n = m such that the Frobenius norm ∥·∥F can be used
to measure the differences between z, r, and x. Suppose that the OT plan pOT is obtained without
the entropic regularization term (i.e., ε = 0), resulting in a deterministic matching represented by
a permutation σ of {1, 2, . . . , n}. Then, the refined counterfactual z, constructed using the COLA
framework, satisfies:

∥z− x∥F ≤ ∥r− x∥F ,

indicating that z is at least as close to x as r is, when r is reordered according to σ.

Complexity of COLA Let O(MCE) be the algorithm complexity of ACE. For algorithm AShap,
consider using weighted linear regression to estimate Shapley values, and denote by MShap the number
of sampled subsets. The complexity of COLA with respect to n, m, d, and the regularization parameter
ε of entropic OT is O(MCE) +O(nm log(1/ε)) +O(ndMShap) +N where N = O(nm) +O(nd)
if Amax

Value is used and N = O(nmd) if Aavg
Value is used. See Appendix F.

6 NUMERICAL RESULTS

This section evaluates the effectiveness of COLA in addressing the problem in equation 1, with
y∗ = f(r) where r is the counterfactual obtained from a CE method ACE. We adopt four different
divergence functions: OT evaluates the distance between entire distributions. MMD evaluates the
divergence between the means of two distributions in a high-dimensional feature space. The absolute
mean difference (MeanD) and absolute median difference (MedianD) evaluate the divergence between
mean and median, respectively. The numerical results aim at showing: I) COLA’s effectiveness for
actionable minimality. II) p-SHAP’s superior performance than other Shapley methods towards
actionable minimality. III) COLA’s near-optimal performance.

Experiment Setup The experiments1 are conducted with 4 datasets for binary classification tasks,
5 CE algorithms that are designed for diverse goals, and 12 classifiers, shown in Table 1, where a
combination of dataset, ACE algorithm, and a model defines an “experiment scenario”.
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Table 1: [Experiment Scenarios Setup] Four datasets are used to benchmark five CE algorithms over
12 models. A “scenario” is defined to be a combination of dataset, ACE algorithm, and a model f .

Dataset HELOC (FICO, 2018), German Credit (Hofmann, 1994), Hotel Bookings (Antonio
et al., 2019), COMPAS (Jeff Larson et al., 2016)

ACE DiCE (Mothilal et al., 2020), AReS (Rawal & Lakkaraju, 2020), GlobeCE (Ley et al.,
2023), KNN (Albini et al., 2022; Contardo et al.; Forel et al., 2023), Discount (You
et al., 2024)

Model f Bagging, LightGBM, Support Vector Machine (SVM), Gaussian Process (GP), Radial Basis
Function Network (RBF), XGBoost, Deep Neural Network (DNN), Random Forest (RndForest),
AdaBoost, Gradient Boosting (GradBoost), Logistic Regression (LR), Quadratic Discriminant
Analysis (QDA)

Table 2: [Experiment Methods Setup] The table defines 6 methods for comparisons, colored to align
with Figure 3. Each method is put in an experiment scenario, as defined in Table 1, for benchmarking.

Method The probability p used by AValue and AShap The Shapley algorithm AShap
RB-pUni p← AProb:pij = 1/nm (∀i, j) RB-SHAP, D = trainset of f
RB-pOT p← AProb:Eq. equation 8 (but not used in AShap) RB-SHAP, D = trainset of f
CF-pUni p← AProb:pij = 1/nm (∀i, j) CF-SHAP, D(xi) = pi

CF-pRnd p← AProb:Any xi matched randomly to an rj CF-SHAP, D(xi) = pi

CF-pOT p← AProb:Eq. equation 8 p-SHAP with p
CF-pEct p← AProb:Any xi matched to known counterpart rj (CF or B)-SHAP, D(xi) → rj

We briefly introduce the many ACE in Table 1. DiCE and KNN are data-instance-based CE methods,
which yield counterfactual(s) respectively for each factual instance. AReS and GlobeCE are group-
based CE methods, which find a collection of counterfactual instances for the whole factual data as a
group. The algorithm Discount treats the factual instances as an empirical distribution and seeks a
counterfactual distribution that stays in proximity to it.

Table 2 defines 6 methods, where CF-pOT is the proposed p-SHAP and the others are baselines. Each
is put in many experiment scenarios in Table 1, benchmarked comprehensively. Each method is
determined by a combination of the three algorithms AProb, AValue, and AShap. For example, the first
row RB-pUni uses uniform distribution as the algorithm AProb to compute p, and then the computed p
is sequentially used in equation 9 or equation 10 of AValue for computing q, and AShap is RB-SHAP.

These methods are carefully designed for ablation studies. First, RB-pUni differs with CF-pUni in
that the latter uses CE information whereas the former does not. Second, CF-pUni, CF-pRnd, and
CF-pOT use CE in FA with different joint distributions, and we demonstrate later that the distribution
computed by OT outperforms the others significantly. Third, we want to make sure that OT is useful
because it informs AShap with respect to the factual-counterfactual alignment, not because of other
factors, and hence a comparison of CF-pOT that uses such an alignment to RB-pOT that does not.
Finally, CF-pEct represents a special case that each counterfactual originates from a known source,
which is used as an exact factual-counterfactual alignment, making CF-SHAP also B-SHAP.

Result I: COLA achieves significant action reduction with a minor loss in counterfactual effect
In Table 3, we set a goal for z such that f(z) reaches 80% or 100% counterfacrtual effect of f(r)2.
Observe that COLA is effective in achieving this goal, requiring significantly fewer actions in z (i.e.,
modifications of features in z), compared to the original CE r. Using COLA, one could expect to
only resort to 13%–25% of the feature changes (calculated by ∥z − x∥/∥r − x∥) to achieve the
counterfactual effect of 80%. In particular, only COLA with p-SHAP (that is, CF-pOT) can reach the

1The code is available on both �
https://anonymous.4open.science/r/Contrastive-Feature-Attribution-DFB1 and
the submitted supplementary files.

2Note that by definition, we have D(f(r),y∗) = 0, which represents a 100% counterfactual effect since
y∗ = f(r). To define a counterfactual effect 80%, consider the proportion of divergence reduced by the refined
CE z. That is, Counterfactual Effect = 1−D(f(z), y∗)

/
D(f(x), y∗) = 80%, with D being OT.
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Table 3: [COLA for Actionable Minimality] This table shows the number of modified features in z by
each method, when f(z) reaches 80% counterfactual effect of f(r). The result of each method is
averaged by running in 4 randomly selected scenarios in Table 1, with 100 runs in each scenario. The
symbol “-” means the target counterfactual effect cannot be achieved.

Dataset Method 80% Counterfactual Effect 100% Counterfactual Effect
# Modified Features ∥z−x∥

∥r−x∥ # Modified Features ∥z−x∥
∥r−x∥

German
Credit
|F| = 9

RB-pUni – – – –
RB-pOT 5.29(±0.09) 75.9% – –
CF-pUni – – – –
CF-pRnd – – – –
CF-pOT 1.70(±0.02) 24.3% 3.13(±0.03) 44.9%

Hotel
Bookings
|F| = 29

RB-pUni 7.10(±0.08) 24.5% – –
RB-pOT 8.55(±0.08) 50.2% – –
CF-pUni 7.01(±0.07) 41.1% – –
CF-pRnd 10.63(±0.08) 62.4% – –
CF-pOT 2.50(±0.03) 14.6% 4.44(±0.02) 26.0%

COMPAS
|F| = 15

RB-pUni 5.02(±0.05) 82.7% – –
RB-pOT – – – –
CF-pUni 2.80(±0.04) 34.4% – –
CF-pRnd 2.58(±0.04) 32.1% – –
CF-pOT 1.25(±0.03) 14.8% 2.45(±0.03) 30.0%

HELOC
|F| = 23

RB-pUni – – – –
RB-pOT – – – –
CF-pUni – – – –
CF-pRnd 2.73(±0.04) 15.7% – –
CF-pOT 2.35(±0.03) 13.4% 7.745(±0.05) 44.7%

goal of the counterfactual effect of 100%, with only 26%–45% of the feature changes in original r.
Especially, p-SHAP leads to the best actional minimality, which is analyzed in details below.

Result II: p-SHAP outperforms the other Shapley methods in achieving counterfactual effect
We provide the evaluation of different Shapley methods in equation 4–equation 7 in Figure 3, where
the x-axis is the number of allowed feature changes C and the y-axis is the term D(f(z),y∗) in
equation 1. First, RB-pUni and RB-pOT perform significantly worse than the others, indicating the
importance of using CE information in attributing features towards actionable minimality in CE.
Second, the result showing that CF-pOT outperforms RB-pOT demonstrates that the use of OT enhances
the performance of p-SHAP specifically by providing effective factual-counterfactual alignment,
rather than being influenced by other factors, due to that they only differ in AShap (see Table 2). Third,
p-SHAP significantly outperforms CF-pUni and CF-pRnd. This shows the effectiveness of the joint
distribution obtained in OT in using p-SHAP. Namely, merely using the counterfactual information
for FA (as done by CF-puni and CF-pRnd) is not enough, and a proper alignment (which does not
necessarily mean the one defined by the exact counterfactual generation mechanism, as revealed in
Figure 4 later) between factual and counterfactual must be considered.

We observed that COLA with p-SHAP possess good performance for many of the experiment
scenarios defined in Table 1, as shown in Figure 3 as well as Table 3. A massive amount of such
results are further demonstrated in Appendix H. In conclusion, p-SHAP outperforms all the other
Shapley methods for the actionable minimality in CE.

Result III: COLA may achieve near-optimal performance This result demonstrates the ef-
fectiveness of p-SHAP in eliminating the influence of the CE generation process by replacing the
CE algorithm-dependent knowledge3 of D with the OT joint distribution between the factual and
counterfactual data, shown in Figure 4. We benchmark the method CF-pEct using COLA, and focus
on solving equation 1 with MeanD as the divergence function D. Since CF-pEct relies on a known

3This knowledge, i.e. exact alignment between factual and counterfactual, is available only by DiCE and
KNN among all CE methods considered.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 100 200
0

0.2
0.4
0.6
0.8

LightGBM, ACE =KNN

0 100 200
0

0.2

0.4

0.6

0.8
RBF, ACE =Discount

0 100 200
0

0.5

XGBoost, ACE =DiCE

0 100 200
0

0.2

0.4

0.6

0.8

GP, ACE =DiCE

0 200 400
0

0.2

0.4

0.6

0.8

DNN, ACE =DisCount

0 200 400
0

0.5

1

AdaBoost, ACE =DiCE

0 200 400
0

0.5

1

LR, ACE =KNN

0 200 400
0

0.5

1

GradBoost, ACE =KNN

0 50 100
0

0.2
0.4
0.6
0.8

Bagging, ACE =AReS

0 50 100
0

0.2

0.4

0.6

0.8
SVM, ACE =AReS

0 50 100
0

0.2

0.4

0.6

0.8
LightGBM, ACE =GlobeCE

0 50 100
0.2

0.4

0.6

0.8

1
RBF, ACE =Discount

0 200 400 600 800

0

0.5

1
DNN, ACE =Discount

0 200 400 600 800
0

0.5

1
RndForest, ACE =KNN

RB-pUni

RB-pOT

CF-pUni

CF-pRnd

CF-pOT

0 200 400 600 800

0

0.5

1

XGBoost, ACE =GlobeCE

0 200 400 600

0

0.5

1

QDA, ACE =GlobeCE

O
T

M
M

D
M

ea
nD

M
ed

ia
nD

[G
er

m
an

C
re

di
t]

[H
ot

el
B

oo
ki

ng
s]

[C
O

M
PA

S]
[H

E
LO

C
]

Figure 3: D(f(z),y∗) vs. allowed actions C. Experiments are with 100 runs. The shadows show the
99.9% confidence intervals. Aavg

Value is used for HELOC and COMPAS, and Amax
Value is used for German

Credit and Hotel Bookings. The legend inside “RnDForest, ACE =KNN” applies to all plots.
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Figure 4: [German Credit] D(f(z), y∗) vs. allowed actions C, with D being MeanD.

factual-counterfactual alignment, we benchmark the effectiveness of COLA for using this alginment.
The theoretical optimality of COLA in this case can be obtained by solving an mixed integer linear
programming (MILP), see Appendix G for how the MILP formulation is derived. Note that solving
MILP is computationally heavy, hence only done for German Credit.

We can see that CF-pEct possess a near-optimal performance using DiCE. Remark that for DiCE and
KNN, the factual-counterfactual pairs are independent to each others and hence we argue that COLA
is effective for instance-based CE, even though our formulation in equation 1 is a generalization
for group or distributional CE. It is interesting to note that CF-pOT sometimes performs better than
CF-pEct, because it utilizes a more theoretically grounded approach to identify the key features that
require modification, whereas CF-pEct relies on CE algorithm-dependent knowledge, which lacks
solid justification on its effectiveness for FA. We notice that there is still a gap between CF-pEct,
CF-pOT and the optimal result in KNN. Finding the best alignment is still an open question.

7 CONCLUSIONS

This paper introduces a novel framework, COLA, for refining CE by joint-distribution-informed
Shapley values, ensuring the refined CE maintains the counterfactual effect with fewer actions.
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A COMPARISON TO EXISTING APPROACHES

The authors in (Albini et al., 2022) proposed CF-SHAP, which uses counterfactual data points as the
background distribution for Shapley. Yet, it assumes the counterfactual data distribution is defined
conditionally on each single data instance, which implies that there is a known probabilistic alignment
between every factual and every counterfactual instance. Similar assumptions are made in (Merrick
& Taly, 2020; Kommiya Mothilal et al., 2021). In many scenarios where global explanations are
expected, this assumption fails. We note that the setup in (Albini et al., 2022) for counterfactual data
distribution is a special case of ours. The authors in (Kwon & Zou, 2022) proposed WeightedSHAP,
adding weights to features rather than treating them as contributing equally. Our proposed method
weights the contributions for data points and can be straightforwardly extended to consider weighting
both rows and columns. Literature (Kommiya Mothilal et al., 2021) establishes a framework for
utilizing both FA and CE for explainability. Yet, the CE-based FA have the same assumption as
(Albini et al., 2022), making it difficult to generalize to group (Ley et al., 2023; 2022) or distributional
CE (You et al., 2024) cases. More importantly, the aforementioned literature does not address the
minimal actions CE problem, which is the focus of our paper.

The problems formulated in (Kanamori et al., 2022; Karimi et al., 2021) are quite close to the one
investigated in this paper. In (Karimi et al., 2021) the authors minimize the cost of performing actions
with assumptiosn of known structural causal model (SCM), which is rarely known in practice. The
authors in (Kanamori et al., 2022) pointed out that it remains open whether existing CE methods can
be used for solving that problem. An-MILP-solvers based approach is proposed for linear classifiers,
tree ensembles, and deep ReLU networks, built upon the works (Ustun et al., 2019; Kanamori et al.,
2020; Parmentier & Vidal, 2021). However, solving MILP is costly, which makes it difficult to scale.

B NP -HARDNESS OF THE PROBLEM IN EQUATION 1

Theorem B.1 below states that one does not expect a scalable exact algorithm for solving it generally,
unless P = NP , and the hardness lies not only on the non-linearity of f , but also its combinatorial
nature.

Theorem B.1. Problem equation 1 is generally NP-hard for non-trivial divergences. More specifi-
cally, it is hard even when d = 1 for linear models.

Proof. Consider the Sparse Regression (SR) with a Cardinality Constraint problem, defined as
follows. Given a matrix W ∈ Rm×n, a target vector y∗ ∈ Rm, and a sparsity level K ∈ N, the
goal is to find a vector z ∈ Rn that minimizes the residual error while having at most K non-zero
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elements:

min
z

∥Wz− y∗∥22
s.t. ∥z∥0 ≤ K,

where ∥z∥0 denotes the number of non-zero elements in z. This problem is known to be NP-hard
due to the combinatorial nature of selecting the subset of variables to include in the model.

We will map this SR problem to our problem equation 1 with the following settings. Let the number
of features be d = 1 and the number of instances be n (the same as the dimension of the SR problem).
Let the factual data be x = 0 ∈ Rn (the zero vector), and the target model output be y∗ ∈ Rm (as
given in the SR problem). We define the model f as a linear function f(z) = Wz.

For the model output, we define D(f(z),y∗) = ∥f(z)− y∗∥22, i.e. the Euclidean distance squared.
For the instances, we define D(z,x) = ∥z−x∥22 = ∥z∥22, since x = 0. We set the maximum allowed
feature changes C to be equal to k (the sparsity level from the SR problem). The large constant M
can be any sufficiently large positive number, for example, M ≥ maxi |zi|.
Given that x = 0, constraints equation 1d and equation 1e simplify to:

zi ≤ 0 · (1− ci) +Mci = Mci,

zi ≥ 0 · (1− ci)−Mci = −Mci, ∀k = 1, . . . , n.

This means that if ci = 0, then zi ≤ 0 and zi ≥ 0, so zi = 0. If ci = 1, then zi ∈ [−M,M ]. The
constraint equation 1c becomes

∑n
k=1 ci ≤ k.

Our problem equation 1 thus becomes:

min
c,z

∥Wz− y∗∥22 (11a)

s.t. ∥z∥22 ≤ ϵ (11b)
d∑

k=1

ci ≤ k (11c)

zi = 0, if ci = 0 (11d)
zi ∈ [−M,M ], if ci = 1 (11e)
ci ∈ {0, 1}, ∀k = 1, . . . , n. (11f)

In this formulation, the variables ci indicate whether the variable zi is allowed to change (ci = 1) or
not (ci = 0). The constraints enforce that zi = 0 when ci = 0, mirroring the sparsity constraint in
the SR problem. The constraint

∑n
k=1 ci ≤ k ensures that at most k features can change, matching

the sparsity level. The objective function is identical to that of SR.

Since our problem formulation directly mirrors the SR problem with a cardinality constraint, which
is known to be NP-hard, solving Problem equation 1 is at least as hard as solving the SR problem.
Therefore, Problem equation 1 isNP-hard even when d = 1, the model f is linear, and the divergence
functions D are standard Euclidean distances.

C PROOF OF THEOREM 4.1: p-SHAP TOWARDS COUNTERFACTUAL EFFECT

Let x = {xi}ni=1 ∈ Rn×d be the set of factual data points with associated probability weights µi ≥ 0
such that

∑n
i=1 µi = 1, and let r = {rj}mj=1 ∈ Rm×d be the set of counterfactual data points with

associated probability weights νj ≥ 0 such that
∑m

j=1 νj = 1. Let pOT ∈ Rn×m be the OT plan
between x and r that minimizes the expected transportation cost:

pOT = arg min
p∈Π(µ,ν)

n∑
i=1

m∑
j=1

pij∥xi − rj∥22,

where Π(µ,ν) is the set of joint distributions satisfying the marginal constraints
∑m

j=1 pij = µi for
all i and

∑n
i=1 pij = νj for all j. The theorem below provides that feature attributions are aligned
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with the expected costs of feature modifications, leading to action plans that are cost-efficient in
achieving counterfactual outcomes.
Theorem C.1 (Theorem 4.1 in the main text). Consider the 1-Wasserstein divergence W1, i.e.
W1(f(x),y

∗) = minπ∈Π

∑n
i=1

∑m
j=1 πij

∣∣f(xi)− y∗
j

∣∣. Suppose the counterfactual outcome y∗ is
fully achieved by r, i.e. y∗

j = f(rj) (j = 1, 2 . . .m). Assume that the model f : Rd → R is Lipschitz
continuous with Lipschitz constant L. The expected absolute difference in model outputs between the
factual and counterfactual instances, weighted by pOT (with ε = 0), is bounded by:

W1(f(x),y
∗) ≤ L

√√√√ n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22 ≤ L

√√√√ n∑
i=1

m∑
j=1

pij∥xi − rj∥22 ∀p ∈ Π.

Namely, pOT minimizes the upper bound of W1(f(x),y
∗), where the upper bound is based on the

expected feature modification cost.

Proof. Since the model f is Lipschitz continuous with constant L, for any xi ∈ Rd and rj ∈ Rd, it
holds that:

|f(xi)− f(rj)| ≤ L∥xi − rj∥2.
Multiplying both sides of the inequality by pOT

ij ≥ 0, we obtain:

pOT
ij |f(xi)− f(rj)| ≤ LpOT

ij ∥xi − rj∥2.
Summing both sides over all i = 1, . . . , n and j = 1, . . . ,m, we have:

n∑
i=1

m∑
j=1

pOT
ij |f(xi)− f(rj)| ≤ L

n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥2.

Let us denote Ef =
∑n

i=1

∑m
j=1 p

OT
ij |f(xi) − f(rj)| and Ed =

∑n
i=1

∑m
j=1 p

OT
ij ∥xi − rj∥2. The

inequality then becomes:
Ef ≤ LEd.

To further bound Ed, we apply the Cauchy-Schwarz inequality. Observe that the weights pOT
ij are

non-negative and satisfy
∑n

i=1

∑m
j=1 p

OT
ij = 1 because pOT is a probability distribution over the joint

space of x and r. The Cauchy-Schwarz inequality states that for any real-valued functions aij and
bij , ∑

i,j

aijbij

2

≤

∑
i,j

a2ij

∑
i,j

b2ij

 .

Setting aij =
√

pOT
ij and bij =

√
pOT
ij ∥xi − rj∥2, we have:

Ed =
∑
i,j

pOT
ij ∥xi − rj∥2 =

∑
i,j

√
pOT
ij

√
pOT
ij ∥xi − rj∥2 =

∑
i,j

aijbij .

Applying the Cauchy-Schwarz inequality:

E2
d ≤

∑
i,j

a2ij

∑
i,j

b2ij

 =

∑
i,j

pOT
ij

∑
i,j

pOT
ij ∥xi − rj∥22

 .

Since
∑

i,j p
OT
ij = 1, this simplifies to:

E2
d ≤

n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22 =

n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22.

Taking the square root of both sides, we obtain:

Ed ≤

√√√√ n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22.
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Substituting back into the inequality for Ef , we have:

Ef ≤ L

√√√√ n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22.

Note that the 1-Wasserstein divergence is no more than Ef
4, then,

W1(f(x),y
∗) = min

π∈Π

n∑
i=1

m∑
j=1

πij

∣∣f(xi)− y∗
j

∣∣ ≤ Ef ≤ L

√√√√ n∑
i=1

m∑
j=1

pOT
ij ∥xi − rj∥22.

Therefore, the 1-Wasserstein divergence between f(x) and y∗ is bounded by the Lipschitz constant
L times the square root of the expected transportation cost under pOT. Since pOT minimizes the
expected transportation cost

∑
i,j pij∥xi− rj∥22 over all feasible transport plans in Π(µ,ν), we have√√√√ n∑

i=1

m∑
j=1

pOT
ij ∥xi − rj∥22 ≤

√√√√ n∑
i=1

m∑
j=1

pij∥xi − rj∥22 ∀p ∈ Π(µ,ν).

Hence the conclusion.

D PROOF OF THEOREM 4.2: INTERVENTIONAL EFFECT

Theorem D.1 (Theorem 4.2 in the main text). For any subset S ⊆ F and any xi (i = 1, 2, . . . , n),
v(i)(S) represents the causal effect of the difference between the expected value of f(r) under the
intervention on features S and the unconditional expected value of f(r). Mathematically, this is
expressed as:

E[f(r)] + v(i)(S) = E [f(r)|do (rS = xi,S)] .

Proof. Let p(x, r) be the joint probability of x and r obtained from AProb. Under the intervention
do(rS = xi,S), the features in S are set to xi,S , and the features in F\S remain distributed according
to their marginal distribution p(rF\S). Therefore, the expected value of f(r) under the intervention
is:

E[f(r) | do(rS = xi,S)] =

∫
RF\S

f(xi,S ; rF\S)p(rF\S) drF\S .

Remark that by the definition of v(i)(S),

v(i)(S) = Er∼p(r|xi)[f(xi,S ; rF\S)]− E[f(r)] =
∫
RF\S

f(xi,S ; rF\S)p(rF\S) drF\S − E[f(r)],

such that
E[f(r)] + v(i)(S) = E [f(r)|do (rS = xi,S)] .

Hence the conclusion.

The value function v(i)(S) captures the expected value of f(r) when we intervene by setting the
features in S to xi,S , denoted as do(rS = xi,S). This intervention is independent of any predefined
joint probability distribution p(x, r). Therefore, the expression E[f(r)] + v(i)(S) represents the
combined effect of the base expected value of f(r) and the additional causal impact of the attribution
v(i)(S).

4Note that Ef =
∑n

i=1

∑m
j=1 p

OT
ij |f(xi)− f(rj)|. Because both π and pOT denote joint probability of x

and r, however, π makes the summation the minimum for the W1 term across all possible joint distributions,
whereas pOT does not.
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E PROOF OF THEOREM 5.1: COUNTERFACTUAL PROXIMITY

Theorem E.1 (Theorem 5.1 in the main text). Let n = m such that the Frobenius norm ∥ · ∥F can be
used to measure the differences between z, r, and x. Suppose that the OT plan pOT is obtained without
the entropic regularization term (i.e., ε = 0), resulting in a deterministic matching represented by
a permutation σ of {1, 2, . . . , n}. Then, the refined counterfactual z, constructed using the COLA
framework, satisfies:

∥z− x∥F ≤ ∥r− x∥F ,

indicating that z is at least as close to x as r is, when r is reordered according to σ.

Proof. Since the OT plan is computed without entropic regularization and n = m, the OT plan
provides a deterministic matching. Specifically, for each i:

pij =

{
1
n , if j = σ(i),

0, otherwise.

This means that each xi is uniquely matched to rσ(i). Note that using either Amax
Value or Aavg

Value, we have:

qi = rσ(i), for all i = 1, . . . , n,

i.e., qik = rσ(i),k for all i and k.

For the elements where cik = 1 (modified elements), zik = qik = rσ(i),k. For elements where
cik = 0, zik = xik. Therefore, we can write:

(zik − xik)
2 =

{
(rσ(i),k − xik)

2, if cik = 1,

0, if cik = 0.
(12)

The squared Frobenius norms with respect to r and z are computed as follows:

∥r− x∥2F =

n∑
i=1

d∑
k=1

(rσ(i),k − xik)
2,

∥z− x∥2F =

n∑
i=1

d∑
k=1

(zik − xik)
2.

And,

∥r− x∥2F − ∥z− x∥2F =

n∑
i=1

d∑
k=1

(rσ(i),k − xik)
2 −

n∑
i=1

d∑
k=1

(zik − xik)
2

(i)
=

n∑
i=1

d∑
k=1

(rσ(i),k − xik)
2 −

∑
(i,k):cik=1

(rσ(i),k − xik)
2

=
∑

(i,k):cik=0

(rσ(i),k − xik)
2 ≥ 0,

where the equality (i) holds because of equation 12.

Since the difference ∥r− x∥2F − ∥z− x∥2F ≥ 0, it follows that:

∥z− x∥2F ≤ ∥r− x∥2F .

Taking square roots, we get:
∥z− x∥F ≤ ∥r− x∥F .

Hence the conclusion.
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F ANALYSIS OF COMPUTATIONAL COMPLEXITY OF COLA

We perform analysis of the computational complexity of COLA as follows.

First, we analyze AProb. If the alignment between x and r is known a priori, then AProb just constructs
the matrix p with the prior knowledge, which takes O(n×m). Otherwise, we consider solving OT
to obtain p, which, by the Sinkhorn–Knopp algorithm, takes O(n×m× log(1/ε)).

Then we analyze AShap. For each subset, the model is evaluated on all n data points, leading to O(n)
evluations per subset. Incorporating baseline values from the reference data r involves replacing
the values of certain features with their corresponding baseline values. This operation is O(m)
because it requires accessing the baseline values from the reference table r for each of the d features.
If we assume that the reference values can be precomputed and accessed in constant time, then
the complexity of incorporating these values can be considered as O(d). The number of MShap
subsets results in MShap model evaluations. Combining the above steps, the complexity of AShap is
O(n× d×MShap).

The normalization in line 4 of COLA takes O(n× d).

To compare the complexities of the two algorithms, Amax
Value and Aavg

Value, we analyze each algorithm
step-by-step. For Amax

Value, for each row xi in the data table, we need to (1) compute the probabilities
pij for all j ∈ {1, 2, . . . ,m}, which involves O(m) operations per row, (2) identify the row rj
in the reference data with the highest probability pij , which involves O(m) operations per row,
and (3) assign qik = rτ(i),k where τ(i) = argmaxj pij , which involves O(d) operations per row.
Since there are n rows in the data table, the total complexity for Amax

Value is O(n× (m+m+ d)) =
O(n× (2m+ d)) = O(n×m+ n× d) = O(n× (m+ d)).

For Aavg
Value, for each row xi in the data table, we need to 1) compute the probabilities pij for all j ∈

{1, 2, . . . ,m}, which involves O(m) operations per row, 2) compute the sum
∑m

j′=1 pij′ , which in-

volves O(m) operations per row, and 3) calculate the weighted average qik =
∑m

j=1

(
pij∑m

j′=1
pij′

)
rjk,

which involves O(m × d) operations per row. Since there are n rows in the data table, the total
complexity for Aavg

Value is O(n×(m+m+m×d)) = O(n×(2m+m×d)) = O(n×(m+m×d)) =
O(n×m× (1 + d)) = O(n×m× d).

For lines 6–16, the entire complexity is straightforwardly O(n× d) +O(C) = O(n× d) due to the
fact C ≤ n× d.

Therefore, the complexity of COLA using Amax
Value equals

O(MCE) +O(nm log(1/ε)) +O(ndMShap) +O(nd) +O(n(m+ d)) +O(nd)

=O(MCE) +O(nm log(1/ε)) +O(ndMShap) +O(nm) +O(nd)

and the complexity of COLA using Aavg
Value equals

O(MCE) +O(nm log(1/ε)) +O(ndMShap) +O(nd) +O(nmd)) +O(nd)

=O(MCE) +O(nm log(1/ε)) +O(ndMShap) +O(nmd)

Hence the complexity of COLA with respect to n, m, d, and the regularization parameter ε of entropic
OT is

O(MCE) +O(nm log(1/ε)) +O(ndMShap) +N

where N = O(nm) +O(nd) if Amax
Value is used and N = O(nmd) if Aavg

Value is used.

G AN MILP FORMULATION OF EQUATION 1 WITH MEAND

In this section, we provide a global optimality benchmark for using a known alignment between
factual and counterfactual in solving equation 1 with D being MeanD, namely

D(f(z),y∗) =

∣∣∣∣∣ 1n
n∑

i=1

f(zi)− sy∗

∣∣∣∣∣
18
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with sy∗ = 1
m

∑m
j=1 y

∗
j . Since COLA is used, we have D(r,x) ≤ ϵ, and z stays closer to x than r,

hence equation 1b is dropped. The formulation of equation 1 then becomes:

min
c,z

∣∣∣∣∣
n∑

i=1

f(zi)− n sy∗

∣∣∣∣∣ (13a)

s.t.
n∑

i=1

d∑
k=1

cik ≤ C (13b)

zik = rikcik + xik(1− cik) i = 1, . . . n, k = 1, . . . d (13c)

Note that the original constraints equation 1d and equation 1e merge to be equation 13c, because
CF-pEct is imposed to be used. That is, for any xi, there is an exact rj serves as its reference in AShap
and AValue, such that xik (k = 1, 2 . . . d) either stays unchanged or can be changed to rjk. Therefore
zik = rikcik + xik(1− cik) of which the value depends on the binary variable cik.

Due to the known alignment between any xi and its corresponding rj , q is determined (also, both
Amax

Values and Aavg
Values return the same q). For any data point i and any feature set S ⊆ F , let ziS denotes

the solution zi where we have all features k ∈ S changed to qik, and the other features h ∈ F\S
stays xih. Hence the set of ziS (S ⊆ F) composes the domain of all possible values of z. Define a
corresponding scaler variable for any ziS :

giS = f(ziS)− sy∗.

Then, for any zi in equation 13, the value of the term
∑n

i=1 f(zi) − n sy∗ can be represented by a
binary variable aiS together with the scaler giS , namely,

n∑
i=1

f(zi)− n sy∗ =

n∑
i=1

∑
S⊆F

giSaiS .

The optimization problem equation 13 is hence reformulated as a mixed integer programming below.

min
a,η

η (14a)

s.t.
n∑

i=1

∑
S⊆F

giSaiS ≤ η (14b)

n∑
i=1

∑
S⊆F

giSaiS ≥ −η (14c)

∑
S⊆F

aiS = 1 i = 1, . . . n (14d)

n∑
i=1

∑
S⊆F

|S|aiS ≤ C (14e)

Minimizing η under the two constraints equation 14b and equation 14c is equivalent to minimizing
the objective function of equation 13. The constraints in equation 14d guarantees that each data point
i is subject to one and only one feature modification plan aiS for a specific S (S ⊆ F ). The constraint
equation 14e corresponds to equation 13b. Solving equation 14 yields the theoretical optimality of
COLA using a known alignment between factual and counterfactual, demonstrated in Figure 4 in
Section 6.

H EXTENDED NUMERICAL RESULTS

Observing Figures 5–8, CF-pUni generally performs better than RB-pUni. Second, consider RB-pOT
and CF-pOT that also differ only in AShap, the latter consistently outperforms the former. Hence
RB-SHAP is not suitable for FA in CE.

We analyze how different Shapley methods affect FA, corresponding to lines 3–4 in COLA. The
shapley methods can be classified into two categories: First, consider RB-pUni and CF-pUni that differ
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only in AShap. Observing Figures 5–8, CF-pUni generally performs better than RB-pUni. Second,
consider RB-pOT and CF-pOT that also differ only in AShap, the latter consistently outperforms the
former. Hence RB-SHAP is not suitable for FA in CE.

Besides FA, the other equally important step of COLA is line 5, i.e. using the joint probability p(x, r)
to compose the matrix q, telling the factual x to which direction to change its features so as to move
towards the target model outcome. We observe in Figures 5–8 that CF-pOT consistently outperforms
all other methods throughout all experiments. Note that all the three methods CF-pUni, CF-pRnd, and
CF-pOT provide solution’s for the joint probability p when the exact alignment between factuals and
counterfactuals are unknown. Yet, their performance differ significantly. Simply knowing the CE
(and its marginal distribution) is insufficient.

OT proves to be exceptionally useful when the alignment information between factual and counterfac-
tual instances is missing or inaccurate. Even when the CE algorithm explicitly matches each factual
instance to a corresponding counterfactual, it is challenging to justify that the known alignment
optimizes performance. This is supported by Figure 4 in Section 6.

Note that pOT does not need to be the true joint distribution of x and r from a data generation
perspective. Instead, it should guide COLA to treat x and r together for both FA and CE. Furthermore,
the QDA column in Figure 5 shows stableness of OT-based methods, while others diverge significantly
from the target. We emphasize that COLA, however, is not limited to using OT as AProb. As indicated
by Figure 4, any known best p still has non-negligible gap to the global optimality. Devising a better
AProb algorithm is hence an interesting topic worth exploration.

I EXPERIMENTS REPRODUCIBILITY

The experiments are conducted on a high performance computing (HPC) cluster, running with four
nodes (for the four datasets) in parallel, with each node equipped with two Intel Xeon Processor
2660v3 (10 core, 2.60GHz) and 128 GB memory. The experiment runs approximately 5-10 hours in
each node, dependent on the size of the dataset. It is also possible to reproduce the experiment on a
laptop, while it costs more computational time generally than using an HPC cluster.

For the four datasets, the numerical features are standardized, and the categorical features follow
either label-encoding or one-hot encoding. Practically, we did not observe remarkable difference
between the two encoding methods in terms of COLA’s performance. The train-test split follows
7 : 3.

The optimality baseline as shown in Figure 4 is solved by Gurobi 11.0.2 (gur). In order to reproduce
the optimality baseline, a license of Gurobi is required. Otherwise, we can resort to open-source
operations research libraries such as Google-OR tools (goo). We remark that solving the MILP in
Appendix G is computationally expensive, such that it may only apply to small scale datasets such as
German Credit. If one wants to compute the optimality baseline for other datasets, then the number
of used features needs to be reduced.

The hyperparameters of the models used in the experiment are specified as follows. The models
Bagging, GP, RBF, RndForest, AdaBoost, GradBoost, and QDA are scikit-learn (skl) models, where
all hyper-parameters are kept default. The models DNN, SVM, RBF, and LR are implemented
by PyTorch (Paszke et al., 2019). The DNN has three layers. The SVM uses the linear kernel.
The models XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) are used by their
scikit-learn interface, with all hyper-parameters kept default.

J POTENTIAL IMPACT

Our proposed framework has several potential positive impacts. By enhancing the transparency and
interpretability of machine learning models, our method can improve trust in AI systems, particularly
in high-stakes applications such as healthcare, finance, and criminal justice. The ability to generate
more concise and actionably efficient counterfactual explanations can aid in identifying and mitigating
biases, leading to fairer decision-making processes. Additionally, the framework’s versatility and
scalability across various models and datasets can democratize access to advanced AI interpretability
tools, fostering greater inclusivity in AI development and deployment.
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Figure 5: [HELOC] D(f(z),y∗) vs. allowed actions C. Experiments are with 100 runs. The shadows
show the 99.9% confidence intervals. The legends apply to all plots. Aavg

Value is used.
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Figure 6: [German Credit] D(f(z),y∗) vs. allowed actions C. Experiments are with 100 runs. The
shadows show the 99.9% confidence intervals. The legends apply to all plots. Aavg

Value is used.
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Figure 7: [Hotel Bookings] D(f(z),y∗) vs. allowed actions C. Experiments are with 100 runs. The
shadows show the 99.9% confidence intervals. The legends apply to all plots. Amax

Value is used.
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Figure 8: [COMPAS] D(f(z),y∗) vs. allowed actions C. Experiments are with 100 runs. The
shadows show the 99.9% confidence intervals. The legends apply to all plots. Amax

Value is used.
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