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ABSTRACT

Offline reinforcement learning (RL) struggles in environments with rich and
noisy inputs, where the agent only has access to a fixed dataset without envi-
ronment interactions. Past works have proposed common workarounds based
on the pre-training of state representations, followed by policy training. In this
work, we introduce a simple, yet effective approach for learning state represen-
tations. Our method, Behavior Prior Representation (BPR), learns state repre-
sentations with an easy-to-integrate objective based on behavior cloning of the
dataset: we first learn a state representation by mimicking actions from the dataset,
and then train a policy on top of the fixed representation, using any off-the-
shelf Offline RL algorithm. Theoretically, we prove that BPR carries out per-
formance guarantees when integrated into algorithms that have either policy im-
provement guarantees (conservative algorithms) or produce lower bounds of the
policy values (pessimistic algorithms). Empirically, we show that BPR com-
bined with existing state-of-the-art Offline RL algorithms leads to significant im-
provements across several offline control benchmarks. The code is available at
https://github.com/bit1029public/offline_bpr.

1 INTRODUCTION

Offline Reinforcement Learning (Offline RL) is one of the most promising data-driven ways of
optimizing sequential decision-making. Offline RL differs from the typical settings of Deep Rein-
forcement Learning (DRL) in that the agent is trained on a fixed dataset that was previously collected
by some arbitrary process, and does not interact with the environment during learning (Lange et al.,
2012; Levine et al., 2020). Consequently, it benefits the scenarios where online exploration is chal-
lenging and/or unsafe, especially for application domains such as healthcare (Wang et al., 2018;
Gottesman et al., 2019; Satija et al., 2021) and autonomous driving (Bojarski et al., 2016; Yurtsever
et al., 2020). A common baseline of Offline RL is Behavior Cloning (BC) (Pomerleau, 1991). BC
performs maximum-likelihood training on a collected set of demonstrations, essentially mimicking
the behavior policy to produce predictions (actions) conditioned on observations. While BC can
only achieve proficient policies when dealing with expert demonstrations, Offline RL goes beyond
the goal of simply imitating and aims to train a policy that improves over the behavior one. De-
spite promising results, Offline RL algorithms still suffer from two main issues: i) difficulty dealing
with limited high-dimensional data, especially visual observations with continuous action space (Lu
et al., 2022); ii) implicit under-parameterization of value networks exacerbated by highly re-used
data, that is, an expressive value network implicitly behaves as an under-parameterized one when
trained using bootstrapping (Kumar et al., 2021a;b).

In this paper, we focus on state representation learning for Offline RL to mitigate the above issues:
projecting the high-dimensional observations to a low-dimensional space can lead to a better per-
formance given limited data in the Offline RL scenario. Moreover, disentangling representation
learning from policy training (or value function learning), referred to as pre-training the state rep-
resentations, can potentially mitigate the “implicit under-parameterization” phenomenon associated
with the emergence of low-rank features in the value network (Wang et al., 2022). In contrast to
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previous work that pre-train state representations by specifying the required properties, e.g., maxi-
mizing the diversity of states encountered by the agent (Liu & Abbeel, 2021; Eysenbach et al., 2019),
exploring the attentive knowledge on sub-trajectory (Yang & Nachum, 2021), or capturing temporal
information about the environment (Schwarzer et al., 2021a), we consider using the behavior policy
to learn generic state representations instead of specifying specific properties.

Many existing Offline RL methods regularize the policy to be close to the behavior policy (Fujimoto
et al., 2019; Laroche et al., 2019b; Kumar et al., 2019) or constrain the learned value function of
OOD actions not to be overestimated (Kumar et al., 2020; Kostrikov et al., 2021). Beyond these use,
the behavior policy is often ignored, as it does not directly provide information on the environment.
However, the choice of behavior has a huge impact on the Offline RL task. As shown by recent
theoretical work (Xiao et al., 2022; Foster et al., 2022), under an agnostic baseline, the Offline RL
task is intractable (near optimality is exponential in the state space size), but it becomes tractable
with a well-designed behavior (e.g. the optimal policy or a policy trained online). This impact
indicates that the information collected from the behavior policy might deserve more attention.

Figure 1: Illustration of Behavior Prior Represen-
tations and comparison with Behavior Cloning.

To this end, we propose Behavior Prior Rep-
resentation (BPR), a state representation learn-
ing method tailored to Offline RL settings (Fig-
ure 1). BPR learns state representations implic-
itly by enforcing them to be predictive of the ac-
tion performed by the behavior policy, normal-
ized to be on the unit sphere. Then, the learned
encoder is frozen and utilized to train a down-
stream policy with any Offline RL algorithms.
Intuitively, to be predictive of the normalized
actions, BPR encourages the encoder to ignore
the task-irrelevant information while maintain-
ing the task-specific knowledge relative to the
behavior, which we posit is efficient for learn-
ing a state representation. Theoretically, we
prove that BPR carries out performance guaran-
tees when combined with conservative or pes-
simistic Offline RL algorithms. While an uninformative behavioral policy may lead to bad repre-
sentations and therefore degraded performance, we note that such a scenario may be predicted from
the empirical returns of the dataset. Furthermore, since the learning procedure of BPR does not in-
volve value functions or bootstrapping methods like Temporal-Difference, it can naturally mitigate
the "implicit under-parameterization" phenomenon. We prove this empirically by utilizing effective
dimensions measurement to evaluate feature compactness in the value network’s penultimate layer.
The key contributions of our work are summarized below:

• We propose a simple, yet effective method for state representation learning in Offline RL, re-
lying on the behavior cloning of actions; and find that this approach is effective across several
offline benchmarks, including raw state and pixel-based ones. Our approach can be combined
to any existing Offline RL pipeline with minimal changes.

• Behavior prior representation (BPR) is theoretically grounded: we show, under usual assump-
tions, that policy improvement guarantees from offline RL algorithms are retained through the
BPR, at the only expense of an additive behavior cloning error term.

• We provide extensive empirical studies, comparing BPR to several state representation objec-
tives for Offline RL, and show that it outperforms the baselines across a wide range of tasks.

2 RELATED WORK

Offline RL with behavior regularization. Although to the best of our knowledge, we are the
first to leverage behavior cloning (BC) to learn a state representation in Offline RL, we remark that
combining Offline RL with behavior regularization has been considered previously by many works.
A common way of combining BC with RL is to utilize it as a reference for policy optimization with
baseline methods, such as natural policy gradient (Rajeswaran et al., 2018), DDPG (Nair et al., 2018;
Goecks et al., 2020), BCQ (Fujimoto et al., 2019), SPIBB (Laroche et al., 2019a; Nadjahi et al.,
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2019; Simão et al., 2020; Satija et al., 2021; Brandfonbrener et al., 2022), CQL (Kumar et al., 2020),
and TD3 (Fujimoto & Gu, 2021). Other previous works include learning adaptive behavior policies
that are biased towards higher-rewards trajectories (Cang et al., 2021), and pretraining behavior
policies to guide downstream policies training (Zhang et al., 2021b). However, all these approaches
neglect the potential of using the behavior policy to guide representation learning. In contrast, we
investigate state representation learning via a BC-style approach and show that the downstream
policy can be greatly boosted in that regime.

Representation learning in Offline RL. Pretraining representation has been recently studied in
Offline RL settings, where several studies presented its effectiveness (Arora et al., 2020; Schwarzer
et al., 2021a; Nachum & Yang, 2021a). Some typical auxiliary tasks for pretraining state represen-
tations include capturing the dynamical (Nachum & Yang, 2021b) and temporal (Schwarzer et al.,
2021a) information of the environment, exploring the attentive knowledge on sub-trajectory (Yang
& Nachum, 2021), improving policy performance by applying data augmentations techniques to the
pixel-based inputs (Chen et al., 2021; Lu et al., 2022)... While driven by various motivations, most
of these methods can be thought of as including different inductive biases via the specific design
of the target properties of the representation. In this paper, the inductive bias we enforce is that
the representation should allow matching the behavior action normalized to the unit hypersphere,
we demonstrate its effectiveness on both raw-state and visual-observation inputs tasks. Additional
related works are discussed in appendix B.

3 PRELIMINARIES

Offline RL We consider the standard Markov decision process (MDP) framework, in which the
environment is given by a tuple M = (S,A, T, ρ, r, γ), with state space S, action space A, transi-
tion function T that decides the next state s′ ∼ T (·|s, a), initial state distribution ρ, reward function
r(s, a) bounded by Rmax, and a discount factor γ ∈ [0, 1). The agent in state s ∈ S selects an action
a ∈ A according to its policy, mapping states to a probability distribution over actions: a ∼ π(·|s).
We make use of the state value function V π(s) = EM,π [

∑∞
t=0 γ

tr (st, at) | s0 = s] to describe
the long term discounted reward of policy π starting at state s. In Offline RL, we are given a fixed
dataset of environment interactions that include N transition samples, i.e., D = {si, ai, s′i, ri}Ni=1.
We assume that the dataset D is generated i.i.d. from a distribution µ(s, a) that specifies the ef-
fective behavior policy πβ(a|s) = µ(s, a)/

∑
a µ(s, a), and denote by dπβ (s) its discounted state

occupancy density. Following Rashidinejad et al. (2021), the goal of Offline RL is to minimize the
suboptimality of π with respect to the optimal policy π⋆ given a dataset D:

SubOpt(π) = ED∼µ [J (π⋆)− J (π)] = ED∼µ [Es0∼ρ [V
⋆ (s0)− V π (s0)]] , (1)

where J (π) = Es0∼ρ [V
π (s0)] is the performance of the policy π.

State Representation Learning In this paper, our objective is to find a state representation func-
tion ϕ : S → Z that maps each state s ∈ S to its representation z = ϕ(s) ∈ Z . The desired
representations should provide necessary and useful information to summarize the task-relevant
knowledge and facilitate policy learning. To investigate the capacity of state representation learning
for mitigating the “implicit under-parameterization” phenomenon, following Lyle et al. (2022) and
Kumar et al. (2021a), we measure the compactness of the feature in the penultimate layer of the
value network by utilizing the Effective Dimension, where we refer to the output of the penultimate
layer of the state-action value network as the feature matrix Ψ ∈ R|S||A|×d 1:
Definition 1. Effective Dimension Let ED(M) denote the eigenvalues of a square matrix M , D be
the offline dataset, and ϵ be a fixed hyperparameter. Then, the effective dimension of Ψ is defined as

ζ(Ψ,D, ϵ) = ED

[∣∣∣{σ ∈ ED
(
|S|−1|A|−1Ψ⊤Ψ

)
| σ > ϵ

}∣∣∣], (2)

It is the expected number of eigenvalues of Ψ⊤Ψ that are larger than |S||A|ϵ. By studying this
quantity, we can explicitly observe the usefulness of the state representation objective in mitigating
the “implicit under-parameterization” problem in value networks (see Section 6.3 for the results).

1Notably, when we characterize the state by its corresponding state representation, the dimension of the
feature matrix changes accordingly as R|Z||A|×d. We defer a detailed discussion to Appendix D.
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4 BEHAVIOR PRIOR REPRESENTATION

Given an offline dataset D consisting of (s, a) pairs, our goal is to learn an encoder ϕ(s) that pro-
duces state representations z = ϕ(s) allowing efficient and successful downstream policy learning.
During pre-training, the BPR network is comprised of two connected components: an encoder ϕθ
and a predictor fω . The encoder maps the state to the representation space, while the predictor
projects the representations onto the unit sphere in dimension |A|. In state s, the BPR network out-
puts a representation zθ = ϕθ(s), and a prediction y = fω(zθ). We then ℓ2-normalize the prediction
y and the action a to y = y/∥y∥2 and a = a/∥a∥2 and minimize the mean squared error to train the
state representation (or equivalently maximize the cosine similarity between y and a):

Lθ,ω = E(s,a)∼D

[
∥y − a∥22

]
= E(s,a)∼D

[
2− 2 · ⟨fω(ϕθ(s)), a⟩

∥fω(ϕθ(s))∥2 · ∥a∥2

]
, (3)

where we set the action from the pair (s, a) as the target. During the training process, stochastic
optimization is performed to minimize Lθ,ω with respect to θ and ω. Note that although the encoder
and predictor are updated together through this optimization procedure, only the encoder ϕθ is used
in the downstream task. At the end of the training, we keep the encoder ϕθ fixed and build the
downstream Offline RL agents on top of the state representation that BPR learnt.

Implementation details BPR method does not rely on any specific architecture as its encoder
network. Depending on the nature of given inputs, it can either be a convolutional neural network
(CNN) for visual observation inputs, or a multi-layer perceptron (MLP) for physically meaningful
state inputs. The representation zθ that corresponds to the output of the encoder is then projected
to the action space. In this paper, the projection is done by an MLP consisting of two linear layers
followed by rectified linear units (ReLU) (Nair & Hinton, 2010), and a final linear layer followed by
a tanh activation layer.

5 THEORETICAL ANALYSIS

For simplicity, we consider the optimization problem of BPR without the normalization term as:

min
1

n

n∑
i=1

∥f(ϕ(si))− ai∥22 : ϕ ∈ Φ, f ∈ F , (4)

where (si, ai) is an i.i.d. sample from the offline dataset (of size n). BPR consists in learning a
representation ϕ impacting the policy search. In other words, with BPR, the function class for the
policy consists in ΠBPR

.
= {π, s.t. ∃ω with π(·|s) = fω(ϕθ(s)) ∀s}, where fω is the neural model

parameterized with ω characterizing the policy on top of embedding ϕθ(·). Like any representation
learning technique, the potential benefits are (i) enhancing the signal-to-noise ratio and (ii) reducing
the size of the policy search. In this section, we develop an analysis showing that the potential harm
of using BPR is upper bounded by an error ϵβ that we control in Section 5.3. To our knowledge, this
is the first representation learning technique for Offline RL with such guarantees.

Idealized assumptions : Letting x̂ denote an estimate of a quantity x computed using D, we start
by considering the following idealized assumptions:
Assumption 1. (1.1) Access to the true behavior: πβ̂ = πβ . (1.2) Access to the true performance of

policies: Ĵ (π) = J (π) for all policies π. (1.3) The embedding ϕ allows to represent the behavior
policy estimate: πβ̂(a|ϕ(s)) = πβ̂(a|s) ∈ ΠBPR. (1.4) The Offline RL algorithm performs perfect

optimization on top of ϕ: JBPR = maxπ∈ΠBPR
Ĵ (π).

Theorem 1. Under idealized Assumption 1, BPR returns a policy that improves over the behavior
policy: JBPR ≥ J (πβ).

Its proof2 is immediate: under perfect estimation and optimization, the fact that β ∈ ΠBPR guarantees
policy improvement. The above assumptions are stringent, and we propose to relax them in two
different ways: for conservative algorithms that derive safe policy improvement guarantees (Petrik
et al., 2016; Fujimoto et al., 2019; Laroche et al., 2019b; Simão et al., 2020), and for pessimistic

2For readability, we defer rigorous proofs of theorems to the Appendix E.
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algorithms that derive a value function lower bound (Kumar et al., 2020; Buckman et al., 2021).
We note that the policy improvement is constrained by the set ΠBPR over which the policy search is
conducted. Appendix G.6 empirically shows that the method will fail to improve over the behavioral
policy in the extreme case where the behavioral policy is uniform and therefore uninformative. The
BPR efficiency therefore strongly relies on the assumption that the behavioral policy provides a
beneficial inductive bias.

5.1 SAFE POLICY IMPROVEMENT

Conservative algorithms constrain the policy search to the set of policies ΠPI for which the true
policy improvement ∆π,πβ̂

.
= J (π)−J (πβ̂) can be safely estimated from ∆̂π,πβ̂

.
= Ĵ (π)−Ĵ (πβ̂):

∀π ∈ ΠPI, ∆̂π,πβ̂
−∆π,πβ̂

≤ ϵ∆. (5)

It is worth noting that the estimated behavior policy πβ̂ necessarily belongs to ΠPI, since trivially

∆̂πβ̂ ,πβ̂
= ∆πβ̂ ,πβ̂

= 0. Combined with BPR, conservative algorithms optimize on the policy
set ΠPI ∩ ΠBPR, and we consider the following relaxed assumptions, corresponding respectively to
Assumptions 1.1 and 1.2:
Assumption 2. (2.1) Access to an accurate estimate πβ̂ of the true behavior πβ: J (πβ)−J (πβ̂) ≤
ϵβ . (2.2) Access to an accurate estimate ∆̂π,πβ̂

of the true policy improvement ∆π,πβ̂
for all policies

π ∈ ΠPI ∩ΠBPR: ∆̂π,πβ̂
−∆π,πβ̂

≤ ϵ∆.

Theorem 2. Under Assumption 2, BPR returns a policy πBPR with the following performance
bounds: JBPR ≥ J (πβ) + ∆̂πBPR,πβ̂

− ϵ∆ − ϵβ .

Assumption 2.1 amounts to behavior cloning (BC) guarantees. It is generally assumed as being an
easier task than policy optimization, as BC is supervised learning. Theorem 4 provides bounds on
ϵβ . Assumption 2.2 reflects the policy improvement objective. For instance, the SPIBB principle
guarantees it with high probability in finite MDPs (Laroche et al., 2019b; Nadjahi et al., 2019;
Simão et al., 2020). It is important to notice that Assumption 2.2 forbids, in theory, the use of the
BPR representation to estimate the value directly. But in practice, we show that the representation
learned by BPR is still useful to estimate the value function. We provide some experimental results
in Appendix G.7 and a counterexample in Appendix F. Additionally, it is worth noting that ensuring
that ∆̂πBPR,πβ̂

is positive is necessary to obtain approximate policy improvement guarantees. To do
so, it suffices to fall back to πβ̂ when the optimization of πBPR does not lead to a positive expected

improvement ∆̂πBPR,πβ̂
.

5.2 VALUE FUNCTION LOWER BOUND

In this section, we propose an alternative to Assumption 2.2 following the performance lower bound
principle derived in pessimistic algorithms:
Assumption 3. (3.1) Access to a lower bound of the performance J⊥(π) ≤ J (π) for all policies,
which is accurate for πβ̂: J⊥(πβ̂) ≥ J (πβ̂)− ϵ⊥.

In order to provide performance improvement bounds, we make use of the lower bound value gap
∆⊥

π,πβ̂

.
= J⊥(π)− J⊥(πβ̂).

Theorem 3. Under Assumption 2.1 and 3.1, BPR returns a policy πBPR with the following perfor-
mance bounds: JBPR ≥ J (πβ) + ∆⊥

πBPR,πβ̂
− ϵ⊥ − ϵβ .

Assumption 3.1 is satisfied by the Offline RL algorithm that is used in combination with BPR. For
instance, CQL (Kumar et al., 2020; Yu et al., 2021) relies on the computation of a lower bound of the
value function of the considered policies. More generally, pessimistic algorithms (Petrik et al., 2016;
Yu et al., 2020; Kidambi et al., 2020; Jin et al., 2021; Buckman et al., 2021) have for principle to add
an uncertainty-based penalty to the reward function, in order to control its risk to be overestimated.
It is important to notice that, like for Assumption 2.2, this assumption would forbid (in theory) the
use of the BPR representation to estimate the value.
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Both approaches (safe policy improvement and value function lower bounds) suffer the same cost
ϵβ , in comparison to their guarantees without BPR. The next subsection controls this quantity.

5.3 PERFORMANCE BOUND WITH BPR OBJECTIVE

In this section, we are concerned with the statistical property of the error between the estimated
behavior based on the representation and the true behavior. To this end, we have the upper bound of
the ϵβ as:

Theorem 4. With probability at least 1− δ, for any δ ∈ (0, 1):

ϵβ ≤ CK · 1
n

n∑
i=1

∥∥∥πβ(·|si)− πβ̂ (· | ϕ(si))
∥∥∥
2
+ 2

√
2K · Rad(Φ) +K ·

√
2 ln 1

δ

n
(6)

where n is the size of the dataset, Rad(Φ) is the Rademacher complexity of ϕ’s function class Φ, πβ
is the behavior policy over the dataset, C is a constant, and K = Rmax

1−γ .

Note that the first term in Equation 6 is the exact optimization problem of BPR in Equation 4 multi-
plied by constant C ·K, where the action ai is sampled from the offline dataset pairs (si, ai) whose
behavior policy is πβ , and the predictor f plays the similar role as πβ̂ . The second and the third term
are both irrelevant to the specific representation, or the estimated behavior. This indicates that the
potential harm of utilizing BPR can be reduced as the representation training procedure goes on.

6 EXPERIMENTS

BPR can be easily combined with any existing Offline RL pipeline. Our experimental results can be
broken down into the following sections3:

• Does BPR outperform baseline Offline RL algorithms on standard raw-state inputs bench-
marks?other representation objectives?

• Is BPR effective in learning policies on high-dimensional pixel-based inputs? Can BPR
improve the robustness of the representation when the input contains complex distractors?

• Can BPR successfully improve the effective dimension of the feature in the value network?

6.1 EFFECTIVENESS OF BEHAVIOR REPRESENTATIONS IN D4RL OFFLINE BENCHMARK
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Figure 2: Performance comparison on D4RL dataset. The x-axis indicates the number of environ-
ment steps. The vertical axis reports the normalized cumulative returns. We train our 6 algorithms
(EDAC, TD3+BC, CQL, and their BPR variants) on 6 seeds, and evaluate each one every 5,000
environment steps by computing the average return over 10 evaluation episodes. Lighter lines cor-
respond to baselines, darker ones to versions pretrained with BPR. The black dotted line shows the
time when representation pre-training ends and policy training process begins.

3Due to the page limit, we provide some additional experiment results in Appendix G.
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Performance Comparison in D4RL Benchmark Experimental Setup: We analyze our proposed
method BPR on the D4RL benchmark (Fu et al., 2020) of OpenAI gym MuJoCo tasks (Todorov
et al., 2012) which includes a variety of datasets that have been commonly used in the Offline RL
community. We evaluate our method by integrating it into three Offline RL methods: TD3+BC (Fu-
jimoto & Gu, 2021), CQL (Kumar et al., 2020), and EDAC (An et al., 2021). We consider three
environments: halfcheetah, hopper and walker2d, and two datasets per task: expert and medium-
expert. Instead of passing the raw state as input to the value and policy networks as in the baseline
methods, we first pretrain the encoder during 100k timesteps, then freeze it, pass the raw state
through the frozen encoder to obtain its representation, and use that as the input of the Offline RL
algorithm. Further details on the experiment setup are included in appendix G.

Analysis: Figure 2 shows the performance of all models on the D4RL tasks. We observe that pre-
training the encoder with BPR leads to faster convergence for all Offline RL algorithms, and can
improve policy performance. Notably, since different Offline RL algorithms share the same encoder
network architecture, the pretrained BPR encoder can be reused across them, which substantially
amortizes the pretraining cost.

Figure 3: Bootstrapping distributions for uncer-
tainty in IQM measurements with 5000 resamples

Performance Comparison among Differ-
ent Representation Objectives Experimen-
tal Setup: We follow the pre-training and fine-
tuning paradigm of Yang & Nachum (2021),
where we first pre-train the encoder for 100k
timesteps, and then fine-tune a BRAC (Wu
et al., 2019) agent on downstream tasks. We
conduct performance comparison by training
the encoder with different objectives, including
BPR and several other state-of-the-art represen-
tation objectives4.

Analysis: We follow the performance criterion
from Schwarzer et al. (2021b); Agarwal et al.
(2021), and use the inter-quartile mean (IQM) normalized score, which is calculated overruns rather
than tasks, and the percentile bootstrap confidence intervals, to compare the performance of the
different objectives. The detailed results are provided in appendix G. Figure 3 presents the IQM
normalized return and 95% bootstrap confidence intervals for all methods, the numerical values can
be found in Table 1. The performance gain of BPR over the two most competitive baselines, Fourier
and ACL, is statistically significant(p < 0.05).

6.2 EFFECTIVENESS OF BEHAVIOR REPRESENTATIONS IN VISUAL OFFLINE RL
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Figure 4: Performance comparison of BPR with several other baselines on DMC environments
(left). Run time comparison for all representation objectives running on cheetah_run_expert task
with 100K timesteps, the vertical axis indicates the wall-clock time in seconds (right).

4We use the codebase from Yang & Nachum (2021) in these experiments: https://github.com/
google-research/google-research/tree/master/rl_repr
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Table 1: Interquartile mean, median, and mean normalized scores, evaluated over all six runs for
each of 16 DMC tasks. Confidence intervals computed by percentile bootstrap with 5000 resamples.

Method IQM 95% CI Median 95% CI Mean 95% CI

BPR 89.99 (85.55, 93.97) 87.04 (77.04, 91.53) 81.70 (77.38, 86.21)
ACL 70.79 (66.09, 75.53) 67.50 (57.73, 77.28) 69.91 (65.98, 74.05)
Fourier 82.24 (77.86, 86.17) 85.23 (73.25, 88.99) 72.61 (68.01, 76.51)
Forward 18.59 (16.35, 20.90) 9.26 (6.68, 14.48) 29.68 (27.25, 32.20)
Contrastive 44.87 (38.36, 51.52) 41.48 (35.82, 54.39) 43.56 (39.18, 47.98)
Inverse 42.79 (34.97, 50.83) 40.33 (33.38, 47.47) 44.58 (39.20, 49.99)
Super 62.62 (56.81, 67.91) 58.91 (48.66, 68.79) 60.72 (57.08,64.53)

Performance comparison in V-D4RL benchmark

Experimental Setup We evaluate our method with five representation objectives that are consid-
ered as state-of-the-art methods on a benchmarking suite for Offline RL from visual observations
of DMControl suite (DMC) tasks (Lu et al., 2022). We note that not all methods have been shown
to be effective for visual-based continuous control problems. The baselines include: (i) Temporal
contrastive learning methods such as DRIML (Mazoure et al., 2020) and HOMER (Misra et al.,
2020); (ii) spatial contrastive approach, CURL (Laskin et al., 2020); (iii) one-step inverse action
prediction model, Inverse model (Pathak et al., 2017); and (iv) Representation module which com-
bines self-predictive, goal-conditioned RL and inverse model, namely SGI (Schwarzer et al., 2021a).
We evaluate all representation objectives by integrating the pre-trained encoder from each into an
Offline RL method DrQ+BC (Lu et al., 2022), which combines data augmentation techniques with
the TD3+BC method (TD3 with a regularizing behavioral-cloning term to the policy loss).

Analysis As shown in Figure 4, BPR consistently improves over the other state-of-the-art algo-
rithms, except for SGI in the walker_walk task, while SGI is the most time-consuming representation
objective of all methods. We evaluate the wall-clock training time of each representation objective
for the 100K time steps. Our approach compares favorably against all previous methods. In particu-
lar, BPR is 2.5x faster than the most competitive SGI method. This suggests that the BPR objective
can improve sample efficiency more effectively than the other representation objectives.

Robustness to Visual Distractions Experimental Setup: To test the policy robustness brought
by BPR, we use three levels of distractors: easy, medium, and hard, to evaluate the performance of
the model, following Lu et al. (2022). Each distraction represents a shift in the data distribution,
where task-irrelevant visual factors are added (i.e., backgrounds, agent colors, and camera posi-
tions). Those factors of variation disturb the model training (see the demonstrations provided in
Appendix G.8). We train the baseline agent, DrQ+BC, and its variant using a fixed encoder pre-
trained by BPR, on the three levels of the distraction of the cheetah-run-medium-expert dataset with
1 million data points. In the experiment, the agent is evaluated on three different test environments:
i) Original Env, the evaluation environment is the original environment i.e., without any distractors;
ii) Distractor Train, the evaluation environment has the same distraction configuration as the train-
ing dataset, and the configuration is fixed during the evaluation procedure; iii) Distractor Test, the
specific distractions of the evaluation environment changes over evaluation, while the level of the
distractions remains the same.

Table 2: Cumulative return on cheetah-run-medium-expert dataset with visual distractions ranging
from easy to hard. We compare DrQ+BC (before →) to DrQ+BC with an encoder pretrained with
BPR (after →). The final performance is averaged over 6 seeds (highest result for each task under-
lined).

Level of Eval. Return
Distractions Original Dis. Train Dis. Test

easy 45.50(± 37.02) → 113.64(± 24.83) 425.15(± 65.67) → 710.11(± 56.70) 45.16(± 24.96) → 113.27(± 26.48)
medium 37.35(± 25.66) → 104.30(± 22.95) 586.17(± 99.66) → 702.00(± 90.44) 14.70(± 5.93) → 27.53(± 11.62)

hard 13.49(± 10.66) → 64.79(± 33.47) 497.41(± 103.85) → 608.98(± 64.64) 18.88(± 11.32) → 16.72(± 6.88)

Analysis: The final performances are shown in Table 2. As can be seen, BPR improves the policy
performance in most cases, except for the task with a combination of the hard level and the distractor
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test setting where the averaged performance of the agent with BPR is close to the one without BPR
but has a lower variance. Besides, the different evaluation environment corresponds to different
degrees of the distribution shift from the training dataset. It is therefore not surprising to see that
the agent performs better in Distractor train environment than the others. This experiment shows
that much better (more robust) policies can be obtained against distractions with the help of BPR,
indicating that BPR objective can somehow disentangle sources of distractions through training,
facilitating the learning of general features.

6.3 EFFECTIVE DIMENSION OF THE VALUE NETWORK

Figure 5: Effective dimension of the penul-
timate layer of the value network (top) and
performance (bottom) over the training on
the Halfcheetah-medium-expert-v2 task.

Experimental Setup: We investigate whether utilizing
the fixed encoder learned from BPR can alleviate the
“under-parameterization” phenomenon of the value net-
work. To this end, we propose to use the effective di-
mension (defined in Definition 1) as a way to evaluate the
compactness of features represented in the value network.
We first sample a batch of state-action pairs from the of-
fline dataset and then compute the effective dimension of
the output of the penultimate layer of the value network.
In this experiment, we evaluate the effective dimension
of the value network of the CQL agent on Halfcheetah-
medium-expert-v2 task in D4RL datasets, which operates
on the physical meaning raw state inputs. For compari-
son, we also develop a variant of CQL whose input is still
the raw state, but a shared encoder head is applied to both
the value network and policy network and is trained with
the critic loss along the policy learning procedure.

Analysis: Figure 5 illustrates that over the course of training, BPR objective successfully improves
the effective dimensions of the state representation, meanwhile achieving better performance com-
pared to the agent that is without an encoder and the agent whose encoder is trained with the critic
loss. Notably, when training the encoder via the critic loss along the policy learning procedure,
the effective dimension increases significantly early in training, suggesting that even without any
specific representation loss, the encoder can still disentangle some similar states. When the training
goes on, the agent will observe more diverse states over time as the policy improves, which induces
a mismatch between the learnt representations and the newly observed states, leading to a decline
in the effective dimension. In contrast, with a fixed encoder learned using the BPR objective, CQL
produces more effective dimensions than its vanilla version, leading to better performance, which
indicates that BPR is capable of providing compact information for downstream Offline RL training.

7 DISCUSSION

Limitations and Future Work Although this work has shown effectiveness in learning repre-
sentations that are robust to visual distractions, it still struggles when the distribution of evaluation
environments shifts too much from the training environment, this suggests that further improve-
ment on the generalization abilities of the representation is required. Another limitation related to
the nature of the approach is that if the behavioral policy is uninformative, then our approach will
likely result in a policy that has the same performance as the behavior but without any improvement.
However, it is straightforward to leverage information about the behavior (either a priori or from
statistics on the returns in the dataset) to decide when to use BPR. From these perspectives, further
development of a more theoretically grounded representation objective might be needed.

Conclusion Offline RL algorithms typically suffer from two main issues: one is the difficulty of
learning from high-dimensional visual input data, the other is the implicit under-parameterization
phenomenon that can lead to low-rank features of the value network, further resulting in low perfor-
mance. In this work, we propose a simple yet effective method for state representation learning in
an Offline RL setting which can be combined with any existing Offline RL pipeline with minimal
changes.
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8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of all empirical results, we provide the code base in the supplementary
material, which contains: training scripts, and requirements for the virtual environment. All datasets
and code platforms (PyTorch and Tensorflow) we use are public. To rebuild the architecture of
BPR model and plug BPR in any Offline RL algorithms, the readers are suggested to check the
descriptions in Section 4, especially the Implementation details paragraph. All proofs are stated in
Appendix E with explanations and underlying assumptions. We also provide the pseudocode of the
pretraining process and the co-training process in Algorithm 1 and 2 in Appendix.

All training details are specified in Section 6 and Appendix G. In the experiment on d4rl tasks,
all representation objectives use the same encoder architecture, i.e., with 4-layer MLP activated by
ReLU, followed by another linear layer activated by Tanh, where the final output feature dimension
of the encoder is 256. Besides, all representation objectives follow the same optimizer settings,
pre-training data, and the number of pre-training epochs. In the experiment on v-d4rl tasks, all
representation objectives use the same encoder architecture, i.e., with four convolutional layers acti-
vated by ReLU, followed by a linear layer normalized by LayerNorm and activated by Tanh, where
the final output feature dimension of the encoder is 256. We also provide the pseudocode for each
visual representation objective in Algorithm 4-7 in Appendix.
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A NOTATION

Table 3 summarizes our notation.

Table 3: Table of Notation.

Notation Meaning Notation Meaning

ϕ state encoder network A action space
f predictor network Z state representation space
ρ initial state distribution ns dimension of state space
ζ effective dimension na dimension of action space
γ discounted factor T transition probability function
s state D offline dataset
a action Ψ feature matrix
r reward πβ(a|s) behavior policy of offline dataset
d the feature dimension πβ̂(a|s) the estimated behavior policy
y state prediction dπβ (s) discounted state occupancy density
z state representation V π(s) state value function
n the numbers of datapoints J (π) the performance of policy π
S state space J⊥(π) the lower bound of the performance

B ADDITIONAL RELATED WORK

Representation learning in Online RL State representation learning lies at the heart of the em-
pirical successes of deep RL. Traditionally, state representation learning has been framed as learning
state abstractions / aggregations (Andre & Russell, 2002; Ferns et al., 2006; Mannor et al., 2004;
Comanici et al., 2012), and most of these methods aim to reduce the original state space size and to
minimize the system complexity. Recent studies present promising results in learning robust repre-
sentations that can then be used to accelerate policy learning in pixel-based observation spaces. Lee
et al. (2020); Yarats et al. (2021b) propose to train deep auto-encoders with a reconstruction loss to
learn compact representations, Shelhamer et al. (2017); Hafner et al. (2019) learn state representa-
tions from predictive losses to maintain trajectory consistency, van den Oord et al. (2018); Laskin
et al. (2020); Stooke et al. (2021) use contrastive losses as auxiliary tasks to improve performance,
Xu et al. (2014); Krishnamurthy et al. (2016); Yarats et al. (2021a) develop state clustering meth-
ods to improve sample-efficiency, and finally Zhang et al. (2021a); Castro et al. (2021); Zang et al.
(2022) measure state distance by bisimulation similarity to shape state representations.

C COMPARISON

C.1 BEHAVIOR CLONING

One would consider BPR similar to the behavior cloning method that imitates the behavior policy
of the data since they both learn a projection from state to action. Despite resembling behavior
cloning in form, we emphasize that the goal of BPR is not to approximate the exact behavior policy.
Instead, it is a two-stage process that reutilizes the learned encoder on downstream tasks to accelerate
policy learning, while discarding the initial projection layer. Additionally, this allows us to apply
ℓ2-normalization to the prediction and action rather than using their true values. This normalization
has been shown to be important for representation learning (Wang & Isola, 2020; Grill et al., 2020;
Zang et al., 2022). The difference is illustrated in Figure 6.

C.2 π∗-IRRELEVANCE ABSTRACTION

A π∗-irrelevance abstraction ϕπ∗ (Jong & Stone, 2005; Li et al., 2006) is such that every abstract
class has an action a∗ that is optimal for all the states in that class that is ϕπ∗(s1) = ϕπ∗(s2) implies
that Q∗(s1, a

∗) = maxaQ
∗(s1, a) and Q∗(s2, a

∗) = maxaQ
∗(s2, a), which attempt to preserve
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Figure 6: A summary of the BPR algorithm shows its difference from Behavior Cloning. BPR
focus on learning state representation to benefit the downstream Offline RL algorithms instead of
concentrating on learning the behavior policy.

the optimal action5. In Li et al. (2006), π∗-irrelevance abstraction was applied on Q-learning and
was proven that the induced value function could not converge to the optimal in the ground MDP.
While comparing with BPR, the biggest difference is that: in theory, as described in Assumption 2.2,
we use the BPR representation only for the policy search, while Li et al. (2006) assumes that the
value function should be estimated for learning reasonable Q value in representation space. As a
consequence, Li et al. (2006) requires much stronger assumptions for the policy abstractions, such as
bisimulation or invariance for the optimal value (policy). As an example, consider an MDP as shown
in Figure 7 (an example is taken from the MDP investigated by Li et al. (2006)): for π∗-irrelevance
abstraction, it induces an abstract MDP M̄ =< S̄,A, P̄ , R̄, γ >, where we apply the q learning
on the induced M̄ . Under this abstract MDP, since S1 and S2 are accidentally aggregated to one
state abstraction, the abstract reward R̄ and the abstract transition P̄ will be estimated mistakenly,
therefore the q value cannot be updated to the optimal. Notably, the value estimation we perform
on the original input space, which belongs to the ground MDP state space, differs from the value
estimation on the representation space that raises issues that can only be alleviated with the drastic
assumptions in Li et al. (2006).

Figure 7: The solid and dashed lines represent actions 1 and 2, respectively. The corresponding
graph shows the value function in the aggregated (middle) state for each of its actions. ϕπ∗ yields
an optimal policy for M̄ that is suboptimal in M , while BPR can still find the optimal policy in M
by policy search.

5To keep the notation aligned well with Li et al. (2006), we will replace π⋆ with π∗, and replace M with
M in this section.
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C.3 FOURIER

Nachum & Yang (2021a) developed a representation objective that combines contrastive learning
with the linear dynamic model (i.e., a learnable function whose input is the pair of next state and
action (s′, a), the output is a representation of the current state), where the contrastive objective is
approximated by leveraging the Random Fourier Features. Though effective, this method assumes
the underlying dynamic model is linear, while the BPR objective does not show reliance on such
an assumption. Since the BPR objective can be oblivious to the reward function and transition
model, it can be applied to a wild range of domains where the reward or the transition could be hard
to approximate. On the other hand, without modeling the reward function or transition dynamics,
the BPR objective is slightly theoretically weaker (see the counterexample in the Appendix). A
combination of BPR and the methods like Fourier should be further investigated in future work,
which will provide a more theoretically grounded yet still simple approach.

C.4 ACL

Yang & Nachum (2021) introduced Attentive Contrastive Learning (ACL) to learn state representa-
tion, which uses the transformer-based architecture as a skeleton, where a subset of sub-trajectories
are randomly masked to make predictions. Similar to the Fourier approach described above, ACL
also utilizes a contrastive learning objective to update its feature mapping, while further reconstruct-
ing the action and the reward to stabilize the training. BPR, on the other hand, can be seen as a
representation objective that, with only a reconstruction module for predicting actions, is far more
simple than the transformer-based module that requires sequential prediction. Another potential ben-
efit of the BPR objective is that it can possibly integrate into other kinds of representation objectives
due to its independence from the encoder architecture.

D EFFECTIVE DIMENSION AND FEATURE RANK

The desirable state representation should not only be able to guide a good policy learning procedure,
but also be compact enough to provide concise yet effective information. We focus on measuring
the “compactness” of the state representation to show that BPR suffices for the agent to benefit from
learning representation with auxiliary representation loss, which can alleviate the “implicit under-
parameterization” phenomenon.
Assumption 4. (Feature reachability) Denote λmin(A) as the smallest eigenvalue of a positive-
definite matrix A. With a mapping function ϕ⋆, we assume that there exists ϵ ∈ R+ such that,

sup
π
λmin

(
Es∼dπβ (s)

[
ϕ⋆(s)ϕ⋆(s)⊤

])
≥ ϵ. (7)

Assumption 4 posits that in MDP M, for each latent state in representation space Rd, there exists
a policy that reaches it with a non-zero probability. This ensures the optimal state representation
should have no redundant dimensions, which is a reasonable assumption for a compact latent space.
While a similar assumption is commonly made in previous work (Agarwal et al., 2022; Modi et al.,
2021), seldom of them consider leveraging it to measure the feature effectiveness. Based on this
assumption, we define the following measurement, inspired by the Feature rank defined in Lyle
et al. (2022):
Definition 2. Effective Dimension Let ED(M) denote the multiset of eigenvalues of a square matrix
M . Then the effective dimension of Ψ is defined to be

ζ(Ψ,D, ϵ) = ED

[∣∣∣{σ ∈ ED

((
1√

|S||A|
Ψ⊤

)(
1√

|S||A|
Ψ

))
|σ > ϵ

}∣∣∣], (8)

where Ψ ∈ R|S||A|×d is the feature matrix with respect to the output of the penultimate layer of the
state-action value network.
Lemma 5. Let Xn ⊂ R|S||A| be a set of n state-action pairs in R|S||A| sampled from a fixed
distribution dπβ (s, a), and the corresponding feature matrix being Ψn, a consistent estimator can
be conducted as:

ζ̂(Ψ,D, ϵ) =
∣∣∣{σ ∈ ED

((
1√
n
Ψn

)⊤(
1√
n
Ψn

))
|σ > ϵ

}∣∣∣. (9)
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Proof. The following proof mimics the derivation in Lyle et al. (2022). Recall that(
1√
n
Ψn

)⊤(
1√
n
Ψn

)
=

1

n

n∑
i=1

ψ(xi)ψ(xi)
⊤. (10)

The following property of the expected value holds

ED
[
ψ(x)ψ(x)⊤

]
= E

[
1

n

n∑
i=1

ψ(xi)ψ(xi)
⊤

]
. (11)

Then, consider each element of the matrix M :

E
[(
ψ(x)ψ(x)⊤

)
ij

]
=Mij = E [ψi(x)ψj(x)] =⇒

n∑
k=1

1

n
ψi (xk)ψj (xk)

a.s.→ Mij (12)

Since we have convergence for any Mij , we get convergence of the resulting matrix to M . And
since the eigenvalues are continuous functions of M , the eigenvalues of Mn converge to those of M
almost surely.

Intuitively, it possesses a similar equivalent form of feature reachability. Empirically, we set ϵ as
0.01 where only higher eigenvalues are considered, eliminating the distraction caused by small
noise. With the effective dimensions measurement, we can show that BPR can stabilize the training
procedure, and provides a higher effective feature dimension for the value network, thus helping
to alleviate the “implicit under-parameterization” phenomenon. Notably, Equation 8 can also be
used to measure the effective dimension of the state representation, i.e., ζ(Φ,D, ϵ), when we sub-
stitute the feature matrix Ψ by the representation matrix Φ ∈ R|S|×|Z| where Z is the latent state
representation space.

Connection to the effective dimension proposed in Lan et al. (2022) To develop a measure-
ment of the effective dimension of state representation, Lan et al. (2022) borrow the concept of
µ-coherence (Candès & Recht, 2009; Mohri & Talwalkar, 2011), which is related to the statistical
leverage scores (Drineas et al., 2006; Mahoney et al., 2012).
Definition 3. Given an arbitrary n × d matrix A, with n > d and rank(A) = r, let U denote
the n × d matrix consisting of the d left singular vectors of A, and let U(i) denote the i-th row
of the matrix U as a row vector. Then the statistical leverage scores are given by ∥U(i)∥22, for
i ∈ {1, · · · , n}; the coherence µ is:

µ(U) = max
i∈{1,··· ,n}

∥U(i)∥2, (13)

i.e., the largest statistical leverage score. When we let PU be the orthogonal projection onto U and
(ei) the canonical basis, we can define µ

′
-coherence as:

µ
′
(U) = n max

i∈{1,··· ,n}
∥PUei∥2 = n max

i∈{1,··· ,n}
∥UUT ei∥2

= n max
i∈{1,··· ,n}

∥UT ei∥2 = n max
i∈{1,··· ,n}

∥U(i)∥2.
(14)

Following the above definition, Lan et al. (2022) defined the effective dimension as:
Definition 4 (Effective dimension in Lan et al. (2022)). Let Φ ∈ RS×k be a feature matrix. The
effective dimension of Φ (vis-a-vis the standard basis (ei)) is defined as the quantity

deff(Φ) := S max
i=1,...,S

∥PΦei∥22, (15)

where PΦ is the orthogonal projector onto the column space of Φ, S is the number of the state.

Note that for any feature matrix, the smallest deff can be the rank of the state space, achieved, for
example, if Φ is spanned by vectors whose entries all have magnitude 1/

√
S, meaning that the fea-

ture matrix is perfectly learned. The largest possible value for deff is S, which would correspond
to any subspace that contains a standard basis element, meaning that the state space is full-rank.
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As a comparison, effective dimension in this paper and the one in Lan et al. (2022) are both devel-
oped from the Singular Value Decomposition (SVD) that was generally utilized for dimensionality
reduction6, the difference is that we compute the number of the eigenvalue of the Gram matrix of
the feature matrix as the measurement, while Lan et al. (2022) compute the largest leverage score
of the feature matrix that considered as the left singular vectors of the state space. In some sense,
the effective dimension in Lan et al. (2022) can be seen as a variation of Equation 8 with ϵ = 0,
which also indicates that the small disturbance component of the feature matrix cannot be discarded
in Equation 15 without prior knowledge of the rank of the state space.

E PROOFS

E.1 USEFUL TECHNICAL RESULTS

We begin this section by introducing Rademacher complexity, which can be used to derive data-
dependent upper bounds on the learnability of function classes.
Definition 5. Let X be any set, X1, X2, · · · , Xn be i.i.d. random variables with values in X . We
have G a class of functions g : X → R. The quality

Rad(G) := EXj ,σj

sup
g∈G

1

n

n∑
j=1

σjg (Xj)

 (16)

is called Rademacher complexity of the class G on the sampleX = (X1, X2, · · · , Xn) ∈ Xn, where
σ is the Rademacher random variables that are drawn uniformly at random from {±1}.

The corresponding vectorized version of Rademacher complexity is:

Rad(G) := EXj ,σji

sup
g∈G

1

n

n∑
j=1

K∑
i=1

σjig (Xj)i

 , (17)

where G is a class of functions g : X → RK .

E.2 THEORETICAL ANALYSIS

Assumption 1. (1.1) Access to the true behavior: πβ̂ = πβ . (1.2) Access to the true performance of

policies: Ĵ (π) = J (π) for all policies π. (1.3) The embedding ϕ allows to represent the behavior
policy estimate: πβ̂(a|ϕ(s)) = πβ̂(a|s) ∈ ΠBPR. (1.4) The algorithm performs perfect optimization:

JBPR = maxπ∈ΠBPR
Ĵ (π).

Theorem 2. Under idealized Assumption 1.1-1.4, BPR returns a policy that improves over the
behavior policy: JBPR ≥ J (πβ).

Proof.

JBPR = J
(
argmax
π∈ΠBPR

Ĵ (π)

)
(Assumption 1.4)

= max
π∈ΠBPR

J (π) (Assumption 1.2)

≥ J (πβ̂) (Assumption 1.3)

≥ J (πβ) (Assumption 1.1)

which concludes the proof.

Assumption 2. (2.1) Access to an accurate estimate πβ̂ of the true behavior β: J (πβ)−J (πβ̂) ≤
ϵβ . (2.2) Access to an accurate estimate ∆̂π,πβ̂

of the true policy improvement ∆π,πβ̂
for all policies

π ∈ ΠPI ∩ΠBPR: ∆̂π,πβ̂
−∆π,πβ̂

≤ ϵ∆.
6the singular values of the feature matrix are the eigenvalues of M in Equation 12 when we only consider

the state feature
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Theorem 3. Under Assumption 2, BPR returns a policy πBPR with the following performance
bounds: JBPR ≥ J (πβ) + ∆̂πBPR,πβ̂

− ϵ∆ − ϵβ .

Proof.
JBPR = J (πBPR) (by definition)

≥ J (πβ̂) + ∆̂πBPR,πβ̂
− ϵ∆ (Assumption 2.2)

≥ J (πβ) + ∆̂πBPR,πβ̂
− ϵ∆ − ϵβ (Assumption 2.1)

which concludes the proof.

Assumption 3. (3.1) access to a lower bound of the performance J⊥(π) ≤ J (π) for all policies,
which is tight for β̂: J⊥(πβ̂) ≥ J (πβ̂)− ϵ⊥.

Theorem 4. Under Assumptions 2.1 and 3.1, BPR returns a policy πBPR with the following perfor-
mance bounds: JBPR ≥ J (πβ) + ∆⊥

πBPR,πβ̂
− ϵ⊥ − ϵβ .

Proof.
JBPR = J (πBPR) (by definition)

≥ J⊥(πBPR) (Assumption 3.1)
= J⊥(πβ̂) + ∆⊥

πBPR,πβ̂
(by definition)

≥ J (πβ̂) + ∆⊥
πBPR,πβ̂

− ϵ⊥ (Assumption 3.1)

≥ J (πβ) + ∆⊥
πBPR,πβ̂

− ϵ⊥ − ϵβ (Assumption 2.1)

which concludes the proof.

E.3 PERFORMANCE BOUND WITH BPR OBJECTIVE

BPR solve the optimization problem:

min
1

n

n∑
i=1

∥f(ϕ(si))− ai∥2 : ϕ ∈ Φ, f ∈ F , (18)

where (si, ai) is an i.i.d. sample from the offline dataset with the size of n.

The difference between the estimated behavior policy and the true behavior policy is:

E
[
J(πβ̂)− J(πβ)|D

]
= Es∼ρ [V

πβ̂ (s)− V πβ (s)] . (19)

Lemma 5. Consider a fixed dataset D and the reward is bounded by Rmax, then the difference
between πβ̂ and πβ will be bounded as:

E
[
J(πβ̂)− J(πβ)|D

]
≤ 2Rmax

(1− γ)2
· E
[
DTV

(
πβ̂(s)∥πβ(s)

)
|D
]

(20)

Proof. Recall that the total variation distance (TVD) between the estimated policy πβ̂ and the be-
havior policy πβ for a given state s is defined as:

DTV(πβ̂(s), πβ(s)) = sup
a∈A

∣∣∣πβ̂(a|s)− πβ(a|s)
∣∣∣ = 1

2

∑
a

∥πβ̂(a|s)− πβ(a|s)∥1. (21)

We expand the expectation in the value bound:
Es∼ρ [V

πβ̂ (s)− V πβ (s)]

≤
∑
s

ρ(s)

(∑
a

∣∣∣πβ̂ (a | s)− πβ (a | s)
∣∣∣(R(s, a) + γ

∑
s′

T (s, a, s′) |V πβ̂ (s′)− V πβ (s′)|

))

=
∑
s

∑
a

ρ(s)
∣∣∣πβ̂(a | s)− πβ(a | s)

∣∣∣(R(s, a) + γ
∑
s′

T (s, a, s′) |V πβ̂ (s′)− V πβ (s′)|

)
.

(22)
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Apply the upper bound of the value function Rmax/(1− γ) to the above equation:

E
[
J(πβ̂)− J(πβ)|D

]
= Es∼ρ [V

πβ̂ (s)− V πβ (s)]

≤ Rmax

1− γ
Es∼ρ

[∑
a

∣∣∣πβ̂(a | s)− πβ(a | s)
∣∣∣]

=
2Rmax

1− γ
· E
[
Es∼ρ

[
DTV

(
πβ̂(s)∥πβ(s)

)]
|D
]

=
2Rmax

(1− γ)2
Es∼dπρ

[
DTV

(
πβ̂(s)∥πβ(s)

)]
.

(23)

For simplicity, we denote Es∼dπρ

[
DTV

(
πβ̂(s)∥πβ(s)

)]
as E

[
DTV

(
πβ̂(s)∥πβ(s)

)
|D
]
.

This lemma tells us the suboptimality of an arbitrary policy is upper-bounded by the TVD between
the optimal policy and itself over the dataset D.

Consider we learn the representation mapping ϕ : S → Z , and we learn a policy πϕ : Z → A
based on the fixed mapping ϕ, instead of learning the policy π : S → A. The following theorem
will provide an upper bound of the suboptimality of the policy πϕ7.
Theorem 5. With probability at least 1− δ, for any δ ∈ (0, 1):

ϵβ = E
[
J(πβ̂)− J(πβ)

∣∣∣∣ D] ≤ CK · 1
n

n∑
i=1

∥∥∥πβ(·|si)− πβ̂ (· | ϕ(si))
∥∥∥
2

+ 2
√
2K · Rad(Φ) +K ·

√
2 ln 1

δ

n

(24)

where n is the size of the dataset, Rad is the Rademacher complexity, πβ is the behavior policy over
the dataset, C is a constant, K = Rmax

1−γ .

Proof. The following proves are build on techniques provided by Asadi et al. (2020). First, for ∀ϕ,
we have:

Es∼dπβ

[∥∥∥πβ(· | s)− πβ̂(· | ϕ(s))
∥∥∥
1

]
− 1

n

n∑
i=1

∥∥∥πβ (· | si)− πβ̂ (· | ϕ(si))
∥∥∥
1
≤

sup
ϕ∈Φ

{
Es∼dπβ

[∥∥∥πβ(· | s)− πβ̂(· | ϕ(s))
∥∥∥
1

]
− 1

n

n∑
i=1

∥∥∥πβ (· | si)− πβ̂ (· | ϕ(si))
∥∥∥
1

}
︸ ︷︷ ︸

:=Ξ(s1,...,sn)

(25)

Lemma 6. (Asadi et al., 2020) The expected value of Ξ can be bounded as:

E [Ξ] ≤ 2
√
2Rad(Φ), (26)

where Rad is the Rademacher complexity.

Given the fact that |Ξ (s1, . . . , si, . . . sn)− Ξ (s1, . . . , s
′
i, . . . sn)| ≤ 2

n and apply McDiarmid’s in-
equality, ∀δ ∈ (0, 1), we have:

Pr

Ξ ≤ E[Ξ] +

√
2 ln 1

δ

n

 ≥ 1− δ (27)

Combining Equation 26 and Equation 27 with Equation 25, we get the following holds with proba-
bility at least 1− δ:

Eρ

[∥∥∥πβ(· | s)− πβ̂(· | ϕ(s))
∥∥∥
1

]
≤ 1

n

n∑
i=1

∥∥∥πβ (· | si)− πβ̂ (· | ϕ(si))
∥∥∥
1
+ 2

√
2Rad(Φ) +

√
2 ln 1

δ

n

(28)
7Note that we will abuse the notation of πϕ, π(ϕ(s)), and π(·|ϕ(s)) for readability and simplicity.
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Now from the left-hand side, with the help of Lemma 5, we get:

E
[
J(πβ̂)− J(πβ)|D

]
≤ 2Rmax

(1− γ)2
· E
[
DTV

(
πβ̂(s)∥πβ(s)

)
|D
]

=
Rmax

1− γ
· Eρ

[∥∥∥πβ(· | s)− πβ̂(· | ϕ(s))
∥∥∥
1

]
.

(29)

And from the right-hand side, we have:

1

n

n∑
i=1

∥∥∥πβ (· | si)− πβ̂ (· | ϕ(si))
∥∥∥
1
+ 2

√
2Rad(Φ) +

√
2 ln 1

δ

n

≤ C · 1
n

n∑
i=1

∥∥∥πβ (· | si)− πβ̂ (· | ϕ(si))
∥∥∥
2
+ 2

√
2Rad(Φ) +

√
2 ln 1

δ

n

(30)

With combining Equation 29 and Equation 30 together, we can conclude the proof:

ϵβ = E
[
J(πβ̂)− J(πβ)

∣∣∣∣ D] ≤ C
Rmax

1− γ
· 1
n

n∑
i=1

∥∥∥πβ(·|si)− πβ̂ (· | ϕ(si))
∥∥∥
2

+ 2
√
2
Rmax

1− γ
· Rad(Φ) + Rmax

1− γ
·

√
2 ln 1

δ

n

(31)

with probability at least 1− δ.

Note that the second term and the last term do not depend on the exact form of the representation.
Minimizing the first term can decrease the difference between the learned policy and the behavior
policy, where the first term itself aligns with the optimization problem of BPR (Equation 4), indicat-
ing that with BPR objective, we can improve the performance of the policy. And the potential harm
of using BPR is bounded by the error ϵβ that we can control.

F COUNTEREXAMPLE

We consider the following dataset composed of four trajectories τ1, τ2, τ3, and τ4 in deterministic
MDP m = ⟨{s0, s1}, {a0, a1}, p0(s0) = 1, p, r, γ = 1⟩:

D =

⟨s0, a0, sf , 0⟩︸ ︷︷ ︸
τ1

, ⟨s0, a0, sf , 0⟩︸ ︷︷ ︸
τ2

, ⟨s0, a1, s1, 0⟩, ⟨s1, a0, sf , 1⟩︸ ︷︷ ︸
τ3

, ⟨s0, a1, s1, 0⟩, ⟨s1, a1, sf , 0⟩︸ ︷︷ ︸
τ4

 ,

where the final state sf denotes the termination of the trajectory. Then, BPR may collapse s0 and s1
to a single embedding z where the estimated behavior policy is uniform:

πβ̂(a0|z) = πβ̂(a1|z) = πβ̂(a0|s0) = · · · . (32)

Then, we have:

J (πβ̂) =
1

4
(33)

JBPR(π(a0|z) = 1) =
1

3
(34)

JBPR(π(a1|z) = 1) = 0 (35)

JBPR(π(a0|z) = 0.5) =
1

2
× 1

3
+

1

2
× 2

3
× JBPR(π(a0|z) = 0.5) (36)

=
1

6
+

1

3
× JBPR(π(a0|z) = 0.5) (37)

=
3

2
× 1

6
=

1

4
(38)

As a conclusion, with a BPR value, a greedy algorithm would converge to π(a0|z) = 1, which has
the performance of 0 in the environment MDP m, and is therefore not a policy improvement.
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Algorithm 1 BPR Pretraining Pseudocode, PyTorch-like

# encoder: mlp, encoder network
# predictor: mlp, prediction network
def pretrain(encoder, predictor, replay_buffer, batch_size):

iteration = 0
for iteration < 1e5:

state, action, _, _, _ = replay_buffer.sample(batch_size) # sample a batch of
tuples from replay buffer

state = encoder(state)
prediction = predictor(state)
prediction = normalize(prediction, dim=1, p=2) # l2 normalize
action = normalize(action, dim=1, p=2) #l2 normalize
encoder_loss = MSE(prediction, action) # loss for encoder
encoder_loss.backward()
update(encoder,predictor)
iteration += 1

G ALL EXPERIMENTAL RESULTS

G.1 EFFECTIVENESS OF BPR IN D4RL BENCHMARK

Experimental Setup We analyze our proposed method BPR on the D4RL benchmark (Fu et al.,
2020) of OpenAI gym MuJoCo tasks (Todorov et al., 2012) which includes a variety of dataset do-
mains that have been commonly used in the Offline RL community. We evaluate our method by
integrating it into three Offline RL methods, including: i)TD3+BC agent (Fujimoto & Gu, 2021),
which is one of the existing state-of-the-art Offline RL approaches combining Behavior Cloning
with TD3 together and has a good balancing on the simplicity and efficiency; ii) CQL agent (Ku-
mar et al., 2020), which learns a conservative Q-function such that the expected value of a policy
under this Q-function lower-bounds its true value; iii) EDAC agent (An et al., 2021), which is an
uncertainty-based ensemble-diversified Offline RL algorithm. We consider three simulated tasks
from the Mujoco control domain with D4RL benchmark ( halfcheetah, hopper, and walker2d) and
consider the expert and medium-expert datasets. For our experiments, the baseline methods take
the raw state as the input of both the value network and policy network, while we also pre-train
the representations with 100k timesteps and then freeze the encoder and take it as the input during
the Offline RL optimization; and follow the standard evaluation procedure as in D4RL benchmark.
We provide the pseudocode of the pretraining process in Algorithm 1, and the training curve that
without the accounts for the pre-training steps (100K timesteps) in BPR (Figure 8).
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Figure 8: Performance comparison on D4RL dataset.
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Figure 9: Performance comparison on D4RL mujoco dataset.

Figure 10: Performance comparison with different representation objectives on D4RL Mujoco
dataset at 100K timestep. x-axis shows the average normalized score over the final 10 evaluations
and 6 seeds. Blue dotted lines show the average normalized return without pretraining.
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G.2 RESULTS COMPARISON WITH OTHER REPRESENTATION BASELINES IN D4RL
BENCHMARK

Experimental Setup The purpose of this experiment is to demonstrate that, when compared to
the state-of-the-art representation objectives, BPR still has a competitive advantage. In this experi-
ment, we follow the pretrain-finetune paradigm suggested by Yang & Nachum (2021), i.e., we first
pretrain state representations of 100k time steps, then the learned encoder is fixed and applied to
the downstream task, which performs the BRAC (Wu et al., 2019) agent for 100K steps. Same as
the configuration from Yang & Nachum (2021), we also fix the regularization strengths and policy
learning rates in BRAC for all domains. And since representation is more valuable in informative
data, our experiment does not include interaction pairs collected by a random policy, but rather has
interests in the dataset collected from a learned (or at least partially learned) agent. The experiment
is still conducted on the D4RL mujoco tasks, with 16 tasks in total included. In this setting, the
pretraining datasets and downstream datasets are the same, determined by a single choice of task.
We compare our method to several published leading representation RL algorithms, which include:

• ACL (Yang & Nachum, 2021) applies contrastive learning on the transformer-based archi-
tecture: (1) take a sub-trajectory st:t+k, at:t+k, rt:t+k, (2) randomly mask a subset of these,
(3) pass the masked sequence into a transformer, and then (4) for each masked input state,
apply a contrastive loss between its representation ϕ(s) and the transformer output at its
sequential position.

• Fourier (Nachum & Yang, 2021a) is implemented as contrastive learning where the transi-
tion dynamics are approximated by an implicit linear model with representations given by
random Fourier features.

• Forward model (Pathak et al., 2017) uses the state representation and the action to predict
the reward and next state given a sub-trajectory, where the transition probability is de-
fined as an entropy-based model, i.e., given a sub-trajectory τt:t+1, use ϕ(st), at to predict
st+1, rt.

• Inverse model (Pathak et al., 2017) uses the current state representation and the next state
representation to predict the current action, i.e., given a sub-trajectory τt:t+1, use ϕ(st:t+1)
to predict at.

• Contrastive (Yang & Nachum, 2021) learns state representation with contrastive objective.
Given a sub-trajectory τt:t+1, a contrastive loss is applied between ϕ(st), ϕ(st+1) as:

−ϕ (st+1)
⊤
Wϕ (st) + logEρ

[
exp

{
ϕ(s̃)⊤Wϕ (st)

}]
(39)

• Super (Yang & Nachum, 2021) is a combination of the forward model and the backward
model, which has a self-predictive module and inverse module to learn dynamical informa-
tion.

In this experiment, all methods use the same encoder architecture, i.e., with 4-layer MLP activated by
ReLU, followed by another linear layer activated by Tanh, where the final output feature dimension
of the encoder is 256. Besides, all methods follow the same optimizer settings, pre-training data,
and the number of pre-training epochs.

Analysis Figure 9 and Figure 10 provide the performance comparison results for BPR and other
representation objectives on D4RL mujoco dataset. We find that BPR outperforms or at least is
competitive with the previous state-of-the-art methods in the majority of environments. Notably, the
variance on expert and medium datasets is much smaller than that on medium-expert and medium-
replay datasets, especially for BPR, which indicates that the learned representation is more stable
when the dataset is from the same level of the agent. The underlying reason may be that the behavior
policy of the mixed dataset could differ even in the same mini-batch in the training stage, which will
limit the ability of the neural network to learn the information related to (near) optimal decision-
making. This suggests that the representation quality could be impacted more by the characteristics
of the dataset, than the representation objectives, which confirms the observation of Schweighofer
et al. (2021). We also notice that even with the pretrained encoder learned from BPR, there still re-
mains a large performance gap between the BRAC agent and the baseline TD3+BC agent, indicating
that despite the representation objective being helpful for Offline RL, choosing the suitable offline
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agent for different tasks is still essential for improving the performance, which may also partially
solve the aforementioned high variance issue of the different dataset. Furthermore, to understand
the performance difference of different representation objectives comprehensively, we additionally
use uncertainty-aware comparisons for all these methods.

G.3 PRE-TRAINING V.S. CO-TRAINING
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Figure 11: Performance comparison on D4RL mujoco dataset. The horizontal axis indicates the
number of environment steps. The vertical axis indicates the normalized cumulative returns. We
trained 6 different instances of each algorithm with different random seeds, with each instance per-
forming an evaluation every 5,000 environment steps by computing the average episode return over
10 evaluation episodes. The solid lines represent the mean over the 6 trials.

Experimental Setup There are two design choices of representation learning in the experiment:
i) learn state representations via pretraining, then freeze the encoder and apply it to the downstream
tasks, ii) learn state representations simultaneously with the policy, where both the representation
and the policy will be learned shoulder-by-shoulder. One can wonder how BPR performs with the
different designs of choices, and what the difference is between the latter one and the one that addi-
tionally applies BC to policy learning. To illustrate both questions, here, we evaluate both designs on
the state-of-the-art TD3+BC backbone. For the pretraining one, we still set the pretraining stage as
100,000 time steps. For the co-training one, we train the state encoder simultaneously with the value
network and the policy network, where the corresponding pseudocode is listed in Algorithm 2. For
reference, we also provide the pseudocode of the baseline TD3+BC method in Algorithm 3. Con-
cretely, the differences between BPR and the behavior cloning in TD3+BC are listed as follows: i)
they use different projection (or actor) heads, ii) the gradient of the policy loss is non-visible for the
encoder, but the gradient of the encoder loss can pass through and update both the encoder layer
and the projection layer; iii) BPR require the l2-normalization for the representation and the action,
which is known to be effective for representation learning, while l2-normalization is not a good fit
for action in BC.

Analysis Figure 11 shows the performance of three models on D4RL tasks, indicating that BPR
objective can improve sample efficiency in most cases. BPR consistently outperforms the baseline
method, TD3+BC, for the majority of tasks and has a considerably lower variance, demonstrating
that our approach has the advantage of convergence rate and stability. On the walker2d tasks, the
baseline method performs better than the model with BPRs, we consider the possible reason could
be that the baseline is sufficient to solve this task, therefore adding extra auxiliary losses may, in
turn, damage the performance. Meanwhile, this finding is consistent with our hypothesis that the
representation objective becomes more valuable as the difficulty of the task increases. Another
impressive result is that compared to co-training BPR objective with the policy, BPR yields more
performance gains and faster convergence under the pretrain-finetune paradigm, illustrating that
learning policy from a “good” fixed encoder might be more suitable for Offline RL.
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Algorithm 2 TD3+BC Co-training with BPR Pseudocode, PyTorch-like

# actor: mlp, policy network
# critic: mlp, value network
# encoder: mlp, encoder network
# predictor: mlp, prediction network
# freq: update frequency of policy network
iteration = 0
for (s,a,ns,r) in loader: # load a minibatch tuple with n samples

pred_s = predictor(encoder(s))
norm_pred = normalize(pred_s, dim=1) # l2-normalize
norm_a = normalize(a, dim=1) # l2-normalize
L_encoder = MSE(norm_pred, norm_a) # MSE loss for encoder
L_encoder.backward()
update(encoder, predictor) # Adam update

enc_s, enc_ns = sg(encoder(s)), sg(encoder(ns)) # sg is stop_gradient
target_v = r+ gamma*sg(critic(enc_ns,a))
L_value = MSE(critic(enc_s,a), target_v) # MSE loss for value
L_value.backward()
update(critic) # Adam update
if iteration % freq == 0:

pi = actor(enc_s)
L_policy = -lmbda*Q(enc_s, pi).mean()+ MSE(pi,a) # loss for policy
L_policy.backward() # back-propagate
update(actor) # Adam update

iteration += 1

Algorithm 3 TD3+BC Pseudocode, PyTorch-like

# actor: mlp, policy network
# critic: mlp, value network
# freq: update frequency of policy network
iteration = 0
for (s,a,ns,r) in loader: # load a minibatch tuple with n samples

target_v = r+ gamma*sg(critic(ns,a))
L_value = MSE(critic(ns,a), target_v) # MSE loss for value
L_value.backward()
update(critic) # Adam update
if iteration % freq == 0:

pi = actor(ns)
L_policy = -lmbda*Q(ns, pi).mean()+ MSE(pi,a) # loss for policy
L_policy.backward() # back-propagate
update(actor) # Adam update

iteration += 1

G.4 PERFORMANCE COMPARISON IN V-D4RL BENCHMARK

Experimental Setup: We evaluate our method on a benchmarking suite for Offline RL from vi-
sual observations of DMControl suite (DMC) tasks (Lu et al., 2022). We consider three domains
of environments (walker-walk, humanoid-walk, and cheetah-run) and two different datasets per en-
vironment (medium-expert and expert). We include two baselines from Lu et al. (2022) in this
experiment:

• DrQ+BC: combining data augmentation techniques with the TD3+BC method, which ap-
plies TD3 in the offline setting with a regularizing behavioral-cloning term to the policy
loss. The policy objective is: π = argmax

π
E(s,a)∼D

[
λQ(s, π(s))− (π(s)− a)2

]
• DrQ+CQL: adding the regularization in CQL to the Q-function of an actor-critic approach,

which is DrQ-v2.

To investigate if BPR learns valuable representation, we pretrain the encoder by using the BPR
objective for 100k time steps, followed by a fine-tuning stage where we keep the encoder fixed and
apply two baselines based on the learned encoder.

Analysis: Figure 12 shows the performance of the four models on V-D4RL. We emphasize that
these tasks are more challenging than their conventional D4RL counterparts. Neither DrQ+BC
nor DrQ+CQL can solve them without further modifications. By integrating the frozen encoder
learned from BPR, both of them obtain significant performance gains. Note that DrQ+CQL typi-
cally requires a longer training time to achieve similar performance to DrQ+BC. Nevertheless, the
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substantial improvement of the modified variant of DrQ+CQL suggests that BPR can be effective in
improving sample efficiency, decrease computational cost, and reach better final performance.

G.5 PERFORMANCE COMPARISON WITH REPRESENTATION OBJECTIVES IN V-D4RL
BENCHMARK
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Figure 12: Performance comparison on v-d4rl benchmark, the results are averaged over 10 evalua-
tions and 6 seeds.

Experimental Setup We evaluate our method with five other representation objectives that are
considered as state-of-the-art methods on a benchmarking suite for Offline RL from visual observa-
tions of DMControl suite (DMC) tasks (Lu et al., 2022). The baselines include:

• DRIML (Mazoure et al., 2020) and HOMER (Misra et al., 2020) (Time Contrastive meth-
ods) learn representations which can discriminate between adjacent observations in a roll-
out and pairs of random observations.

• CURL (Laskin et al., 2020) (Augmentation Contrastive method) learns a representation that
is invariant to a class of data augmentations while being different across random example
pairs.

• Inverse model (Pathak et al., 2017) (One-Step Inverse Models) predict the action taken
conditioned on the previous and resulting observations.

• SGI (Schwarzer et al., 2021a): A combination of three kinds of techniques (Self-Predictive
Representations + Inverse modelling + goal-conditioned RL). As SGI was not tested on the
Deepmind Control suite (continuous-action space) setting, we modified its code8 to allow
it to be fairly compared to BPR. Specifically, for the inverse model, we follow the same
architecture as the above Inverse model; for the self-predictive representation, we design a
simple MLP network acting as an inverse model to capture the dynamic information; for
the goal-conditioned parts, we utilize the same architecture of FiLM module in DRIML,
apply DrQ+BC as the backbone, and define the potential-based reward of goal-conditioned
RL to pretrain the state representations.

In this experiment, all methods use the same encoder architecture, i.e., with four convolutional layers
activated by ReLU, followed by a linear layer normalized by LayerNorm and activated by Tanh,
where the final output feature dimension of the encoder is 256. Besides, all methods follow the same
optimizer settings, image augmentation, pre-training data, and the number of pre-training epochs.
We provide pseudocode for each method in Algorithm 4-7.

8https://github.com/mila-iqia/SGI
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Algorithm 4 DRIML(HOMER) Pretraining Pseudocode, PyTorch-like

# encoder: CNN, encoder network
# driml_net: mlp, contains FiLM block and residual block
def pretrain(encoder, driml_net, replay_buffer, batch_size, temp=0.1):

iteration = 0
for iteration < 1e5:

state, action, state_k_step, _, _ = replay_buffer.sample(batch_size)
# state_k_step is the k step future observation from the current state, where k=1

in HOMER and k=5 in DRIML
state = encoder(state)
state_k = encoder(state_k_step)
u_t, u_tpk = driml_net(state, state_k, action)
outer_prod = torch.einsum(’ik,jk->ij’, u_t, u_tpk)
scores = log_softmax(outer_prod / temp, -1) # temp is the temperature
mask = torch.eye(scores.shape[-1])
scores = (mask * scores).sum(-1).mean()
encoder_loss = -scores # loss for encoder
encoder_loss.backward()
update(encoder,driml_net)
iteration += 1

Algorithm 5 CURL Pretraining Pseudocode, PyTorch-like

# encoder: CNN, encoder network
# W: matrix-wise parameters
def pretrain(encoder, W, replay_buffer, batch_size, temp=0.1):

iteration = 0
for iteration < 1e5:

state, action, next_state, _, _ = replay_buffer.sample(batch_size)
obs = augment(state.float()) # augment
pos = augment(torch.clone(state).float()) # augment
z_a = encoder(obs)
z_pos = encoder(pos, ema=True) # using EMA in encoder network

logits = torch.matmul(z_a, torch.matmul(W_param, z_pos.T)
logits = logits - torch.max(logits, 1)[0][:, None]
labels = torch.arange(logits.shape[0])
encoder_loss = nn.CrossEntropyLoss()(logits, labels)
encoder_loss.backward()
update(encoder,W_param)
iteration += 1

G.6 PERFORMANCE ON THE DATASETS COLLECTED BY THE RANDOM POLICY

It should be noted that in this work, we assume the inductive bias of the behavior policy is efficient.
In particular, a bad behavioral policy may lead BPR to encode an undesirable bias and therefore
deteriorate the performance of the algorithm it is paired with. To verify this, we run BPR on data
collected using a random policy and report the results in Figures 13 and 14. We see that the gains
provided by BPR on datasets where the behavior policy is informative vanish.
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Figure 13: Performance comparison on D4RL mujoco dataset where the data is collected by a
random policy.

G.7 REPRESENTATION AS THE INPUT OF VALUE NETWORK

Experimental Setup As we stated in Section 5, Assumption 2 forbids in theory, the use of the BPR
representation to estimate the value. In this experiment, the purpose is to show that the utilization
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Algorithm 6 Inverse model Pretraining Pseudocode, PyTorch-like

# encoder: CNN, encoder network
# backward_net: mlp, inverse model
def pretrain(encoder, backward_net, replay_buffer, batch_size:

iteration = 0
for iteration < 1e5:

state, action, next_state, _, _ = replay_buffer.sample(batch_size)
state = encoder(state)
next_state = encoder(next_state)
state_cat = torch.cat((state, next_state), dim = -1)
action_hat = backward_net(obs_cat)
backward_error = torch.norm(action - action_hat, dim=-1, p=2, keepdim=True)
encoder_loss = backward_error.mean()
encoder_loss.backward()
update(encoder,W_param)
iteration += 1

Algorithm 7 SGI Pretraining Pseudocode, PyTorch-like

# encoder: CNN, encoder network
# predictor: mlp, predition head for forward model
# forward_net: mlp, forward model
# backward_net: mlp, inverse model
# goal_conditioner: mlp, FiLM block
# fake_actor: actor for goal-conditioned RL
# fake_critic: critic for goal-conditioned RL
def pretrain(encoder, predictor, forward_net, backward_net, goal_conditioner,

fake_actor, fake_critic, replay_buffer, batch_size):
iteration = 0
for iteration < 1e5:

state, action, next_state, _, _ = replay_buffer.sample(batch_size)
inp_state = state
inp_next_state = next_state

state = encoder(state)
next_state = target_encoder(next_state) # updated with EMA from encoder
goal = target_encoder(goal) # updated with EMA from encoder

sa_cat = torch.cat((state, action), dim = -1)
next_state_hat = predictor(self.forward_net(sa_cat))
state_cat = torch.cat((state, next_state), dim = -1)
action_hat = backward_net(state_cat)

forward_error = torch.norm(next_state - next_state_hat,dim=-1,p=2,keepdim=True)
backward_error = torch.norm(action - action_hat,dim=-1,p=2,keepdim=True)
z_g = goal_conditioner(state, goal)

with torch.no_grad():
goal_reward = exp_distance(next_state, goal) - exp_distance(state, goal)
next_action = fake_actor.sample(next_state)
target_Q1, target_Q2 = fake_critic_target(next_state, next_action)
target_V = min(target_Q1, target_Q2)
target_Q = goal_reward + (discount * target_V)

Q1, Q2 = fake_critic(z_g, action)
fake_critic_loss = MSE(Q1, target_Q) + MSE(Q2, target_Q)
encoder_loss = fake_critic_loss + forward_error.mean() + backward_error.mean()

encoder_loss.backward()
update(encoder,predictor, forward_net, backward_net, goal_conditioner,fake_critic)

state = encoder(inp_state)
pred_action = fake_actor.sample(state)
Q1, Q2 = fake_critic(state, pred_action)
Q = torch.min(Q1, Q2)

actor_policy_improvement_loss = -Q.mean()
actor_bc_loss = F.mse_loss(pred_action, action)
fake_actor_loss = actor_policy_improvement_loss * lambda + actor_bc_loss

fake_actor_loss.backward()
update(fake_actor)
iteration += 1

of taking BPR representation as the input of the value network is acceptable empirically. We still
pretrain the encoder and then fix it, while developing two variants of the architecture afterward: i)
the learned encoder is only used for training the policy network, while the value network takes the
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Figure 14: Performance comparison on Visual-D4RL mujoco dataset where the data is collected by
a random policy.

raw state as its input; ii) the learned encoder is used as the input of both the policy network and the
value network.

Analysis As shown in Figure 15, the performance of both variants are almost equivalent, which
means that ϕ(s) is good enough to learn the state-action value empirically. Notably, when taking
ϕ(s) as the input, the agent will have a lower variance along the training procedure in 2 of 6 tasks,
which is the empirical evidence of that ϕ(s) as the input of value network is an acceptable choice.
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Figure 15: Performance comparison on D4RL mujoco dataset, ϕ(s) v.s. s as input of value network.

G.8 VISUAL D4RL BENCHMARK WITH DISTRACTORS

Figure 16: Pixel observations on visual d4rl benchmark with distractors.

We use three levels of distractions (i.e., easy, medium, hard) to evaluate the performance of the
model (See Figure 16. Each distraction represents a shift in the data distribution, where we add
task-irrelevant visual factors (i.e., backgrounds, agent colors, and camera positions) that vary with
environments to disturb the model training.
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