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Abstract

Machine Learning Interatomic Potentials (MLIP) are a novel in silico approach1

for molecular property prediction, creating an alternative to disrupt the accura-2

cy/speed trade-off of empirical force fields and density functional theory (DFT).3

In this white paper, we present our MLIP library which was created with two4

core aims: (1) provide to industry experts without machine learning background a5

user-friendly and computationally efficient set of tools to experiment with MLIP6

models, (2) provide machine learning developers a framework to develop novel7

approaches fully integrated with molecular dynamics tools. The library includes8

in this release three model architectures (MACE, NequIP, and ViSNet), and two9

molecular dynamics (MD) wrappers (ASE, and JAX-MD), along with a set of10

pre-trained organics models. The seamless integration with JAX-MD, in particular,11

facilitates highly efficient MD simulations, bringing MLIP models significantly12

closer to industrial application. The library is available on GitHub and on PyPI13

under the Apache license 2.0.14

1 Introduction15

Evaluation of molecular interactions and properties is critical across multiple sectors, including the16

pharmaceutical, chemical, and materials industries. Because experimental evaluations are often17

costly and time-consuming, in silico methods have become essential for screening and prioritizing18

candidate systems. The two main approaches used in research and industry are empirical force fields19

and quantum chemistry methods. Empirical force fields offer high efficiency, but can fall short in20

accuracy and fail to capture chemical reactivity. Quantum chemistry methods, while considered the21

gold standard for accuracy, often remain too computationally intensive for large-scale or routine use.22

Machine Learning Interatomic Potential (MLIP) models aim to approach the accuracy of quantum23

chemistry methods at a fraction of the computational cost. Because they balance speed and accuracy,24

MLIP models, like traditional force fields and quantum methods, operate within an inherent trade-off25

between efficiency and precision. This creates space for a wide variety of model architectures,26

inductive biases, and scales, tailored to different simulation needs. Contributing to this diversity,27

some models can be fine-tuned for specific systems, while others prioritize broad generalizability28

across a wide range of chemical space.29

In this white paper, we present a unified framework for MLIP training and deployment in molecular30

dynamics (MD) simulations. Our objective is to provide a versatile toolkit that serves users across a31
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wide range of backgrounds, from computational chemistry researchers to machine learning developers.32

The library enables those with minimal machine learning experience to run simulations with just33

a few lines of code, while offering advanced users the flexibility to develop custom methods with34

seamless integration into existing training and simulation workflows. We also include a set of models,35

pre-trained for organic chemistry, that can be readily deployed for simulations or further fine-tuned36

for specific use cases.37

Although many studies have demonstrated that MLIP can achieve near-DFT accuracy while being38

orders of magnitude faster, the field faces stiff competition from traditional force fields due to their39

efficiency and scalability [1, 2]. We therefore see inference speed as a critical area of focus for any40

MLIP library oriented on usability and a key component for the future success and applicability of41

these methods. As such, the library is entirely JAX-based [3], benefiting from full just-in-time XLA42

(Accelerated Linear Algebra) compilation. In particular, the efficient integration of the MLIP models43

with the JAX-MD simulation backend allows for state-of-the-art MD simulation speeds.44

2 Brief overview of MLIP methods45

2.1 Related work46

The idea of using neural networks as force fields stems from the observation that traditional empirically47

fitted potentials are limited in their functional form and expressivity. As such, many functional forms48

and inductive biases have been tried over the years, with the field evolving from system specific force49

fields to more generalized methods covering large portions of the periodic tables in recent years [4, 5].50

In this work, we primarily focus on Graph Neural Networks (GNNs), though it is worth briefly51

outlining other approaches. A first example include Kernel methods, such as Gaussian Approximation52

Potentials (GAP) [6–11] and the symmetry-adapted Gradient Domain Machine Learning (sGDML)53

[12–15]. While GAP tends to suffer from poor generalizability, sGDML has been shown to perform54

well on large datasets. A second is to handcraft specific descriptors of a molecular system and use55

a linear combination of generalized basis functions to predict the potential energy surfaces. Ralf56

Drautz [16] showed that many of the atomic centered descriptors (incl. SOAP [9] or Moment Tensor57

Potentials [17]) are specific instances of a general polynomial expansion of the atomic neighbor58

density labeled as Atomic Cluster Expansion (ACE). Finally, the ANI (Accurate NeurAl networK59

engINe for Molecular Energies) family of models (e.g., ANI-1 [18], ANI-1x [19], ANI-1ccx [20],60

ANI-2x [21]) proposes a different approach, where feed forward neural networks are trained on61

handcrafted Atomic Environment Vectors (AEVs, adapted from the basis functions proposed by62

Behler and Parrinello [10]).63

GNNs for MLIP are constructed to preserve specific system symmetries - at the very least invariance64

to rotation and translations in energy predictions, but oftentimes also equivariance of spatial output65

and latent information throughout the network. While equivariance usually comes at a computational66

cost, it has also been showed to improve data efficiency [22, 23]. The main categories of graph-based67

MLIPs include:68

Distance-based (invariant) GNNs: Rely on interatomic distances to learn rotationally invariant69

energy predictions, such as in SchNet [24–26] or AIMNet2 [27]. Similar ideas were developed with70

a direct focus on periodic crystal structures, such as the Crystal Graph Convolutional Neural Network71

(CGCNN) [28].72

Directional / angular equivariant GNN: A first example approach to achieve equivariance in73

GNN was proposed by Satorras et al. [29], and involves equivariantly updating edge features between74

each message passing layers. Other approaches have alternatively proposed to guarantee inter-75

layer equivariance through computation of angular features, such as presented in DimeNet [30, 31],76

GemNet [32, 33], and ViSNet [34, 35].77
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E(3)-Equivariant GNN / steerable 3D convolutions: An alternative approach is to build upon the78

formalism of Clebsch-Gordan-based steerable 3D convolutions [36–38] to achieve arbitrary orders of79

representation of geometric features. Examples of models in this category include NequIP [22], largely80

based on the Tensor Field Network architecture [39], Allegro [40], a fully-local (non-message passing)81

version of NequIP designed for efficient parallelization [41], and MACE [4, 42–44], which formalizes82

the connection between the steerable convolution and the ACE basis by constructing a learnable83

multi-body atomic cluster expansion. PaiNN (Polarizable Atom Interaction Neural Network)[45]84

offers a more efficient alternative relying solely on vector features rather than full tensor algebra.85

Finally, some approaches use projections onto 2D domain to perform faster convolutions [46–48].86

It is worth noting that this latter category of equivariant GNN largely relies on specialized libraries87

managing the steerable convolution features [49, 50]. Other backends also include accelerated CUDA88

kernels, such as NVIDIA’s cuEquivariance package.89

2.2 Models included in the mlip library90

In the current version of the library, we have incorporated three graph-based MLIP models: MACE91

[42], NequIP [22], and ViSNet [34]. All three were chosen based on their strong performance and92

extensive validation by the community across diverse settings.93

In the first version of the library, we have maintained model architectures as closely as possible to94

their original implementation. We aim for later versions to include modified layers and backends95

(see our roadmap below). However, we will endeavor to maintain backwards compatibility. The code96

sources and modifications are outlined below:97

• MACE: The code for MACE is in large parts based on the initial JAX implementation by98

Mario Geiger and Ilyes Batatia. We implemented a number of minor changes to match99

the inference output of the original Torch version as closely as possible, with identical100

weights. It is worth noting that perfect matching is challenging due to a different activation101

normalization between e3nn and e3nn-jax. Additionally, models will differ when used in102

float32 precision due to different rounding conventions between JAX and Torch. Other103

changes include additional Flax versions of some modules and minor refactoring.104

• ViSNet: The code for ViSNet was entirely converted to JAX from the original Torch105

implementation and was likewise set to match the inference output for a given set of weights.106

• NequIP: The code for NequIP is almost entirely based on the version implemented in the107

GNoME repository [51]. Only minor modifications where made to fit within the library108

workflow. We did not attempt to match NequIP to the original Torch code, a slightly modified109

version of which we used for benchmarking (see the relevant section below).110

The library is designed to support the seamless addition of new models. To facilitate this, as part of111

the documentation, we provide a tutorial on how to write new models to be interfaced easily with the112

other parts of the library (e.g. training or simulation). Looking ahead, as outlined in our roadmap, we113

plan to incorporate additional JAX implementations of MLIP models in new releases.114

3 Pre-trained models and benchmarks115

In this section, we illustrate the use of our library for large-scale training of MLIP models. To that116

end, we present a set of three pre-trained models, one for each of the architectures included in the117

library, which were selected from many training runs. Our aim is to illustrate the usage of the library118

rather than provide usable models. However, these are nonetheless available under a separate license119

on InstaDeep’s HuggingFace collection. We describe below the training processes, validation results,120

and runtime benchmarks.121

The models are all trained on a curated second version of the SPICE2 dataset [52, 53]. The details of122

this dataset’s construction and composition can be found in Appendix A.6.123
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3.1 Model training methodology124

For the model training, this dataset was then split into training and validation sets using a 95:5 ratio.125

The split was performed at the molecular SMILES level, ensuring that different conformers of the126

same molecule were not included in both sets. As a result, some elements which are rare in this127

curated version of SPICE2 appear only in the training set but not in the validation set (specifically128

K, Li and Na). Although this limitation will be addressed in future updates to these MLIP models,129

users are currently advised to use caution when applying the models to systems containing these130

elements. The final training set contains 1,737,896 structures covering 15 chemical elements (B, Br,131

C, Cl, F, H, I, K, Li, N, Na, O, P, S, Si), while the validation set contains 87,922 structures across132

12 elements.133

Each pre-trained model was trained for 220 epochs using NVIDIA H100 GPUs. The Visnet and134

NequIP models were trained using the Huber loss [54], while the MACE model used the MSE loss.135

We have detailed below the key parameters, though full details of the model architectures and training136

hyperparameters can be found in Appendix A.1.137

• MACE [4, 42–44]: The MACE pre-trained model hyperparameters were chosen to prioritize138

stability of MD simulations. The model has 2 layers and 128 channels. The many-body139

correlation order correlation = 2 and the degree of node features node symmetry = 3140

(called max L in [43]).141

• ViSNet [34, 35]: The ViSNet pre-trained model has 4 hidden layers and 128 embedding142

channels. 8 attention heads were used, as well as 32 RBF features and Lmax = 2.143

• NequIP [22]: The NequIP pre-trained model uses 5 interaction blocks and Lmax = 2. The144

feature configuration is 64x0e + 64x0o + 32x1e + 32x1o + 4x2e + 4x2o.145

These selected settings on MACE notably differ from those used for MACE-OFF medium [43].146

This is because we found that, when training on SPICE2, our updated hyperparameters resulted in147

significantly better MD stability. To provide comparable models trained on the same dataset, we148

decided to include this version instead of the one aligned to MACE-OFF, despite the additional149

computational cost and higher energy prediction errors. We present below validation metrics for150

both MACE (large - our hyperparameters) and MACE (medium - following the MACE-OFF [43]151

hyperparameters) on SPICE2. We also conducted a training of MACE aligned to the hyperparameters152

of MACE-OFF on a curated version of SPICE1 [55]. We found excellent MD stability and validation153

metrics (more details are presented in Appendix A.2).154

Finally, we also trained a model with a modified MACE architecture optimized for inference speed,155

which we present in detail in Appendix A.3.156

3.2 Model benchmarking157

Validation results: We evaluate the performance of the three pre-trained models, MACE-large,158

NequIP and VisNet, as well as the MACE-medium model (with hyperparameters aligned to MACE-159

OFF medium in [43]) and the modified MACE model (see Appendix A.3), on the SPICE2 validation160

set used during training. Each model was assessed with two standard error metrics: the mean absolute161

error (MAE) in predicted energies per atom (meV/atom) and the MAE in atomic forces (meV/Å).162

Validation was conducted across seven subsets of SPICE2, including isolated and solvated small163

molecules, as described in Table 6.164

Figure 1 presents a comparative summary of model performance across all subsets. NequIP achieves165

the lowest energy MAE for most subsets, while Visnet outperforms in force MAE. Across most166

models, lower force errors are observed in the DES370K, dipeptides, monomers and solvated amino167

acids subsets than in the PubChem and solvated PubChem subsets. MACE-medium achieves lower168

energy and forces MAE than MACE-large in every subset. Users should be warned that while169

validation errors are relevant metrics to measure training performance, they are not sufficient to attest170

to a model’s ability to simulate correct physics.171

4



Figure 1: Validation set mean absolute errors (MAE) for energy per atom (meV/atom) and atomic
forces (meV/Å) across seven molecular subsets in the SPICE2 dataset. The three pretrained models—
MACE-large, VisNet, and NequIP— as well as MACE-medium (following the MACE-OFF [43]
hyperparameters) and our modified MACE model (see Appendix A.3) are evaluated. The subsets
include: PubChem, DES370K, amino acid ligands, dipeptides, monomers, solvated PubChem, and
solvated amino acids. MAE values reflect the deviation from DFT reference calculations. The number
of structures per subset is detailed in Table 6.

Runtime benchmark: Conducting a reliable runtime benchmark can be quite challenging. A first172

obvious reason is the notable difference in implementation across JAX and Torch versions. As a173

result, we want to point out that the model implementations on which the Torch + ASE benchmarks174

are run are our own, and they should not be considered representative of the performance of the175

code developed by the original authors.176

With this in mind, we present in Table 1 simulation benchmarks on two different systems (1UAO and177

1ABT, see Figure 3 in Appendix A.5) with results averaged over a 1 nanosecond simulation. Also see178

Appendix A.5 for more details on the benchmark systems.179

Another important point to note with regard to simulation benchmarks is the significant difference180

regarding how the JAX + JAX-MD workflow manages GPU utilization and memory compared to the181

Torch + ASE combination. Simulations on smaller systems will likely exhibit a larger advantage on182

the JAX versions as it maximizes GPU utilization, unlike the Torch + ASE versions. The relative183

difference should shrink with increasing system size as GPU capacity gets saturated.184

4 Library overview185

4.1 Purpose and design philosophy186

The purpose of the mlip library is to provide users with a toolbox to deal with MLIP models in a true187

end-to-end fashion. This includes data preprocessing, implementation of multiple model architectures,188

model training, model fine-tuning, deployment through MD simulation, energy minimization, and189

batched inference. The mlip library was built in accordance with the following key design principles:190
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Table 1: Speed performance on MD simulation of the different pre-trained models and backends.
All tests were run on a single NVIDIA H100 GPU, and speed metrics are given in milliseconds per
step, averaged over 1 ns of simulation. 1UAO is a chignolin molecule with 138 atoms, while 1ABT
is a system with 1205 atoms. All models included in the table achieved stable simulations on these
benchmarks.

Models Parameters Systems Jax + JAX-MD Jax + ASE Torch + ASE

MACE (large) 2,139,152 1UAO 6.3 ms/step 11.6 ms/step 44.2 ms/step
1ABT 66.8 ms/step 99.5 ms/step 157.2 ms/step

Modified MACE 2,203,504 1UAO 3.0 ms/step 6.4 ms/step n.a.
1ABT 26.6 ms/step 48.7 ms/step n.a.

ViSNet 1,137,922 1UAO 2.9 ms/step 6.2 ms/step 33.8 ms/step
1ABT 25.4 ms/step 46.4 ms/step 101.6 ms/step

NequIP 1,327,792 1UAO 3.8 ms/step 8.5 ms/step 38.7 ms/step
1ABT 67.0 ms/step 105.7 ms/step 117.0 ms/step

• Ease-of-use: The library should be simple to install and use, especially for non-expert users,191

who primarily aim to apply pre-trained MLIP models to relevant scientific applications and192

may have limited prior experience with the JAX ecosystem. Furthermore, we are aware that193

ML models and workflows typically rely on a large number of configurable values. Hence,194

we provide sensible default parameters wherever possible without unnecessarily reducing195

flexibility for users who can take advantage of it.196

• Extensibility: For more experienced users, we want mlip to be a toolbox that can be197

extended easily. For example, users can seamlessly complement the library by adding a198

new model architecture, alternative data preprocessing methods, or additional simulation199

backends. Hence, we embrace the modularity of these components in the library design200

wherever possible.201

• Inference efficiency: We believe that to successfully push MLIP models towards relevant202

industrial applications, high inference speeds are essential. Most relevant applications,203

especially in biology, rely on running long MD simulations on large systems. Therefore,204

we aim to deliver the most efficient model implementations and simulation pipelines. We205

prioritize inference over training speed when necessary. However, we strive to be state-of-206

the-art in both areas.207

4.2 Structure and modules208

The mlip library is constructed in a modular way, separating model implementation from training,209

fine-tuning, and simulation code. It consists of multiple sub-modules targeted towards different parts210

of a full MLIP pipeline. First, the data module contains code related to dataset preprocessing. Its211

main purpose is to go from datasets stored on a file system to instances of GraphDataset classes212

that can be directly used for training or batched inference tasks. Second, the models module contains213

code related to the MLIP models, i.e., their core implementations, loss classes, and other related214

utilities, such as loading of trained models. Third, the training module contains code related to215

training or fine-tuning MLIP models. Fourth, the simulation module contains code for running216

MD simulations or energy minimization with MLIP models. We support both JAX-MD [57] and217

ASE [58] backends. Fifth, the inference module contains a function to run batched inference on218

a list of structures with MLIP models, and finally, the utils and typing modules contain utility219

functions, data classes, and type aliases used in other modules that may also be useful for various220

downstream tasks.221

Each of these modules is designed to allow the user to set up their own experiment scripts or notebooks222

with minimal effort, while also supporting customization, especially for topics such as logging (e.g.223
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Figure 2: Schematic overview of the essential classes of the mlip library and their interactions. To
run simulations with one of the two implementations of SimulationEngine, we need to input an
instance of ForceField, which contains a ForceFieldPredictor (implemented as a Flax [56]
module) and its parameters. A ForceField instance can be called directly on an input graph. To
train the force field model, i.e., find its optimal parameters, we provide a TrainingLoop class that
requires training and validation data in GraphDataset objects. These objects can be created easily
with tools in the data module. See the tutorials in the code documentation for more details.

to a remote storage location like Amazon S3 or Google Cloud Storage) or adding new losses, MLIP224

model architectures, or dataset readers.225

In Figure 2, we provide a schematic overview of the most essential classes of the library and how226

they interact with each other.227

4.3 Practical examples228

The mlip package can be installed via pip. We provide full code documentation with many tutorials229

on how to use the library. In the following, we present two common use cases: (1) launching an MD230

simulation with one of the pre-trained models, and (2) training a model from scratch. Example (1)231

can be viewed directly below, while example (2) is located in the Appendix A.4. These two examples232

aim to provide a general overview of the library API. For a complete step-by-step walkthrough, please233

refer to the tutorials.234

In the first example, we load a pre-trained MACE model from a zip archive. It is directly loaded into235

a ForceField object containing all the relevant information about the model. In a subsequent step,236

we load a chemical system with ASE, initialize the MD config and engine objects, and then launch237

the run. For more details on logging and results collection, see the deep-dive simulation tutorial238

provided in the code documentation.239

Although we also provide ASE as a simulation backend, we recommend to rely on the integration240

with JAX-MD for simulations wherever possible (as in the example above), as it enables running241

MLIP-based MD with state-of-the-art speed (see benchmarking results of pre-trained models below).242

With JAX-MD, we can run a collection of multiple MD steps in a fully JIT-compiled manner on243

the GPU without any data transfer required between CPU and GPU. During this time, any form of244

logging or saving of intermediate results is not possible. As a consequence, we separate the JAX-MD245

based simulations into multiple episodes, where logging happens only between two of them.246
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Furthermore, note that JAX has to recompile the force field prediction function each time its input247

shapes change, for example, caused by a change in the number of edges resulting from a change in248

atomic positions. To limit the number of times that JAX must recompile, we apply padding to the249

neighbor lists and check whether the amount of padding is still sufficient after each episode. If the250

edge buffer overflowed, we reallocate the neighbor lists and rerun the previous episode. Note that the251

alternative ASESimulationEngine has an analogous interface to the JaxMDSimulationEngine.252

With ASE, we also use the same padding strategy to avoid recompiling often. However, reallocation253

is not limited to happening after episodes but can happen after each MD step if necessary. Therefore,254

in contrast to the JaxMDSimulationEngine, the ASESimulationEngine will not require a number255

of episodes to be set in its configuration.256

import ase.io
from mlip.models import Mace, ForceField
from mlip.models.model_io import (

load_model_from_zip
)
from mlip.simulation.jax_md import (

JaxMDSimulationEngine
)

# Load pre-trained model
force_field = load_model_from_zip(

Mace, "/path/to/pretrained_model.zip"
)

# Set up MD prerequisites
atoms =

ase.io.read("/path/to/xyz/or/pdb/file")
md_config = JaxMDSimulationEngine.Config(

num_steps=1_000_000,
# ... other settings

)

# Run MD
md_engine = JaxMDSimulationEngine(

atoms, force_field, md_config
)
md_engine.run()

• imports: Load the necessary mod-
ules.

• load_model_from_zip: Loads a
pre-trained MACE model from a
zip archive into a ForceField ob-
ject containing all relevant infor-
mation about the model. Note
that the ForceField class can also
be viewed as a generic interface
for any JAX function that maps
jraph.GraphsTuple graphs to our
Prediction objects.

• ase.io.read: Reads the structure
file (as XYZ, PDB, etc.) using ASE.

• JaxMDSimulationEngine.Config:
Configures the simulation (e.g.,
number of steps).

• JaxMDSimulationEngine: Sets
up the molecular dynamics engine.

• md_engine.run: Launches the
MD simulation.

257

The second example is located in Appendix A.4.258

5 Roadmap for library development259

We aim to release several updates to the current version (v0.1.2) in the coming months. For example,260

we plan to include features such as: (i) ability to incorporate total charge as input and models designed261

to predict charge-related labels (e.g. partial charges, dipole), (ii) additional MLIP models with a262

priority to models that have received validation through additional research (examples may include263

eSEN [48] or GemNet [59]), (iii) accelerated backends for faster inference on steerable convolutions264

models (e.g. cuEquivariance, sparse kernel generators [60]), (iv) additional functionalities (e.g. new265

loss functions, optimizers, layers for MACE, NequIP, or ViSNet), (v) complementary libraries in266

which mlip will be integrated for additional functionalities (e.g. coarse-grained methods for MLIP267

[61], or BoostMD [62]), or (vi) trained MLIP models on improved and more extensive datasets, for268

example, the Open Molecules 2025 (OMol25) dataset [5].269

Our objective is for any addition to the library to remain open source.270
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Csányi. Mace-off: Short-range transferable machine learning force fields for organic molecules.446

Journal of the American Chemical Society, May 2025. ISSN 1520-5126. doi: 10.1021/jacs.447

4c07099. URL http://dx.doi.org/10.1021/jacs.4c07099.448

[44] Dávid Péter Kovács, Ilyes Batatia, Eszter Sára Arany, and Gábor Csányi. Evaluation of the449

mace force field architecture: From medicinal chemistry to materials science. The Journal450

of Chemical Physics, 159(4), July 2023. ISSN 1089-7690. doi: 10.1063/5.0155322. URL451

http://dx.doi.org/10.1063/5.0155322.452

[45] Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the453

prediction of tensorial properties and molecular spectra, 2021. URL https://arxiv.org/454

abs/2102.03150.455

[46] Saro Passaro and C. Lawrence Zitnick. Reducing so(3) convolutions to so(2) for efficient456

equivariant gnns. In Proceedings of the 40th International Conference on Machine Learning,457

ICML’23. JMLR.org, 2023.458

12

http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41586-024-08127-z
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1807.02547
https://arxiv.org/abs/1806.09231
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/2205.06643
https://arxiv.org/abs/1802.08219
http://dx.doi.org/10.1038/s41467-023-36329-y
https://arxiv.org/abs/2304.10061
https://arxiv.org/abs/2206.07697
http://dx.doi.org/10.1021/jacs.4c07099
http://dx.doi.org/10.1063/5.0155322
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150


[47] Shengjie Luo, Tianlang Chen, and Aditi S. Krishnapriyan. Enabling efficient equivariant459

operations in the fourier basis via gaunt tensor products, 2024. URL https://arxiv.org/460

abs/2401.10216.461

[48] Xiang Fu, Brandon M. Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko462

Dzamba, and C. Lawrence Zitnick. Learning smooth and expressive interatomic potentials for463

physical property prediction, 2025. URL https://arxiv.org/abs/2502.12147.464

[49] Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice,465

Kostiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Dylan Madisetti,466

Martin Uhrin, Jes Frellsen, Nuri Jung, Sophia Sanborn, Mingjian Wen, Josh Rackers, Marcel467

Rød, and Michael Bailey. Euclidean neural networks: e3nn, April 2022. URL https://doi.468

org/10.5281/zenodo.6459381.469

[50] Oliver T. Unke and Hartmut Maennel. E3x: E(3)-equivariant deep learning made easy. arXiv470

preprint arXiv:2401.07595, 2024.471

[51] Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon,472

and Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 2023. doi:473

10.1038/s41586-023-06735-9.474

[52] Peter Eastman, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E. Herr,475

Josh T. Horton, Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuanqing Wang, Gianni476

De Fabritiis, and Thomas E. Markland. Spice, a dataset of drug-like molecules and peptides477

for training machine learning potentials. Scientific Data, 10, January 2023. doi: 10.1038/478

s41597-022-01882-6. URL https://doi.org/10.1038/s41597-022-01882-6.479

[53] Peter Eastman, Benjamin P, Pritchard, John D. Chodera, and Thomas E. Markland. Nutmeg480

and spice: Models and data for biomolecular machine learning, 2024. URL https://arxiv.481

org/abs/2406.13112.482

[54] Peter J. Huber. Robust Estimation of a Location Parameter, pages 492–518. Springer New483

York, New York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_35.484

URL https://doi.org/10.1007/978-1-4612-4380-9_35.485

[55] Harry Moore, David Peter Kovacs, Nicholas J Browning, Ilyes Batatia, Joshua T Horton, Venkat486

Kapil, William Witt, Ioan Magdau, Daniel Cole, and Gabor Csanyi. Research data supporting487

"mace-off23", 2024. URL https://www.repository.cam.ac.uk/handle/1810/366661.488

[56] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas489

Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL490

http://github.com/google/flax.491

[57] Samuel S. Schoenholz and Ekin D. Cubuk. Jax, m.d.: A framework for differentiable physics,492

2020. URL https://arxiv.org/abs/1912.04232.493

[58] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Chris-494

tensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, Eric D495

Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leon-496

hard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann Marons-497

son, Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard,498

Jakob Schiøtz, Ole Schütt, Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelm-499

sen, Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen. The atomic simulation en-500

vironment—a python library for working with atoms. Journal of Physics: Condensed Mat-501

ter, 29(27):273002, June 2017. ISSN 1361-648X. doi: 10.1088/1361-648x/aa680e. URL502

http://dx.doi.org/10.1088/1361-648X/aa680e.503

13

https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2401.10216
https://arxiv.org/abs/2502.12147
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.1038/s41597-022-01882-6
https://arxiv.org/abs/2406.13112
https://arxiv.org/abs/2406.13112
https://arxiv.org/abs/2406.13112
https://doi.org/10.1007/978-1-4612-4380-9_35
https://www.repository.cam.ac.uk/handle/1810/366661
http://github.com/google/flax
https://arxiv.org/abs/1912.04232
http://dx.doi.org/10.1088/1361-648X/aa680e


[59] Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary504

Ulissi, C. Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks505

for large and diverse molecular simulation datasets, 2022. URL https://arxiv.org/abs/506

2204.02782.507

[60] Vivek Bharadwaj, Austin Glover, Aydin Buluc, and James Demmel. An efficient sparse kernel508

generator for o(3)-equivariant deep networks, 2025. URL https://arxiv.org/abs/2501.509

13986.510

[61] Christoph Brunken, Sebastien Boyer, Mustafa Omar, Martin Maarand, Olivier Peltre, Solal511

Attias, Bakary N’tji Diallo, Anastasia Markina, Olaf Othersen, and Oliver Bent. Universally512

applicable and tunable graph-based coarse-graining for machine learning force fields, 2025.513

URL https://arxiv.org/abs/2504.01973.514

[62] Lars L. Schaaf, Ilyes Batatia, Christoph Brunken, Thomas D. Barrett, and Jules Tilly. Boostmd:515

Accelerating molecular sampling by leveraging ml force field features from previous time-steps,516

2024. URL https://arxiv.org/abs/2412.18633.517

A Technical Appendices and Supplementary Material518

A.1 Complete set of model and training hyperparameters519

A complete description of each parameter can be found in the mlip model documentation. The models520

were trained using very similar training strategies. Training was performed over 220 epochs with521

scheduled weights: energy (40) and forces (1000), flipped at epoch 115. An exponential moving522

average (EMA) with decay rate 0.99 was applied. The AMSGrad variant of Adam optimizer was523

used. The exponential moving average of the weights is taken at every training step. We use 4000524

warmup steps followed by 360000 transition steps. Gradient clipping was performed with a norm525

of 500, and no gradient accumulation was applied. The ViSNet and NequIP model training was526

performed using a Huber loss, while the MACE model training was performed using the MSE loss.527

See Table 2 for the hyperparameters used for the NequIP model, Table 3 for ViSNet, and Table 4 for528

MACE. All training was done on NVIDIA H100 GPUs. Training took approximately 245 hours for529

NequIP, 158 hours for ViSNet and 266 hours for MACE.530

Table 2: NequIP model hyperparameters.

Parameter Value
num_layers 5
node_irreps 64x0e + 64x0o + 32x1e +

32x1o + 4x2e + 4x2o
l_max 2
num_bessel 8
radial_net_nonlinearity swish
radial_net_n_hidden 64
radial_net_n_layers 2
radial_envelope polynomial_envelope
scalar_mlp_std 4
graph_cutoff_angstrom 5
max_n_node 32
max_n_edge 288
batch_size 16
learning_rate 0.002
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Table 3: ViSNet model hyperparameters.

Parameter Value
num_layers 4
num_channels 128
l_max 2
num_heads 8
num_rbf 32
trainable_rbf False
activation silu
attn_activation silu
vecnorm_type None
graph_cutoff_angstrom 5
max_n_node 32
max_n_edge 288
batch_size 16
learning_rate 0.0001

Table 4: MACE model hyperparameters.

Parameter Value
num_layers 2
num_channels 128
l_max 3
node_symmetry 3
correlation 2
readout_irreps ["16x0e","0e"]
num_readout_heads 1
num_bessel 8
activation silu
radial_envelope polynomial_envelope
graph_cutoff_angstrom 5
max_n_node 32
max_n_edge 288
batch_size 64
learning_rate 0.01

A.2 SPICE1 training of MACE medium531

As discussed in the main body of the paper, we also trained a version of the MACE architecture of532

the library on a curated version of SPICE1 [55] with the same parameters as the original MACE-533

OFF medium model [43]. Overall, we achieved validation performance equivalent to MACE-OFF534

on SPICE1. We also present in Table 5 the runtime metrics on 1UAO and 1ABT. Likewise, the535

implementation of the ASE wrapper around the original torch version of MACE-OFF is our own, and536

it should not be considered representative of the performance of the original authors’ code.537

A.3 Modified MACE model538

In this section, we introduce a modified version of MACE that exhibits similar performances to the539

original MACE model while significantly reducing the associated inference time. A key component of540

MACE is the so-called Symmetric Contraction (SC), a costly node-wise operation that computes the541

tensor product of node features with themselves ν times, where ν is referred to as the correlation order.542

The choice of ν depends on a speed-accuracy trade-off, with a correlation order ν = 3 leading to a543

slower but more accurate model than ν = 2. Here we propose two simple yet effective modifications544
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Table 5: Speed performance on MD simulation of the MACE medium pre-trained models and
backends. All tests were run on a single NVIDIA H100 GPU and speed metrics are given as
milliseconds per step averaged over 1 ns of simulation. 1UAO is a chignolin molecule with 138
atoms, while 1ABT is a system with 1205 atoms. Both models achieved stable simulation, and are
both trained on a curated version of SPICE1 [55].

Models Parameters Systems Jax + JAX-MD Jax + ASE Torch + ASE

MACE (medium) 1,911,568 1UAO 3.6 ms/step 7.9 ms/step 30.7 ms/step
1ABT 31.0 ms/step 64.6 ms/step 104.9 ms/step

of the original MACE model that overcome this tradeoff, allowing to reach an accuracy close the one545

of our vanilla MACE model with ν = 3 at an inference speed similar to the one obtained for ν = 2.546

In the following we describe our modifications by referring to the equations of the original MACE547

paper and adopt the same notations. Our first modification consists in applying a gating to the548

node features of node i using the scalar produced during the SC. More precisely, we first define the549

following gating weights550

α
(t)
ZikL,ην

=
∑
η̃ν

W η̃ν

Zikk̃,ην
B

(t)

i,η̃ν k̃00
+ bZik,ην

(1)

where B
(t)

i,η̃ν k̃00
are the scalar features at the output of the SC and W η̃ν

Zikk̃,ην
, bZik,ην

are specie-wise551

learnable mixing weights and biases that depends on node i through its atomic specie Zi. Then, we552

gate the node features with the weights α(t)
ZikL,ην

, which amount to replace Eq. (11) defining the node553

messages with the following one:554

m
(t)
i,kLM =

∑
ν

∑
ην

α
(t)
ZikL,ην

W
(t)
ZikL,ην

B
(t)
i,ηνkLM . (2)

We found that this modification accounted for most of the improvement in our model. Importantly,555

this modification increases the body-order of the node-features while avoiding an increase in the556

correlation order, at a computational cost negligible compared to that of SC.557

The second modification relates to the interaction of a node with its neighbors as encapsulated in Eq.558

(8) of the original MACE paper. We generalize this interaction term as to let it depend explicitly on559

the species of both the sender and receiver nodes. To do so, we first embed the specie of each node i560

into a vector of learnable scalar features561

si := (a1Zi
, . . . , adZi

)T ∈ Rd , (3)

with d = 8. Then, we build scalar feature vectors on each edge (i, j) as562

fij := [si || sj || si ◦ sj ] ∈ R3d , (4)

where || and ◦ respectively denote concatenation and Hadamard product. The features fij are then563

processed through a MLP to produce weights564

β
(t)
ij,kl1l2l3

:= MLP(fij)kl1l2l3 . (5)

At last, Eq. (8) of the original MACE paper is to be replaced by the following equation:565

A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

β
(t)
ij,kl1l2l3

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)

∑
k̃

W
(t)

kk̃l2
h
(t)

j,k̃l2m2
. (6)

A.4 Library API – model training use case example566

In this section, we present our second example of our library API in addition to the one presented in567

the main text.568
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This example is a code snippet to train a model. We first set up all the prerequisites, which include569

(1) the dataset (see dedicated data processing tutorial in the documentation for more details), (2) the570

force field model, (3) the loss, (4) the optimizer, and (5) the training loop config. Once these objects571

have been set up, one can easily instantiate the training loop class and start the training run. Note that572

we support multi-GPU training via data parallelism. For more details, see the model training tutorial573

in the code documentation.574

from mlip.training import (
TrainingLoop, get_default_mlip_optimizer

)
from mlip.models.loss import MSELoss
from mlip.models import Mace, ForceField

# Get data
train_set, validation_set, dataset_info = (

_get_dataset()
)

# Initialize model
mace = Mace(Mace.Config(), dataset_info)
force_field = (

ForceField.from_mlip_network(mace)
)

# Other prerequisites
loss = MSELoss()
optimizer = get_default_mlip_optimizer()
config = TrainingLoop.Config(

num_epochs=100,
... # other settings

)

# Create TrainingLoop class
training_loop = TrainingLoop(

train_dataset=train_set,
validation_dataset=validation_set,
force_field=force_field,
loss=loss,
optimizer=optimizer,
config=config,

)

# Start the model training
training_loop.run()

• imports: Load the necessary mod-
ules.

• _get_dataset: Placeholder func-
tion to be replaced by code to load
a dataset from the filesystem. See
the tutorial on data reading process-
ing for more information. Model hy-
perparameters directly related to the
dataset are stored in a DatasetInfo
object.

• Mace: Initialize a MACE model
from a configuration and a
DatasetInfo object. In this exam-
ple, the default hyperparameters are
used.

• ForceField.from_mlip_network:
Creates the ForceField wrapper
class (main interface with training
and simulation pipelines) from the
MACE network class.

• MSELoss: Sets up a loss, in this ex-
ample, a weighted mean-squared er-
ror loss for energy, forces, and stress.
In this example, the default weights
are used.

• get_default_mlip_optimizer:
Sets up the default optimizer
for MLIP models (see the code
documentation for more details on
how it is implemented).

• TrainingLoop.Config: Config-
ures the training loop.

• TrainingLoop: Sets up the model
training.

• training_loop.run: Launches
the model training.

575

A.5 Systems for MD runtime benchmark576

We perform our MD runtime benchmarks on the following systems (also depicted in Figure 3).577

• 1UAO: Chignolin (PDBid: 1UAO) is a synthetic mini-protein, designed to mimic the β-578

hairpin secondary structure motif found in natural proteins. Due to its size, Chignolin is579

widely used in classical molecular dynamics simulations to study folding.580
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• 1ABT: Alpha-bungarotoxin complex (PDB: 1ABT, Solution NMR structure) is a potent581

neurotoxin found in the venom of the Taiwanese many-banded krait snake, Bungarus multi-582

cinctus. This small polypeptide (78 amino acids) acts as a highly specific and irreversible583

antagonist of the nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction,584

blocking acetylcholine binding and leading to muscle paralysis. The solved structure dis-585

played in Figure 3 contains alpha-bungarotoxin (BGTX), and a synthetic dodecapeptide586

(alpha 185-196) corresponding to a functionally important region on the alpha-subunit of587

the nicotinic acetylcholine receptor (nAChR).588

(a) 1UAO (b) 1ABT

Figure 3: Cartoon representations of benchmark systems: (a) chignolin (PDBid: 1UAO) and the
alpha-bungarotoxin in complex with a functionally important region of the nicotin acetylcholine
receptor (highlighted in grey)

A.6 Curated SPICE2 Dataset589

We currently provide access to three pre-trained models, all trained on a curated second version of590

the SPICE2 dataset [52, 53]. The SPICE2 dataset was chosen for its diversity, both in chemical and591

conformational space, comprising approximately two million structures computed with DFT at the592

ωB97M-D3(BJ)/def2-TZVPPD level of approximation. The dataset is labeled and subdivided into a593

collection of subsets; details of the training and validation sets per subset are provided in Table 6.594

Table 6: Summary of training and validation sets. Data categories in columns correspond to those in
SPICE2 [53].

PubChem DES370K Amino acid ligand Dipeptides

Training set 1,284,419 262,820 140,128 19,699
Validation set 58,336 10,917 7,250 1,250
Average size 36.9 16.6 55.4 44.4

Monomers Solvated PubChem Water Solvated amino acid

Training set 16,750 12,130 1,000 950
Validation set 1,000 705 0 50
Average size 13.5 92.8 95 55.4

To improve data quality, several pre-processing steps were applied. First, any structure where a595

hydrogen atom did not have exactly one chemical bond (according to a detection mechanism based596

on covalent radii with appropriate tolerance: 0.4 Å on top of the sum of covalent radii) was removed,597

eliminating 42,689 structures, as these are likely to be unphysical. Next, since these pre-trained598

models are not designed to handle charged systems, an additional 142,647 non-neutral structures599

(total charge) were excluded, stabilizing training. Finally, inspired by the filtering strategy used in600

MACE-OFF [43], we applied a force filter to remove structures with either a non-zero total force601

or unusually high per-atom forces. Specifically, we excluded structures with a total force norm602

exceeding 0.1 eV/Å or any individual force greater than 15 eV/Å. Although this filtering represents603
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a tradeoff, improving force prediction accuracy while slightly reducing energy prediction accuracy604

on the validation set, it led to improved performance on key benchmarks and was therefore adopted.605

This step removed an additional 1,024 structures.606
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