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Abstract

The goal of offline black-box optimization (BBO)
is to optimize an expensive black-box function us-
ing a fixed dataset of function evaluations. Prior
works consider forward approaches that learn
surrogates to the black-box function and inverse
approaches that directly map function values to
corresponding points in the input domain of the
black-box function. These approaches are limited
by the quality of the offline dataset and the diffi-
culty in learning one-to-many mappings in high
dimensions, respectively. We propose Denoising
Diffusion Optimization Models (DDOM), a new
inverse approach for offline black-box optimiza-
tion based on diffusion models. Given an offline
dataset, DDOM learns a conditional generative
model over the domain of the black-box function
conditioned on the function values. We investi-
gate several design choices in DDOM, such as
reweighting the dataset to focus on high func-
tion values and the use of classifier-free guid-
ance at test-time to enable generalization to func-
tion values that can even exceed the dataset max-
ima. Empirically, we conduct experiments on the
Design-Bench benchmark (Trabucco et al., 2022)
and show that DDOM achieves results compet-
itive with state-of-the-art baselines. Our imple-
mentation of DDOM can be found at https:
//github.com/siddarthk97/ddom.

1. Introduction
Many fundamental problems in science and engineering in-
volve optimization of an expensive black-box function, such
as optimal experimental design and product optimization.
Since evaluating the black-box function is expensive, re-
cent works consider purely data-driven approaches that use
only offline logged datasets to optimize the target function
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sidestepping real-world interactions (Trabucco et al., 2021;
Kumar & Levine, 2020; Hansen, 2016). We refer to this
paradigm as offline black-box optimization (BBO).

The key challenge for offline BBO is the limited coverage of
the offline dataset. Accordingly, there are two broad classes
of approaches in prior works. Following the tradition of on-
line BBO, many forward approaches learn a surrogate model
mapping inputs to their function values. Once learned, this
surrogate can be optimized with respect to its input using
a gradient-based optimizer or serve as a proxy oracle for a
standard online BBO surrogate e.g., BayesOpt using a Gaus-
sian Process. Forward approaches are indirect, and learning
a surrogate that generalizes outside the offline dataset can
be challenging (Trabucco et al., 2021).

In contrast, inverse approaches directly learn a mapping
from function values to inputs in the domain of the black-
box function. This mapping is generally one-to-many as
many points can have the same function value. The key
advantage of an inverse model is that at test time, we can
simply condition the model on high/low function values to
obtain candidate optima. However, learning one-to-many
mappings is challenging, especially when the underlying
black-box function is defined over a high-dimensional do-
main. Prior works have found some success with genera-
tive approaches based on generative adversarial networks
(GAN) (Kumar & Levine, 2020; Goodfellow et al., 2014;
Mirza & Osindero, 2014). These approaches inherit the
problem of their base models, such as training instability
and mode collapse for GANs.

We develop a new approach called Denoising Diffusion Op-
timization Models (DDOM) that uses conditional diffusion
models (Ho et al., 2020; Song et al., 2020; 2021; Huang
et al., 2021) to parameterize and learn the inverse map-
ping. A diffusion model specifies an encoding-decoding
procedure based on adding small amounts of noise over
multiple timesteps during encoding and then reconstruct-
ing the original signal based on the noisy encodings during
the decoding stage (Sohl-Dickstein et al., 2015). Diffusion
models have shown excellent success across a range of con-
tinuous data, such as images (Song et al., 2021; 2020; Ho
et al., 2020), videos (Ho et al., 2022), and speech (Kim et al.,
2022; Jeong et al., 2021; Kong et al., 2021). They also allow
for conditioning on other inputs, and as a result, they also
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Figure 1. Schematic for DDOM. We train our conditional diffusion model using a reweighted objective function. During testing, we
condition on the maximum y in the dataset and use classifier-free guidance to sample Q candidate points.

define flexible models that map one modality to another,
such as text2image models (Saharia et al., 2022; Ramesh
et al., 2021). For offline BBO in DDOM, we condition the
diffusion model over the observed function values.

We investigate various design choices that enable successful
learning for DDOM. In particular, we find there are 2 critical
tradeoffs in applying DDOM for offline BBO. First, even
though the offline datapoints are assumed to be sampled
i.i.d., we want to specifically condition the model on large
values at test-time. This creates a bias-variance tradeoff
where we need to prioritize high value datapoints over oth-
ers (Kumar & Levine, 2020). We resolve this tradeoff by
optimizing a weighted loss that downweights the evidence
lower bound due to low quality datapoints.

Second, we build on the observation that conditional diffu-
sion models exhibit a diversity-quality tradeoff (Dhariwal
& Nichol, 2021). In emphasizing for diverse candidates, a
diffusion model can ignore or downplay the conditioning
information. This is detrimental for offline BBO which
explicitly relies on conditioning as a means of optimiza-
tion at test-time. Following Ho & Salimans (2021), we fix
this issue by decomposing the score function into an un-
conditional and conditional component. By adjusting the
weights of the two components at test-time, we can gener-
ate candidates for the optima that explicitly prioritize the
conditioning information, as desired.

Empirically, we test DDOM on the Design-Bench suite (Tra-
bucco et al., 2022) of tasks for offline BBO. The suite con-
tains a variety of real-world domains spanning both discrete
and continuous domains and a variety of data sizes and di-
mensionalities. We find that DDOM is very stable to train
and performs exceedingly well on this suite. Specifically,
DDOM outperforms all the forward and inverse baselines
achieving the highest rank on average (2.8).

2. Background
2.1. Problem Statement

Let f : X → R denote the unknown black-box function,
where the domain X is an arbitrary subset of Rd. The black-
box optimization problem involves finding a point x∗ that
maximizes f :

x∗ ∈ argmax
x∈X

f(x)

We operate in the setting of offline BBO (Trabucco et al.,
2022), where we are not allowed to evaluate f(x) for
any x during training, but must instead make use of
an offline dataset of points, which we denote by D =
{(x1, y1), (x2, y2), · · · , (xn, yn)}. We are allowed a small
budget of Q queries during the evaluation to output candi-
dates for the optimal point.
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2.2. Diffusion Models

Diffusion models are a class of latent-variable deep gener-
ative models that parameterize the encoding and decoding
processes via a diffusion process. The core idea behind
diffusion is to add small amounts of noise iteratively to a
sample, and train a neural network to invert the transforma-
tion. In our work, we make use of continuous time diffusion
models (Song et al., 2021; Huang et al., 2021).

Let xt denote a random variable signifying the state of a
data point x0 at time t where t ∈ [0, T ]. We assume x0 is
sampled from some unknown data distribution p0(x) and
xT represent points sampled from some prior noise distri-
bution (e.g., standard normal distribution). The forward
diffusion process can then be defined as a stochastic differ-
ential equation (SDE):

dx = f(x, t)dt+ g(t)dw (1)

where w is the standard Wiener process, f : Rd → Rd

is the drift coefficient, and g(t) : R → R is the diffusion
coefficient of xt.

The reverse time process (a.k.a. denoising) maps noise to
data and can also be defined using an SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̃ (2)

where dt is an infinitesimal step backwards in time, and dw̃
is a reverse time Wiener process. In practice, the score func-
tion∇x log pt(x) is estimated by a time-dependent neural
network ϵθ(xt, t) trained using a score matching objective
such as denoising score matching (Vincent, 2011).

2.3. Classifier-free Guidance

In this work, we are interested in training a conditional dif-
fusion model. In practice, naively conditioning a standard
diffusion model by appending the conditioned variable at
each step of the denoising process does not work well as the
model often ignores or downplays the conditioning infor-
mation during practice. One mitigation strategy is based on
classifier-free diffusion (Ho & Salimans, 2021), where we
decompose the score function into a linear combination of a
conditional and an unconditional score function:

ϵθ(x, t, y) = (1 + γ)ϵcond(x, t, y)− γϵuncond(x, t) (3)

Here, the mixing parameter γ acts as a trade-off between
coverage and fidelity while sampling. For γ = −1, the
score function translates to sampling from an unconditional
diffusion model. For γ ≥ 0, the score function prioritizes
samples that strongly respect the conditioning information.
Classifier-free guidance obviates the need for training a
model on the noisy diffusion data. In practice, instead of
learning two separate models for the unconditional and con-

ditional score function, we can train a single model to es-
timate both by randomly setting the conditioning value to
zero during training.

3. Denoising Diffusion Optimization Models
We are interested in learning an inverse model (y to x map-
ping) for offline BBO.Since x is typically high-dimensional,
the learned mapping is one-to-many. We can parameterize
any one-to-many mapping as a conditional probability dis-
tribution p(x|y) such that conditioned on a specific value
of y, the support of the distribution is concentrated on all
datapoints x for which f(x) ∼ y.

In recent years, deep generative models have shown to excel
at learning high-dimensional probability distributions. For
offline BBO, any generative model could be used in princi-
ple and related works have explored approaches inspired via
generative adversarial networks (Goodfellow et al., 2014;
Kumar & Levine, 2020). However, similar to GANs, these
BBO approaches are generally hard to train and can also
suffer from mode collapse, wherein the sampled points are
all very similar. In this work, we propose to use Diffusion
Models for learning the inverse mapping (Sohl-Dickstein
et al., 2015). Diffusion models have surpassed GANs for
many domains, such as image synthesis (Dhariwal & Nichol,
2021). Moreover, they have novel controls for conditional
generation, such as guidance, which explicitly allows for
trading sample diversity for conditioning. We refer to our
proposed models as Denoising Diffusion Optimization Mod-
els (DDOM).

Training via Loss Reweighting Formally, we train a condi-
tional diffusion model on the offline dataset D. During the
forward diffusion, we use an SDE with a Variance Preserv-
ing (VP) noise perturbation (Song et al., 2021). Concretely,
our forward SDE looks like the following:

dx = −1

2
βtdt+

√
βtdw (4)

where βt = βmin + (βmax − βmin)t and t ∈ [0, 1]. We
instantiate the surrogate model for the score function using
a simple feed-forward neural network conditioned on the
time t and value y. It has been shown previously that a
discretization of the above SDE corresponds to the forward
diffusion in DDPM (Song et al., 2021; Ho et al., 2020).

A naive optimization of the denoising objective would sam-
ple (x, y) pairs uniformly from the offline dataset. However,
we note that since our end goal is to find the argument max-
imizing y, it is important for our model to perform well on
relatively high values of y. Filtering out suboptimal y is data
inefficient as there could be a learning signal present even
when y is low. Instead, we pursue a reweighting strategy
similar to Kumar & Levine (2020). We partition the offline
datasetD into NB bins of equal width over y. Then for each
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bin, we assign a weight proportional to the number of points
in the bin and the average value of the points in the bin. This
ensures that we assign a higher weight during training to (i)
bins with more points and (ii) bins with better points (points
with higher y on average). Concretely the weight wi for bin
i can be computed as:

wi =
|Bi|

|Bi|+K
exp

(
−|ŷ − ybi |

τ

)
(5)

where ŷ is the best function value in the offline dataset D,
|Bi| refers to the number of points in the ith bin, and ybi
is the midpoint of the interval corresponding to the bin Bi.
The parameters K and τ are hyper-parameters, and more
details on them can be found in Appendix B.

We finally optimize the objective

E
t

[
λ(t) E

x0,y

[
w(y) E

xt|x0

[
∥ϵθ(xt, t, y)−∇x log pt(xt|x0)∥22

]]]
(6)

where w(y) = wi if y ∈ Bi. Notice the extra reweighting
terms introduced here are dependent on y (but indepen-
dent of t and complementary to the original time-dependent
weighting λ(t).

During training, we normalize the dimensions of the data
points and function values to fit a standard normal. For
discrete tasks, we can train a VAE to project the inputs to
a continuous domain. However, we map the inputs to log
probabilities, following the same procedure as Trabucco
et al. (2022). They emulate logit values by interpolating be-
tween a uniform distribution and the one hot values (this is
equivalent to mapping the one hot values to some other con-
stant non-zero values). We find that this simple procedure
performs reasonably well in our experiments.

Testing via Classifier-Free Guidance Once we train the
conditional score function, we can use it to generate sam-
ples from the reverse SDE. Sampling requires a few design
decisions: choosing a conditioning value of ytest, an es-
timate for the score function, and an SDE solver. Ideally,
we would like to choose a y that corresponds to the optima,
i.e., y⋆ = f(x⋆). However, in practice, we do not know
y⋆; hence, we instead propose to set ytest to the maximum
value of y in the observed dataset D, and by setting the
guidance weight to a large value. By doing so, we find
that the model can generate points further from the uncondi-
tional data distribution. This phenomena is analogous to the
use of guidance for image generation where sample fidelity
can sometimes exceed even real images (e.g., for art) at the
cost of diversity. We also find that in practice, this strategy
works well, especially with an adjusted score function esti-
mate based on classifier-free guidance (Equation 3). Finally,
we use a second-order Heun solver for sampling from the re-
verse SDE and find it to work slightly better than first-order
solvers in line with recent works (Jolicoeur-Martineau et al.,
2021; Karras et al., 2022).

Algorithm 1 Denoising Diffusion Optimization Models
Input Offline dataset D, Query budget Q, Smoothing pa-
rameter K, Temperature τ , Number of bins NB

Output A set of proposed candidate points X with the con-
straint |X| ≤ Q

1: {Phase 1: Training}
2: Construct bins {B1, · · · , BNB

} from D, each bin cov-
ering equal y-range

3: Calculate the weights (w1, w2, · · · , wNB
) for each bin

using Equation 5
4: Initialize the model parameters θ
5: Train score estimator ϵθ using Equation 6
6: {Phase 2: Evaluation }
7: ytest ← max{y | (x, y) ∈ D}
8: X← ϕ
9: for i = 1, · · · , Q do

10: Sample xT ∼ N (0, I)
11: for t = T − 1, · · · , 0 do
12: xt ← HEUN-SAMPLER(xt+1, θ, ytest)
13: end for
14: X← X ∪ {x0}
15: end for
16: return X

4. Experiments
4.1. Toy Branin Task

Branin is a well-known function for benchmarking optimiza-
tion methods. We consider the negative of the standard 2D
Branin function in the range x1 ∈ [−5, 10] and x2 ∈ [0, 15]:

fbr(x1, x2) = −a(x2−bx2
1+cx1−r)2−s(1−t) cosx1−s

(7)
where a = 1, b = 5.1

4π2 , c = 5
π , r = 6, s = 10,

and t = 1
8π . In this square region, fbr has three global

maximas, (−π, 12.275), (π, 2.275), and (9.42478, 2.475);
with the maximum value of −0.397887 (Figure 2).

Figure 2. Branin function

Unconditional Diffu-
sion We first conduct
illustrative experiments
in an unconditional set-
ting. We emulate
an offline dataset that
predominantly contains
points with high func-
tion values and study
if DDOM can generate
samples from the base
distribution.

In particular, we sample a dataset DGMM of size 5000
points from a 3 component, equi-weighted Gaussian Mix-
ture Model. The means are set as the three global maxima
of fbr and the covariance matrix for each component is iden-
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(a) DGMM (b) Sample reverse diffusion trajectory for DDOM trained on DGMM (c) Sample statistics

(d) DUnif (e) Sample reverse diffusion trajectory for DDOM trained on DUnif (f) Sample statistics

Figure 3. Unconditional diffusion model trained on two data distributions. Top row: (a) Dataset distribution of DGMM. (b) Denoising
steps of the diffusion model. (c) Maximum (blue line) and mean (orange line) function value statistics for 256 points sampled at each
timestep in the denoising process, along with the global maxima of Branin (black line). The bottom row shows similar figures for the
dataset sampled from a uniform distribution. DDOM is able to reproduce the dataset distribution in both cases. For the GMM case, the
mean of the sample set increases, and the variance decreases with increasing timesteps. For the uniform case, the variance increases with
increasing timestep, as expected.

(a) Conditioning y = 0.2 (b) Conditioning y = 0.4 (c) Conditioning y = 0.9 (d) Conditioning y = 1.0

Figure 4. Conditional diffusion model trained on DUnif. Top row: ground truth inverse contours found using grid search. Bottom row:
the distribution learnt by the conditional diffusion model. Notice the similarity between both plots. Note that the conditioning y value is
normalized using the mean and standard deviation of the dataset.

tity (Figure 3a). We train DDOM with zero conditioning
everywhere. As shown in Figure 3b, DDOM can indeed
approximate the GMM distribution. Consequently, with
increasing timesteps, the denoised samples produced by the
model get closer to the optima (Figure 3c).

While the above experiment suggests that diffusion mod-
els can indeed be used for offline optimization, it makes an

unrealistic assumption on the data distribution being concen-
trated around high function values by default. If we consider
an alternate dataset DUnif that is sampled uniformly from
the domain (Figure 3d), DDOM learns to reproduce this
uniform distribution (Figure 3e). In this case, the samples
generated from the model become increasingly diverse with
time, as evident from Figure 3f.
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(a) DUnif (b) DUnif with top 10%-tile points removed

Figure 5. Plots of maximum and mean function value of the sampled 256 points for different normalized conditioning y values for two
datasets. Notice that the mean line is very close to the y = x line, as desired. Both the orange and blue line reach their peak when the
test-time conditioning is approximately equal to the dataset maxima.

Conditional Diffusion Model With no control over the
dataset quality, we need conditioning mechanisms, as de-
scribed in Section 3. Consider the dataset DUnif described
above. We now train DDOM conditioned on y-values.
In Figure 4, we can visualize the contours of the f−1

br (y)
learned by our model for different conditioning values y.
The top row shows the ground truth inverse contours cal-
culated using a simple grid search. The bottom row is the
histogram of 100, 000 samples from the last timestep of
DDOM. We observe that the learned contours closely match
the target contours for all conditioning values of y, suggest-
ing an excellent learning of the one-to-many map f−1

br (y) in
DDOM. We evaluate the performance of this model in terms
of the mean and maximum function values of 256 samples
drawn from the final timestep of the diffusion model. Figure
5a shows that there is an expected increasing trend up to the
conditioning equal to the dataset maxima, and then there
is a slight dip. Furthermore, notice that the mean function
value vs. conditioning curve is quite close to the y = x line,
showing that the model has learned the inverse well.

Generalization with Suboptimal Datasets The datasets
we considered so far contain points close to the maxima. A
key motivation for offline BBO is to generalize beyond the
given dataset. To test this property for DDOM, we create a
more challenging task by removing the top 10−%tile points
from DUnif based on their function values. We again train
a conditional diffusion model and plot our predictions in
Figure 5b. We observe that the model is able to successfully
propose points with function values higher than the dataset
maximum. Further, the peak performance (in terms of both
the best and mean function values) is when the conditioning
is the maximum function value in the dataset.

4.2. Design-Bench

We also test DDOM on 6 high-dimensional real-world tasks
in Design-Bench (Trabucco et al., 2022), a suite of offline
BBO tasks. We test on three continuous and three discrete
tasks1. In D’Kitty and Ant Morphology, we need to op-
timize for the morphology of robots.In Superconductor
(Supercond.), the aim is to optimize for finding a supercon-
ducting material with a high critical temperature.TFBind8
and TFBind10 are discrete tasks where the goal is to find a
DNA sequence that has a maximum affinity to bind with a
specified transcription factor. ChEMBL is a discrete task
that optimizes drugs for specific chemical properties.

Baselines We compare DDOM with multiple baselines us-
ing canonical approaches like gradient ascent, Bayesian
Optimization (BayesOpt), REINFORCE (Sutton et al.,
1999), evolutionary strategies like CMA-ES (Hansen, 2006),
and newer methods like MINs (Kumar & Levine, 2020),
COMs (Trabucco et al., 2021) and CbAS (Brookes et al.,
2019). Since we are in the offline setting, for active methods
like BayesOpt, we follow the procedure of Trabucco et al.
(2022) and perform BayesOpt on a surrogate model f̂(x)
trained on the offline dataset. We instantiate BayesOpt us-
ing a Gaussian Process as the uncertainty quantifier and the
quasi-Expected Improvement (q-EI) acquisition function.
For all tasks, we use a query budget Q = 256. Following
the procedure used by Trabucco et al. (2022), we report the
results of all the tasks normalized using a larger unseen of-
fline dataset, i.e. we report ynorm where ynorm = y−ymin

ymax−ymin
,

where y, ymin and ymax refer to the score of the proposed so-
lution, and the minimum and maximum of the large unseen

1We exclude NAS as it requires excessive compute beyond our
resources for evaluating across multiple seeds. We exclude Hopper
as this domain is known to be buggy. See details in Appendix C.
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BASELINE TFBIND8 TFBIND10 SUPERCON. ANT D’KITTY CHEMBL MEAN SCORE MEAN RANK

D (best) 0.439 0.467 0.399 0.565 0.884 0.605 - -

CbAS 0.958± 0.018 0.657± 0.017 0.45± 0.083 0.876± 0.015 0.896± 0.016 0.640± 0.005 0.746± 0.003 5.5
GP-qEI 0.824± 0.086 0.635± 0.011 0.501± 0.021 0.887± 0.0 0.896± 0.0 0.633± 0.000 0.729± 0.019 6.2
CMA-ES 0.933± 0.035 0.679± 0.034 0.491± 0.004 1.436± 0.928 0.725± 0.002 0.636± 0.004 0.816± 0.168 4.5
Gradient Ascent 0.981± 0.015 0.659± 0.039 0.504± 0.005 0.34± 0.034 0.906± 0.017 0.647± 0.020 0.672± 0.021 3.5
REINFORCE 0.959± 0.013 0.64± 0.028 0.481± 0.017 0.261± 0.042 0.474± 0.202 0.636± 0.023 0.575± 0.054 6.3
MINs 0.938± 0.047 0.659± 0.044 0.484± 0.017 0.942± 0.018 0.944± 0.009 0.653± 0.002 0.770± 0.023 3.5
COMs 0.964± 0.02 0.654± 0.02 0.423± 0.033 0.949± 0.021 0.948± 0.006 0.648± 0.005 0.764± 0.018 3.7

DDOM 0.971± 0.005 0.688± 0.092 0.560± 0.044 0.957± 0.012 0.926± 0.009 0.633± 0.007 0.787± 0.034 2.8

Table 1. Comparative evaluation of DDOM over 6 tasks, with each task averaged over 5 seeds. We report normalized results (along with
stddev) with a budget Q = 256. We highlight the top two results in each column (and where there is a tie, we highlight both). Blue
refers to the best entry, and Violet refers to the second best. We find that DDOM achieves the best average rank of all the baselines and
is second best on the mean score metric.

D’KITTY ANT TFBIND8 TFBIND10 SUPERCON. CHEMBL

No reweighting 0.926± 0.008 0.888± 0.018 0.957± 0.000 0.644± 0.011 0.553± 0.051 0.633± 0.000
Reweighting 0.930± 0.003 0.960± 0.015 0.971± 0.005 0.688± 0.092 0.560± 0.044 0.633± 0.000

Table 2. Comparison of normalized scores for DDOM with and without reweighting on Design-Bench. Higher is better We find that there
is a significant improvement in score from reweighting on most tasks. We report scores averaged across 5 seeds.

offline dataset. Note that this larger dataset is not used for
training but only for reporting normalized results. We also
report the mean score and mean rank of all baselines.

Architecture We instantiate DDOM using a simple feed-
forward neural network with 2 hidden layers, width of 1024
and ReLU activation. We train using a fixed learning rate
of 0.001 and batch size of 128. We set the minimum and
maximum noise variance to be 0.01 and 2.0 respectively.
We use the same value of γ = 2.0 across all experiments.

Main Results In Table 1, we report normalized results of
the max score achieved by DDOM and the baselines along
with the mean normalized score and the mean rank. Overall
we find that DDOM achieves an average rank of 2.8, the
best among all the baselines, and an average score of 0.787.
We achieve the best result on 2 tasks and are runner-up
on another 2 tasks. On Superconductor, we outperform
other baselines by a significant margin, beating the next
closest baseline by 11%. We further note that CMA-ES,
the baseline with the highest average score, has a standard
deviation 5 times as large as DDOM, indicating that it is
very sensitive to initialization, unlike DDOM.

4.3. Ablations

We perform ablation studies on the different components
of DDOM to study their effects: reweighting, conditioning,
and classifier-free diffusion. We provide additional results
and discussion in Appendix B.

Reweighting We report results with and without reweight-
ing in DDOM in Table 2 across 6 tasks. We find that
across all tasks, the reweighted model outperforms the non-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Condition
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Mean score
 (max)

y = x

Figure 6. Plot of mean function value versus conditioning for Su-
perconductor. Dotted lines represent the dataset max and the line
y = x (the ideal line). Even for such a high-dimensional task, a
strong correlation exists between predicted and conditioned values.

reweighted one, indicating the importance of reweighting.

Impact of conditioning In Figure 6, we plot the mean of
the predicted values against the conditioned value for the
Superconductor task. We see that up to around the maxima
of the dataset, both the conditioned and predicted values cor-
relate very well with each other, suggesting that increasing
the conditioning also increases the score of the predicted
point. While generalizing beyond the dataset maxima is
difficult when dealing with such a high-dimensional task,
we notice a fairly high correlation between predicted and
conditioned values even for very large conditioning values.

Impact of guidance We perform an ablation on the impact
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Figure 7. Change in mean objective values as a function of number
of diffusion steps for multiple values of γ for Superconductor. We
find that when there is no guidance (γ = 0), DDOM performs
poorly, indicating the importance of guidance.

of the weighing factor in classifier-free guidance in Figure
7. We plot the average score of 512 samples from our
model at various timesteps during the diffusion process for
Superconductor. As expected, we find that no guidance
γ = 0 (i.e., a simple conditional diffusion model) performs
very poorly compared to models with guidance, indicating
the importance of classifier-free guidance. We also notice
that increasing the guidance also increases the rate at which
the predicted values increase, indicating the importance of
using higher guidance weights during optimization.

5. Related Work
Active BBO Most prior work in BBO has been in the active
setting, where models can query the function during train-
ing. Bayesian optimization is the most well-known active
BBO method, and there is a large body of prior work in the
area (Snoek et al., 2012; Shahriari et al., 2016; Srinivas et al.,
2010) inter alia. Such methods usually use surrogates like
Gaussian Processes (GPs) to model the underlying function
and sequentially update it by querying new points deter-
mined by an uncertainty-aware acquisition function. Bandit
algorithms (Swaminathan & Joachims, 2015; Garivier et al.,
2016; Grover et al., 2018; Joachims et al., 2018; Riquelme
et al., 2018; Attia et al., 2020; Guo et al., 2021) are an-
other well-known class of active BBO methods. DDOM
is similar to Neural Diffusion Processes (NDP) (Dutordoir
et al., 2022) in the use of diffusion processes for black-box
optimization but operates in a purely offline setting, im-
poses no restrictions on the model architecture, and uses
classifier-free guidance for generalization, unlike NDPs.

Offline BBO Recent works have shown significant progress
in the offline setting (Trabucco et al., 2021; Kumar & Levine,

2020; Hansen, 2006; Fannjiang & Listgarten, 2020). Tra-
bucco et al. (2022) provides Design-Bench, a comprehen-
sive real-world dataset for benchmarking offline BBO meth-
ods. Most methods (Trabucco et al., 2021; 2022; Nguyen
& Grover, 2022) use forward models to approximate the
black-box function and optimize it. On the other hand, meth-
ods like Kumar & Levine (2020) train generative models
like GANs to model the one-to-many inverse mapping from
function value to the input domain. CbAS (Brookes et al.,
2019) learns a density model in the space of inputs that
approximates the data distribution, and gradually adapts
it towards an optimized solution. In particular CbAS al-
ternates between training a VAE on a set of samples and
generating new samples from the autoencoder which are
then used to train the VAE on the next iteration.

Diffusion Models Diffusion models (Sohl-Dickstein et al.,
2015) have recently shown strong performance in robust
generative modeling for images (Song et al., 2020; 2021;
Huang et al., 2021; Ho et al., 2020), videos (Ho et al., 2022),
and audio (Kim et al., 2022; Jeong et al., 2021), as well
as for planning in RL (Janner et al., 2022). The latter is
particularly relevant and includes parallel advancements
in the use of autoregressive and masked transformers that
reduce sequential decision making to a generative modeling
problem (Chen et al., 2021; Liu et al., 2022; Zhu et al., 2023;
Nguyen et al., 2022; Zheng et al., 2022; 2023). Usually a
model is trained to invert the forward diffusion process
of converting data to noise sequentially by adding small
Gaussian noise at each timestep. Our work can benefit from
this growing area of research spanning advancements in
conditioning and sampling strategies (Jolicoeur-Martineau
et al., 2021; Karras et al., 2022; Bansal & Grover, 2023) and
alternate diffusion parameterizations (Bansal et al., 2022;
Hoogeboom & Salimans, 2022), among others.

6. Summary
We proposed Denoising Diffusion Optimization Models
(DDOM), a new approach for offline black-box optimiza-
tion based on conditional diffusion models. DDOM falls
within the category of inverse approaches that train a map-
ping from function values to points. Unlike prior inverse
approaches such as MINs (Kumar & Levine, 2020), DDOM
is more stable to train and less susceptible to mode col-
lapse. We noted two key modifications to the default setup:
the use of loss reweighting to prioritize offline points with
high function values and the use of classifier-guided sam-
pling for improving the strength of conditioning at test time.
Empirically, our approach is highly competitive and on av-
erage, outperforms both forward and inverse baselines on
the Design-Bench suite (Trabucco et al., 2022).

Limitations and Future Work. Diffusion models is that
they are relatively slow to sample compared to other genera-
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tive approaches. While sampling speed is typically not a ma-
jor bottleneck for offline BBO, it can be potentially limiting
for some real-time applications. Given the fast-developing
field of diffusion models for data generation, we expect
many of the corresponding advancements in sampling and
hyperparameter tuning (Karras et al., 2022) to transfer over
to DDOM. Finally, we focused on offline BBO in this work.
In some practical scenarios, we might also have resources
for active data acquisition and future work can explore using
DDOM to warm start a subsequent diffusion-based online
BBO method.
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A. Notation and Experimental Details
A.1. Notation

SYMBOL MEANING

f Black box function
X Support of f
x∗ Optima (taken to be maxima for consistency)
D Offline dataset
Q Query budget for black-box function
K, τ Reweighting hyperparameters
Bi Size of bin i

Table 3. Important notation used in our paper

A.2. Additional Experimental details

Code We build on top of Huang et al. (2021) implementation of score based diffusion models (linked here). We provide
our code via an anonymized link here. All code we use is under the MIT licence.

Training details We train our model on one RTX A5000 GPU and report results averaged over 5 seeds. For all tasks in
Design-Bench (Trabucco et al., 2022) we train with a batch size of 128 for 1000 epochs. For reweighting, we use a value of
K = 0.01 ∗N and τ = 0.1. For discrete tasks, we follow a similar procedure to Trabucco et al. (2022) and convert the
d-to dimensional vector to a c × d size one hot vector. We then approximate logits by interpolating between a uniform
distribution and the one hot distribution using a mixing factor of 0.6. During training, we randomly set the conditioning
value to 0 to jointly train a conditional and unconditional model with the same model. We use a dropout probability of 0.15,
i.e. 15% of the time the conditioning value is set to zero

Evaluation For all Design-bench tasks, we evaluate on a budget of Q = 256 points. choice of the conditioning value is an
important parameter for DDOM. As we see in Section 4.3, the predicted values increase upto around the dataset maxima
before tapering off. This motivates us to use the dataset maxima for conditioning our model. Choosing the dataset maxima
for conditioning has the advantages of being easy to implement for any type of dataset and not requiring any prior knowledge
about the dataset (like the dataset maxima).

Design-Bench Tasks We present additional information on the tasks we evaluate on in Design-Bench (Trabucco et al.,
2022).

TASK SIZE DIMENSIONS TASK MAX

TFBind8 32898 8 1.0
TFBind10 10000 10 2.128
ChEMBL 1093 31 443000.0

NAS 1771 64 69.63
D’Kitty 10004 56 340.0

Ant 10004 60 590.0
Superconductor 17014 86 185.0

Table 4. Dataset Statistics

A.3. Unnormalized results

We present the unnormalized results of Table 1 here, in Table 5.
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BASELINE TFBIND8 TFBIND10 SUPERCON. ANT D’KITTY CHEMBL

D (best) 0.439 0.00532 74.0 165.326 199.231 443000.000

CbAS 0.958± 0.018 0.761± 0.067 83.178± 15.372 468.711± 14.593 213.917± 19.863 389000.000± 500.000
GP-qEI 0.824± 0.086 0.675± 0.043 92.686± 3.944 480.049± 0.000 213.816± 0.000 387950.000± 0.000

CMA-ES 0.933± 0.035 0.848± 0.136 90.821± 0.661 1016.409± 906.407 4.700± 2.230 388400.000± 400.000
Gradient Ascent 0.981± 0.010 0.770± 0.154 93.252± 0.886 −54.955± 33.482 226.491± 21.120 390050.000± 2000.000
REINFORCE 0.959± 0.013 0.692± 0.113 89.027± 3.093 −131.907± 41.003 −301.866± 246.284 388400.000± 2100.000

MINs 0.938± 0.047 0.770± 0.177 89.469± 3.227 533.636± 17.938 272.675± 11.069 390950.000± 200.000
COMs 0.964± 0.020 0.750± 0.078 78.178± 6.179 540.603± 20.205 277.888± 7.799 390200.000± 500.0003

DDOM 0.971± 0.005 0.885± 0.367 103.600± 8.139 548.227± 11.725 250.529± 10.992 387950.000± 1050.000

Table 5. Unnormalized counterpart to results presented in Table 1

A.4. HopperController

We don’t include the Hopper task in our results in Table 1 because of inconsistencies between the offline dataset values and
the values obtained when running the oracle. A similar issue was noticed by Krishnamoorthy et al. (2023) in the Hopper
task, and it seems to be a known bug in Design-bench (see here). Due to such discrepancies, we decided not to include
Hopper in our analysis.

Figure 8. Histogram of normalized function values in the Hopper
dataset. The distribution is highly skewed towards low function
values. Plots taken from Krishnamoorthy et al. (2023)

Figure 9. Dataset values vs Oracle values for top 10 points. Oracle
being noisy, we show mean and standard deviation over 20 runs.
Plots taken from Krishnamoorthy et al. (2023).

B. Additional Ablations and Analysis
B.1. Effect of evaluation budget

In this experiment, we vary the evaluation budget Q on Ant for DDOM to see how sensitive the quality of predictions are
to the budget Q. The results are shown in Figure 10. We see that DDOM outperforms multiple baselines (namely MINs,
COMs and Grad. Ascent) for various budget values, indicating that DDOM is consistently able to find good points.

B.2. Ablation on reweighting parameters

During reweighting, we reweight the loss using the formula

wi =
|Bi|

|Bi|+K
exp

(
−|ŷ − ybi |

τ

)
(8)

In the equation, K and τ act as smoothing parameters. τ controls how much weight is given to good bins (bins with good
points) versus bad bins. Lowering τ would lead to lower weights for low quality bins (bins with low scores) and vice versa.
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Figure 10. Plot of maximum objective value versus budget Q for Ant, averaged over 5 seeds. We find that DDOM outperforms MINs,
COMs and Grad. Ascent on most choices of budget, indicating that DDOM is consistently able to find good points.

A smaller value of K leads to bin size being an irrelevant factor in reweighting, meaning that weights are computed solely
according to the values of the points. A large value of K would lead to the reweighting scaling roughly linearly with the size
of the bin.

In Figure 11 we plot the function value of superconductor achieved when using various values of K and τ .
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Figure 11. Plot of function value of Superconductor for various values of K and τ

We further run an ablation on the number of bins on AntMorphology where we try out 3 different values of NB . The results
are in Table 6. We find that for 1 bin, we see a significant difference, in performance, but the difference is much smaller
between 32 and 64 bins.

NB SCORE

NB = 1% 480.820
NB = 32% 541.640
NB = 64% 548.227

Table 6. Ablation on number of bins
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B.3. Visualizing the Design-Bench datasets

In Figure 12, we show plots of t-SNE of the dataset and predicted points for 3 continuous tasks, D’Kitty, Ant and
Superconductor. The red points refer to dataset points, and the blue points refer to the points predicted by our model. We
find that the points predicted by our model do not just follow the contours of the dataset points, indicating that the model is
just not memorizing the dataset.

(a) Ant (b) DKitty

(c) Superconductor

Figure 12. t-SNE plots of dataset and predicted points for D’Kitty, Ant and Superconductor. The red points refer to dataset points, and the
blue points refer to the points predicted by our model. We find that the points predicted by our model do not just follow the contours of
the dataset points, indicating that the model is just not memorizing the dataset

B.4. Plotting the contours of the score function

In Figure 13, we show the the contours of the score function on the Branin task across various timesteps. This illustrates
how the learned score function varies with time.

(a) t = 0 (b) t = 0.125 (c) t = 0.25 (d) t = 0.5 (e) t = 0.875 (f) t = 1.0

Figure 13. In this plot, we show the the contours of the score function on the Branin task across various timesteps. This illustrates how the
learned score function varies with time.

B.5. Effect of adding randomness to data

We run an experiment where we add noise to the function evaluations of Superconductor. The results are in Table 7. We find
that with only a little noise, the performance isn’t affected too much. Even a significant fraction like 20% still sees only a
moderate decline in performance.
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NOISE (as a % of D (best)) SCORE

0% 103.600
2% 98.470
20% 91.252
100% 79.374

Table 7. Ablation on adding additional noise to data. Noise added is mentioned as a % of the dataset maxima

B.6. Effect of size of the offline dataset

We run an experiment on Superconductor where we randomly withhold some percentage of points from the offline dataset.
The results are in Table 8 We find that even when removing parts of the offline dataset, the model is able to perform better
than the dataset optima, indicating that there is a degree of generalizability.

% WITHHELD SCORE

10% 102.340
50% 97.200
90% 89.240
99% 83.120

Table 8. Ablation on size of offline data

C. Societal Impact
While we don’t anticipate anything to be inherently malicious about our work, it is possible that our method (and other
optimizers like it) could be used in harmful settings (e.g. optimizing for drugs with adverse side effects). This is something
to be careful of when deploying such optimizing algorithms in the real world.
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