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ABSTRACT

Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-
modal decision-making but comes at the cost of significantly slower inference
due to the recursion in the diffusion process. However, in real-world scenarios,
states that require multi-modal decision-making are rare, and the huge consump-
tion of diffusion models is not necessary for most cases. It inspires us to design
efficient policy generators that can wisely allocate computation for different con-
texts. To address this challenge, we propose RF-POLICY (Rectified Flow-Policy),
an imitation learning algorithm based on Rectified Flow, a recent advancement
in flow-based generative modeling (Liu et al., 2022). RF-POLICY adopts prob-
ability flow ordinary differential equations (ODEs) for diverse policy generation,
with the learning principle of following straight trajectories as much as possible.
We uncover and leverage a surprisingly intriguing advantage of these flow-based
models over previous diffusion models: their training objective indicates the un-
certainty of a certain state, and when the state is uni-modal, they automatically re-
duce to one-step generators since the probability flows admit straight lines. There-
fore, RF-POLICY is naturally an adaptive decision maker, offering rapid inference
without sacrificing diversity. Our comprehensive empirical evaluation shows that
RF-POLICY, to the best of our knowledge, is the first algorithm to achieve high
performance across all dimensions, including success rate, behavioral diversity,
and inference speed.

1 INTRODUCTION

Imitation Learning (IL) is prevalent in robot learning for addressing continuous control challenges.
Unlike Reinforcement Learning (RL), which requires the manual specification of a reward function,
IL is particularly well-suited for learning complex, “non-declarative” motions. The go-to method
for IL is Behavioral Cloning (BC), where an agent performs supervised learning to acquire a policy
π mapping states to actions.

While BC is straightforward to implement and quick to train, it is limited in terms of behavioral
diversity (Mandlekar et al., 2021; Shafiullah et al., 2022; Chi et al., 2023; Florence et al., 2022).
Specifically, since BC learns a deterministic mapping, it can struggle with one-to-many relation-
ships, a common scenario where an agent can perform multiple actions to solve a task at a given
state. Recent advancements in diffusion models, originally successful in generative image model-
ing, have been adapted for policy learning (Chi et al., 2023; Ajay et al., 2022). These models offer
greater behavioral diversity but are less prevalent in real-world robotic learning tasks due to com-
putational inefficiencies. For instance, training diffusion-policy generally takes approximately five
times more epochs than BC Chi et al. (2023;?). Moreover, during execution, diffusion models need
to simulate a stochastic differential equation, which makes it slow in execution as well.

In practical applications of robotics, we find that demonstration data frequently exhibit a unique
characteristic: in the majority of the states, the actions are uni-modal and close to deterministic given
the state for which a simple and fast BC algorithm is sufficient, while a small portion of critical states
requires diverse and multi-modal actions given a single state, whose behavior need to be captured
by more expensive diffusion models. Consequently, an ideal imitation learning algorithm should
automatically identify and rapidly learn from the uni-modal segments of the data, while spend more
computation on multi-modal part to capture the behavioral diversity therein.

To address the above requirements, we introduce a novel ODE-based imitation learning algorithm,
denoted as RF-POLICY, which brings the gap between BC and diffusion-based methods. Like BC,
RF-POLICY employs a straightforward supervised learning objective, ensuring the simplicity of
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Figure 1: Illustrating the computation adaptivity of Rectified Flow. We use DDIM and RF-POLICY to predict
y (action) given x (state), with deterministic y = 0 when x ≤ 0, and bimodal y = ±x when x > 0.
Both DDIM and RF-POLICY fit the demonstration data well. However, the simulated ODE trajectory learned
by Diffusion-Policy with DDIM (red) is not straight no matter what x is. By contrast, the simulated ODE
trajectory learned by RF-POLICY (blue) is a straight line when the prediction is deterministic (x ≤ 0), which
means the generation can be exactly done by one-step Euler approximation.

implementation and fast training. Like diffusion models, it learns a rich multi-step ODE (or flow)
model to fully capture the action diversity in states with multi-modal behaviors. What makes RF-
POLICY unique is that it is automatically adapted to the diversity of the actions, by learning ODEs
with straighter trajectories, hence faster to simulate, on states with more deterministic actions.

Along with RF-POLICY, we also introduce a novel set of metrics for a more comprehensive evalu-
ation of an imitation learning algorithm, namely, the precision (success rate), the recall (behavioral
diversity), the training efficiency, and the execution efficiency. Through a comprehensive evaluation
across a toy domain, as well as robot manipulation learning problems, we demonstrate that RF-
POLICY is, to our knowledge, the first IL method that achieves uniformly good performance across
all of the above criteria.

To summarize, our contributions are:

• We propose a novel offline IL method, RF-POLICY, that is simple to implement, fast to
learn and execute, and automatically captures demonstration diversity only when necessary.

• We provide theoretical evidence showing why RF-POLICY reduces to a one-step model
(just like BC) at states with uni-modal behavior.

• We introduce new metrics for comprehensive evaluation of an IL algorithm, and conduct
a thorough evaluation across multiple robotics problems to showcase the benefit of RF-
POLICY. RF-POLICY performs consistently and uniformly better than previous methods.

2 BACKGROUND

Imitation Learning Imitation Learning (IL) is a paradigm in machine learning where the agent
learns optimal policies by mimicking the behavior of an expert, without explicit reward feed-
back (Schaal, 1999). The fundamental idea is to approximate the expert’s decision-making pro-
cess, represented by the mapping of observed states to actions. The training dataset comprises pairs
of states and the corresponding expert actions {(x(i), y(i))} ∼ p∗, where x represents the state, y
denotes the expert action, and p∗ is the unknown true distribution of state-action pairs.

Behavioral Cloning (BC) (Torabi et al., 2018; Mandlekar et al., 2021) is a widely-used method in
IL, which employs supervised learning to learn a deterministic policy π that maps states to actions.
However, it primarily estimates the conditional expectation of the actions and struggles with scenar-
ios where the state-action relationship is stochastic, non-Gaussian, or multi-modal. The limitation
of BC in handling such scenarios motivates the exploration of more expressive models, such as
diffusion models (Chi et al., 2023; Janner et al., 2022; Ajay et al., 2022).

(Conditioned) Rectified Flow Given a set of N data points {(x(i), y(i))}Ni=1 ∼ p∗ drawn from
an unknown distribution p∗. The goal is to estimate the conditional distribution p∗( y | x ) of the
output y given x, in the form of an x-conditioned generative model. This is highly challenging
task because given each x, p∗(y|x) can be non-deterministic, non-Gaussian, and multi-modal. In
contrast, the standard regression techniques, for example, only estimates the conditional expectation
f(x) = Ep∗ [y|x], but fails to capture the whole distribution and sample from it.
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We approach this problem with the (conditional) rectified flow framework of Liu et al. (2023b); Liu
(2022), in which we learn a conditional ODE (or flow) model

d

dt
Zt = v(Zt, t | x), (1)

where the conditional velocity field v is parameterized as a neural network. We should learn v from
the data such that when we start from an initial Z0 ∼ π0 at time t = 0, the flow model outputs a Z1

at time t = 1 that obeys Z1 ∼ p∗(·|x). π0 is an elementary noise distribution, usually the standard
Gaussian distribution.

Ideally, if we observe a pair of (x, y), an ODE that achieves z1 = y given x would be simply
d
dtZt = (y − Z0), which travels along the straight line from Z0 to y with uniform speed, yielding
a closed form Zt = ty + (1− t)Z0. In the inference time, the oracle ODE is impractical since y is
unknown, but we can learn v to approximate the oracle ODEs in the training set as much as possible,

L(v∗;x) = min
v

E(x,y)∼p∗,Z0∼π0

[
∥y − Z0 − v(Zt, t | x)∥22

]
. (2)

The special aspect of the objective is that the oracle ODEs are constructed by connecting straight
lines, which gives it unique advantage as we will discuss in Section 3.

Connection with Other Diffusion / Flow Models Other classic probability flow ODEs, like
DDIM (Song et al., a), can be viewed as non-linear rectified flows. However, their oracle ODEs
do not necessarily travel in straight trajectories with uniform speed. Formally, they admit a general
form of

Zt = αty + βtZ0,
d

dt
Zt = α̇ty + β̇tZ0 (3)

where αt and βt are two time-differentiable sequences satisfying β0 = α1 = 1 and β1 = α0 = 0.
These oracle ODEs can be curved depending on the different choices of α and β. Fitting them yields
the following objective,

min
v

E(x,y)∼p∗,Z0∼π0

[∥∥∥α̇ty − β̇tZ0 − v(Zt, t | x)
∥∥∥2
2

]
. (4)

Previous probability flow ODEs, e.g., DDIM (Song et al., a), VP-ODE, sub VP-ODE (Song et al.,
b), can be recovered with specific choices of αt, βt. Please refer to Liu et al. (2023b) for details.

3 RF-POLICY

3.1 EULER APPROXIMATION AND THE NECESSITY OF STRAIGHTNESS

Rectified Flow is naturally effective in generating results when managing deterministic relationships.
To clarify terminology, we will be referring to “variance” as the measure of variability or uncertainty
in the predictions made by the model. In Rectified Flow, we use the term ‘straightness’ to describe
whether the trajectory that the ODE model d

dtZt = v(Zt, t | x) traces from the initial state Z0 to the
final state Z1 in the ODE is following straight-line paths. In this case, a single step of Euler update
allows us to calculate the output Z1 from Z0:

Z1 = Z0 + v(Z0, 0 | x).

In comparison, ODEs with curved trajectories would require to run Euler or other discretization
algorithms for multiple steps and with a small step size, causing a slow inference time.

In the following, we present a main theorem that shows that, when minimize the Rectified Flow
objective exactly, the learned ODE is automatically straight on the states with deterministic actions,
hence yielding fast inference time. We write var(y | x) = E[∥y − E[y | x]∥22 | x] as the conditional
variance.

Theorem 1. If var(y | x) = 0, then L(v∗;x) = 0, and the trajectories of ODE by v∗(·;x) are
straight. In other words, whenever the conditional prediction is deterministic, Rectified Flow will
render exact straight-line trajectories.
We show the proof in the appendix. The motivation behind ensuring straight trajectories in Rectified
Flow (RF) stems from the intrinsic characteristics of ODEs. ODEs are computationally demanding,
especially when dealing with intricate trajectories, thus necessitating the pursuit of more straight-
forward paths for efficient and rapid generation. When a trajectory is straighter, it can be simulated
with a smaller number of iterations, significantly reducing the computational load and expediting
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Algorithm 1 RF-POLICY Two-Stage Training

Input: Demonstration data D = {(si, ai)}Ni=1, learning rate α, training iterations K, initial
parameters θ0, ϕ0.
Stage 1: Optimize Rectified Flow
for k = 1: K do

Sample data batch {(si, ai)}Bi=1 ∼ D, and ∀i, time ti ∼ U(0, 1) and noise Zi,0 ∼ N (0, I).
Compute

L1(θ) ≈
1

B

B∑
i=1

(
1

2
∥ai − Zi,0 − vθ(Zi,ti , ti ; si)∥

2

)
,

where ∀i, Zi,t = tai + (1− t)Zi,0, Then update

θk ← θk−1 − α∇θL1(θk−1).

end for
Stage 2: Optimize the Variance Estimation Network
for k = 1: K do

Sample data batch {(si, ai)}Bi=1 ∼ D, and ∀i, time ti ∼ U(0, 1) and noise Zi,0 ∼ N (0, I).
Compute

L2(ϕ) ≈
1

B

B∑
i=1

(
1

2σ2
ϕ(Zi,ti ; si)

∥ai − Zi,0 − vθK (Zi,ti , ti ; si)∥
2
+ log σϕ(Zi,ti ; si)

)
,

where we treat the purple part as a constant. Then update

ϕk ← ϕk−1 − α∇ϕL2(ϕk−1).

end for

Algorithm 2 RF-POLICY Execution.

Input: current state s, minumum step size ϵmin, error threshold η.
Initialize noise z ∼ N (0, I), t = 0.
while t < 1 do

Compute step size ϵt ← min
(

η
σϕ(zt;s)

, 1− t
)

, and ϵt ← max(ϵmin, ϵt).
Update zt+ϵt ← zt + ϵtvt(zt, t ; s)
Update t← t+ ϵt.

end while
Execute action a← z1.

the model’s output. This is particularly beneficial when dealing with deterministic relationships, as
theorem 1 suggests, where the variance var(y|x) is zero, leading to straight trajectories.

In Figure 1, we use a straightforward toy example to illustrate this property. We present a 1D exam-
ple depicting the trajectories learned by both DDIM and our method (Rectified Flow) for different
mappings of y. This illustration clearly demonstrates that, unlike the DDIM, Rectified Flow ensures
straight trajectories when the prediction is deterministic, which validates its capability for efficient
generation through one-step Euler approximation.

3.2 LEARNING VARIANCE FOR ADAPTIVE DECISION MAKING

In practical applications such as robotics, having an algorithm that can efficiently handle both uni-
modal (given an x, the prediction y is deterministic) and multi-modal (the same condition x can lead
to multiple possible y) data is crucial. The key observation (or assumption) we make in this work is:

Assumption 1. In typical imitation learning demonstration datasets for robotics tasks, the majority
part of the data is uni-modal, and only a small portion of the data is muli-modal.

The consequence of the Assumption 1 is that while diffusion-based policies could in principle model
both uni-modal and multi-modal data, as the majority of the data is uni-modal (this is why BC works
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well in practice), the expense of training and executing large diffusion-models might overweigh the
benefit it brings in robot learning.

Theorem 1 implies that when the relationship between input and output is deterministic, Rectified
Flow can form a straight trajectory, simplifying the learning process and enhancing the generation
speed. The property of variance equaling straightness in Rectified Flow allows the model to be effi-
cient and rapidly learn uni-modal segments while preserving and learning the behavioral diversity in
multi-modal parts, making it suitable for practical applications in robotics where such characteristics
are commonly exhibited in demonstration data.

In robotics tasks, where actions are generated based on given states, the estimated variance can be
indicative of the ”straightness” of the rectified flow generation process: If the variance is low for
a state, it implies that the system’s output is fairly deterministic and follows a straight trajectory.
Fewer steps in the ODE simulation might be sufficient to accurately model the robot’s behavior, and
hence improve the model’s efficiency in inference. In order to identify these states, we propose to
use the following objective:

min
v,σ

∫
t

E(s,a)∼D,Z0∼N (0,I)

[
1

2σ2(s)
∥a− Z0 − v(Zt, t | s)∥2 + log σ(s)

]
dt. (5)

The optimization of this loss function results in an optimal estimate for the variance σ2(x), which is
dependent on the state x. We found that in practice, learning variance estimation network separately
from learning RF can better ensure stability. See Algo. 1.

Once the variance is estimated, it is used to adaptively determine the step size ϵt for numerically sim-
ulating the ODE. The step size determines how the state xt is updated at each step in the simulation.
Specifically, we follows Algo. 2 during inference.

With Algo. 2, the resulting simulation error of the generated action is strictly bounded, as indicated
in the following theorem.

Theorem 2. Let π1 be the target probability distribution at time t = 1, that is, π1 = Law(z1). Let
N = 1/ϵmin represent the maximum number of steps allowed in the worst-case scenario. Then, the
Wasserstein-2 distance between the distribution of Z1 (or y) and π1 is bounded as follows:

W2(Law(Z1), π1) ≤ Nη,

where W2 denotes the Wasserstein-2 distance.

The proof of Theorem 2 is in the appendix. It effectively quantifies the error within ODE simulations,
offering a theoretical bound that enhances the accuracy of the action generated by RF-POLICY.

4 RELATED WORK

Diffusion/Flow-based Generative Models and Adaptive Inference Diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., b; Song & Ermon, 2019) succeed in various
applications, e.g., image/video generation (Ho et al.; Zhang et al., 2023; Wu et al.; Saharia et al.,
2022), audio generation (Kong et al.), point cloud generation (Luo & Hu, 2021a;b; Liu et al., 2023b;
Wu et al., 2023), etc.. However, numerical simulation of the diffusion processes typically involve
hundreds of steps, resulting in noticeable slowness. Post-hoc samplers have been proposed to solve
this issue (Karras et al.; Liu et al., 2021; Lu et al.; 2022; Song et al., a; Bao et al., 2021) by trans-
forming the diffusion process into marginal-preserving probability flow ODEs, yet they still use the
same number of inference steps for different states. Although adaptive ODE solvers, such as adap-
tive step-size Runge-Kutta (Press & Teukolsky, 1992), exist, they cannot significantly reduce the
number of inference steps.

Recently, new methods (Liu et al., 2022; Liu, 2022; Lipman et al., 2022; Albergo et al., 2023; Al-
bergo & Vanden-Eijnden, 2022; Heitz et al., 2023) have emerged, directly learning probability flow
ODEs by constructing linear interpolations between two distributions emerge recently. Empirically,
these methods exhibit more efficient inference due to their preference of straight trajectories. In our
work, we unveil a previously overlooked feature of these flow-based generative models: they act as
one-step generators for deterministic target distributions, and their variance indicates the straight-
ness of the probability flows for a certain state. Leveraging this feature, we design RF-POLICY that
can automatically decide the number of inference step for different states.
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Diffusion Models for Decision Making For decision making, diffusion models obtain success
as in other applications areas (Kapelyukh et al., 2023; Yang et al., 2023; Pearce et al., 2022). In
a pioneering work, Janner et al. (2022) proposed “Diffuser”, a planning algorithm with diffusion
models that outperforms counterparts like Behavioral Cloning. Later, this framework is extended to
tasks like offline reinforcement learning (Wang et al., 2022), visuomotor policy learning on physical
robots (Chi et al., 2023). Later, Ajay et al. (2022) improves the framework by modeling policies
as conditional diffusion models. Despite the success of adopting generative diffusion models as
decision makers in previous works, they also bring redundant computation, limiting their application
in real-time, low-latency decision making for autonomous robots. RF-POLICY propose to leverage
rectified flow instead of diffusion models, facilitating adaptive decision making for different states
while significantly reducing computational requirements.

5 EXPERIMENTS

We conducted a series of experiments to comprehensively compare RF-POLICY with Behavioral
Cloning (BC) and existing diffusion-based imitation learning methods, considering four essential
dimensions: precision, which represents task performance; recall, indicating behavior diversity; and
training and inference efficiency. Our experimentation began with a 2D Navigation problem, offer-
ing enhanced visualization of the behavior of the learned policies. This was followed by an explo-
ration into robotics, where we conducted imitation learning problems using the LIBERO benchmark.

Implementation Details. In our experiments, the architecture aligned with the CNN-based struc-
ture detailed in Diffusion Policy Chi et al. (2023). This alignment resulted in an action horizon set at
8 steps and the adoption of position control in the action space. In our studies, BC was implemented
as a benchmark, applying behavior cloning in its most straightforward form and utilizing a Mean
Squared Error loss function between the predicted and ground truth actions. The implementations
for DDPM and DDIM remained consistent with those outlined in Chi et al. (2023). Across all ex-
periments, consistency was maintained regarding architecture, input, and output, with all methods
adhering to a similar experimental pipeline. In RF-POLICY, the network employed for variance es-
timation network is constituted of a 4-layer MLP. In practice, the variance estimation network takes
the same input as rectified flow model, so the ingests inputs are the bottle-neckfeatures extracted by
the U-Net model, which is frozen and shared with the policy network.

5.1 EXPERIMENT SETTING AND EVALUATION METRICS

While task success rate (or return) is the most commonly utilized metric in the literature, we claim
that it does not entirely encapsulate the performance of a learned policy. This inadequacy stems from
the fact that task success rate predominantly measures the capability of a policy to achieve a task,
potentially overlooking the behavioral diversity, a crucial aspect given the prevalence of multi-modal
decision-making scenarios in practical applications. Hence, we propose to measure the models with
four essential dimensions. For each experiment, evaluations are conducted over 50 episodes.

Precision (Success Rate). To assess precision, we randomly sample start states for the agent and
evaluate the rate of successfully completed episodes.

Recall (Diversity). The diversity between demonstration trajectories and generated rollouts is
quantified using a specifically devised diversity score. The diversity score is computed as the
proportion of observations in the demonstration trajectories that are closer to any observation
in the rollout trajectories than to any other observation (not from the same trajectory) in the
demonstration trajectories, mathematically represented as score = 1

n

∑n
i=1 1(d(demoi, rollout) <

max(d(demoi, demo−i))), where d denotes the ℓ2 distance, demoi is the ith observation in the
demonstration, rollout represents the rollout observations, demo−i denotes all demonstration obser-
vations excluding demoi, n is the total number of observations in the demonstration, and 1(.) is
the indicator function. This score provides a measure of the diversity of the generated rollouts with
respect to the demonstrations, shedding light on the model’s ability to generate diverse trajectories.
During diversity evaluation, the agent’s start state is fixed, and the diversity of the generated 50
trajectories is measured.

Training and Execution Efficiency. In order to provide a holistic perspective of the model’s prac-
ticality, training efficiency is measured, focusing on the computational resources and time consumed
during the training phase. Similarly, execution efficiency is assessed, concentrating on the model’s
ability to perform tasks rapidly and efficiently during real-time implementation, thereby indicating
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Table 1: Comparison of Behavioral Cloning (BC), Diffusion Policy (DDIM), and RF-POLICY in Maze tasks.
The table showcases the performance metrics including Success Rate (SR), Diversity Score (DS), Number
of Function Evaluations (NFE) and Learning Efficiency Index (LEI) for each model across different maze
complexities.

Maze 1 Maze 2 Maze 3 Maze 4 Average

Method SR DS NFE LEI SR DS NFE LEI SR DS NFE LEI SR DS NFE LEI SR DS NFE LEI

BC 1.00 0.09 1.00 1.00 1.00 0.04 1.00 0.94 1.00 0.05 1.00 0.97 1.00 0.10 1.00 0.79 1.00 0.07 1.00 0.92
DDPM 0.86 1.00 20.00 0.59 0.86 1.00 20.00 0.60 0.94 1.00 20.00 0.63 0.86 1.00 20.00 0.65 0.88 1.00 20.00 0.62
DDIM 0.84 1.00 10.00 0.55 0.92 1.00 10.00 0.66 1.00 1.00 10.00 0.64 0.94 1.00 10.00 0.68 0.92 1.00 10.00 0.63
1-RF 0.90 1.00 10.00 0.69 1.00 1.00 10.00 0.94 1.00 1.00 10.00 0.88 1.00 1.00 10.00 0.88 0.97 1.00 10.00 0.85
2-RF 0.86 0.98 1.00 0.09 1.00 1.00 1.00 0.12 1.00 1.00 1.00 0.12 0.98 1.00 1.00 0.11 0.96 1.00 1.00 0.11

RF-POLICY 1.00 0.79 1.03 0.83 1.00 0.98 1.11 0.91 1.00 0.96 1.99 0.78 0.98 0.93 1.85 0.59 0.99 0.91 1.50 0.78

its suitability for real-world applications. Efficiency metrics include the Number of Function Evalu-
ations (NFE), which tracks the count of network inferences per action generation, and the Learning
Efficiency Index (LEI), which quantifies the success rate over the course of training through the area
under the curve.

5.2 NAVIGATING A 2D MAZE

Demonstration (Single-task) 
Start Goal

(1) (2)

(3) (4)

(1) (2)

(3) (4)
1.0

2.0
Variance Prediction 

1.00

1.00

0.92

1

0.07

0.9210

0.63

0.11

Success 
Rate

Diversity Score

Number of
Function Evaluations

Learning Efficiency Index

Figure 2: Left: Trajectories of 100 demonstrations for each maze. Middle: Variance estimation by RF-
POLICY, which indicates the diversity of generated actions or trajectories in a given state. We normalize
the variance to [0, 1] in each maze. Right: The radar chart compares five methods—Behavioral Cloning
(BC), DDIM, 1-Rectified Flow (1-RF), 2-Rectified Flow (2-RF), and RF-POLICY—across four critical metrics:
Success Rate, Diversity Score, Learning Efficiency Index (LEI), and Number of Function Evaluations (NFE).
RF-POLICY demonstrates balanced and superior performance across all metrics, unlike other methods which
exhibit trade-offs between these key performance indicators.
In this subsection, we describe experiments conducted in a simulated maze environment designed
for agents to perform explorative tasks. The experiment setting is as following: the agent starts at
a predetermined location, subject to minor random variations, and aims to navigate towards a fixed
target. The objective here is for the agent to develop a policy that facilitates successful navigation.

The construction of the maze is based on D4RL Maze2D Fu et al. (2020), simulated by MuJoCo.
To control the agent’s movements within the maze, we employ a PID controller. The agent’s state,
described by a 4-dimensional input including x and y coordinates as well as velocity, informs the
policy which then determines the agent’s intended location. We explore various maze configurations
and controllers for demonstration, and generate demonstrations using two types of planners. The
visualization are illustrated in Figure 2. We provide 100 demonstrations for each map.

Results. In Table 1, we present a comparative analysis of BC, Diffusion Policy (DDIM) Chi et al.
(2023), and RF-POLICY. Our findings indicate that BC and Diffusion Policy (DDIM) achieve sim-
ilar performance on success rate, yet they exhibit considerable differences in diversity score. In
particular, Diffusion Policy and RF-POLICY display enhanced diversity and are capable of identi-
fying multiple paths to achieve the goal (See Figure3). For RF-POLICY, we visualize the variance
predicted by the model in Figure 2. It can be observed that our model learns a reasonable variance
that indicates the diversity of actions at a given state.

Training and Execution Efficiency. Diffusion Policy necessitates a training time longer than that
required by both BC and RF-POLICY, thereby incurring a higher training cost. Since our model
employs adaptive step size in ODE, the majority of the action inference process is accomplished
using only a single or two steps in ODE, making the computational cost of RF-POLICY comparable
to that of BC. In contrast, the Diffusion Policy demands additional steps for inference, with the
time being proportional to the number of inference steps in DDIM. Using a single-step inference is
not a feasible option for DDIM, as evidenced by Table 1 and Figure 3. In Figure 2, we show that
RF-POLICY achieves the best trade-off among training efficiency, inference efficiency, evaluation
performance, and behavior diversity.
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Behavioral	Cloning	(BC) DDIM	(1-step)

DDIM	(20-step) RF-Policy

Figure 3: Generated trajectories. We visualize the trajectories generated by different policies. The starting
point of the agent is kept constant. The results depict that while BC demonstrates a high success rate in
navigating the maze, it is limited to learning a single-modal trajectory.

(1) (2) (3) (4) (5) (6)

Open the top drawer 
of the cabinet

Put the black bowl at 
the back on the plate

Put the black bowl at 
the front on the plate

Put the middle black 
bowl on the plate

Put the middle black 
bowl on top of the 

cabinet

Stack the black bowl at 
the front on the black 

bowl in the middle

Figure 4: LIBERO tasks. We visualize the demonstrated trajectories of the robot’s end effector on 6 tasks: (1)
Open the top drawer of the cabinet; (2) Put the black bowl at the back on the plate; (3) Put the black bowl at
the front on the plate; (4) Put the middle black bowl on the plate; (5) Put the middle black bowl on top of the
cabinet; (6) Stack the black bowl at the front on the black bowl in the middle.

5.3 ROBOT MANIPULATION TASKS

Environments and Tasks. We conducted experiment on LIBERO benchmark Liu et al. (2023a)
for robot manipulation problem. Our training set encompasses six tasks in the LIBERO Kitchen
environment. These tasks involve a variety of object interactions and demand a broad spectrum
of motor skills, yielding high-quality, human-teleoperated demonstration data. LIBERO employs
Robosuite, a modular robot manipulation simulator. More specifically, we focus on 6 pick-and-
place tasks in KITCHEN SCENE 2 within LIBERO. These tasks, such as placing the bowl on the
plate, share the same initial states but are subject to variations in robot and object positions due to
noise. For each task, there are 20 demonstration data points. A visualization of the demonstrations
for each task is provided in Figure 4.

Results. The outcomes on the LIBERO tasks are illustrated in Table 2. Consistent with our ob-
servations in the Maze experiment, BC exhibits a lower diversity score compared to DDPM and
RF-POLICY. This trend underscores the ability of DDPM and RF-POLICY to generate more var-
ied responses across different tasks, thereby highlighting their adaptability and versatility in diverse
scenarios. The consistent performance across different task environments suggests that these mod-
els are robust and capable of handling a variety of situations, making them suitable for real-world
applications where diversity and adaptability are crucial.

Table 2: Comparison of Behavioral Cloning (BC), Diffusion Policy (DDIM), and RF-POLICY in LIBERO
tasks. The table showcases the performance metrics including Success Rate (SR), Diversity Score (DS) and
Number of Function Evaluations (NFE) for each model across different task complexities.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Average

Method SR DS NFE SR DS NFE SR DS NFE SR DS NFE SR DS NFE SR DS NFE SR DS NFE

BC 0.88 0.99 1.00 0.80 0.91 1.00 0.96 0.91 1.00 0.78 0.68 1.00 0.92 0.92 1.00 0.82 0.92 1.00 0.86 0.89 1.00
DDIM 0.94 0.99 10.00 0.84 0.87 10.00 0.98 0.93 10.00 0.78 0.85 10.00 0.82 0.89 10.00 0.92 0.97 10.00 0.88 0.92 10.00
1-RF 0.96 1.00 10.00 0.82 0.91 10.00 1.00 0.96 10.00 0.82 0.85 10.00 0.86 0.99 10.00 0.96 0.97 10.00 0.90 0.95 10.00
2-RF 0.90 1.00 1.00 0.82 0.89 1.00 0.98 0.96 1.00 0.82 0.86 1.00 0.82 0.93 1.00 0.96 0.98 1.00 0.88 0.94 1.00

RF-POLICY 0.98 1.00 1.00 0.80 0.87 2.00 0.98 0.96 1.00 0.82 0.86 1.03 0.90 0.97 2.00 0.96 0.98 1.21 0.91 0.94 1.37

6 CONCLUSION

In conclusion, we present Rectified Flow-Policy (RF-POLICY), a novel imitation learning algorithm
adept at efficiently generating diverse and adaptive policies, addressing the trade-off between com-
putational efficiency and behavioral diversity inherent in current models. Through extensive experi-
mentation across various settings, RF-POLICY demonstrated superior performance across multiple
dimensions including task success rate, behavioral diversity, and training/execution efficiency.
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7 APPENDIX

7.1 PROOF OF THEOREM 1 AND THEOREM 2.

Theorem 1. If var(y | x) = 0, then L(v∗;x) = 0, and the trajectories of ODE by v∗(·;x) are
straight. In other words, whenever the conditional prediction is deterministic, Rectified Flow will
render exact straight-line trajectories.

Proof. In Rectified Flow, we optimize

min
v

L(v) =

∫
t

E
[
||y−Z0 − v(Zt, t;x)||2

]
dt, where Zt = ty+ (1− t)Z0, Z0 ∼ π0, (x, y) ∼ p∗.

(6)
The optimal solution of (6) has been shown in Liu (2022) to be

v∗(z, t | x) = E
[
y − Z0 | Zt = z, x

]
. (7)

As a result,

L(v∗, x) = E(x,y)∼p∗,Z0∼π0

[
||y − Z0 − v∗(Zt, t | x)||22

]
=

∫
var(y − Z0 | Zt, x)dt. (8)

Since Zt = ty + (1− t)Z0, we have

y − Z0 = y − Zt − ty

1− t
= −y − Zt

1− t
.

But then,

var(y − Z0 | Zt, x) = var(
y − Zt

1− t
| Zt, x) =

1

(1− t)2
var(y | x) = 0.

Plugging the above into (8), we have L(v∗, x) = 0.

Theorem 2. Let π1 be the target probability distribution at time t = 1, that is, π1 = Law(z1). Let
N = 1/ϵmin represent the maximum number of steps allowed in the worst-case scenario. Then, the
Wasserstein-2 distance between the distribution of Z1 (or y) and π1 is bounded as follows:

W2(Law(Z1), π1) ≤ Nη,

where W2 denotes the Wasserstein-2 distance.

Proof. Consider the process of advancing the Rectified Flow with a step size ϵ from zt, resulting in
z̃t+ϵ = zt + ϵv(zt, t). The expected squared L2 norm of the difference between z̃t+ϵ and the actual
next state Zt+ϵ is:

err = E[∥z̃t+ϵ − Zt+ϵ∥22 | Zt = zt].

Following Theorem 1, define the variance function σ2(z) = E[∥y − Z0 − v(Zt, t)∥22 | Zt = z] =
var(y − Z0 | Zt = z), which captures the variability of the discrepancy between the RF-predicted
and actual values of y given Zt = z.

Then, the error can be expressed as:

err = E[∥ϵ(y − Z0)− ϵv(Xt, t)∥22 | Zt = zt] = ϵ2σ2(zt).

By choosing η such that ϵ ≤ η/σ(zt), we ensure that:

err ≤ η2.

Considering that at each step, the error contribution is at most η2, and with a maximum of N
steps, the accumulated discrepancy measured by the Wasserstein-2 distance is bounded by Nη.
This concludes the proof.

Note: Although the proof is provided based on the unconditional RF framework, it remains valid for
the conditional case once we incorporate the condition s without loss of generality.
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7.2 PLANNER

Similar to Fu et al. (2020), we generate the demonstration data in Maze toy using two types of plan-
ners. The planner devises a path in a maze environment by calculating waypoints between the start
and target points. It begins by transforming the given continuous-state space into a discretized grid
representation. Employing Q-learning, it evaluates the optimal actions and subsequently computes
the waypoints by performing a rollout in the grid, introducing random perturbations to the waypoints
for diversity. The controller then selects a subset of these waypoints in an ordered manner to form a
feasible path. In runtime, it dynamically adjusts the control action based on the proximity to the next
waypoint and switches waypoints when close enough, ensuring the trajectory remains adaptive and
efficient. The two types of planners operate on the same foundational concept, with the distinction
lying in the magnitude of noise introduced: one incorporates smaller noise, while the other employs
larger noise in determining the waypoints.
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