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ABSTRACT

Sparse Mixture-of-Experts (SMoE) architectures are now widely deployed in state-
of-the-art language and vision models, where conditional routing allows scaling
to very large networks. However, this very Top-k expert selection that enables
conditional routing also renders the SMoE map inherently discontinuous. In the
vicinity of these discontinuity surfaces, even inputs that are arbitrarily close may
activate substantially different sets of experts resulting in significantly different
outputs. In this work we give a rigorous geometric and stochastic analysis of
these discontinuities. We first classify them by order, determined by the number
of tied experts at a switching event. Using measure-theoretic slicing arguments,
we establish asymptotic volume estimates for the thickened discontinuity surfaces,
showing that lower-order discontinuity sets dominate, whereas higher-order ones
occupy a vanishingly small relative volume. Next, modeling random perturbations
in the input space via a diffusion process, we prove that the path eventually en-
counter a discontinuity, and moreover that the first hit almost surely occurs on
an order-1 discontinuity with explicit finite-time probability bounds. We further
derive occupation-time bounds that quantify the duration the random path spend
in the neighborhoods of each discontinuity order. These theoretical results imply
that inputs are more likely to lie near lower order discontinuities. Motivated by this
insight, we propose a simple smoothing mechanism that can be directly applied
to existing SMoEs, softly incorporating experts near discontinuities; our analysis
guarantees that the added computational overhead remains small while providing
localized smoothing near discontinuities, and experiments across language and
vision tasks show that smoothing not only enforces continuity of the SMoE map
but also enhances empirical performance.

1 INTRODUCTION

The Transformer architecture (Vaswani, 2017) has been successfully applied to a wide range of
tasks, most notably in language (Devlin et al., 2019a; Radford et al., 2019; Hoffmann et al., 2022;
Chowdhery et al., 2023), vision (Bao et al., 2022b; Dosovitskiy et al., 2021; Bao et al., 2022a; Liu
et al., 2023), and other tasks (Radford et al., 2021; Chen et al., 2020; Tan & Bansal, 2019; Lu et al.,
2019). However, scaling Transformers to very large models demands substantial computational
resources and extended training time. To alleviate this, the Sparse Mixture-of-Experts (Jacobs
et al., 1991) (SMoE) has been introduced as an architectural extension, replacing the standard feed-
forward layers with sparsely activated expert modules, thereby enabling scaling while controlling
computational overhead. The most common mechanism for this selection is Top-k sparse gating,
which has been widely adopted in large pretrained language models (Narayanan et al., 2021; Liu
et al., 2024a; Shazeer et al., 2017; Rajbhandari et al., 2022) and vision models (Chen et al., 2023; Lin
et al., 2024; Liu et al., 2024b).

Despite its practical success, Top-k gating introduces inherent discontinuities in the input–output
map of SMoEs. While sparsity is achieved by activating only k experts, inputs that are nearly
identical may be routed to substantially different expert sets near the switching boundaries, leading to
uncontrolled variation in the outputs. Prior works (Chen et al., 2022; Wang et al., 2024; Shazeer et al.,
2017) have acknowledged the existence of such discontinuities, but to the best of our knowledge, no
systematic theoretical analysis of their structure and properties has been undertaken. Several recent
studies have focused on mitigating the problem in practice by making MoE routing differentiable.
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SMEAR (Muqeeth et al., 2023) does so by merging experts, and Soft MoE (Puigcerver et al., 2024) by
mixing tokens across experts. While effective in removing hard switches, these methods compromise
the causal structure required for autoregressive language modeling and are therefore limited in
generation tasks. More recently, ReMoE (Wang et al., 2024) replaced Top-k gating with ReLU-based
gating, but this approach requires retraining the gating from scratch due to its fundamental difference
from Top-k gating and includes a costly initialization phase that is nearly as expensive as training a
dense model. For a theoretical discussion between our paper and other continuous routing method,
please refer to Section B.2 in Appendix B.

2 PROBLEM FORMULATION

Top-k gating partitions the input space into regions with fixed active experts, and discontinuities
occur where scores tie at the top-k threshold. A pairwise tie between one active and one inactive
expert gives an order-1 discontinuity; simultaneous ties among more experts yield higher-order ones.
Though measure-zero (Proposition A.3), inputs near them are unstable since tiny perturbations can
switch the active set.

We address two questions. Geometry: how often do different tie patterns occur, and how much space
lies near their boundaries? Dynamics: under random perturbations, does a trajectory remain in its
region or hit a boundary, and of which order?

Contributions. Addressing the questions above from both geometric and stochastic viewpoints,
our main contributions are:

1. Asymptotic measure. Discontinuities are classified by order (number of tied experts). Using
slicing arguments, we show ϵ-thickened order-1 sets dominate while higher orders vanish in
relative measure. The result extends to ℓ∞-thickening, enabling efficient logit-based tests
with similar bounds.

2. Stochastic behavior. Modeling perturbations as diffusion, we prove trajectories almost
surely hit a discontinuity in finite time, with the first hit almost surely order-1. We bound
occupation time in ϵ-neighborhoods, showing it decreases with order in the small-ϵ regime.

3. Smoothing mechanism. Based on these insights, we propose a simple method that enforces
continuity in Top-k SMoE and is demonstrated to be effective in practice.

3 SPARSE MIXTURE-OF-EXPERT AND DISCONTINUITIES

3.1 BACKGROUND ON SPARSE MIXTURE-OF-EXPERTS

The Mixture-of-Experts (MoE) framework defines a model as a collection of expert functions
combined through a gating mechanism. Formally, one considers an input space (X,B(X), λD) and
an output space (Y,B(Y), λD′

). Here λD and λD′
denote the Lebesgue measures on RD and RD′

.

A gating function G : X → ∆M−1 maps each input to a point on the (M−1)-dimensional probability
simplex, assigning nonnegative weights to M expert functions {Ei : X → Y}Mi=1. The MoE map is
then given by

f(x) =

M∑
i=1

Gi(x)Ei(x).

In practice, the gating weights are often derived from a linear scoring function z : X → RM , where
zi(x) = ⟨W (i)

g , x⟩ + b
(i)
g . The most widely used variant is the Top-k Sparse Mixture-of-Experts

(SMoE), where only the k largest scores are retained. In this case, the gate takes the form

Gi(x) =
exp(zi(x))1{i∈Sk(x)}∑

j∈Sk(x)
exp(zj(x))

,

with Sk(x) denoting the indices of the k largest components of z(x).
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The resulting model is sparse, since only k experts contribute for each input. This sparsity makes
SMoEs computationally efficient and widely used in large-scale language and vision models, but also
introduces discontinuities in the input–output map, which is the focus of this work.

3.2 DISCONTINUITIES IN SPARSE MIXTURE-OF-EXPERTS

In a Sparse Mixture-of-Experts (SMoE), the gating scores are affine functions

zi(x) = ⟨W (i)
g , x⟩+ b(i)g , i = 1, . . . ,M.

For each k-subset S ⊆ {1, . . . ,M}, we define the open cell

CS = {x ∈ X : zi(x) > zj(x) for all i ∈ S, j /∈ S },
which consists of all inputs where the same k experts form the top set. The collection {CS : |S| = k}
partitions X into regions of constant active set, and the SMoE map is smooth within each region. The
complement

Γ = X \
⋃

|S|=k

CS

is the discontinuity set, where ties occur between active and inactive experts. Crossing such a
boundary produces a jump in the output map f(x), making Γ the source of all discontinuities in
SMoEs.

However, not all discontinuities are alike. The simplest case is a pairwise tie: the k-th and (k+1)-th
largest gate scores coincide, so that an infinitesimal change swaps membership of the Top-k set. More
generally, simultaneous ties among multiple scores give rise to higher-order discontinuities.
Definition 3.1 (Order statistics of the scores). Given scores z1(x), . . . , zM (x) at x ∈ X, define the
order statistics

z[1](x) ≥ z[2](x) ≥ · · · ≥ z[M ](x)

, i.e. the sorted values of {zi(x)}Mi=1 in nonincreasing order.
Definition 3.2 (Order-n discontinuity). Fix 1 < k < M . A point x ∈ X is an order-n discontinuity
if there exists an index set J = {i1, . . . , in+1} ⊆ {1, . . . ,M} such that

zi1(x) = zi2(x) = · · · = zin+1
(x) = z[k](x) = z[k+1](x),

that is, n+1 distinct scores tie exactly at the threshold between the k-th and (k+1)-th largest values.
For each such index set J , we define the corresponding discontinuity component

Γ
(n)
J = {x ∈ X : zi(x) = z[k](x) = z[k+1](x) ∀i ∈ J },

and the full set of order-n discontinuities as

Γ(n) =
⋃

J⊆{1,...,M}
|J|=n+1

Γ
(n)
J .

Remark 3.3. For readability, Definition 3.2 leaves implicit the affine inequality constraints that specify
the active top-k set; the equivalent, explicit formulation appears in Definition A.5. These inequalities
imply Γ

(n)
J is a finite union of translated affine cones contained in (D − n)-dimensional subspace.

Given a subset J = {i1, . . . , in+1} of expert indices, we use J to specify which experts are tied in
score. Concretely, the order-n tie condition

zi1(x) = zi2(x) = · · · = zin+1
(x)

is equivalent to the n independent equalities zis(x) = zi1(x) for s = 2, . . . , n+ 1, i.e.(
W (is)

g −W (i1)
g

)⊤
x = b(i1)g − b(is)g .

Stacking these rows defines the linear system

AJx = dJ , AJ =

 (W
(i2)
g −W

(i1)
g )⊤

...
(W

(in+1)
g −W

(i1)
g )⊤

 , dJ =

 b
(i1)
g − b

(i2)
g

...
b
(i1)
g − b

(in+1)
g

 .
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Thus J encodes the labels of the tied experts, and AJx = dJ describes the affine flat

S
(n)
J := {x ∈ RD : AJx = dJ}

on which exactly those experts in J have equal logits. In the later part, sometimes we write A(n)
J , d

(n)
J

to denote that it corresponding to order-n discontinuity.

4 ASYMPTOTIC MEASURE OF THICKENING DISCONTINUITIES

Euclidean ϵ-thickening of discontinuities. Although the discontinuity set Γ itself has Lebesgue
measure zero in X (Proposition A.3), it is not immediately clear how large the surrounding region of
“near discontinuities” can be. For instance, on the real line the rationals have measure zero, yet their
ϵ-neighborhood is the whole line. This motivates studying the neighborhoods of these discontinuities.

Definition 4.1 (Euclidean ϵ-thickening). For a set A ⊆ RD and ϵ > 0, the Euclidean ϵ-thickening of
A is defined as

Tϵ(A) := {x ∈ RD : dist(x,A) < ϵ },
where dist(x,A) := infy∈A ∥x− y∥ is the Euclidean distance.

For brevity, we will refer to the Euclidean ϵ-thickening as the ϵ-thickening from now on. We
write Tϵ(Γ

(n)) for the ϵ-thickening of order-n discontinuities. Quantifying the volume of these
neighborhoods is central to understanding how much of the input space lies close to discontinuities.

In this section we investigate how much of the input space X is occupied by the ϵ–thickening of
order-n discontinuity sets. Since these sets are generally unbounded, we restrict to their intersection
with the ball BD(0, R) centered at the origin. Our first goal is to establish asymptotic upper bounds
for their volume inside BD(0, R), together with their normalized volume, i.e. the ratio relative to
λD(BD(0, R)).

For brevity, all proofs in this section are deferred to Appendix A.4. We also write ωd = λd(Bd(0, 1))
for the volume of the d-dimensional unit ball.

Theorem 4.2 (Asymptotic measure for Tϵ(Γ
(n))). Fix 1 ≤ n < D and ϵ > 0. Let

⋃
J SJ ⊃ Γ(n) be

the union of all subspaces with codimension n containing the order-n discontinuities, where each

SJ = {x ∈ RD : AJx = dJ}, AJ ∈ Rn×D, rank(AJ) = n,

indexed by J . For each J , define the closest point of SJ to the origin by

x⋆
J = A⊤

J (AJA
⊤
J )

−1dJ ,

and let δJ ∈ Rn be its coordinate in the normal direction to SJ , so that ∥δJ∥ = dist(0, SJ).

If R > maxJ{∥δJ∥}+ ϵ, then

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤ ωD−n ωn |J |ϵn RD−n +

∑
J

O
(
(∥δJ∥+ ϵ)2 ϵn RD−n−2

)
,

and

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)

λD(BD(0, R))
≤ ωD−n ωn

ωD
|J |ϵnR−n +

∑
J

O
(
(∥δJ∥+ ϵ)2 ϵn R−n−2

)
.

Remark 4.3. Theorem 4.2 shows that the thickening measure scales as ϵnRD−n, since order-n
discontinuities lie on codimension-n flats with ϵn volume in normal and RD−n in tangential directions.
After normalization, the contribution decays as (ϵ/R)n, so higher-order discontinuities vanish
asymptotically.

While Theorem 4.2 shows that higher–order discontinuities thickening vanish asymptotically, it
does so one order at a time. We now sharpen this by establishing asymptotic ratios between the
ϵ–thickenings of order-n and order-m discontinuities.

4
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Theorem 4.4 (Relative Volume of ϵ–Thickenings Across Orders). Fix integers 1 ≤ m,n < D and
ϵ > 0. For each r ∈ {m,n}, suppose

Γ(r) ⊆
⋃

J∈Jr

S
(r)
J , S

(r)
J = {x ∈ RD : A

(r)
J x = d

(r)
J }, rank(A

(r)
J ) = r,

with finite Jr. Assume moreover that each slice Γ
(r)
J := Γ(r) ∩ S

(r)
J is a (possibly unbounded)

polyhedral subset of the flat S(r)
J . Define

Ur(R) := λD
(
Tϵ(Γ

(r)) ∩BD(0, R)
)
.

For each J ∈ Jr, set

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−r RD−r

∈
[
max

S
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1
]
,

with sS,J,r defined as in Lemma A.16 and Lemma A.17.

Then
Un(R)

Um(R)
=

∑
J∈Jn

αJ,n∑
J∈Jm

αJ,m

ωD−n ωn

ωD−m ωm

( ϵ

R

)n−m
(
1 +O

(
1

R

))
.

Remark 4.5. Theorem 4.4 shows that the ratio between ϵ–thickenings of order-n and order-m dis-
continuities decays as (ϵ/R)n−m, so higher–order sets become negligible compared to lower–order
ones as R grows. This scaling reflects that a codimension-n flat contributes ϵn volume in normal
directions and RD−n in tangential ones, with the prefactor ωD−n ωn

ωD−m ωm
giving the dimensional correc-

tion. The slice densities αJ,r measure the fraction of each tie-flat occupied by admissible regions,
and Lemma A.16 with Lemma A.17 guarantees these densities are strictly positive under linear
independence of the gating weights.

ℓ∞,ϵ-thickening of discontinuities. Directly checking whether x ∈ X lies within the Euclidean
ϵ–neighborhood of an order-n discontinuity is expensive, since it requires proximity tests against all
order-n subspaces. We therefore introduce a more tractable ℓ∞–based thickening.
Definition 4.6 (ℓ∞,ϵ–thickening). Let Γ ⊆ X and let z : X → RM denote the vector of gating logits.
Define the ℓ∞–distance from x to Γ by

dist∞(x,Γ) := inf
y∈Γ

∥z(x)− z(y)∥∞.

The corresponding ℓ∞,ϵ–thickening of Γ is

T (∞)
ϵ (Γ) := {x ∈ X : dist∞(x,Γ) ≤ ϵ }.

Intuitively, this is the set of inputs whose gating logits lie within ϵ (in ℓ∞) of a discontinuity. By
Proposition A.20, it suffices to check whether some non top-k logit is within ϵ of z[k](x), giving an
efficient proximity test directly in logit space.
Theorem 4.7 (Relative Volume of ℓ∞,ϵ-thickening Across Orders). Fix integers 1 ≤ m,n < D and
ϵ > 0. For each r ∈ {m,n}, suppose

Γ(r) ⊆
⋃

J∈Jr

S
(r)
J , S

(r)
J = {x ∈ RD : A

(r)
J x = d

(r)
J }, rank(A

(r)
J ) = r,

with finite Jr. Each slice Γ
(r)
J := Γ(r) ∩ S

(r)
J is a polyhedral subset of the flat S(r)

J . Set

Ur(R) := λD
(
T (∞)
ϵ (Γ(r)) ∩BD(0, R)

)
,

and for each J ∈ Jr let

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−r RD−r

∈
[
max

S
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1
]
,

κJ,r :=
(
det(A

(r)
J (A

(r)
J )⊤)

)−1/2
,

5
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with sS,J,r defined as in Lemma A.16 and Lemma A.17

Then

Un(R)

Um(R)
=

∑
J∈Jn

κJ,n αJ,n∑
J∈Jm

κJ,m αJ,m

ωD−n

ωD−m

(
2ϵ

R

)n−m (
1 +O

(
1

R

))
.

Remark 4.8. Theorem 4.7 shows that the ratio between ℓ∞,ϵ–thickenings of order-n and order-m
discontinuities decays as (ϵ/R)n−m, so higher–order sets remain negligible at large scales. Compared
to the Euclidean case, the prefactor includes κJ,r, reflecting the axis-aligned nature of ℓ∞ tubes and
their sensitivity to slice orientation. The densities αJ,r again capture the admissible fraction, while
the O(R−1) term accounts for finer geometry.

5 RANDOM PERTURBATION PROCESS: HITTING AND OCCUPATION TIME
NEAR DISCONTINUITIES

In this section, we analyze how a random perturbation process, such as an adversarial actor making
small stochastic updates, can drive x0 from the open top-k cell CS (the region where the active set
S is fixed) to a discontinuity boundary. Neighborhoods of these boundaries are precisely where
small changes can flip the top-k active set. For simplicity, we assume a time-independent, invertible
diffusion coefficient σ ∈ Rd×d, so the input evolves as the Itô diffusion

dxt = σ dBt, x0 ∈ CS,
where Bt is standard d-dimensional Brownian motion. Under this model we first derive explicit

probabilistic bounds on the boundary hitting time. For brevity, all proofs in this section are deferred
to Appendix A.5.
Theorem 5.1 (Exit through order-1 discontinuities with hitting-time bound). Let xt solve the diffusion
process in Equation 5, with CS is the open polyhedral cell associated with the k-subset S, given by

CS =
⋂

i∈S, j /∈S

{
x ∈ Rd : (W (i)

g −W (j)
g )⊤x > b(j)g − b(i)g

}
.

Denote a(i,j) := W
(i)
g −W

(j)
g , d(i,j) := b

(j)
g − b

(i)
g , and c(i,j) := ∥σ⊤a(i,j)∥, and assume uniform

nondegeneracy c(i,j) > 0 for all i, j. Define the minimal normalized distance to the boundary by

rmin := min
i∈S, j /∈S

a(i,j)⊤x0 − d(i,j)

∥σ⊤a(i,j)∥
> 0.

Let
τS := inf{t ≥ 0 : xt /∈ CS}

be the exit time. Then the following hold:

1. (Exit location.) Almost surely,

P
(
xτS ∈ Γ(1)

)
= 1, P

(
xτS ∈ Γ(n)

)
= 0 for all n ≥ 2,

i.e. exit occurs on an order-1 discontinuity with probability one.

2. (Hitting-time bound.) For every t > 0,

P(τS ≤ t) ≥ 2(1− Φ(rmin/
√
t)),

where Φ(x) = 1√
2π

∫ x

−∞ e−u2/2 du is the standard normal CDF. Moreover, by continuity of the
sample paths and Lemma A.25,

xτS ∈ Γ almost surely.
Remark 5.2. Theorem 5.1 shows that higher–order discontinuities Γ(n), n ≥ 2, are almost surely
never hit by the diffusion, i.e. P(xτS ∈ Γ(n)) = 0. The key proof idea is that projecting onto directions
orthogonal to each discontinuity subspace yields an n-dimensional Brownian motion, which for
n ≥ 2 almost surely does not hit a fixed point (Lemma A.27). Hence exits occur only along order-1
boundaries corresponding to pairwise logit ties. Moreover, the bound P(τS ≤ t) ≥ 2(1−Φ(rmin/

√
t))

highlights how the minimal normalized distance rmin governs the law of τS, linking separating
hyperplane geometry with exit-time behavior.
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In summary, order-1 discontinuities are almost surely hit in finite time (Proposition A.3), while higher
orders n ≥ 2 are not, though diffusion may still linger near them. To quantify this, we use the
ϵ-thickening and state the following theorem.
Theorem 5.3 (Occupation time near order-n discontinuities). Let xt solve the diffusion equation 5
with initial condition x0 ∈ CS, where CS is an open top-k cell. Assume

Γ(n) ⊆
⋃

J∈Jn

S
(n)
J , S

(n)
J := {x ∈ RD : A

(n)
J x = d

(n)
J }, rankA

(n)
J = n.

For each J , choose an orthonormal basis NJ of (S(n)
J )⊥ and set

Σ⊥,J := N⊤
J ΣNJ , λmin,J := λmin(Σ⊥,J), sJ := N⊤

J y (y ∈ S
(n)
J ), µJ := N⊤

J x0.

Define

KJ,n :=
ωn

(2π)n/2
√
det(Σ⊥,J)

, δJ,ϵ :=
∥∥∥Σ−1/2

⊥,J (sJ −µJ)
∥∥∥− ϵ√

λmin,J

, bJ,ϵ :=
(δJ,ϵ)

2
+

2
.

Let

A(n)
ϵ (T ; Γ) :=

∫ T

0

1{xt ∈ Tϵ(Γ
(n))} dt.

Then, for all T > 0,

E
[
A(n)

ϵ (T ; Γ)
]
≤



∑
J

KJ,n ϵ
n b

1−n
2

J,ϵ Γ(n/2− 1, bJ,ϵ/T ), n > 2,∑
J

KJ,2 ϵ
2 E1(bJ,ϵ/T ), n = 2,

2
(∑

J

KJ,1

)
ϵ
√
T , n = 1.

where Γ(·, ·) is the upper incomplete gamma function and E1(z) =
∫∞
z

e−uu−1 du.
Remark 5.4. Theorem 5.3 gives an upper bound on the expected occupation time that the diffusion
Xt spends inside the ϵ-thickening of order-n discontinuities. The leading factor ϵn reflects the
codimension-n geometry of the thickening. As n increases, ϵn decays exponentially for 0 < ϵ < 1.
Moreover, the sum over slices J is finite, so the upper bound decreases with n in the small-ϵ regime.

6 CONTINUITY VIA ℓ∞,ϵ-THICKENING LOCAL SMOOTHING

From Section 5, random perturbations in the input space almost surely intersect a discontinuity
boundary, with low-order ones encountered most often. Motivated by this, we propose smoothing the
SMoE map whenever the input lies in an ℓ∞,ϵ–thickening of a discontinuity set. Unlike Euclidean
ϵ–thickening, the ℓ∞,ϵ version allows efficient proximity testing via gating logits, making it both
theoretically justified and computationally practical.

ℓ∞,ϵ local smoothing (Figure 2 from Appendix A.2). From Proposition A.20, we established that
local smoothing within an ℓ∞,ϵ–thickening requires only inputs x ∈ T

(∞)
ϵ (Γ) such that there exists a

non top-k index i with
0 < z[k](x)− zi(x) < ϵ.

We propose to smooth non top-k logits zi(x) within the ϵ-strip and discard those below it, while
keeping all top-k logits unchanged. The smoothing is applied uniformly, but only affects logits zi(x)
that satisfy the specified inequality. A key consequence is that if x lies in the ℓ∞,ϵ–thickening of an
order-n discontinuity, at most n additional experts can be activated. Since the measure of higher-order
ℓ∞,ϵ–thickenings decays rapidly (Theorem 4.7), a small ϵ ensures that the expected number of extra
experts remains low.

We define the log-smoothstep h : R → R by

h(u) = −∞1{u≤0} + 0 · 1{u≥1} + log
( u a

u a + (1− u) b

)
1{0<u<1}, a, b > 0.
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Figure 1: Effect of ℓ∞,ϵ smoothing on discontinuity boundaries. (a) Standard SMoE shows a jump
at the boundary. (b) SmoothSMoE, with identical weights, removes the jump and yields continuity.
(c) Continuity check: maximum output difference vs. perturbation ∥∆x∥. For SmoothSMoE (orange)
it vanishes as ∥∆x∥ → 0, while for SMoE (blue) it remains nonzero.

Given ϵ > 0, we define the smoothed coefficient

mi(x) = h
(
(zi(x)− z[k](x) + ϵ)/ϵ

)
.

The smoothed gating logit is then defined as

ẑi(x) = zi(x) +mi(x).

As shown in Figure 2 from Appendix A.2, the soft margin discards logits below the cutoff, smoothly
boosts those within the margin, and leaves those above the cutoff unchanged. Although h is continu-
ous, the continuity of x 7→ z[k](x) is not immediate; Proposition A.7 establishes this and hence the
continuity of the smoothed SMoE.

Boundary loss for adaptive ϵ. Choosing ϵ is nontrivial since smoothing acts in logit space. We
therefore introduce a boundary loss that adaptively tunes ϵ under a fixed budget of extra experts. Let
K be the average number of activated experts with threshold ϵ (top-k plus those within ϵ of z[k]), and
k∗ the target budget. With a learning coefficient α > 0, we define

Lboundary = α ϵ
(
K − k∗

)
.

Minimizing Lboundary naturally adjusts ϵ: when K > k∗ the loss drives ϵ down, and when K < k∗

it drives ϵ up. In practice, we set k∗ = k + 0.5, allowing on average half an additional expert
for boundary smoothing. For a geometric intuition behind our theoretical results and smoothing
mechanism, please see Section B.1.

7 EMPIRICAL RESULTS

In this section, we empirically investigate the behaviour of the ℓ∞,ϵ local smoothing method. We
first demonstrate, through a small experiment, that the vanilla top-k SMoE map exhibits nontrivial
discontinuity, while ℓ∞,ϵ local smoothing effectively enforces continuity in the SMoE map. We
further show that the proposed smoothing can also yield improvements over its top-k counterpart
when applied to other tasks. Appendix B.4 shows how the boundary loss adapts ϵ and controls the
average number of active experts. The complete experimental setup and training hyperparameters are
reported in Appendix C.

7.1 ℓ∞,ϵ LOCAL SMOOTHING VS. VANILLA SMOE NEAR DISCONTINUITY BOUNDARIES

To visualize the effect of ℓ∞,ϵ local smoothing, we analyze a 4-layer SMoE pretrained on CIFAR-10
and compare it with SmoothSMoE initialized from the same weights with 32 experts and top-4
routing, isolating stochastic effects. Focusing on Layer 3, we select a random input point with a large
discontinuity gap based on its orthogonal projection onto the nearest boundary, and then evaluate the
model’s output along the normal direction. As shown in Figure 1(a), SMoE exhibits a sharp jump,
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Table 1: Perplexity (PPL) of SmoothSMoE compared to baseline models on clean and attacked
WikiText-103 datasets. Means and standard deviations are computed over 3 random seeds.

Model WikiText-103 Attacked WikiText-103
Valid PPL ↓ Test PPL ↓ Valid PPL ↓ Test PPL ↓

SMoE 33.79± 0.07 35.52± 0.13 42.21± 0.08 44.18± 0.12

ReMoE 33.60± 0.14 35.35± 0.12 42.19± 0.19 44.00± 0.45

SmoothSMoE 32.72± 0.08 34.35± 0.22 40.99± 0.26 42.85± 0.29

where tiny perturbations cause large output changes, while SmoothSMoE in Figure 1(b) removes
this jump and yields a continuous map. Figure 1(c) plots the maximum output difference of a fixed
dimension versus perturbation magnitude ∥∆x∥ along a normal direction. For SMoE (blue) the
difference persists as ∥∆x∥ → 0, whereas for SmoothSMoE (orange) it vanishes, confirming that
smoothing restores continuity. Additional results, including visualizations for other layers, are given
in Appendix B.3.

7.2 LANGUAGE MODELING ON WIKITEXT-103 AND ENWIKI-8

We follow Pham et al. (2024) for language modeling pretraining on WikiText-103 (Merity et al.,
2017a) and EnWiki-8 (Mahoney, 2006) using a Switch Transformer (Fedus et al., 2022) with 16
experts and top-2 routing, reporting PPL on WikiText-103 and BPC on EnWiki-8. Robustness on
WikiText-103 is tested by training on the clean corpus and evaluating on attacked versions (Han
et al., 2024). We include ReMoE (Wang et al., 2024) as another baseline to compare against other
continuous routing methods; for this baseline, we allow dense expert training for the first 2 epochs
before enforcing the sparsity loss. As shown in Table 1, SmoothSMoE reduces WikiText-103
validation/test PPL from 33.79/35.52 to 32.72/34.35 (improvements of 1.07 and 1.17), and similarly
lowers Attacked WikiText-103 validation/test PPL from 42.21/44.18 to 40.99/42.85 compared
to SMoE. ReMoE yields slightly lower perplexity than SMoE but is consistently outperformed
by SmoothSMoE, ranking second across all four metrics. On EnWiki-8 (Table 4, Appendix B),
SmoothSMoE achieves 1.122 BPC vs. 1.153 for SMoE, confirming gains across both standard and
robust language modeling.

Table 2: Results on GLUE benchmarks. Means and standard deviations are computed over 5 random
seeds.

Model RTE MRPC COLA QNLI MNLI Average
SMoE (K=16, k=2) 73.28± 1.02 89.17± 0.42 64.25± 1.49 92.56± 0.05 86.60± 0.06 81.17
ReMoE (K=16, k=2) 73.10± 0.74 88.60± 1.90 64.9± 1.2 92.53± 0.14 86.69± 0.13 81.18
SmoothSMoE (K=16, k=2) 73.40± 0.85 90.15± 0.60 65.41± 0.39 92.40± 0.12 86.90± 0.20 81.65

SMoE (K=16, k=4) 73.85± 1.17 89.26± 1.29 63.90± 0.62 92.20± 0.14 86.49± 0.15 81.14
ReMoE (K=16, k=4) 72.20± 1.35 89.49± 0.49 65.07± 1.61 92.51± 0.03 86.51± 0.12 81.16
SmoothSMoE (K=16, k=4) 74.60± 1.11 89.88± 0.87 64.82± 0.41 92.53± 0.28 86.82± 0.12 81.73

7.3 IMAGE CLASSIFICATION ON DOMAINBED BENCHMARK

We evaluate smoothing on vision tasks using DomainBed (Gulrajani & Lopez-Paz, 2020). Fol-
lowing Guo et al. (2024), GMoE (Li et al., 2023) is built from a ViT-S/16 backbone (Dosovitskiy
et al., 2021) pretrained on ImageNet-1K. We add our ℓ∞,ϵ local smoothing to GMoE and compare
against the original across four DomainBed tasks. As shown in Table 3, SmoothGMoE achieves
steady improvements over GMoE across most benchmarks, with an average gain of 0.56% and a
notable 2.1% increase on TerraInc. The larger datasets show consistent improvements, suggesting
that smoothing is especially effective in large-data regimes by activating extra experts near ties and
stabilizing optimization.

1All baseline results in Table 3 are from Li et al. (2023), except DomainNet, which we carefully tuned and
reproduced.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Mean accuracy (%) on DomainBed with ViT-S/16. Mean and standard deviation are
computed over 5 random seeds.

Algorithms PACS VLCS OfficeHome TerraInc DomainNet Average

GMoE1 87.7± 0.2 79.6± 0.4 73.1± 0.3 45.4± 0.3 48.4± 0.1 66.84

SmoothGMoE 87.6± 0.32 79.9± 0.2 73.46± 0.41 47.5± 0.91 48.8± 0.1 67.4

7.4 GLUE BENCHMARK: LANGUAGE INFERENCE AND CLASSIFICATION TASKS

We evaluate our smoothing mechanism on natural language understanding using five GLUE
tasks (Wang et al., 2018): CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett, 2005),
MNLI (Wang et al., 2018), QNLI, and RTE (Bentivogli et al., 2009). Following experiment settings
in MoEfication (Zhang et al., 2022) and EMoE (Qiu et al., 2023), we augment BERT-large (Devlin
et al., 2019b) by replacing one FFN layer with our MoE layer and compare against SMoE baselines,
reporting validation performance. As shown in Table 2 in Appendix B, SmoothSMoE achieves higher
accuracy on almost all tasks and settings, with the largest gain of 1.32% on RTE. Averaged across
each top-k ∈ {2, 4} yields a consistent improvement of 0.25%–0.42%, indicating that smoothing
benefits SMoE models for language understanding on the GLUE benchmark.

We evaluate our smoothing mechanism on natural language understanding using five GLUE
tasks (Wang et al., 2018): CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett, 2005),
MNLI (Wang et al., 2018), QNLI, and RTE (Bentivogli et al., 2009). Following experiment settings
in MoEfication (Zhang et al., 2022) and EMoE (Qiu et al., 2023), we augment BERT-large (De-
vlin et al., 2019b) by replacing one FFN layer with our MoE layer and compare against SMoE
baselines, reporting validation performance. We additionally include ReMoE (Wang et al., 2024)
as a continuous-routing baseline to broaden the comparison. As shown in Table 2, SmoothSMoE
achieves the strongest performance across both k=2 and k=4 settings, improving over SMoE and
ReMoE on nearly all tasks. The largest gain is observed on MRPC (up to 1.55%), and smoothing
also yields consistent improvements on RTE, CoLA, and MNLI. Averaged across all GLUE tasks,
SmoothSMoE improves over the next best baseline by 0.47% for k=2 and 0.57% for k=4, indicating
that smoothing provides robust benefits for language understanding.

8 CONCLUSION

In this paper, we provide a theoretical investigation of discontinuities in Sparse Mixture-of-Experts
from both geometric and stochastic perspectives. On the geometric side, we classify discontinuities
by order and, using measure-theoretic slicing arguments, derive asymptotic volume bounds for both
Euclidean ϵ-thickenings and ℓ∞,ϵ-thickenings around these sets. On the stochastic side, we analyze
the hitting times of discontinuities as well as the occupation times of a random diffusion process in
their neighborhoods. Building on these insights, we propose a simple smoothing mechanism that can
be applied directly to SMoEs and demonstrate its effectiveness across multiple tasks. One possible
limitation of our analysis is that adversarial or structured perturbations may deviate from random
diffusion, making them more challenging to study; addressing such cases remains an interesting
direction for future work.
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Reproducibility Statement. Source codes for our experiments are provided in the supplementary
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Hemanth Venkateswara, José Eusébio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 5385–5394, 2017. URL https://api.
semanticscholar.org/CorpusID:2928248.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP, pp. 353–355, 2018.

Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu
routing. arXiv preprint arXiv:2412.14711, 2024.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. The corpus of linguistic acceptability.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), pp. 119–124, 2019.

Yichong Xu, Shujie Liu, Jiajun Zhu, and Ming Zhou. An evaluation of transfer learning for
automatic humor recognition. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 6057–6064, 2020.

Aston Zhang, Xiaodong Zhao, Zhuoning He, Shuxin Lin, Aayush Sinha, Han Zhao, Mu Li, and
Alexander Smola. Moefication: Transformer feed-forward layers are mixtures of experts. In
International Conference on Learning Representations (ICLR), 2022.

14

https://api.semanticscholar.org/CorpusID:2928248
https://api.semanticscholar.org/CorpusID:2928248


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

Supplement to “Discontinuities in Sparse Mixture-of-Experts: A
Measure-Stochastic Analysis”

Table of Contents

A.1 Math Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2 Mathematical formulation for Mixture of Experts . . . . . . . . . . . . . . . . . . 18

A.2.1 Mixture-of-experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2.2 Top-k Sparse Mixture-of-Experts (SMOE) . . . . . . . . . . . . . . . . . . 18

A.3 Discontinuities of Top-k Sparse Mixture-of-Experts . . . . . . . . . . . . . . . . . 19

A.3.1 Partition induced by Top-k affine gating and the discontinuity set. . . . . . 19

A.3.2 Orders of discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.3.3 Smoothed SMoE is continuous . . . . . . . . . . . . . . . . . . . . . . . . 21

A.4 Asymptotic Measure of ϵ-Thickened Discontinuities . . . . . . . . . . . . . . . . . 22

A.4.1 Base case: ϵ-thickening measure of order-1 discontinuities in a bounded region 22

A.4.2 Generalized case: ϵ-thickening measure of order-n discontinuity in a bounded
region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.5 Hitting and Occupation Time Near Discontinuities . . . . . . . . . . . . . . . . . 37

A.5.1 Randomly perturbed diffusion process is guaranteed to hit the top-k cell
boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.5.2 Equivalence between cell boundaries and the discontinuity set . . . . . . . 40

A.5.3 First exit almost surely as order-1 discontinuity . . . . . . . . . . . . . . . 41

A.5.4 Occupation time near discontinuity sets . . . . . . . . . . . . . . . . . . . 43

B Further Theoretical Analysis and Ablation Studies 46

B.1 Geometric intuition behind theoretical analysis . . . . . . . . . . . . . . . . . . . 46

B.2 SmoothSMoE vs. Other Differentiable Routing Methods . . . . . . . . . . . . . . 47

B.3 Detailed analysis on ℓ∞,ϵ Local Smoothing vs. Vanilla SMoE Near Discontinuity
Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.4 How Boundary Loss Controls ϵ and the Average Number of Activated Experts . . . 49

B.5 Annealing Boundary Smoothing to Hard Top-k . . . . . . . . . . . . . . . . . . . 49

C Experimental Details 50

C.1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.1.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.1.2 Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.2 Vision Task on DomainBed Benchmark . . . . . . . . . . . . . . . . . . . . . . . 51

C.2.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.2.2 Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.3 Language Task (GLUE Benchmark) . . . . . . . . . . . . . . . . . . . . . . . . . 52

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.3.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.3.2 Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1 MATH NOTATIONS

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at posi-
tion i

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A
that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Calculus
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dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect to X
∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or over
a variable whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P∥Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance
Σ

Functions

f : A → B The function f with domain A and range B
f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we write
f(x) and omit the argument θ to lighten notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise
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A.2 MATHEMATICAL FORMULATION FOR MIXTURE OF EXPERTS

Figure 2: Illustration for gating logit smoothing within the ℓ∞,ϵ-thickening.

A.2.1 MIXTURE-OF-EXPERTS

Let X = RD and Y = RD′
, each regarded as a finite-dimensional normed vector space with

the Euclidean inner product. We equip them with their Borel σ-algebras B(X), B(Y), and with the
standard Lebesgue measures λD, λD′

, respectively. Then, we define the input space as (X,B(X ), λD)

and the output space as (Y,B(Y), λD′
).

Assume that we have M experts. A gating function G is a map

G : X → ∆M−1,

where ∆M−1 = {α ∈ RM
≥0 :

∑M
i=1 αi = 1} denotes the (M − 1)-dimensional probability simplex.

For each input x ∈ X , the vector G(x) = (G1(x), . . . , GM (x)) specifies the weights assigned to the
M experts.

For i = 1, . . . ,M , each expert is given by a map

Ei : X → Y,

Then, we can write the Mixture-of-Experts as a function f : X → Y in the form

f(x) =

M∑
i=1

Gi(x)Ei(x)

A.2.2 TOP-K SPARSE MIXTURE-OF-EXPERTS (SMOE)

We now state the 3 assumptions used in the proofs. They are mild and typically satisfied by pretrained
SMoE models in practice; they exclude pathological corner cases and streamline the theoretical
analysis.

Assumption:

1. The number of experts is smaller than the input dimension (M < D).
2. The number of experts activated is positive and less than the full set of available expert

(1 ≤ k < M).
3. Wg ∈ RM×D has full row rank.

Remark A.1. On the space RM×D we define the product measure λM×D induced by the row
measures λW (i)

. If each λW (i)

is absolutely continuous with respect to the Lebesgue measure λD or
has the Lebesgue measure itself, it follows that the set of weight matrices Wg that are not full row
rank has product λM×D-measure zero.

Define z : X → RM as the gating score function componentwise by

zi(x) = ⟨W (i)
g , x⟩+ b(i)g , i = 1, . . . ,M,

18
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so that z(x) = (z1(x), . . . , zM (x)).

Fix k ∈ {1, . . . ,M} and let Sk(x) ⊆ {1, . . . ,M} be the indices of the k largest entries of z(x). The
top-k softmax gate G : X → ∆M−1 is

Gi(x) =
exp(zi(x))1{i∈Sk(x)}∑

j∈Sk(x)
exp(zj(x))

, i = 1, . . . ,M,

Then, the Sparse Mixture-of-Experts (SMoE) is the map f : X → Y defined by f(x) =∑M
i=1 Gi(x)Ei(x), where G is the top-k softmax gate and each expert map is Ei : X → Y .

A.3 DISCONTINUITIES OF TOP-K SPARSE MIXTURE-OF-EXPERTS

A.3.1 PARTITION INDUCED BY TOP-k AFFINE GATING AND THE DISCONTINUITY SET.

Let zi(x) = ⟨W (i)
g , x⟩ + b

(i)
g for i = 1, . . . ,M be the affine gatings, and fix k ∈ {1, . . . ,M}. For

each k-subset S ⊆ {1, . . . ,M}, define the open cell

CS =
{
x ∈ X : zi(x) > zj(x) for all i ∈ S, j /∈ S

}
.

Then {CS}|S|=k is dense in X, while the remaining points in RD\
⋃

|S|=k CS constitute the discontinuity
set of the Top-k gating, which will be analyzed later.

Proposition A.2. CS is a full-dimensional region in RD, i.e. dim(CS) = D.

Proof. For i ∈ S, j /∈ S, we have the following

zi(x) > zj(x) ⇐⇒
(
W (i)

g −W (j)
g

)⊤
x > b(j)g − b(i)g .

Hence
CS =

⋂
i∈S, j /∈S

{x ∈ RD : (W (i)
g −W (j)

g )⊤x > b(j)g − b(i)g }.

By Assumption 3, (W (i)
g −W

(j)
g ) ̸= 0 for all i ̸= j. Each inequality zi(x) > zj(x) then defines a

nontrivial open halfspace in RD. Their finite intersection gives CS, which is an open subset of RD.
So its affine hull equals RD and

dim(CS) = dim
(
aff(CS)

)
= D. □

On the relative interior relint(CS) of CS, the active expert set is constant, Sk(x) = S, and the gate is

Gi(x) =
exp(zi(x))1{i∈S}∑

j∈S exp(zj(x))
.

For each k-subset S and i ∈ S, j /∈ S, we define the boundary FS,i,j as follow

FS,i,j =
{
x ∈ XD : zi(x) = zj(x), zi(x) ≤ zℓ(x) ∀ ℓ ∈ S\{i}, zm(x) ≤ zj(x) ∀m /∈ (S∪{j})

}
.

Intuitively, this set is the boundary where the k-th largest score zi(x) from the active set S ties with
the (k + 1)-th largest score zj(x) from the inactive set, so that crossing such a boundary swaps i and
j between active and inactive experts.

The discontinuous set of the Top-k gating is the union

Γ =
⋃

|S|=k

⋃
i∈S, j /∈S

FS,i,j .

Proposition A.3. The discontinuous set Γ has Lebesgue measure zero in RD, i.e. λD(Γ) = 0.
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Proof. For i ̸= j, we define the tie set Hij := {x ∈ RD : zi(x) = zj(x)} is an affine hyperplane
given by

{x ∈ RD : (W (i)
g −W (j)

g )⊤x = b(j)g − b(i)g },

with W
(i)
g − W

(j)
g ̸= 0. Hence Hij has Lebesgue measure zero. Each boundary piece FS,i,j is a

polyhedral subset of Hij , so λD(FS,i,j) = 0. Since

Γ =
⋃

|S|=k

⋃
i∈S, j /∈S

FS,i,j

is a finite union of these FS,i,j terms, hence, countable subadditivity gives us λD(Γ) = 0.

A.3.2 ORDERS OF DISCONTINUITIES

Within the discontinuity set Γ there are, in fact, different types of discontinuities. For instance, one
may encounter a pairwise tie where only two scores satisfy zi(x) = zj(x) with one index inside
and one outside the top-k set. Alternatively, higher-order ties may occur, such as a triple equality
zi′(x) = zj′(x) = zk′(x).

To analyze these discontinuities, we classify them by order: a pairwise tie is called a order-1 disconti-
nuity, a triple tie a order-3 discontinuity, and more generally an order-n discontinuity corresponds to
n+ 1 scores becoming equal across the top-k threshold.

Definition A.4 (Order statistics of the scores). Given scores z1(x), . . . , zM (x) at x ∈ X, define the
order statistics

z[1](x) ≥ z[2](x) ≥ · · · ≥ z[M ](x)

denote the order statistics, i.e. the sorted values of {zi(x)}Mi=1 in nonincreasing order, and ties are
broken by lexical order of the original index.

Definition A.5 (Order-n discontinuity). Fix 1 < k < M and let the gating scores be affine maps

z(x) = Wgx+ bg, Wg ∈ RM×D, bg ∈ RM ,

with rows a⊤i and entries bi, so zi(x) = a⊤i x+ bi.

A point x ∈ X is an order-n discontinuity if there exists a tie set

I = {i1, . . . , in+1} ⊆ {1, . . . ,M}

such that the scores in I tie exactly at the switching threshold,

zi1(x) = · · · = zin+1(x) = z[k](x) = z[k+1](x),

so that x lies in the affine subspace

SI =
{
x ∈ RD : (air − ai1)

⊤x = bi1 − bir , r = 2, . . . , n+ 1
}
.

At such a point, some but not all indices of I belong to the Top-k set S. The corresponding
discontinuity slice is the polyhedron

Γ
(n)
I,S =

{
x ∈ SI : (aj −ai1)

⊤x > bi1 − bj , ∀j ∈ S \ I; (aℓ−ai1)
⊤x < bi1 − bℓ, ∀ℓ ∈ S∁ \ I

}
.

The discontinuity component associated with I is

Γ
(n)
I =

⋃
S⊆{1,...,M}, |S|=k
I∩S̸=∅, I∩S̸=I

Γ
(n)
I,S ,

and the full order-n discontinuity set is

Γ(n) =
⋃

I⊆{1,...,M}
|I|=n+1

Γ
(n)
I .
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Proposition A.6 (Dimension of order-n discontinuity sets). For any tie set I of size n+1, the
associated discontinuity component Γ(n)

I lies in an affine subspace of codimension n. Consequently,

dim(Γ
(n)
I ) = D − n.

Proof. Fix a tie set I = {i1, . . . , in+1}. By definition, x ∈ Γ
(n)
I satisfies

(air − ai1)
⊤x = bi1 − bir , r = 2, . . . , n+ 1,

which are n linear equations.

Since the rows of Wg are linearly independent, the difference vectors

{ air − ai1 : r = 2, . . . , n+ 1 }
are also linearly independent. Thus the system has rank n, and the solution set SI is an affine subspace
of codimension n.

The additional inequalities restrict SI to a polyhedral subset but do not reduce its dimension. Therefore
every component Γ(n)

I has dimension D − n.

A.3.3 SMOOTHED SMOE IS CONTINUOUS

In this part, we prove the fact that our Smoothed SMoE mapping is continuous under some mild
assumptions. First, we assume that the base set of assumption in Section A.2.2 is satisfied. In addition,
we assume that the set of expert mapping Ei(x)’s are continuous, which holds in practice when it is
usally parameterized as an MLP network with ReLU activation.

Proposition A.7. Let X = RD and Y = RD′
be endowed with the standard Euclidean topology.

Define the gating logits

zi(x) = ⟨W (i)
g , x⟩+ b(i)g , i = 1, . . . ,M,

and the order statistics
z[1](x) ≥ z[2](x) ≥ · · · ≥ z[M ](x),

with ties broken lexicographically by the original indices. Let h : R → R be continuous and set

mi(x) := h

(
zi(x)− z[k](x) + ϵ

ϵ

)
, ẑi(x) := zi(x) +mi(x).

Define the gating scores and the SmoothSMoE

Gi(x) :=
exp(ẑi(x))∑M
j=1 exp(ẑj(x))

, f(x) :=

M∑
i=1

Gi(x)Ei(x),

where each expert map Ei : X → Y is continuous. Then f is continuous.

Proof. We write >lex for the strict total order on logits that respects values and breaks ties by index:
zi(x) >lex zj(x) if either zi(x) > zj(x) or zi(x) = zj(x) and i < j. Thus

z[1](x) >lex z[2](x) >lex · · · >lex z[M ](x).

Consider z[k] : X → R. Let B = {(a− r, a+ r) : a ∈ R, r ∈ R≥0} be a basis for the topology on R,
and fix B = (a− r, a+ r) ∈ B. Then

z−1
[k] (B) = {x ∈ X : a− r < z[k](x) < a+ r }.

For any permutation (i1, . . . , iM ) of {1, . . . ,M},

U(i1,...,iM ) := {x ∈ X : zi1(x) >lex · · · >lex ziM (x) }

is open, since it is a finite intersection of open half-spaces and subspaces. Also {x ∈ X : a− r <
zik(x) < a+ r} is open because zik is affine (hence continuous). Consequently,

z−1
[k] (B) =

⋃
(i1,...,iM )

(
U(i1,...,iM ) ∩ {x : a− r < zik(x) < a+ r}

)
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is a union of open sets, hence open. Since z−1
[k] (B) is open for any B ∈ B, so z[k] is continu-

ous (Munkres, 1997).

Since z[k] and each zi are continuous, the composition mi(x) = h
(
(zi(x) − z[k](x) + ϵ)/ϵ

)
is

continuous, and so is ẑi = zi + mi. The softmax map is smooth, hence each Gi is continuous.
Finally, f(x) =

∑M
i=1 Gi(x)Ei(x) is a finite sum of products of continuous functions, so f is

continuous.

A.4 ASYMPTOTIC MEASURE OF ϵ-THICKENED DISCONTINUITIES

In this part, we are interested in quantifying how much of the input space lies close to the disconti-
nuities. While the discontinuity set itself has Lebesgue measure zero in the input space X, it is not
immediately clear how large the measure of an ϵ-neighborhood of this set can be. For instance, on
the real line the rationals form a measure-zero set, yet their closure is the entire line.

Motivated by this analogy, we now ask whether an ϵ-thickening set around the discontinuities can
occupy a non-negligible portion of the space. Our goal is to analyze this behavior separately for each
order-n discontinuity. To make this precise, we recall the classical notion of an ϵ-thickening.

Definition A.8 (ϵ-thickening). For a set A ⊆ RD and ϵ > 0, the Euclidean ϵ-thickening of A is
defined as

Tϵ(A) := {x ∈ RD : dist(x,A) < ϵ },
where dist(x,A) := infy∈A ∥x− y∥ is the Euclidean distance.

A.4.1 BASE CASE: ϵ-THICKENING MEASURE OF ORDER-1 DISCONTINUITIES IN A BOUNDED
REGION

Consider the bounded ball BD(0, R) ⊂ X of radius R centered at the origin. We are interested in
quantifying the asymptotic Lebesgue measure of the ϵ-thickening set of the order-1 discontinuity
restricted to this region, i.e.,

λD
(
Tϵ(Γ

(1)) ∩B(0, R)
)
.

Intuitively, this corresponds to the volume of an ϵ-thickening set surrounding the discontinuity facets
Γ(1) within the bounded domain B(0, R).

Proposition A.9 (Measure of the ϵ–thickening set of Γ(1) inside BD(0, R)). Let
⋃M

m=1 Hm ⊃ Γ(1)

be the union of all order-1 facets, where each

Hm = {x ∈ RD : a⊤mx = dm}, am ̸= 0,

and define the ϵ–thickening set (tube) of any S ⊂ RD by

Tϵ(S) := {x ∈ RD : dist(x, S) < ϵ}.

Write the distance from the origin to facet m as δm := dm/∥am∥.

Let ωD−1 =
π

D−1
2

Γ
(
D+1
2

) denote the volume of the unit (D − 1)–ball. Then, for any R > 0:

For each m = 1, . . . ,M ,

λD
(
Tϵ(Hm) ∩BD(0, R)

)
=

∫ min{R, δm+ϵ}

max{−R, δm−ϵ}
ωD−1

(
R2 − u2

)D−1
2 du.

Consequently,

λD
(
Tϵ(Γ

(1)) ∩BD(0, R)
)
≤

M∑
m=1

∫ min{R, δm+ϵ}

max{−R, δm−ϵ}
ωD−1

(
R2 − u2

)D−1
2 du,

Proof. Fix m. Choose an orthonormal basis e1, . . . , eD such that eD = am/∥am∥.
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In these coordinates, every x ∈ RD can be written as x = (y, u), where y ∈ RD−1 lies in the
subspace orthogonal to am, and u = e⊤Dx ∈ R is the coordinate in the normal direction. Then

Hm = {(y, u) : u = δm}, dist((y, u), Hm) = |u− δm|.

Let
E = Tϵ(Hm) ∩BD(0, R) = {(y, u) : |u− δm| < ϵ, ∥y∥2 + u2 < R2}.

The measure of E is
I = λD(E) =

∫
RD

1E(y, u) dy du.

By Fubini’s theorem,

I =

∫
R

(∫
RD−1

1E(y, u) dy

)
du.

For each fixed u, the inner integral is the (D − 1)–dimensional measure of the cross-section

{y : ∥y∥2 < R2 − u2} ∩ {|u− δm| < ϵ}.
This is nonempty only if |u| < R and |u− δm| < ϵ, i.e. u ∈ (max{−R, δm − ϵ}, min{R, δm + ϵ}).
Thus,

I =

∫ min{R, δm+ϵ}

max{−R, δm−ϵ}
λD−1

(
BD−1(0,

√
R2 − u2)

)
du.

Since λD−1(BD−1(0, r)) = ωD−1r
D−1 for any radius r > 0, we obtain

I =

∫ min{R, δm+ϵ}

max{−R, δm−ϵ}
ωD−1 (R

2 − u2)
D−1

2 du.

Finally, since

Tϵ(Γ
(1)) ⊆

M⋃
m=1

Tϵ(Hm),

subadditivity of Lebesgue measure gives the bound.

Remark A.10. In Proposition A.9 we adopt the convention that
∫ b

a
(·) = 0 whenever a ≥ b. This

corresponds to the geometric situation where the ϵ–thickening set lies entirely outside the ball, i.e.
when the minimal distance from the origin to the set satisfies δm − ϵ > R. In that case we have
λD(Tϵ(Hm) ∩BD(0, R)) = 0.
Proposition A.11 (Asymptotic measure of a facet’s ϵ–tube). Fix ϵ > 0 and a facet

Hm = {x ∈ RD : a⊤mx = dm}, am ̸= 0,

with signed distance δm := dm/∥am∥ from the origin. Assume R > |δm|+ ϵ so that the ϵ–thickening
slab of Hm intersects the ball BD(0, R). Then:

λD
(
Tϵ(Hm)∩BD(0, R)

)
=

ωD−1R
D

2

[
B (δm+ϵ)2

R2

(
1
2 ,

D+1
2

)
− sgn

(
δm−ϵ
R

)
B (δm−ϵ)2

R2

(
1
2 ,

D+1
2

)]
,

where Bz(α, β) is the incomplete beta function.

Dividing by the ball volume λD(BD(0, R)) = ωDRD, one has

λD
(
Tϵ(Hm) ∩BD(0, R)

)
λD(BD(0, R))

=
ωD−1

2ωD

[
B (δm+ϵ)2

R2

(
1
2 ,

D+1
2

)
− sgn

(
δm−ϵ
R

)
B (δm−ϵ)2

R2

(
1
2 ,

D+1
2

)]
.

As R → ∞ with δm, ϵ fixed,

λD
(
Tϵ(Hm) ∩BD(0, R)

)
= 2ωD−1 ϵR

D−1 +O
(
(|δm|+ ϵ)2ϵRD−3

)
,

and hence
λD
(
Tϵ(Hm) ∩BD(0, R)

)
λD(BD(0, R))

=
2ωD−1

ωD

ϵ

R
+O

( (|δm|+ ϵ)2ϵ

R3

)
.
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Proof. From Proposition A.9, for each facet Hm we have

λD
(
Tϵ(Hm) ∩BD(0, R)

)
=

∫ δm+ϵ

δm−ϵ

ωD−1 (R
2 − u2)

D−1
2 du,

whenever R > |δm|+ ϵ so that the integration interval lies inside (−R,R).

Set u = Rs, so that s ∈
[
(δm − ϵ)/R, (δm + ϵ)/R

]
and du = Rds. Then

λD
(
Tϵ(Hm) ∩BD(0, R)

)
= ωD−1R

D

∫ (δm+ϵ)/R

(δm−ϵ)/R

(1− s2)
D−1
2 ds.

Let α = D+1
2 . Splitting the integral at s = 0 we obtain

I =

∫ b

a

(1− s2)α−1 ds =

∫ b

0

(1− s2)α−1 ds+

∫ 0

a

(1− s2)α−1 ds,

where a = (δm − ϵ)/R and b = (δm + ϵ)/R.

Using substitution u = s2, ds = sgn(s) 12u
−1/2du, we obtain∫ b

0

(1− s2)α−1 ds =
1

2
sgn(b)

∫ b2

0

u− 1
2 (1− u)α−1 du =

1

2
sgn(b)Bb2

(
1
2 , α

)
.

Similarly, for the second term,∫ 0

a

(1− s2)α−1 ds = − 1

2
sgn(a)

∫ a2

0

u− 1
2 (1− u)α−1 du = − 1

2
sgn(a)Ba2

(
1
2 , α

)
.

Therefore

I =
1

2

[
sgn(b)Bb2

(
1
2 , α

)
− sgn(a)Ba2

(
1
2 , α

)]
.

Substituting back yields the exact formula

λD
(
Tϵ(Hm) ∩BD(0, R)

)
=

ωD−1R
D

2

[
B (δm+ϵ)2

R2

(
1
2 ,

D+1
2

)
− sgn

(
δm−ϵ
R

)
B (δm−ϵ)2

R2

(
1
2 ,

D+1
2

)]
.

Dividing by λD(BD(0, R)) = ωDRD gives the normalized fraction.

For the asymptotics, put z± = ((δm ± ϵ)2/R2) → 0 as R → ∞. Using

Bz

(
1
2 , α

)
=

∫ z

0

u−1/2(1− u)α−1 du = 2 z1/2 +O(z3/2) (z → 0),

we obtain

sgn(b)Bb2

(
1
2 , α

)
= 2

δm + ϵ

R
+O
( (δm + ϵ)3

R3

)
, −sgn(a)Ba2

(
1
2 , α

)
= − 2

δm − ϵ

R
+O
( (δm − ϵ)3

R3

)
.

And

λD
(
Tϵ(Hm)∩BD(0, R)

)
=

ωD−1R
D

2

[
4ϵ

R
+O

( (δm + ϵ)3

R3
− (δm − ϵ)3

R3

)]
=

ωD−1R
D

2

[
4ϵ

R
+O

(
(|δm|+ϵ)2ϵ

R3

)]
,

= 2ωD−1 ϵR
D−1 +O

(
(|δm|+ ϵ)2ϵRD−3

)
.

Dividing by ωDRD yields

λD
(
Tϵ(Hm) ∩BD(0, R)

)
λD(BD(0, R))

=
2ωD−1

ωD

ϵ

R
+O

( (|δm|+ ϵ)2ϵ

R3

)
as claimed.
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Corollary A.12 (Asymptotic measure of the ϵ–tube of Γ(1)). Fix ϵ > 0 and let
⋃M

m=1 Hm ⊃ Γ(1) be
the union of all order-1 facets. Then for any R > 0,

λD
(
Tϵ(Γ

(1)) ∩BD(0, R)
)
≤

M∑
m=1

λD
(
Tϵ(Hm) ∩BD(0, R)

)
.

In particular, if R > |δm|+ ϵ for each m, then by Proposition A.11,

λD
(
Tϵ(Γ

(1)) ∩BD(0, R)
)
≤ 2M ωD−1 ϵR

D−1 + O

(
M∑

m=1

(|δm|+ ϵ)2ϵRD−3

)
.

Equivalently, dividing by λD(BD(0, R)) = ωDRD,

λD
(
Tϵ(Γ

(1)) ∩BD(0, R)
)

λD(BD(0, R))
≤ 2M ωD−1

ωD

ϵ

R
+ O

(
M∑

m=1

(|δm|+ ϵ)2ϵ

R3

)
.

Corollary A.12 is not tight, as it bounds the asymptotic measure of Γ(1) using the aggregate bounds
derived from the measures of the individual facets Hm. This section should therefore be viewed
as a schematic illustration of our proof strategy rather than a final result. In the next section, we
establish stronger bounds for general order-n discontinuities, yielding a sharper characterization of
their asymptotic measure.

A.4.2 GENERALIZED CASE: ϵ-THICKENING MEASURE OF ORDER-n DISCONTINUITY IN A
BOUNDED REGION

Having proved the result for order-1 discontinuity, now we aim to establish a similar result for general
order-n discontinuity for all n ≥ 1.

Upper bound on the measure of the ϵ-thickening of the subspace SJ .
Proposition A.13 (Measure of the ϵ–thickening set of Γ(n) inside BD(0, R)). Fix 1 ≤ n < D. Let⋃

J SJ ⊃ Γ(n) be the union of all order-n subspaces containing the order-n discontinuities, where
each

SJ = {x ∈ RD : AJx = dJ}, AJ ∈ Rn×D, rank(AJ) = n,

indexed by J , and let ϵ–thickening set of any S ⊂ RD be

Tϵ(S) := {x ∈ RD : dist(x, S) < ϵ}.

For each J , define the closest point of SJ to the origin by

x⋆
J = A⊤

J (AJA
⊤
J )

−1dJ ,

and let δJ ∈ Rn be its coordinate in the normal direction to SJ , so that ∥δJ∥ = dist(0, SJ).
Choosing an orthogonal basis, any x ∈ RD can then be written x = (y, u) with y ∈ RD−n tangent
to SJ and u ∈ Rn normal, and SJ = {(y, u) : u = δJ}.

For each J and any R > 0,

λD
(
Tϵ(SJ) ∩BD(0, R)

)
=

∫
u∈Rn:

∥u−δJ∥<ϵ
∥u∥<R

ωD−n

(
R2 − ∥u∥2

)D−n
2 du,

Consequently,

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤
∑
J

∫
u∈Rn:

∥u−δJ∥<ϵ
∥u∥<R

ωD−n

(
R2 − ∥u∥2

)D−n
2 du.
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Proof. Fix J . In the orthonormal coordinates (y, u) ∈ RD−n × Rn with SJ = {(y, u) : u = δJ},
we have

E = Tϵ(SJ) ∩BD(0, R) =
{
(y, u) : ∥u− δJ∥ < ϵ, ∥y∥2 + ∥u∥2 < R2

}
.

The measure of E is
I = λD(E) =

∫
RD

1E(y, u) dy du,

where we decompose x = (y, u) with y ∈ RD−n tangent to SJ and u ∈ Rn normal.

By Fubini’s theorem,

I =

∫
Rn

(∫
RD−n

1E(y, u) dy

)
du.

For each fixed u ∈ Rn, the inner integral is the (D − n)–dimensional measure of the cross–section

{y : ∥y∥2 < R2 − ∥u∥2} ∩ {∥u− δJ∥ < ϵ}.

This set is nonempty only if ∥u∥ < R and ∥u− δJ∥ < ϵ.

Thus,

I =

∫
u∈Rn:

∥u−δJ∥<ϵ, ∥u∥<R

λD−n
(
BD−n(0,

√
R2 − ∥u∥2)

)
du.

Since λD−n(BD−n(0, r)) = ωD−nr
D−n, we obtain

I =

∫
u∈Rn:

∥u−δJ∥<ϵ, ∥u∥<R

ωD−n (R
2 − ∥u∥2)

D−n
2 du,

which yields the first identity.

The union bound directly follows from Tϵ(Γ
(n)) ⊆

⋃
J Tϵ(SJ).

Proposition A.14 (Asymptotic measure for Tϵ(SJ) and Tϵ(Γ
(n))). With the same setup as Proposi-

tion A.13, fix 1 ≤ n < D and ϵ > 0.

(i) Single subspace SJ . If R > ∥δJ∥+ ϵ, then

λD
(
Tϵ(SJ) ∩BD(0, R)

)
= ωD−n ωn ϵ

n RD−n + O
(
(∥δJ∥+ ϵ)2 ϵn RD−n−2

)
,

and consequently

λD
(
Tϵ(SJ) ∩BD(0, R)

)
λD(BD(0, R))

=
ωD−n ωn

ωD

( ϵ

R

)n
+ O

((∥δJ∥+ ϵ

R

)2 ( ϵ

R

)n )
.

(ii) Union Γ(n). For Γ(n) ⊂
⋃

J SJ , if R > maxJ{∥δJ∥}+ ϵ, then

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤
∑
J

λD
(
Tϵ(SJ) ∩BD(0, R)

)
,

so that

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤ ωD−n ωn ϵ

n RD−n |J | +
∑
J

O
(
(∥δJ∥+ ϵ)2 ϵn RD−n−2

)
,

and

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)

λD(BD(0, R))
≤ ωD−n ωn

ωD
|J |
( ϵ

R

)n
+
∑
J

O
((∥δJ∥+ ϵ

R

)2 ( ϵ

R

)n )
.
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Proof. (i) Single subspace SJ . From Proposition A.13, for each J we have

λD
(
Tϵ(SJ) ∩BD(0, R)

)
=

∫
u∈Rn:

∥u−δJ∥<ϵ, ∥u∥<R

ωD−n

(
R2 − ∥u∥2

)D−n
2 du.

By the assumption R > ∥δJ∥ + ϵ, so the u–region {u : ∥u − δJ∥ < ϵ} lies inside {∥u∥ < R}.
Expand for ∥u∥ ≪ R:

(
R2 − ∥u∥2

)D−n
2 = RD−n

(
1− ∥u∥2

R2

)D−n
2

= RD−n
(
1 +O(∥u∥2/R2)

)
.

Integrating over the n–ball Bn(δJ , ϵ) gives

λD
(
Tϵ(SJ)∩BD(0, R)

)
= ωD−nR

D−n λn
(
Bn(δJ , ϵ)

)
+ O

(
ωD−nR

D−n−2

∫
Bn(δJ ,ϵ)

∥u∥2 du

)
.

Now, the volume of the n–ball is explicit:

λn(Bn(δJ , ϵ)) = λn(Bn(0, ϵ)) = ωnϵ
n.

For the error term, note that for any u ∈ Bn(δJ , ϵ),

∥u∥ ≤ ∥u− δJ∥+ ∥δJ∥ ≤ ϵ+ ∥δJ∥,

so
∥u∥2 ≤ (∥δJ∥+ ϵ)2.

Therefore ∫
Bn(δJ ,ϵ)

∥u∥2 du ≤ (∥δJ∥+ ϵ)2 λn(Bn(δJ , ϵ)) = (∥δJ∥+ ϵ)2 ωnϵ
n.

Substituting these into the previous expression gives

λD
(
Tϵ(SJ) ∩BD(0, R)

)
= ωD−n ωn ϵ

n RD−n + O
(
(∥δJ∥+ ϵ)2 ϵn RD−n−2

)
,

which is the claimed asymptotic expansion.

Dividing the asymptotic by λD
(
BD(0, R)

)
= ωDRD gives

λD
(
Tϵ(SJ) ∩BD(0, R)

)
λD
(
BD(0, R)

) =
ωD−n ωn

ωD

( ϵ

R

)n
+ O

((∥δJ∥+ ϵ

R

)2 ( ϵ

R

)n )
.

(ii) Union Γ(n). For Γ(n) ⊂
⋃

J SJ , if R > maxJ{∥δJ∥}+ ϵ, then

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤
∑
J

λD
(
Tϵ(SJ) ∩BD(0, R)

)
.

Applying the asymptotic expansion from part (i) to each term gives

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)
≤ ωD−n ωn ϵ

n RD−n |J | +
∑
J

O
(
(∥δJ∥+ ϵ)2 ϵn RD−n−2

)
.

Dividing both sides by λD(BD(0, R)) = ωDRD yields

λD
(
Tϵ(Γ

(n)) ∩BD(0, R)
)

λD(BD(0, R))
≤ ωD−n ωn

ωD
|J |
( ϵ

R

)n
+
∑
J

O
((∥δJ∥+ ϵ

R

)2 ( ϵ

R

)n )
.
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Proposition A.15. With the same setup as Proposition A.13, fix 1 ≤ m,n < D, ϵ > 0, and index
sets Jn, Jm with m,n elements. Define

In = λD
(
Tϵ(SJn

) ∩BD(0, R)
)

Im = λD
(
Tϵ(SJm

) ∩BD(0, R)
)

Then
In
Im

=
ωD−nωn

ωD−mωm

( ϵ

R

)n−m (
1 +O

( (∥δJn∥+∥δJm∥+ϵ)2

R2

))
.

Proof. By Proposition A.13, for any index set Jk with k elements:

Ik =

∫
u∈Rk:

∥u−δJk
∥<ϵ, ∥u∥<R

ωD−k

(
R2 − ∥u∥2

)D−k
2 du, 1 ≤ k < D,

when R > ∥δJk
∥+ ϵ.

Write u = δJk
+ v with ∥v∥ < ϵ and set α = D−k

2 . Then

Ik = ωD−kR
D−k

∫
∥v∥<ϵ

(
1− ∥δJk

+v∥2

R2

)α
dv.

On ∥v∥ ≤ ϵ we have t(v) := ∥δJk
+ v∥2/R2 ≤ ((∥δJk

∥+ ϵ)/R)2, hence(
1− ∥δJk

+v∥2

R2

)α
= 1 +O

(
(∥δJk

∥+ ϵ)2

R2

)
when ∥v∥ ≤ ϵ.

Integrating over the k–ball Bk(0, ϵ) gives

Ik = ωD−kR
D−k

[
λk(Bk(0, ϵ))+O

(
(∥δJk

∥+ ϵ)2

R2

)
λk(Bk(0, ϵ))

]
= ωD−kωk ϵ

k RD−k

[
1+O

( (∥δJk
∥+ ϵ)2

R2

)]
.

(⋆)

Apply previous Equation with k = n and k = m:

In = ωD−nωnϵ
nRD−n

[
1 +O

(
(∥δJn∥+ϵ)2

R2

)]
, Im = ωD−mωmϵmRD−m

[
1 +O

(
(∥δJm∥+ϵ)2

R2

)]
.

Let

un = O

(
(∥δJn

∥+ ϵ)2

R2

)
, vm = O

(
(∥δJm

∥+ ϵ)2

R2

)
.

Hence
In
Im

=
ωD−nωn

ωD−mωm

( ϵ

R

)n−m 1 + un

1 + vm
.

We have the identity
1

1 + vm
= 1− vm +

v2m
1 + vm

= 1 +O(vm).

Therefore

1 + un

1 + vm
= (1+un)

(
1+O(vm)

)
= 1+un+O(vm)+O(unvm) = 1+O

(
(∥δJn

∥+ ϵ)2

R2

)
+O

(
(∥δJm

∥+ ϵ)2

R2

)
,

Consequently,

In
Im

=
ωD−nωn

ωD−mωm

( ϵ

R

)n−m
[
1 +O

(
(∥δJn

∥+ ϵ)2 + (∥δJm
∥+ ϵ)2

R2

)]
.
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Upper bound on the measure of the ϵ-thickening set of the discontinuities Tϵ(Γ
(r)).

We begin with a lemma that provides asymptotic bounds on the measure of a polyhedral set P lying
in a subspace of codimension r, defined by a system of linear inequalities. This result will later
allow us to pass from the measure of the polyhedral region carved out by the top-k constraints to the
measure of a bounded ball in the subspace.
Lemma A.16 (Slice density with mixed inequalities). Let S ⊂ RD be an affine subspace of
codimension r and set d := D − r. Let P ⊂ S be a (nonempty) polyhedral set given by the system of
linear inequalities:

P =
{
x ∈ S : c⊤j x < bj (j = 1, . . . , p), d⊤mx > em (m = 1, . . . , q)

}
.

Define the (asymptotic) slice density

α(P ) := lim
R→∞

λd
(
P ∩BD(0, R)

)
ωd Rd

.

Suppose there exists u ∈ Lin(S) \ {0} such that

c⊤j u < 0 for all j = 1, . . . , p, and d⊤mu > 0 for all m = 1, . . . , q.

Set û := u/∥u∥ and

ρ1 := min
1≤j≤p

{−c⊤j û}, ρ2 := min
1≤m≤q

{d⊤mû}, ρ := min{ρ1, ρ2} > 0, L := max
{
max

j
∥cj∥, max

m
∥dm∥

}
.

Let
s := min

{
1√
2
, ρ

4L

}
∈ (0, 1/

√
2], θ := 2 arcsin(s) ∈ (0, π/2].

Then α(P ) satisfies the two–sided bounds

1
2I 4s2(1−s2)

(
d−1
2 , 1

2

)
≤ α(P ) ≤ 1

2 ,

where Ix(a, b) is the regularized incomplete beta function.

Proof. By hypothesis, −c⊤j û > 0 for all j and d⊤mû > 0 for all m, hence ρ > 0 is well-defined. For
unit vectors w, the linear forms vary continuously in w:

|c⊤j w − c⊤j û| ≤ 2∥cj∥ sin
(

∠(w,û)
2

)
, |d⊤mw − d⊤mû| ≤ 2∥dm∥ sin

(
∠(w,û)

2

)
.

Set
s := min

{
1√
2
, ρ
4L

}
, θ := 2 arcsin(s).

Then whenever ∠(w, û) ≤ θ we have

c⊤j w ≤ −ρ+ 2Ls ≤ −ρ
2 , d⊤mw ≥ ρ− 2Ls ≥ ρ

2 .

Fix x0 ∈ S. For such w and all sufficiently large t,

c⊤j (x0 + tw) ≤ bj , d⊤m(x0 + tw) ≥ em,

so the ray x0 + tw eventually lies in P . Thus every w in the spherical cap

C := {w ∈ Lin(S) : ∥w∥ = 1, ∠(w, û) ≤ θ}

contributes to P , giving for large R,

λd(P ∩BR)

ωdRd
≥ σd−1(C).

In spherical coordinates, using the result from (Li, 2011), the cap area ratio is

σd−1(C) =
1

2
Isin2 θ

(
d−1
2 , 1

2

)
.
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Since sin2 θ = sin2(2 arcsin s) = 4s2(1− s2), this yields the explicit lower bound

α(P ) ≥ 1
2I 4s2(1−s2)

(
d−1
2 , 1

2

)
> 0.

Upper bound. The feasible cone {c⊤j w < 0, d⊤mw > 0} is an intersection of hemispheres. Any such
intersection is contained in some hemisphere, so its normalized measure cannot exceed that of a
hemisphere:

α(P ) = σd−1(C∞ ∩ Sd−1) ≤ 1
2 .

This proves the claimed two-sided bounds.

To invoke Lemma A.16 in the Top-k setting, we first show that the system of linear inequalities
induced by the Top-k constraints indeed satisfies the hypothesis of Lemma A.16.

Lemma A.17 (Top-k slices satisfy Lemma A.16). Assume affine scores zi(x) = a⊤i x + bi with
{ai}Mi=1 linearly independent. Fix an order-r tie set J = {i1, . . . , ir+1} and let

S := S
(r)
J = {x ∈ RD : AJx = dJ}, V := Lin(S) = kerAJ .

For any admissible top-k index set S ⊂ {1, . . . ,M}, define the polyhedral slice

Γ
(r)
J,S =

{
x ∈ S : (aj −ai1)

⊤x > bi1 −bj ∀j ∈ S\J, (am−ai1)
⊤x < bi1 −bm ∀m ∈ S∁ \J

}
.

Then Γ
(r)
J,S satisfies the condition of Lemma A.16.

In particular, writing cj := aj − ai1 for j ∈ S \ J and dm := am − ai1 for m ∈ S∁ \ J , there exists
u ∈ V \ {0} such that

c⊤j u < 0 ∀j, d⊤mu > 0 ∀m,

Proof. Work inside S and write each x ∈ S as x = x0 + v with v ∈ V (for an arbitrary x0 ∈ S).
Only the V –components of normals matter, so define the orthogonal projection ΠV : RD → V and
set

nj := ΠV (aj − ai1) ∈ V (j ∈ S \ J), mℓ := ΠV (aℓ − ai1) ∈ V (ℓ ∈ S∁ \ J).

For x = x0 + v we have for all index ⋆:

(a⋆ − ai1)
⊤x = (a⋆ − ai1)

⊤x0 +ΠV (a⋆ − ai1)
⊤v

so the slice inequalities reduce on V to

n⊤
j v > βj (j ∈ S \ J), m⊤

ℓ v < γℓ (ℓ ∈ S∁ \ J),

where
βj := (bi1 − bj)− (aj − ai1)

⊤x0, γℓ := (bi1 − bℓ)− (aℓ − ai1)
⊤x0.

Step 1 (Nondegeneracy of projected normals). We claim nj ̸= 0 for all j ∈ S \ J and mℓ ̸= 0 for
all ℓ ∈ S∁\J . If, say, nj = 0, then aj−ai1 ∈ V ⊥ = row(AJ) = span{ais−ai1 : s = 2, . . . , r+1},
yielding a nontrivial linear dependence among {ai1 , . . . , air+1

, aj}, contradicting the independence
of {ai}Mi=1. The same argument applies to each mℓ.

Step 2 (A single cone collecting all signs). Introduce the finitely generated cone

K := Cone
(
{−nj : j ∈ S \ J} ∪ {mℓ : ℓ ∈ S∁ \ J}

)
⊂ V.

We show K is pointed. If K contained a line, then there exist nonzero coefficients αj , βℓ ≥ 0, not all
zero, such that ∑

ℓ

βℓmℓ −
∑
j

αjnj = 0.
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Lift this identity back to the original normals: since nj = ΠV (aj − ai1) and mℓ = ΠV (aℓ − ai1),
we get

ΠV

( ∑
ℓ

βℓ(aℓ − ai1)−
∑
j

αj(aj − ai1)
)

= 0,

hence the bracketed vector lies in V ⊥ = row(AJ) = span{ais − ai1}r+1
s=2. Therefore there exist

coefficients γs such that∑
ℓ

βℓ(aℓ − ai1)−
∑
j

αj(aj − ai1) =

r+1∑
s=2

γs(ais − ai1).

Rearranging terms gives a nontrivial linear dependence among distinct vectors from {ai}:∑
ℓ

βℓaℓ −
∑
j

αjaj −
r+1∑
s=2

γsais −
(∑

ℓ

βℓ −
∑
j

αj −
r+1∑
s=2

γs

)
ai1 = 0,

with coefficients not all zero (since some α or β is nonzero). This contradicts the linear independence
of {ai}. Hence K is pointed.

Step 3 (Strict separating functional). Because K is a pointed polyhedral cone, its polar K◦ = {u ∈
V : ⟨g, u⟩ ≤ 0 ∀g ∈ K} has nonempty interior. Equivalently, there exists u ∈ V \ {0} such that

⟨g, u⟩ < 0 for every generator g ∈ {−nj} ∪ {mℓ}.

Unpacking the generators, we have

⟨−nj , u⟩ < 0 ⇒ ⟨nj , u⟩ > 0 ∀j, ⟨mℓ, u⟩ < 0 ∀ℓ.

Step 4 (Sign alignment with Lemma A.16). Define u′ := −u ∈ V \ {0}. Then

⟨nj , u
′⟩ = −⟨nj , u⟩ < 0 ∀j, ⟨mℓ, u

′⟩ = −⟨mℓ, u⟩ > 0 ∀ℓ.

Recalling cj = aj − ai1 and dm = am − ai1 , and that only their V –components act on V , we obtain

c⊤j u
′ = n⊤

j u
′ < 0 (∀j ∈ S \ J), d⊤mu′ = m⊤

ℓ u
′ > 0 (∀m ∈ S∁ \ J).

Conclusion. We have constructed u′ ∈ V \ {0} satisfying the mixed strict sign conditions required
by Lemma A.16. Therefore that lemma applies to the slice Γ

(r)
J,S.

Building on Lemma A.16 and Lemma A.17, we conclude that each Top-k slice Γ
(r)
J,S ⊂ S

(r)
J has

positive slice density
α(Γ

(r)
J,S) ∈

[
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1

2

]
,

where d = D − r and Ix(a, b) is the regularized incomplete beta function. Since, for fixed J , the
order-r slice is a finite union Γ

(r)
J =

⋃
S Γ

(r)
J,S, its density

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−rRD−r

is strictly positive and satisfies the trivial bounds

αJ,r ∈
[
max

S
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1
]
.

We now establish asymptotic bounds for the ratio of ϵ–thickenings of discontinuity sets of different
orders. The argument proceeds in 4 steps:

1. Relate the measure of the ϵ–thickening λD
(
Tϵ(Γ

(r)
J ) ∩BR

)
to the base measure of the slice

λd
(
Γ
(r)
J ∩BR

)
.
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2. Derive the asymptotics of a single thickened slice using definition of αJ,r:

λD
(
Tϵ(Γ

(r)
J ) ∩BD(0, R)

)
= ωD−r ωr αJ,r ϵ

r RD−r +O(ϵrRD−r−1).

3. Estimate overlaps between distinct thickenings Tϵ(Γ
(r)
J ) and Tϵ(Γ

(r)
J′ ) for J ̸= J ′, showing

they are bounded by
O(ϵ r+1RD−r−1).

4. Assemble the contributions of all slices J ∈ Jr to obtain

Ur(R) = λD
(
Tϵ(Γ

(r)) ∩BD(0, R)
)
,

and then compare the cases r = n and r = m to deduce the asymptotic ratio

Un(R)

Um(R)
.

We are now ready to state and prove the main theorem.
Theorem A.18 (Ratio of ϵ-thickening of order-n discontinuity vs. ϵ-thickening of order-m disconti-
nuity). Fix integers 1 ≤ m,n < D and ϵ > 0. For each r ∈ {m,n}, suppose

Γ(r) ⊆
⋃

J∈Jr

S
(r)
J , S

(r)
J = {x ∈ RD : A

(r)
J x = d

(r)
J }, rank(A

(r)
J ) = r,

with finite Jr. Assume moreover that each slice Γ
(r)
J := Γ(r) ∩ S

(r)
J is a (possibly unbounded)

polyhedral subset of the flat S(r)
J . Define

Ur(R) := λD
(
Tϵ(Γ

(r)) ∩BD(0, R)
)
, ωd := λd

(
Bd(0, 1)

)
.

For each J ∈ Jr, set

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−r RD−r

∈
[
max

S
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1
]
,

with sS,J,r defined as in Lemma A.16 and Lemma A.17.

Then
Ur(R) = ωD−r ωr

( ∑
J∈Jr

αJ,r

)
ϵr RD−r + O(ϵrRD−r−1),

and
Un(R)

Um(R)
=

∑
J∈Jn

αJ,n∑
J∈Jm

αJ,m

ωD−n ωn

ωD−m ωm

( ϵ

R

)n−m
(
1 +O

(
1

R

))
.

Proof. We write BR := BD(0, R) and d := D − r when considering a fixed order r.

Step 1 (relation between thickening and polyhedral slice). Fix a codimension-r flat S ⊂ RD and a
measurable P ⊂ S. Choose an orthogonal decomposition RD = S ⊕ S⊥ and write x = (y, u) with
y ∈ S, u ∈ S⊥. Then

Tϵ(P ) ∩BR =
{
(y, u) : y ∈ P, ∥u∥ < ϵ, ∥y∥2 + ∥u∥2 < R2

}
.

Fubini theorem gives us the identity

λD
(
Tϵ(P ) ∩BR

)
=

∫
y∈P

λr
(
Br
(
0, ρR(y)

))
dλd(y) =

∫
y∈P

ωr ρR(y)
r dλd(y), (1)

where ρR(y) := min{ϵ,
√
R2 − ∥y∥2} ∈ [0, ϵ].

Split the base P into the interior band IR := {y : ∥y∥ ≤ R− ϵ} and the boundary band B∂
R := {y :

R− ϵ < ∥y∥ < R}. On IR we have ρR(y) = ϵ; on B∂
R we only know 0 ≤ ρR(y) ≤ ϵ. Thus

ωr ϵ
r λd
(
P ∩BR−ϵ

)
≤ λD

(
Tϵ(P ) ∩BR

)
≤ ωr ϵ

r λd
(
P ∩BR

)
. (2)
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The d-volume of the annulus BR \BR−ϵ is λd(BR \BR−ϵ) ≤ dωd R
d−1ϵ, so subtracting the bounds

in equation 2 yields the explicit error∣∣∣λD
(
Tϵ(P ) ∩BR

)
− ωr ϵ

r λd
(
P ∩BR

)∣∣∣ ≤ dωd ωr ϵ
r+1 Rd−1. (3)

Step 2 (asymptotics of one thickened polyhedral slice). By definition of αJ,r, we obtain:

λd
(
Γ
(r)
J ∩BR

)
= αJ,r ωd R

d +O(Rd−1). (4)

For fixed r and J ∈ Jr, put S := S
(r)
J , P := Γ

(r)
J , and d = D − r. Combining equation 3 and

equation 4 yields

λD
(
Tϵ(Γ

(r)
J ) ∩BR

)
= ωr ϵ

r
(
αJ,r ωD−r R

D−r +O(RD−r−1)
)
+O(ϵr+1RD−r−1),

i.e.
λD
(
Tϵ(Γ

(r)
J ) ∩BR

)
= ωD−r ωr αJ,r ϵ

r RD−r + O(ϵrRD−r−1), (5)
with the O(·) uniform over J ∈ Jr (finite family).

Step 3 (overlap estimate between slices). Let J ̸= J ′. Since S(r)
J and S

(r)
J′ are distinct codimension-

r flats, their intersection L := S
(r)
J ∩ S

(r)
J′ (if nonempty) has codimension at least r + 1. There exists

a constant c = c(D, {S(r)
J }) such that

Tϵ(S
(r)
J ) ∩ Tϵ(S

(r)
J′ ) ⊂ Tcϵ(L)

(geometrically: the distance to L is bounded by a fixed multiple of the sum of distances to S
(r)
J and

S
(r)
J′ , with the constant depending only on the angle between the two flats; a finite family gives a

uniform c). Hence, by the single-flat tube estimate (Proposition A.14),

λD
(
Tϵ(S

(r)
J ) ∩ Tϵ(S

(r)
J′ ) ∩BR

)
≤ CD,r ϵ

r+1 RD−r−1.

Since Γ
(r)
J ⊂ S

(r)
J , the same bound holds with Tϵ(Γ

(r)
· ) in place of Tϵ(S

(r)
· ). Summing over the

finitely many pairs,∣∣∣∣∣λD
(⋃

J

Tϵ(Γ
(r)
J ) ∩BR

)
−
∑
J

λD
(
Tϵ(Γ

(r)
J ) ∩BR

)∣∣∣∣∣ ≤ C ′
D,r ϵ

r+1 RD−r−1. (6)

(Higher-order intersections are even smaller-codimension ≥ r + 2-and are absorbed into the same
bound.)

Step 4 (Measure ratio across thickened different orders). Because Tϵ(Γ
(r)) =

⋃
J∈Jr

Tϵ(Γ
(r)
J ),

combining equation 5 over J with equation 6 gives

Ur(R) = ωD−r ωr

( ∑
J∈Jr

αJ,r

)
ϵr RD−r + O(ϵrRD−r−1). (7)

Apply equation 7 with r = n and r = m with the similar asymptotic division argument as in
Proposition A.15:

Un(R)

Um(R)
=

ωD−nωn

(∑
J∈Jn

αJ,n

)
ϵnRD−n

(
1 +O(R−1)

)
ωD−mωm

(∑
J∈Jm

αJ,m

)
ϵmRD−m

(
1 +O(R−1)

)
=

∑
J∈Jn

αJ,n∑
J∈Jm

αJ,m

ωD−n ωn

ωD−m ωm

( ϵ

R

)n−m(
1 +O

(
R−1

))
.

Building on Lemma A.16, we also establish an asymptotic ratio for ℓ∞–tubes around discontinuity
slices of different orders. The proof follows the same multi–step strategy as before, adapted to the
ℓ∞ geometry:
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1. Derive the fiber decomposition of a slice Γ
(r)
J ⊂ S

(r)
J in the subspace S

(r)
J .

2. Establish explicit two–sided bounds for the measure of the ℓ∞–tube λD
(
T

(∞)
ϵ (Γ

(r)
J ) ∩BR

)
in terms of the subspace volume λd(Γ

(r)
J ∩BD(0, R)).

3. Reduce to base volumes in the subspace by evaluating λd(Γ
(r)
J ∩BD(0, R)) and derive the

asymptotic expansion of λD(T
(∞)
ϵ (Γ

(r)
J ) ∩BD(0, R)).

4. Control overlaps between distinct tubes T (∞)
ϵ (Γ

(r)
J ) and T

(∞)
ϵ (Γ

(r)
J′ ) for J ̸= J ′, showing

their contribution is O(ϵ r+1RD−r−1).

5. Derive the asymptotic measure of the union
⋃

J∈Jr
T

(∞)
ϵ (Γ

(r)
J ) for fixed r, and then compare

Un(R) and Um(R) to obtain the asymptotic ratio

Un(R)

Um(R)
.

Theorem A.19 (Weighted union–ℓ∞ tube ratio for orders n vs. m). Fix integers 1 ≤ m,n < D and
ϵ > 0. For each r ∈ {m,n}, suppose

Γ(r) ⊆
⋃

J∈Jr

S
(r)
J , S

(r)
J = {x ∈ RD : A

(r)
J x = d

(r)
J }, rank(A

(r)
J ) = r,

with finite Jr. Assume moreover that each slice Γ
(r)
J := Γ(r) ∩ S

(r)
J is a (possibly unbounded)

polyhedral subset of the flat S(r)
J . Define the ℓ∞–tube around S

(r)
J by

T (∞)
ϵ (S

(r)
J ) :=

{
x ∈ RD : ∥A(r)

J x− d
(r)
J ∥∞ ≤ ϵ

}
, T (∞)

ϵ (Γ
(r)
J ) :=

{
x : dist∞(x,Γ

(r)
J ) ≤ ϵ

}
,

where dist∞(x,Γ) := infy∈Γ ∥A(r)
J x− A

(r)
J y∥∞ (so the normal thickening is measured via A

(r)
J ).

Set
Ur(R) := λD

(
T (∞)
ϵ (Γ(r)) ∩BD(0, R)

)
, ωd := λd

(
Bd(0, 1)

)
,

and for each J ∈ Jr let

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−r RD−r

∈
[
max

S
1
2 I 4s2S,J,r(1−s2S,J,r)

(
d−1
2 , 1

2

)
, 1
]
,

κJ,r :=
(
det(A

(r)
J (A

(r)
J )⊤)

)−1/2
,

with sS,J,r defined as in Lemma A.16 and Lemma A.17

Then

Un(R)

Um(R)
=

∑
J∈Jn

κJ,n αJ,n∑
J∈Jm

κJ,m αJ,m

ωD−n

ωD−m

(
2ϵ

R

)n−m (
1 +O

(
1

R

))
.

Proof. Fix r ∈ {m,n} and abbreviate d := D − r, BR := BD(0, R). We prove

Ur(R) = ωD−r

( ∑
J∈Jr

κJ,rαJ,r

)
(2ϵ)r RD−r + O(ϵr+1RD−r−1), (8)

which yields the ratio in the statement after applying it with r = n and r = m.

Step 1 (fiber decomposition of a slice in the subspace). Fix one slice index J and write S := S
(r)
J =

{x : Ax = d} with rank(A) = r. Let V := kerA and V ⊥ = row(A). Choose an orthonormal basis
N ∈ RD×r for V ⊥ and complete with an orthonormal basis for V so that every x ∈ RD decomposes
uniquely as x = y +Nz with y ∈ S and z ∈ Rr. Then for y ∈ S we have Ay = d, hence

Ax− d = A(y +Nz)− d = AN z.
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Because N has orthonormal columns, AN ∈ Rr×r is invertible and

| det(AN)| =
√

det(AA⊤).

Define
κJ,r :=

(
det(AA⊤)

)−1/2
=

1

| det(AN)|
.

The ℓ∞-tube fiber over any base point y ∈ S is the linear preimage

{z ∈ Rr : ∥AN z∥∞ ≤ ϵ} = (AN)−1
(
[− ϵ, ϵ]r

)
,

whose r-volume equals

λr
(
(AN)−1([− ϵ, ϵ]r)

)
=

λr([− ϵ, ϵ]r)

| det(AN)|
= κJ,r (2ϵ)

r.

claimed Size of the fiber in the ambient norm. Since ∥w∥2 ≤
√
r ∥w∥∞ for w ∈ Rr, any z in the

fiber satisfies
∥z∥ = ∥Nz∥ ≤ ∥(AN)−1∥2 ∥ANz∥2 ≤ ∥(AN)−1∥2

√
r ϵ.

Set the slice-dependent constant

CJ :=
√
r ∥(AN)−1∥2.

Then every point y +Nz in the fiber over y lies within ambient distance ≤ CJϵ of y.

Step 2 (two–sided bounds for ℓ∞–tubes in terms of subspace volumes). By Fubini in the
orthogonal splitting RD = S ⊕ V ⊥,

λD
(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
=

∫
y∈Γ

(r)
J

λr
({

z : ∥ANz∥∞ ≤ ϵ, ∥y +Nz∥ ≤ R
})

dλd(y).

Let

IR := {y ∈ Γ
(r)
J : ∥y∥ ≤ R− CJϵ}, B∂

R := {y ∈ Γ
(r)
J : R− CJϵ < ∥y∥ < R}.

For y ∈ IR, the entire full fiber fits in BR (triangle inequality), so its r-volume equals κJ,r(2ϵ)
r. For

y ∈ B∂
R, the fiber volume is bounded above by the full fiber volume. Therefore,

κJ,r(2ϵ)
r λd(IR) ≤ λD

(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
≤ κJ,r(2ϵ)

r λd(IR) + κJ,r(2ϵ)
r λd(B∂

R). (9)

Since IR ∪B∂
R = Γ

(r)
J ∩BR and IR = Γ

(r)
J ∩BR−CJϵ, we can rewrite equation 9 as the two-sided

inequality

κJ,r(2ϵ)
r λd
(
Γ
(r)
J ∩BR−CJϵ

)
≤ λD

(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
≤ κJ,r(2ϵ)

r λd
(
Γ
(r)
J ∩BR

)
. (10)

Step 3 (reduce to base volumes and apply polyhedral asymptotics). The difference between the
upper and lower terms in equation 10 is supported on the base annulus of thickness CJϵ in S:

λd
(
BR \BR−CJϵ

)
= ωd

(
Rd − (R− CJϵ)

d
)
≤ dωd R

d−1 CJϵ.

Multiplying by the constant fiber volume κJ,r(2ϵ)
r gives∣∣∣λD

(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
− κJ,r(2ϵ)

r λd
(
Γ
(r)
J ∩BR

)∣∣∣ ≤ dωd κJ,r CJ (2ϵ)r ϵRd−1. (11)

In particular,

λD
(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
= κJ,r(2ϵ)

r λd
(
Γ
(r)
J ∩BR

)
+O

(
ϵr+1Rd−1

)
,

where the big–O constant may depend on J through κJ,r and CJ .

From the Equation:

αJ,r := lim
R→∞

λD−r
(
Γ
(r)
J ∩BD(0, R)

)
ωD−r RD−r

,
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we obtain:
λd
(
Γ
(r)
J ∩BR

)
= αJ,r ωd R

d + O(Rd−1). (12)

Combining equation 11 and equation 12 yields

λD
(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
= κJ,r αJ,r ωd (2ϵ)

r Rd + O
(
ϵr+1Rd−1

)
. (13)

Since Jr is finite, we can take the O(·) uniform in J by enlarging the implicit constant to the
maximum over J .

Step 4 (control overlaps between different ℓ∞–tubes). Fix J ̸= J ′ and set S := S
(r)
J , S′ := S

(r)
J′ ,

and L := S ∩ S′. Let VL := {u ∈ RD : AJu = 0, AJ′u = 0} be the direction space of L, and let
N := V ⊥

L (so every x ∈ RD decomposes uniquely as x = y + v with y ∈ L, v ∈ N ). Define the
linear map

T : N −→ Rr × Rr, T (v) :=
(
AJv, AJ′v

)
.

If T (v) = (0, 0) then AJv = AJ′v = 0, so v ∈ VL. Since also v ∈ N = V ⊥
L , we get v = 0. Thus T

is injective on the finite-dimensional space N ; hence there exists c0 > 0 (such as c0 = 1/σmin(T ))
with

∥v∥ ≤ c0
∥∥T (v)∥∥

2
= c0

(
∥AJv∥22 + ∥AJ′v∥22

)1/2
∀v ∈ N. (14)

Now take any x ∈ T
(∞)
ϵ (S) ∩ T

(∞)
ϵ (S′). Write x = y + v with y ∈ L, v ∈ N . Because AJy = dJ

and AJ′y = dJ′ , we have

AJv = AJx− dJ , AJ′v = AJ′x− dJ′ .

Using ∥w∥2 ≤
√
r ∥w∥∞ in Rr,

∥AJv∥2 ≤
√
r ∥AJx− dJ∥∞ ≤

√
r ϵ, ∥AJ′v∥2 ≤

√
r ϵ.

Plugging into equation 14 gives

dist(x, L) = ∥v∥ ≤ c0

√
(
√
r ϵ)2 + (

√
r ϵ)2 = c0

√
2r ϵ =: c ϵ.

Therefore we have the set inclusion

T (∞)
ϵ (S) ∩ T (∞)

ϵ (S′) ⊂ T (2)
cϵ (L), (15)

where T (2)
cϵ (L) denotes the Euclidean tube of radius cϵ around L, and c = c(J, J ′) := c0

√
2r depends

only on the pair (J, J ′).

Since L has codimension at least r + 1, the Euclidean tube estimate (Proposition A.14) yields

λD
(
T (2)
cϵ (L) ∩BR

)
≤ C ϵ r+1 RD−r−1

for some constant C = C(D, r, {S, S′}). By equation 15, the same bound holds for λD
(
T

(∞)
ϵ (S) ∩

T
(∞)
ϵ (S′) ∩BR

)
. Because Γ

(r)
J ⊂ S and Γ

(r)
J′ ⊂ S′, intersecting with the slices can only decrease

the measure; hence

λD
(
T (∞)
ϵ (Γ

(r)
J ) ∩ T (∞)

ϵ (Γ
(r)
J′ ) ∩BR

)
≤ C ϵ r+1 RD−r−1.

Summing this over the finitely many unordered pairs (J, J ′) and applying inclusion–exclusion
truncated at first order gives∣∣∣∣∣λD

(⋃
J

T (∞)
ϵ (Γ

(r)
J ) ∩BR

)
−
∑
J

λD
(
T (∞)
ϵ (Γ

(r)
J ) ∩BR

)∣∣∣∣∣ ≤ C ′ ϵ r+1 RD−r−1, (16)

with C ′ depending only on (D, r) and the finite family {S(r)
J }J∈Jr

.

Step 5 (union asymptotics and ratio for orders n vs. m). Summing equation 13 over J ∈ Jr and
invoking equation 16 gives

Ur(R) = ωD−r

( ∑
J∈Jr

κJ,rαJ,r

)
(2ϵ)r RD−r + O(ϵr+1RD−r−1),
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which is equation 8.

Applying equation 8 with r = n and r = m and dividing using the same argument as Proposition A.15
yields

Un(R)

Um(R)
=

∑
J∈Jn

κJ,nαJ,n∑
J∈Jm

κJ,mαJ,m

ωD−n

ωD−m

(
2ϵ

R

)n−m (
1 +O

(
1

R

))
,

as claimed.

Proposition A.20 (Characterization of ℓ∞–thickening). An input x belongs to T
(∞)
ϵ (Γ) if and only

if there exists an index i such that 0 ≤ z[k](x)− zi(x) < ϵ. In other words, at least one non top-k
logit lies within ϵ of the k-th logit z[k](x).

Proof. (⇒) Assume x ∈ T
(∞)
ϵ (Γ). By the definition of T (∞)

ϵ (Γ), there exist a tie set J and a top-k
active set S such that J \ S ̸= ∅. Let i ∈ J \ S. Then 0 ≤ z[k](x)− zi(x) < ϵ.

(⇐) Assume there exists i with 0 ≤ z[k](x)− zi(x) < ϵ. Let J = {[k], i}. Then x ∈ T
(∞)
ϵ (Γ

(2)
J ) ⊆

T
(∞)
ϵ (Γ).

A.5 HITTING AND OCCUPATION TIME NEAR DISCONTINUITIES

Suppose we wish to study an adversarial process that drives the input x0 ∈ CS toward a discontinuity
boundary. We model this process by the stochastic differential equation

dxt = γ(t, xt) dt+ σ(t, xt) dBt,

where Bt is a standard n-dimensional Brownian motion. The drift term γ(t, x) represents the
adversarial drive, while the diffusion term σ(t, x) models uncertainty and random perturbations. Such
noise may arise from stochastic gradient descent when the adversarial direction is estimated from
minibatches, from measurement errors in the input, or from inherent randomness injected into the
system.

A.5.1 RANDOMLY PERTURBED DIFFUSION PROCESS IS GUARANTEED TO HIT THE TOP-K CELL
BOUNDARY

We consider the stochastic dynamic that consist only of the diffusion term. In this case, the evolution
of the system is driven purely by random perturbations. For simplicity, we assume that the diffusion
coefficient is time-independent, i.e., σ(t, xt) = σ for all t, with invertible σ ∈ Rd×d. Then xt is an
Itô process with initial condition x0 ∈ CS satisfying

dxt = σ dBt.

A key step in our analysis is to understand the hitting time of such processes against linear boundaries.
The Proposition A.21 is a classical result that provides a probabilistic bound for the hitting time, and
it will later be applied to establish the exit-time behavior from the polyhedral cell CS.

Proposition A.21 (Probabilistic bound for the hitting time). Let Yt = Y0 + c B̃t with Y0 > 0 and
c > 0, and define

τ := inf{t ≥ 0 : Yt ≤ 0}.
Then, for every t > 0,

P(τ ≤ t) = 2
(
1− Φ

(
Y0

c
√
t

))
,

and hence for any δ ∈ (0, 1),

P
(
τ ≤

(
Y0

c qδ

)2)
= 1− δ, qδ := Φ−1

(
1+δ
2

)
,

where Φ(x) = 1√
2π

∫ x

−∞ e−u2/2 du is the standard normal cumulative distribution function.
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Proof. Write Yt = Y0 + cB̃t with Y0 > 0. Then

τ = inf{t ≥ 0 : Yt ≤ 0} = inf{t ≥ 0 : B̃t ≤ −Y0/c}.

For standard Brownian motion B̃t, the reflection principle gives

P
(

min
0≤s≤t

B̃s ≤ −a

)
= 2P(B̃t ≤ −a) = 2

(
1− Φ

(
a/

√
t
))

, a > 0.

Where the second equality terms from the fact that B̃t ∼ N (0, t).

Applying the equality with a = Y0/c yields

P(τ ≤ t) = 2

(
1− Φ

(
Y0

c
√
t

))
.

Let qδ = Φ−1
(
1+δ
2

)
. Setting tδ =

(
Y0

cqδ

)2
gives Φ

(
Y0

c
√
tδ

)
= 1+δ

2 , hence

P(τ ≤ tδ) = 2(1− 1 + δ

2
) = 1− δ.

The above proposition shows that for a one-dimensional diffusion of the form Yt = Y0 + c B̃t, the
first hitting time of zero admits an explicit probabilistic bound. In our multidimensional setting, each
face of the polyhedral cell CS is described by a linear inequality a(i,j)⊤x > d(i,j), and projecting the
diffusion xt onto the normal direction a(i,j) reduces the problem to exactly this one-dimensional case.
Applying Proposition A.21 to all such faces yields the following bound for the exit time from CS.

Theorem A.22 (Probabilistic bound of the cell boundary hitting time). Assume xt follows the
diffusion equation dxt = σ dBt with σ ∈ Rd×d and initial condition x0 ∈ CS, the open polyhedral
cell associated with the k-subset S,

CS =
⋂

i∈S, j /∈S

{
x ∈ Rd : (W (i)

g −W (j)
g )⊤x > b(j)g − b(i)g

}
.

Denote a(i,j) := W
(i)
g −W

(j)
g , d(i,j) := b

(j)
g − b

(i)
g , and c(i,j) := ∥σ⊤a(i,j)∥, and assume uniform

nondegeneracy c(i,j) > 0 for all i, j. Define

rmin := min
i∈S, j /∈S

a(i,j)⊤x0 − d(i,j)

∥σ⊤a(i,j)∥
> 0.

The hitting time of CS is
τCS := inf{t ≥ 0 : xt /∈ CS}.

Then for every t > 0,

P(τCS ≤ t) ≥ 2

(
1− Φ

(
rmin√

t

))
,

where Φ(x) = 1√
2π

∫ x

−∞ e−u2/2 du is the standard normal CDF.

Moreover, by continuity of the sample paths, xτS ∈ ∂CS almost surely.

Proof. By the uniform nondegeneracy assumption, we have ∥σ⊤aij∥ = c(ij) > 0.

Consider the gap process
Y

(i,j)
t := a⊤ijXt − d(i,j).

We observe that Y (i,j)
t = 0 when xt is on the boundary created by experts i, j.
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Applying Itô’s formula and using the equation dxt = σ dBt, we obtain

dY
(i,j)
t = a⊤ijσ dBt

Let u :=
σ⊤aij

∥σ⊤aij∥ ∈ Rd, so ∥u∥ = 1, and define

B̃
(i,j)
t := u⊤Bt (i.e., B̃(i,j)

t =
a⊤ijσ

∥σ⊤aij∥
·Bt).

Since Bt is a d-dimensional Brownian motion and u is constant, B̃(i,j)
t is a continuous local martingale

with B̃
(i,j)
0 = 0. Its quadratic variation is ⟨B̃(i,j)

t ⟩t =
∫ t

0
∥u∥2 ds = t.

By Lévy’s characterization for Brownian motion, a continuous local martingale starting at 0 with
quadratic variation t is a standard one-dimensional Brownian motion; hence B̃

(i,j)
t is a standard

1-dimensional Brownian motion.

We can rewrite:

dY
(i,j)
t = a⊤ijσ dBt = ∥σ⊤aij∥dB̃(i,j)

t

Thus Y (i,j) is a nondegenerate 1-dimensional Brownian motion starting from

Y
(i,j)
0 = a⊤ijx0 − d(i,j) > 0.

Define the stopping time
τij := inf{t ≥ 0 : Yij(t) ≤ 0}.

Intuitively, τij is the first time the process Yij(t), which starts positive, touches zero; i.e., the random
moment when expert i and j’s scores become equal and the trajectory hits the boundary.

In summary, we have the following:

dY
(i,j)
t = a⊤ijσ dBt = ∥σ⊤aij∥dB̃(i,j)

t

Y
(i,j)
0 = a⊤ijx0 − d(i,j).

τij := inf{t ≥ 0 : Yij(t) ≤ 0}.

We want to bound the hitting time τij using Proposition A.21.

Apply Proposition A.21 with Y0 = Y
(i,j)
0 = a⊤ijx0 − d(i,j), c = ∥σ⊤aij∥ we obtain:

For every t > 0,

P(τij ≤ t) = 2

(
1− Φ

(
a⊤ijx0 − d(i,j)

∥σ⊤aij∥
√
t

))
,

Since the first exit time τCS from the open cell CS is the infimum of the exit times through all boundary
faces, we have

τCS = inf
i∈S, j /∈S

τij .

Thus
{τCS ≤ t} =

⋃
i∈S, j /∈S

{τij ≤ t}.

The probability of the union is at least as large as the maximum probability of its members. Therefore

P(τCS ≤ t) ≥ max
i∈S, j /∈S

P(τij ≤ t).

Let

rmin := min
i∈S, j /∈S

a⊤ijx0 − d(i,j)

∥σ⊤aij∥
> 0.
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Since P(τij ≤ t) = 2

(
1− Φ

(
a⊤
ijx0−d(i,j)

∥σ⊤aij∥
√
t

))
decreases as rij increases, the maximum is attained

at rmin. Hence, for every t > 0,

P(τCS ≤ t) ≥ 2
(
1− Φ

(
rmin√

t

))
.

By construction, at the exit time τS at least one inequality becomes tight, i.e. Y (i,j)
τS = 0 for some pair

(i, j), so xτS ∈ ∂CS. Since xt has continuous sample paths, the exit occurs on ∂CS almost surely.

From Theorem A.22, we can establish that the exit time τS is finite almost surely in the next corollary.

Corollary A.23. The exit time τS of the diffusion process from the polyhedral cell CS is finite almost
surely; that is,

P(τS < ∞) = 1.

Proof. By Theorem A.22 we have for every t > 0,

P(τS ≤ t) ≥ 2
(
1− Φ

(
rmin√

t

))
−−−→
t→∞

1,

which implies P(τS < ∞) = 1.

Remark A.24. Theorem A.22 and Corollary A.23 asserts two key properties of the randomly perturbed
diffusion process dxt = σ dBt in relation to the polyhedral cell CS: (i) the exit time τS is finite almost
surely, so the process cannot remain in CS indefinitely; (ii) due to continuity of the sample paths, the
exit occurs on the boundary ∂CS.

A.5.2 EQUIVALENCE BETWEEN CELL BOUNDARIES AND THE DISCONTINUITY SET

In Section A.5, we established that a randomly perturbed diffusion process starting inside any top-k
cell CS with fixed diffusion coefficient almost surely exits the cell in finite time, i.e., it hits the
boundary ∂CS with probability one. However, we have not proved that the union of all such cell
boundaries coincides with the discontinuity set Γ. This result can be proved directly from the
definitions, which we provide a proof in Lemma A.25.

Lemma A.25 (Union of all boundaries and the discontinuous set coincides). For each k-subset S, let
the open cell be

CS = {x : zi(x) > zj(x) ∀ i ∈ S, j /∈ S}, CS = {x : zi(x) ≥ zj(x) ∀ i ∈ S, j /∈ S}.

Define the switching facets

FS,i,j =
{
x : zi(x) = zj(x), zi(x) ≤ zℓ(x) ∀ℓ ∈ S \ {i}, zm(x) ≤ zj(x) ∀m /∈ (S ∪ {j})

}
,

and
Γ =

⋃
|S|=k

⋃
i∈S, j /∈S

FS,i,j .

Then
Γ =

⋃
|S|=k

∂CS.

Proof. (i) Γ ⊆
⋃

|S|=k ∂CS.

Fix S and i ∈ S, j /∈ S. If x ∈ FS,i,j , then zi(x) = zj(x) and zi(x) ≤ zℓ(x) for all ℓ ∈ S \ {i} while
zm(x) ≤ zj(x) for all m /∈ (S ∪ {j}). Hence x ∈ CS and x /∈ CS, so x ∈ ∂CS. Thus FS,i,j ⊆ ∂CS,
and the union gives the inclusion.

(ii)
⋃

|S|=k ∂CS ⊆ Γ.

Let x ∈ ∂CS for some S. Then x ∈ CS but x /∈ CS, so there exists an inside–outside pair with equality:
∃ i ∈ S, j /∈ S such that zi(x) = zj(x). Let i⋆ ∈ argminℓ∈S zℓ(x) and j⋆ ∈ argmaxm/∈S zm(x).
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Since x ∈ CS, we have minℓ∈S zℓ(x) ≥ maxm/∈S zm(x); because x /∈ CS, the strict inequality fails,
hence

zi⋆(x) = min
ℓ∈S

zℓ(x) = max
m/∈S

zm(x) = zj⋆(x).

By construction, zi⋆(x) ≤ zℓ(x) for all ℓ ∈ S \ {i⋆} and zm(x) ≤ zj⋆(x) for all m /∈ (S∪ {j⋆}), i.e.
x ∈ FS,i⋆,j⋆ . Therefore x ∈ Γ.

Combining (i) and (ii) yields Γ =
⋃

|S|=k ∂CS.

Remark A.26. Using Lemma A.25 and Theorem A.22, we can conclude that a randomly perturbed
diffusion process initiated inside any top-k cell CS with fixed, nondegenerate diffusion coefficient
almost surely reaches a discontinuity boundary in finite time.

A.5.3 FIRST EXIT ALMOST SURELY AS ORDER-1 DISCONTINUITY

From Theorem A.22 and Lemma A.25, we know that the first hitting time of the discontinuity set is
almost surely finite. What remains unclear is the type of discontinuity reached at exit. In the next
part, we show that, with probability one, the process exits through an order-1 discontinuity. The key
tool is a classical lemma: an r-dimensional Brownian motion (r ≥ 2) almost surely never hits a fixed
point in Rr at any time.

Lemma A.27. Let (Bt)t≥0 be standard d-dimensional Brownian motion with d ≥ 2 and B0 = 0.
For any fixed a ∈ Rd with a ̸= 0,

P
(
∃ t > 0 : Bt = a

)
= 0.

Proof. Let r < |a| < R and define Rt = ∥Bt − a∥. Set the stopping times

τr := inf{t ≥ 0 : Rt = r}, τR := inf{t ≥ 0 : Rt = R}.

Case d ≥ 3:

Let u(x) = ∥x− a∥2−d, which is harmonic on Rd \ {a}.

Applying Itô’s formula,
du(Bt) = ∇u(Bt) · dBt,

so u(Bt) is a local martingale.

By optional stopping theorem for the bounded stopping time τr ∧ τR, we obtain

E
[
u(Bτr∧τR)

]
= u(B0) = |a|2−d.

Since Bτr∧τR lies on the sphere of radius r or R centered at a, we have

P(τr < τR) r
2−d + P(τR < τr)R

2−d = |a|2−d.

Thus

P(τr < τR) =
|a|2−d −R2−d

r 2−d −R2−d
.

Letting r ↓ 0, R ↑ ∞ gives
P(τr < ∞) −−→

r↓0
0.

That is, the probability that the Brownian path ever enters an arbitrarily small neighborhood of a
vanishes. Consequently, the event of hitting the exact point a has probability zero, and hence

P(∃ t > 0 : Bt = a) = 0.

Case d = 2:

Let v(x) = log ∥x− a∥, which is harmonic on R2 \ {a}.

By Itô’s formula, v(Bt) is a local martingale, hence by optional stopping at τr ∧ τR,

log |a| = E
[
v(Bτr∧τR)

]
= (log r)P(τr < τR) + (logR)P(τR < τr).
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Therefore

P(τr < τR) =
logR− log |a|
logR− log r

−−→
r↓0

0,

Letting r ↓ 0, R ↑ ∞ gives
P(τr < ∞) −−→

r↓0
0.

and, as above, P(∃ t > 0 : Bt = a) = 0.

Corollary A.28. By translation invariance of Brownian motion, Lemma A.27 implies that if a
standard d-dimensional Brownian motion (Bt)t≥0 starts at B0 = a with a ̸= 0, then it almost surely
never hits the origin:

P
(
∃ t > 0 : Bt = 0

)
= 0.

Lemma A.29 (Linear image of Brownian motion). Let (Bt)t≥0 be a standard d-dimensional Brown-
ian motion and let A ∈ Rn×d have rank n ≤ d. Define Zt := ABt. Then (Zt)t≥0 is an n-dimensional
Brownian motion with covariance matrix AA⊤, i.e.

Z0 = 0, Z has continuous paths, Zt − Zs ∼ N (0, (t− s)AA⊤)

with independent, stationary increments. In particular, B̃t := (AA⊤)−1/2Zt is a standard n-
dimensional Brownian motion.

Proof. Since B0 = 0 and t 7→ Bt is continuous, we have Z0 = AB0 = 0 and t 7→ Zt = ABt is
continuous.

For 0 ≤ s < t, the increment Bt − Bs is independent of Fs := σ(Bu : u ≤ s) and has law
N (0, (t− s)Id). Applying the linear map A,

Zt − Zs = A(Bt −Bs),

which is (joint) Gaussian with mean 0 and covariance

Cov(Zt − Zs) = ACov(Bt −Bs)A
⊤ = A

(
(t− s)Id

)
A⊤ = (t− s)AA⊤.

Independence of increments is preserved under linear maps: if (X1, . . . , Xm) are independent, then
so are (AX1, . . . , AXm). Hence (Zt) has independent, stationary Gaussian increments with the
stated covariance, and is adapted with continuous paths.

By the characterization of Brownian motion as a continuous Gaussian process with independent, sta-
tionary increments and covariance E[ZtZ

⊤
s ] = (t∧ s)AA⊤, we conclude that Z is an n-dimensional

Brownian motion with covariance AA⊤. Finally, since AA⊤ is symmetric positive definite (rank n),
(AA⊤)−1/2 exists and

B̃t := (AA⊤)−1/2Zt

has covariance (t− s)In for each increment, hence is standard n-dimensional Brownian motion.

We now use Corollary A.28 to show that the exit almost surely occurs on an order-1 discontinuity.
The Corollary A.28 is applied here to rule out the simultaneous satisfaction of multiple independent
boundary equalities, which almost surely does not occur.
Theorem A.30 (Exit occurs on an order-1 discontinuity). Let xt solve dxt = σ dBt with invertible
σ ∈ Rd×d and x0 ∈ CS, and let τS := inf{t ≥ 0 : xt /∈ CS}. Then

P
(
xτS ∈ Γ(1)

)
= 1 and P

(
xτS ∈ Γ(n)

)
= 0 for all n ≥ 2.

Proof. Define yt := σ−1xt; then yt is a standard Brownian motion in Rd (denoted Bt), and D :=
σ−1CS is a polyhedral domain.

Suppose the exit occurs at an order-n discontinuity with n ≥ 2. Then there exists an index set
I = {i1, . . . , in+1} with |I| = n+ 1 such that

zi1(xτS) = · · · = zin+1(xτS),
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and this common value coincides with the k → k+1 threshold. Equivalently, at yτS we have n
independent equalities

zi2(y)− zi1(y) = · · · = zin+1
(y)− zi1(y) = 0.

Define the n-dimensional process

Ut :=
(
zi2(yt)− zi1(yt), . . . , zin+1

(yt)− zi1(yt)
)
.

Since each zi is affine, there exist A ∈ Rn×d and b ∈ Rn such that

Ut = Ayt + b = ABt + b.

By construction, A is obtained by taking n independent row differences of Wg; since Wg has full
row rank, it follows that rank(A) = n. Consequently, AA⊤ is symmetric positive definite, and
(AA⊤)−1/2 exists uniquely.

By Lemma A.29, ABt is an n-dimensional Brownian motion with covariance AA⊤. Hence the
centered process

Ũt := Ut − b

is an n-dimensional Brownian motion with nonstandard covariance AA⊤. Define

B̂t := (AA⊤)−1/2 Ũt,

which has the law of a standard n-dimensional Brownian motion (this follows by the same reasoning
as Lemma A.29).

Because x0 ∈ CS, we have U0 = b ̸= 0, hence

{∃ t > 0 : Ut = 0} = {∃ t > 0 : Ũt = −b} =
{
∃ t > 0 : B̂t = −(AA⊤)−1/2b

}
.

Since n ≥ 2 and −(AA⊤)−1/2b ̸= 0, Corollary A.28 yields

P
(
∃ t > 0 : Ut = 0

)
= 0.

Exiting at an order-n discontinuity would necessarily require that the process Ut reaches the origin,
i.e. UτS = 0. However, as shown in Corollary A.28, an n-dimensional Brownian motion with
n ≥ 2 almost surely never hits any fixed point distinct from its initial condition. Since U0 ̸= 0, the
probability of Ut ever reaching 0 is therefore zero. It follows that exits through order-n discontinuities
with n ≥ 2 occur with probability zero, and consequently the exit must almost surely take place on
an order-1 discontinuity, that is,

P
(
xτS ∈ Γ(1)

)
= 1 and P

(
xτS ∈ Γ(n)

)
= 0 for all n ≥ 2.

A.5.4 OCCUPATION TIME NEAR DISCONTINUITY SETS

Fix ϵ > 0 and, for each order n ≥ 1, let Tϵ(Γ
(n)) be the ϵ–tube around the order-n discontinuity set

Γ(n).

Let (Xt)t≥0 be an Itô process in RD with initial condition X0 = x0 ∈ CS for some polyhedral cell
CS,

dXt = σ dBt,

where Bt is a standard D–dimensional Brownian motion and σ ∈ RD×D is constant.

The occupation time of X in the tube of order r up to horizon T is

A(r)
ϵ (T ;x0) :=

∫ T

0

1
{
Xt ∈ Tϵ(Γ

(n))
}
dt,

and its time-average (fraction of time spent in the tube) is

L(r)
ϵ (T ;x0) :=

1

T
A(n)

ϵ (T ;x0).

For expectations,

Ex0

[
A(n)

ϵ (T )
]
=

∫ T

0

Px0

{
Xt ∈ Tϵ(Γ

(n))
}
dt, Ex0

[
L(n)
ϵ (T )

]
=

1

T

∫ T

0

Px0

{
Xt ∈ Tϵ(Γ

(n))
}
dt.
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Proposition A.31 (Occupation time near one codimension-n flat). Let 1 ≤ n < D and let S = {x ∈
RD : Ax = d} be an affine flat with rank(A) = n. Let Xt solve dXt = σ dBt, X0 = x0, where Bt

is standard D–dimensional Brownian motion and Σ := σσ⊤ ≻ 0. Choose an orthonormal basis
N ∈ RD×n of S⊥ and set

Σ⊥ := N⊤ΣN ∈ Rn×n, λmin := λmin(Σ⊥).

Fix any y0 ∈ S and write s0 := N⊤y0 and µ := N⊤x0. For ϵ > 0 and T > 0, define the occupation
time

A(n)
ϵ (T ;S) :=

∫ T

0

1{dist(Xt, S) < ϵ} dt.

Let

ωn := λr(Bn(0, 1)), Kn :=
ωn

(2π)n/2
√
det(Σ⊥)

, δϵ :=
∥∥∥Σ−1/2

⊥ (s0−µ)
∥∥∥− ϵ√

λmin

, bϵ :=
(δϵ)

2
+

2
.

Then, for all T > 0,

E
[
A(n)

ϵ (T ;S)
]
≤ Kn ϵ

n

∫ T

0

t−n/2 e− bϵ/t dt =


Kn ϵ

n b
1−n

2
ϵ Γ

(
n
2 − 1, bϵ

T

)
, n > 2,

K2 ϵ
2 E1

(
bϵ
T

)
, n = 2,

≤ 2K1 ϵ
√
T , n = 1,

where Γ(·, ·) is the upper incomplete gamma function and E1(z) =
∫∞
z

e−uu−1 du.

Proof. Step 1 (normal coordinates). Because N has orthonormal columns spanning S⊥, every
x ∈ RD decomposes as x = y + Nv with y ∈ S and v ∈ Rn; moreover dist(x, S) = ∥v∥ and
N⊤y = s0 (independent of y ∈ S).

Step 2 (projected process and its density). Define the normal projection Zt := N⊤Xt ∈ Rn. Since
dZt = N⊤σ dBt, we have

Zt ∼ N (µ, tΣ⊥), µ := N⊤x0, Σ⊥ := N⊤ΣN.

Hence the transition density of Zt is

gt(z) =
1

(2πt)n/2
√
det(Σ⊥)

exp

(
− 1

2t

∥∥Σ−1/2
⊥ (z − µ)

∥∥2) .

Step 3 (event {dist(Xt, S) < ϵ} in normal coords). We have

dist(Xt, S) < ϵ ⇐⇒ ∥Zt − s0∥ < ϵ.

Therefore

P{dist(Xt, S) < ϵ} =

∫
∥z−s0∥<ϵ

gt(z) dz.

Step 4 (uniform bound on the integrand over the ball). Let B := {z ∈ Rn : ∥z − s0∥ < ϵ}. By
the triangle inequality in the Mahalanobis norm,

inf
z∈B

∥∥∥Σ−1/2
⊥ (z − µ)

∥∥∥ ≥
∥∥∥Σ−1/2

⊥ (s0 − µ)
∥∥∥− sup

z∈B

∥∥∥Σ−1/2
⊥ (z − s0)

∥∥∥.
Since ∥Σ−1/2

⊥ w∥ ≤ ∥Σ−1/2
⊥ ∥2 ∥w∥ and ∥Σ−1/2

⊥ ∥2 = 1/
√
λmin, we get

sup
z∈B

∥∥∥Σ−1/2
⊥ (z − s0)

∥∥∥ ≤ ϵ√
λmin

.

Hence
inf
z∈B

∥∥∥Σ−1/2
⊥ (z − µ)

∥∥∥ ≥ δϵ :=
∥∥∥Σ−1/2

⊥ (s0 − µ)
∥∥∥− ϵ√

λmin

.
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Step 5 (probability bound at time t). Using the bound from Step 4 in the density from Step 2, for
all z ∈ B,

gt(z) ≤ 1

(2πt)n/2
√
det(Σ⊥)

exp

(
−
(δϵ)

2
+

2t

)
.

Therefore

P{dist(Xt, S) < ϵ} ≤ λn(B) · e− (δϵ)
2
+/(2t)

(2πt)n/2
√
det(Σ⊥)

= Kn ϵ
n t−n/2 e− bϵ/t,

since λn(B) = ωrϵ
n and bϵ =

1
2 (δϵ)

2
+.

Step 6 (time integration). Integrating from 0 to T ,

E
[
A(n)

ϵ (T ;S)
]
=

∫ T

0

P{dist(Xt, S) < ϵ} dt ≤ Kn ϵ
n

∫ T

0

t−n/2 e− bϵ/t dt.

Step 7 (evaluation of the integral).

• If n > 2, substitute u = bϵ/t (so t = bϵ/u, dt = −bϵu
−2du):∫ T

0

t−n/2e− bϵ/t dt = b
1−n

2
ϵ

∫ ∞

bϵ/T

u
n
2 −2e−u du = b

1−n
2

ϵ Γ

(
n

2
− 1,

bϵ
T

)
.

• If n = 2, the integral equals E1(bϵ/T ) (the exponential integral).

• If n = 1, drop the exponential to get the simple bound
∫ T

0
t−1/2e− bϵ/t dt ≤

∫ T

0
t−1/2 dt =

2
√
T .

Multiplying by Knϵ
n gives the stated bounds in all cases.

Apply the previous proposition to the union over all tie sets J of an order-n discontinuity gives us the
next theorem.
Theorem A.32 (Occupation time near order-n discontinuities). Assume Γ(n) ⊆

⋃
J∈Jn

S
(n)
J with

S
(n)
J = {x ∈ RD : A

(n)
J x = d

(n)
J }, rank(A(n)

J ) = r. Let Xt solve dXt = σ dBt, X0 = x0, with
Σ := σσ⊤ ≻ 0. For each J , choose an orthonormal basis NJ of (S(n)

J )⊥ and set

Σ⊥,J := N⊤
J ΣNJ , λmin,J := λmin(Σ⊥,J), sJ := N⊤

J y (y ∈ S
(n)
J ), µJ := N⊤

J x0.

Define

KJ,n :=
ωn

(2π)n/2
√
det(Σ⊥,J)

, δJ,ϵ :=
∥∥∥Σ−1/2

⊥,J (sJ −µJ)
∥∥∥− ϵ√

λmin,J

, bJ,ϵ :=
(δJ,ϵ)

2
+

2
.

Let

A(n)
ϵ (T ; Γ) :=

∫ T

0

1{Xt ∈ Tϵ(Γ
(n))} dt.

Then, for all T > 0,

E
[
A(n)

ϵ (T ; Γ)
]
≤

∑
J∈Jn

KJ,n ϵ
n

∫ T

0

t−n/2e− bJ,ϵ/t dt. (17)

In particular,

E
[
A(n)

ϵ (T ; Γ)
]
≤



∑
J

KJ,n ϵ
n b

1−n
2

J,ϵ Γ
(n
2
− 1,

bJ,ϵ
T

)
, n > 2,∑

J

KJ,2 ϵ
2 E1

(bJ,ϵ
T

)
, n = 2,

2
(∑

J

KJ,1

)
ϵ
√
T , n = 1.
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A coarser but convenient bound (using Ksum
n :=

∑
J KJ,n and bmin := minJ bJ,ϵ) is

E
[
A(n)

ϵ (T ; Γ)
]
≤ Ksum

n ϵn
∫ T

0

t−n/2e− bmin/t dt,

Proof. (Step 1: union domination) Since Γ(n) ⊆
⋃

J S
(n)
J ,

Tϵ(Γ
(n)) ⊆ Tϵ

(⋃
J

S
(n)
J

)
⊆
⋃
J

Tϵ(S
(n)
J ),

hence pointwise 1{Xt∈Tϵ(Γ(n))} ≤
∑

J 1{Xt∈Tϵ(S
(n)
J )}.

(Step 2: integrate and take expectations) Integrate in t ∈ [0, T ] and take expectations:

E[A(n)
ϵ (T ; Γ)] ≤

∑
J

E

[∫ T

0

1{Xt ∈ Tϵ(S
(n)
J )} dt

]
=
∑
J

∫ T

0

P{Xt ∈ Tϵ(S
(n)
J )} dt.

(Step 3: apply the single–flat bound to each J) For each fixed J , apply Proposition A.31 (with
NJ ,Σ⊥,J , sJ , µJ ). This gives

P{Xt ∈ Tϵ(S
(n)
J )} ≤ KJ,n ϵ

n t−n/2e− bJ,ϵ/t,

hence equation 17. Evaluating the time integral case-wise yields the formulas. For the coarser bound,
use bmin ≤ bJ,ϵ so that e−bJ,ϵ/t ≤ e−bmin/t, factor out

∑
J KJ,r, and integrate.

Table 4: Bits-per-character (BPC) of SmoothSMoE compared to baseline model on EnWiki-8 dataset.

Model Test BPC ↓

SMoE 1.153

SmoothSMoE 1.122

B FURTHER THEORETICAL ANALYSIS AND ABLATION STUDIES

B.1 GEOMETRIC INTUITION BEHIND THEORETICAL ANALYSIS

Geometrically, the Top-k SMoE gate partitions the input space into polyhedral regions (cells) where
the active expert set is fixed. Inside each cell, the MoE map is a smooth combination of a fixed subset
of experts; all nonsmooth behavior comes from crossing the boundaries between cells, where the
Top-k set changes. These boundaries are given by hyperplanes of the form zi(x) = zj(x), that is,
the locations where at least two experts tie. The order of a discontinuity simply counts how many
experts tie exactly at the Top-k score. For a simple illustration, consider in three-dimensional space,
order-1 sets can be understood as “walls” partitioning the space where one active and one inactive
expert swap. Higher-order sets correspond to intersections of several such walls, forming “edges”
and “corners”.

Our theoretical volume results explicitly formalize the intuition that, in a bounded region where the
data live and are perturbed randomly, collisions with walls occur with probability 1, while collisions
with “edges” and “corners” essentially do not occur (probability 0). Moreover, the distribution of
the first collision time is closely linked to the shortest normalized distance from the starting point
to these “walls” (Theorem 5.1). If we take a thin band of thickness ϵ around these sets inside a
ball of radius R, the fraction of the band volume contributed by higher-order intersections shrinks
polynomially in ϵ/R (Theorem 4.4), so as we increase R or decrease ϵ, almost all near-boundary
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mass concentrates on simple walls. Finally, for a randomly perturbed process, the upper bound on
the occupation time inside the ϵ-band of an n-th order intersection decays exponentially as ϵn in the
small-ϵ regime (Theorem 5.3).

Our smoothing layer is designed exactly around this picture. Instead of letting the output jump
abruptly when crossing a wall, we replace the hard switch by a narrow transition band around the
corresponding hyperplanes. Within this band, the contributions of the involved experts vary smoothly
with the logits, so that moving across a wall interpolates between experts rather than flipping them
discretely. Outside these bands, the model behaves like the original Top-k gate, preserving sparsity
and the usual MoE structure. Due to the dominant geometry of lower order discontinuities (For
example “walls” compared to “edges” and “corners”), the number of additionally activated experts,
which equals the order of the discontinuity (1 for walls, 2 for edges, and 3 for corners) is small,
providing a theoretical guarantee for the efficiency of our smoothing mechanism.

B.2 SMOOTHSMOE VS. OTHER DIFFERENTIABLE ROUTING METHODS

Recent works such as Soft MoE (Puigcerver et al., 2024), SMEAR (Muqeeth et al., 2023), and
ReMoE (Wang et al., 2024) enforce full differentiability of the MoE routing map by altering the
routing mechanism itself. Soft MoE and SMEAR achieve differentiability via token or expert merging,
effectively replacing the sparse Top-k selection map by a dense, smooth probability assignment
over experts. From a functional perspective, this turns the piecewise-constant Top-k map into a
globally smooth map into the probability simplex, at the expense of token-wise sparsity and causality
for autoregressive tasks. ReMoE instead replaces Top-k and Softmax with a ReLU-based router
equipped with an ℓ1-type load-balancing regularizer, thereby producing continuous gating scores
but changing the underlying Top-k-induced polyhedral structure and requiring a different gating
mechanism to be trained. In contrast, our SmoothSMoE keeps the original Top-k gate and its
polyhedral partition of the input space and only modifies logits for tokens whose scores fall inside an
ℓ∞,ϵ–thickening of the discontinuity set. That is, we leave the routing map unchanged away from
boundaries and apply smoothing only to near-ties 0 < z[k](x)− zi(x) < ε, which activates at most n
additional experts on an order-n discontinuity (Proposition A.20). This design preserves sparsity and
causal routing, while our measure-theoretic and stochastic analysis quantifies the volume of these
thickened regions and the occupation time of a diffusion near them, providing explicit bounds on how
frequently smoothing is used and hence limiting the extra computation it incurs. Thus SmoothSMoE
is complementary to prior differentiable routing: it achieves continuity of the SMoE map locally
around theoretically characterized discontinuity sets, rather than globally replacing Top-k routing
with a different differentiable router.

B.3 DETAILED ANALYSIS ON ℓ∞,ϵ LOCAL SMOOTHING VS. VANILLA SMOE NEAR
DISCONTINUITY BOUNDARIES

To provide a concrete, empirical counterpart to our theoretical findings, this section presents a
targeted experiment designed to visualize the behavior of SMoE and our proposed SmoothSMoE at
the decision boundary. The primary objective is to isolate and illustrate the direct architectural impact
of our smoothing mechanism on the model’s output function, independent of other training dynamics.

Experiment setup. Our experiment utilizes a multi-layer SMoE model pre-trained on the CIFAR-
10 dataset. The architecture for each MoE layer consists of an input dimension of D = 3072, E = 32
experts, and a Top-k gating mechanism with k = 4. Each expert is a standard two-layer MLP with a
hidden size of 128.

The analysis proceeds on a per-layer basis. For a given layer, we first instantiate the original SMoE
using its pre-trained weights. We then create an instance of our SmoothSMoE. To ensure a controlled
comparison, the SmoothSMoE’s weights are directly copied from the pretrained SMoE. This setup
guarantees that any observed differences in behavior are attributable solely to our proposed smoothing
architecture.

The core of our methodology is to identify and analyze a critical order-1 discontinuity. An order-1
discontinuity boundary is defined by the hyperplane where the gating scores of the k-th active expert
and the highest-scoring inactive expert are equal (z[k+1](x) = z[k](x)). We employ Monte Carlo
sampling strategy, generating thousands of random input vectors x0 to locate a boundary region that
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Figure 3: Visualizing the effect of our smoothing mechanism on SMoE layer outputs. Each row
corresponds to a different SMoE layer from a pre-trained model. The columns show the standard
SMoE, our SmoothSMoE, and the maximum output change, respectively. Left Column (SMoE): The
standard SMoE exhibits sharp discontinuities as the input crosses the decision boundary. Middle
Column (SmoothSMoE): Our SmoothSMoE, using identical weights, eliminates these jumps and
produces a continuous output. Right Column: The maximum output gap max(|f(x+∆x)−f(x)|) is
plotted against the perturbation size ∥∆x∥. Our method shows the gap converging to zero, confirming
continuity, while the SMoE maintains a large gap.

exhibit significant output jumps along a specific dimension. We then analyze the MoE map restricted
to the chosen dimension, denoted fSMoE : X → R for the Sparse MoE and fSmoothSMoE : X → R
for the SmoothSMoE. For each selected boundary, we compute the exact orthogonal projection,
obtaining the point x⊥.

To visualize the function’s behavior when the input passing a discontinuity boundary, we analyze
the output along a line x = x⊥ + ln̂ passing thought the discontinuity boundary, where n̂ is the unit
normal vector to the boundary hyperplane and l ∈ R. This line represents the traversal across the
discontinuity. The variable l (the horizontal axis in our plots) corresponds to the signed Euclidean
distance from the boundary, with the boundary itself precisely at l = 0.

Results Figure 3 presents the comparative results for four distinct layers of the model. The left
column visualizes the output of the standard SMoE. As predicted by our analysis, the SMoE map is
piecewise continuous but exhibits a pronounced jump discontinuity at the boundary. The magnitude of
this jump is non-trivial, highlighting a potential source of instability for gradient-based optimization,
reduced robustness to adversarial perturbations, and unpredictable outputs behavior when inputs are
near these boundaries.
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The middle column shows the output of our SmoothSMoE on the exact same line in the input
space. The effect of our mechanism is immediately apparent: the discontinuity is completely
removed. SmoothSMoE transitions smoothly and continuously across the boundary. This is a
direct consequence of our method’s ability to create a ”soft” handoff between experts by continuous
re-weighting, rather than the abrupt expert swapping inherent to Top-k gating.

The right column provides a quantitative analysis of this smoothness. It plots the maximum output
difference, max ∥f(x+∆x)− f(x)∥, against the magnitude of the input perturbation ∥∆x∥ within
a shrinking window around x⊥. For the SMoE, the output gap plateaus at a large, non-zero value,
confirming that the discontinuity persists even for infinitesimally small perturbations. In stark contrast,
the plot for our SmoothSMoE shows the output difference converging to zero as ∥∆x∥ → 0. This
behavior provides a visual confirmation of the continuity induced by our method which is formally
proved in Proposition A.7, a critical property for model stability and generalization that the standard
SMoE lacks.

B.4 HOW BOUNDARY LOSS CONTROLS ϵ AND THE AVERAGE NUMBER OF ACTIVATED
EXPERTS

Figure 4: The effect of boundary loss on controlling ϵ and the average number of activated experts
(K) across various layers.

In this study, we analyze the training log from pretraining a 6-layer SmoothSMoE on WikiText-103
for 80 epochs, recording at each epoch the boundary threshold ϵ and the average number of activated
experts K for every layer. Figure 4 shows how ϵ and K evolve during training. At the start, both
values are close to 0, since ϵ is initialized small to ensure efficiency. They initially grow slowly due
to the learning-rate warmup, after which ϵ increases sharply until K approaches the target budget
(k∗ = 2.5 experts on average). This marks an adjustment phase where the model tunes ϵ so that K
converges toward k∗. Once this balance is reached, both ϵ and K stabilize, with ϵ exhibiting only
small fluctuations to keep K near the budget as training dynamics evolve. These observations confirm
that the boundary loss effectively updates ϵ to maintain the desired average number of activated
experts.

B.5 ANNEALING BOUNDARY SMOOTHING TO HARD TOP-k

In this analysis, we investigate the hypothesis that boundary smoothing makes the loss landscape more
amenable to optimization, improves training dynamics and final performance. To test this hypothesis,
we adopt an 80-epoch annealing schedule in which smoothing is progressively removed. For the
first 40 epochs, we set the target budget to k∗ = 2.5 to warm up the model, so that the smoothing
mechanism can stabilize optimization by activating additional experts near switching surfaces. For
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Table 5: Perplexity (PPL) of annealed SmoothSMoE compared to baseline SMoE and SmoothSMoE
on clean and attacked WikiText-103 datasets.

Model WikiText-103 Attacked WikiText-103

Valid PPL ↓ Test PPL ↓ Valid PPL ↓ Test PPL ↓

SMoE (k = 2) 33.79 35.52 42.21 44.18

SmoothSMoE annealed (k = 2) 32.97 34.59 41.14 42.91

SmoothSMoE (k = 2.5) 32.72 34.35 40.99 42.85

the next 20 epochs, we linearly anneal k∗ from 2.5 down to 2, so that the routing gradually converges
toward the target hard Top-k regime. In the final 20 epochs, we fix k∗ = 2, which effectively turns off
smoothing and forces the learned ϵ parameter to converge to 0, allowing the parameters to fully adapt
to hard Top-k gating and eliminating train-inference mismatch. We refer to this training protocol as
SmoothSMoE annealed. At inference time, we completely remove smoothing and evaluate with a
standard Top-2 SMoE router.

As shown in Table 5, the SmoothSMoE annealed model achieves test perplexity 34.59 on WikiText-
103, improving over the baseline SMoE (35.52) and placing its performance between SMoE and the
full SmoothSMoE model. The same behaviour can be observed on Attacked WikiText-103 dataset.
These results confirm our hypothesis that boundary smoothing, by allowing experts near routing
boundaries to contribute and by making the loss landscape easier to optimize, improves the final
Top-k SMoE performance even when smoothing is completely removed at inference.

Figure 5 reports the average number of activated experts K across layers under the three-stage training
schedule: K quickly rises and stabilizes around 2.5 during the warm-up stage, then is linearly reduced
to 2 as smoothing is annealed, and finally remains at 2 throughout the hard Top-2 adaptation stage.

Figure 5: Average number of activated experts K training dynamic across layers under the three-stage
smoothing schedule.

C EXPERIMENTAL DETAILS

Before proceeding to the experiments, we establish the choice of coefficients for the log-smoothstep
function h defined in Section 6. We have experimented with various values for the coefficients a and
b, and found that setting a = 1 and b = 50 provides consistent and effective smoothing behavior
across the evaluation. Therefore, we use it for all experiments presented below.
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C.1 LANGUAGE MODELING

C.1.1 DATASET.

We evaluate our approach on two widely used language modeling benchmarks: WikiText-103 and
EnWik-8. The WikiText-103 dataset (Merity et al., 2017b) contains Wikipedia articles with the
training set consisting of about 28K articles and 103M tokens in total. The validation and test sets
each contain 60 held-out articles, corresponding to 218K and 246K tokens, respectively. The EnWik-8
dataset is a byte-level benchmark derived from a compressed dump of English Wikipedia. It consists
of 100 million bytes of data, including not only English text but also markup, special characters, and
snippets in other languages. The dataset is split into 90M characters for training, 5M for validation,
and 5M for testing.

We follow the experimental setup of Pham et al. (2024) for pretraining on WikiText-103 (Merity
et al., 2017a) and EnWik-8 (Mahoney, 2006). For WikiText-103, we report perplexity (PPL) on
both validation and test sets. Additionally, we evaluate robustness using the Attacked WikiText-103
dataset constructed by replacing random words with the generic token ”AAA” at a rate of 2.5%,
following Han et al. (2024); Teo & Nguyen (2024); Abdullaev & Nguyen (2025). For EnWik-8,
we evaluate using bits-per-character (BPC) as the primary metric, consistent with prior work on
byte-level language modeling.

C.1.2 IMPLEMENTATION DETAILS.

We employ a standard Switch Transformer (Fedus et al., 2022) as our backbone, with 16 experts and
top-2 routing. The model specifications are summarized in Table 6.

Table 6: Backbone specifications for language modeling tasks. All models use 16 experts with top-2
routing.

Model SA Layers FFN Layers MoE Layers Att. Span Embed Size

Switch Transformer (WikiText-103) 6 – 6 1024 352

Switch Transformer (EnWik-8) 8 – 8 2048 352

We use the Adam optimizer (Kingma & Ba, 2015) with a base learning rate of 7× 10−4. A linear
warmup schedule is applied for 4,000 steps for both models. For WikiText-103, the Switch-medium
backbone is trained for 80 epochs with batch size 48. For EnWik-8, the Switch-small backbone is
trained for 80 epochs with batch size 48. In all cases, we apply an auxiliary load-balancing loss with
weight 0.01 to encourage balanced expert utilization. All models are trained on 2 × NVIDIA H100
80GB GPUs using mixed-precision training.

C.2 VISION TASK ON DOMAINBED BENCHMARK

C.2.1 DATASET.

We evaluate on the standard DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), which includes
the datasets: PACS (Li et al., 2017), VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al.,
2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). The statistics of these
datasets, including the number of domains, classes, and examples, are summarized in Table 7.

Table 7: Statistics of DomainBed datasets used in our experiments.

Dataset PACS VLCS OfficeHome TerraInc DomainNet

# Domains 4 4 4 4 6

# Classes 7 5 65 10 345

# Examples 9,991 10,729 15,588 24,788 586,575
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In detail, the five multi-domain image classification datasets are comprised of:

1. PACS (Li et al., 2017) comprises four domains: art, cartoons, photos, sketches. This dataset
contains 9,991 examples of dimension (3, 224, 224) and 7 classes.

2. VLCS (Fang et al., 2013) comprises photographic domains: Caltech101, LabelMe, SUN09,
VOC2007. This dataset contains 10,729 examples of dimension (3, 224, 224) and 5 classes.

3. Office-Home (Venkateswara et al., 2017) includes domains: art, clipart, product, real. This
dataset contains 15,588 examples of dimension (3, 224, 224) and 65 classes.

4. TerraIncognita (Beery et al., 2018) contains photographs of wild animals taken by camera
traps at locations: L100, L38, L43, L46. This dataset contains 24,788 examples of dimension
(3, 224, 224) and 10 classes.

5. DomainNet (Peng et al., 2019) has six domains: clipart, infograph, painting, quickdraw, real,
sketch. This dataset contains 586,575 examples of size (3, 224, 224) and 345 classes.

We follow the standard DomainBed evaluation protocol using train-domain validation. For each test
domain, we train on the remaining domains and use the left-out domain for validation. We select the
model maximizing validation accuracy and report the final accuracy on the held-out test domain.

C.2.2 IMPLEMENTATION DETAILS.

We adopt a ViT-S/16 backbone (Dosovitskiy et al., 2021) pretrained on ImageNet-1K following Li
et al. (2023). Images are processed into patch embeddings by ViT-S/16 with a patch size of 16×16, 6
attention heads, and 12 transformer blocks. Each MoE block contains 6 experts, and the cosine router
selects the top-2 experts for each patch. Experts are initialized from the corresponding pretrained ViT
blocks, while cosine routers are randomly initialized to ensure even routing at the start.

Training uses the Adam optimizer (Kingma & Ba, 2015) with dataset-specific hyperparameters, as
shown in Table 8. Batch size is fixed to 32 per domain. For DomainNet, we train for 15,000 iterations
to compare fairly with prior work, while for the other datasets, we train for 5,000 iterations.

Table 8: Hyperparameters for different datasets in DomainBed.

Dataset PACS VLCS OfficeHome TerraInc DomainNet

Learning Rate 3e-5 3e-5 1e-5 5e-5 5e-5

Weight Decay 0 1e-6 1e-6 1e-4 0

C.3 LANGUAGE TASK (GLUE BENCHMARK)

C.3.1 DATASET.

We evaluate on a subset of the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018), selecting five representative tasks: CoLA, MRPC, MNLI, QNLI, and RTE. These
tasks cover a wide range of linguistic phenomena including grammatical acceptability, paraphrase
detection, question answering, and textual entailment. The tasks are briefly summarized as follows:

• CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2019): A binary classification
task assessing whether a sentence is grammatically acceptable.

• MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005): A paraphrase
identification task determining whether two sentences are semantically equivalent.

• MNLI (Multi-Genre Natural Language Inference) (Xu et al., 2020): A large-scale three-
way natural language inference task (entailment, contradiction, neutral) spanning multiple
domains.

• QNLI (Question Natural Language Inference) (Wang et al., 2018): A binary classification
task derived from the Stanford Question Answering Dataset (SQuAD), reformulated as a
sentence pair classification problem.
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• RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009): A binary entailment
classification task combining several RTE challenges (RTE1–RTE5).

Dataset statistics, including sizes, task types, and domains, are summarized in Table 9.

Table 9: Overview of selected GLUE benchmark tasks. Sizes follow Wang et al. (2018).

Task Domain Train / Dev / Test Size Task Type Metric

CoLA Miscellaneous 8.5k / 1k / 1k Acceptability classification MCC

MRPC News 3.7k / 408 / 1.7k Paraphrase detection Acc/F1

MNLI Multi-genre text 393k / 20k / 20k Natural language inference Acc (m/mm)

QNLI Wikipedia QA 105k / 5.5k / 5.4k QA/NLI conversion Accuracy

RTE News/Wikipedia 2.5k / 276 / 3k Textual entailment Accuracy

We follow the official GLUE evaluation protocols (Wang et al., 2018). Specifically, we use Matthew’s
correlation coefficient (MCC) for CoLA, accuracy and F1-score for MRPC, matched and mismatched
accuracy for MNLI, and accuracy for both QNLI and RTE. Each task is fine-tuned independently, and
the best-performing checkpoint on the validation set is used for final test submission. Experiments
are repeated with five random seeds, and we report the best validation result for each configuration.

C.3.2 IMPLEMENTATION DETAILS.

We adopt BERT-large (Devlin et al., 2019b) as the backbone model, augmented with our MoE design.
We replace the FFN layer in one Transformer block of BERT-large with an MoE layer containing
16 experts, using top-k routing strategies with k = 2 and k = 4. To encourage balanced expert
utilization, we incorporate the GShard load balancing loss (Lepikhin et al., 2021) with auxiliary loss
weight 0.01. We also set gate noise to 1.0 and capacity factor to 1.5 to stabilize routing and mitigate
expert overflows.

Fine-tuning is performed with the Adam optimizer (Kingma & Ba, 2015). A grid search over learning
rates {2× 10−5, 3× 10−5, 5× 10−5} is conducted, while the batch size is fixed at 32. Training is
run for up to 10 epochs with early stopping on validation performance. We apply a linear learning
rate scheduler. All experiments are executed on NVIDIA H100 80GB GPUs with mixed-precision
training. Checkpoints are saved and evaluated every epoch, with the best validation checkpoint
retained for testing.
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