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ABSTRACT

Sparse Mixture-of-Experts (SMoE) architectures are now widely deployed in state-
of-the-art language and vision models, where conditional routing allows scaling
to very large networks. However, this very Top-k expert selection that enables
conditional routing also renders the SMoE map inherently discontinuous. In the
vicinity of these discontinuity surfaces, even inputs that are arbitrarily close may
activate substantially different sets of experts resulting in significantly different
outputs. In this work we give a rigorous geometric and stochastic analysis of
these discontinuities. We first classify them by order, determined by the number
of tied experts at a switching event. Using measure-theoretic slicing arguments,
we establish asymptotic volume estimates for the thickened discontinuity surfaces,
showing that lower-order discontinuity sets dominate, whereas higher-order ones
occupy a vanishingly small relative volume. Next, modeling random perturbations
in the input space via a diffusion process, we prove that the path eventually en-
counter a discontinuity, and moreover that the first hit almost surely occurs on
an order-1 discontinuity with explicit finite-time probability bounds. We further
derive occupation-time bounds that quantify the duration the random path spend
in the neighborhoods of each discontinuity order. These theoretical results imply
that inputs are more likely to lie near lower order discontinuities. Motivated by this
insight, we propose a simple smoothing mechanism that can be directly applied
to existing SMoEs, softly incorporating experts near discontinuities; our analysis
guarantees that the added computational overhead remains small while providing
localized smoothing near discontinuities, and experiments across language and
vision tasks show that smoothing not only enforces continuity of the SMoE map
but also enhances empirical performance.

1 INTRODUCTION

The Transformer architecture (Vaswanil [2017) has been successfully applied to a wide range of
tasks, most notably in language (Devlin et al., [2019a; Radford et al.,|2019; [Hoffmann et al., [2022;
Chowdhery et al.| [2023), vision (Bao et al.,|2022b; [Dosovitskiy et al.,|2021; |Bao et al.,|2022a; |Liu
et al.,|2023)), and other tasks (Radford et al.,[2021}; |Chen et al.,|2020; Tan & Bansal,[2019; Lu et al.,
2019). However, scaling Transformers to very large models demands substantial computational
resources and extended training time. To alleviate this, the Sparse Mixture-of-Experts (Jacobs
et al.,[1991) (SMoE) has been introduced as an architectural extension, replacing the standard feed-
forward layers with sparsely activated expert modules, thereby enabling scaling while controlling
computational overhead. The most common mechanism for this selection is Top-k sparse gating,
which has been widely adopted in large pretrained language models (Narayanan et al., 2021} [Liu
et al.,|2024a; Shazeer et al.,[2017; Rajbhandari et al.| | 2022) and vision models (Chen et al., 2023} Lin
et al.,[2024; Liu et al.| [2024b).

Despite its practical success, Top-k gating introduces inherent discontinuities in the input—output
map of SMoEs. While sparsity is achieved by activating only k£ experts, inputs that are nearly
identical may be routed to substantially different expert sets near the switching boundaries, leading to
uncontrolled variation in the outputs. Prior works (Chen et al., 2022; |Wang et al., {2024} |Shazeer et al.,
2017) have acknowledged the existence of such discontinuities, but to the best of our knowledge, no
systematic theoretical analysis of their structure and properties has been undertaken. Several recent
studies have focused on mitigating the problem in practice by making MoE routing differentiable.
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SMEAR (Mugeeth et al.,[2023) does so by merging experts, and Soft MoE (Puigcerver et al.|[2024) by
mixing tokens across experts. While effective in removing hard switches, these methods compromise
the causal structure required for autoregressive language modeling and are therefore limited in
generation tasks. More recently, ReMoE (Wang et al., 2024) replaced Top-k gating with ReLU-based
gating, but this approach requires retraining the gating from scratch due to its fundamental difference
from Top-k gating and includes a costly initialization phase that is nearly as expensive as training a
dense model. For a theoretical discussion between our paper and other continuous routing method,
please refer to Section B.2|in Appendix B!

2 PROBLEM FORMULATION

Top-k gating partitions the input space into regions with fixed active experts, and discontinuities
occur where scores tie at the top-k threshold. A pairwise tie between one active and one inactive
expert gives an order-1 discontinuity; simultaneous ties among more experts yield higher-order ones.
Though measure-zero (Proposition|A.3)), inputs near them are unstable since tiny perturbations can
switch the active set.

We address two questions. Geometry: how often do different tie patterns occur, and how much space
lies near their boundaries? Dynamics: under random perturbations, does a trajectory remain in its
region or hit a boundary, and of which order?

Contributions. Addressing the questions above from both geometric and stochastic viewpoints,
our main contributions are:

1. Asymptotic measure. Discontinuities are classified by order (number of tied experts). Using
slicing arguments, we show e-thickened order-1 sets dominate while higher orders vanish in
relative measure. The result extends to /,-thickening, enabling efficient logit-based tests
with similar bounds.

2. Stochastic behavior. Modeling perturbations as diffusion, we prove trajectories almost
surely hit a discontinuity in finite time, with the first hit almost surely order-1. We bound
occupation time in e-neighborhoods, showing it decreases with order in the small-¢ regime.

3. Smoothing mechanism. Based on these insights, we propose a simple method that enforces
continuity in Top-k SMoE and is demonstrated to be effective in practice.

3 SPARSE MIXTURE-OF-EXPERT AND DISCONTINUITIES

3.1 BACKGROUND ON SPARSE MIXTURE-OF-EXPERTS

The Mixture-of-Experts (MoE) framework defines a model as a collection of expert functions
combined through a gating mechanism. Formally, one considers an input space (X, B(X), A”) and

an output space (Y, B(Y), A\P"). Here AP and AP’ denote the Lebesgue measures on R and RP",
A gating function G : X — Aj;_1 maps each input to a point on the (M — 1)-dimensional probability

simplex, assigning nonnegative weights to M expert functions {E; : X — Y}, . The MoE map is
then given by

In practice, the gating weights are often derived from a linear scoring function z : X — R where
zi(z) = (I/Vél)7 x) + bg). The most widely used variant is the Top-k Sparse Mixture-of-Experts
(SMoE), where only the k largest scores are retained. In this case, the gate takes the form

exp(zz( )) 1{265’k(w)
ZjeSk(a: exp(z;(z)

Gi(z) = ;’

with S (x) denoting the indices of the k largest components of z(x).
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The resulting model is sparse, since only k experts contribute for each input. This sparsity makes
SMoEs computationally efficient and widely used in large-scale language and vision models, but also
introduces discontinuities in the input—output map, which is the focus of this work.

3.2 DISCONTINUITIES IN SPARSE MIXTURE-OF-EXPERTS

In a Sparse Mixture-of-Experts (SMoE), the gating scores are affine functions
zi(sc):<Wg(i),x>—|—bg), i=1,...,M.
For each k-subset S C {1, ..., M}, we define the open cell
Cs={zeX: z(x)>z(x)forallicsS, j¢S},

which consists of all inputs where the same & experts form the top set. The collection {Cs : [S| = k}
partitions X into regions of constant active set, and the SMoE map is smooth within each region. The
complement

r=x\{J ¢
IS|=k
is the discontinuity set, where ties occur between active and inactive experts. Crossing such a

boundary produces a jump in the output map f(z), making I" the source of all discontinuities in
SMOoE:s.

However, not all discontinuities are alike. The simplest case is a pairwise tie: the k-th and (k+1)-th
largest gate scores coincide, so that an infinitesimal change swaps membership of the Top-k set. More
generally, simultaneous ties among multiple scores give rise to higher-order discontinuities.
Definition 3.1 (Order statistics of the scores). Given scores z1(z), ...,z (z) at z € X, define the
order statistics

zuy(w) > zp(x) = -0 = ()

, i.e. the sorted values of {z;(z)}}, in nonincreasing order.

Definition 3.2 (Order-n discontinuity). Fix 1 < k < M. A point z € X is an order-n discontinuity
if there exists an index set J = {i1,...,9n+1} C {1,..., M} such that

2iy (1) = 2y (2) = -+ = 24,1, (2) = 20y () = 2pp41) (),
that is, n+1 distinct scores tie exactly at the threshold between the k-th and (k+1)-th largest values.
For each such index set .J, we define the corresponding discontinuity component

Ff]n) ={reX: z(z) = 2 (x) = zpyq(z) Vie J},

and the full set of order-n discontinuities as
n) _ (n)
r™ = .

Remark 3.3. For readability, Definition |3.2|leaves implicit the affine inequality constraints that specify

the active top-k set; the equivalent, explicit formulation appears in Definition |A.5| These inequalities

imply Ff]n) is a finite union of translated affine cones contained in (D — n)-dimensional subspace.

Given a subset J = {41, ...,%,41} of expert indices, we use J to specify which experts are tied in
score. Concretely, the order-n tie condition
Ziy (Z‘) = Ziy (.13) == By (J?)

is equivalent to the n independent equalities z;_ (z) = z;, () fors =2,...,n+ 1, i.e.

is W\, p is

OV W) T = )
Stacking these rows defines the linear system
(Wg(”) _ Wg(z'l))'r bgil) _ bézé)
Ajr =dy, Ay = : , dy= :
(Wg(i”“) _ Wg(il))T béil) _ béinH)



Under review as a conference paper at ICLR 2026

Thus J encodes the labels of the tied experts, and A jz = d; describes the affine flat
Sgn) = {JJERD : AJJJZdJ}

on which exactly those experts in .J have equal logits. In the later part, sometimes we write A(Jn)7 df]”)
to denote that it corresponding to order-n discontinuity.

4 ASYMPTOTIC MEASURE OF THICKENING DISCONTINUITIES

Euclidean e-thickening of discontinuities. Although the discontinuity set I itself has Lebesgue
measure zero in X (Proposition |A.3), it is not immediately clear how large the surrounding region of
“near discontinuities” can be. For instance, on the real line the rationals have measure zero, yet their
e-neighborhood is the whole line. This motivates studying the neighborhoods of these discontinuities.

Definition 4.1 (Euclidean e-thickening). For a set A C RP and e > 0, the Euclidean e-thickening of
A is defined as

T.(A) = {z e RP : dist(z, A) < €},
where dist(z, A) := inf,c 4 ||z — y|| is the Euclidean distance.
For brevity, we will refer to the Euclidean e-thickening as the e-thickening from now on. We

write T, (F(")) for the e-thickening of order-n discontinuities. Quantifying the volume of these
neighborhoods is central to understanding how much of the input space lies close to discontinuities.

In this section we investigate how much of the input space X is occupied by the e—thickening of
order-n discontinuity sets. Since these sets are generally unbounded, we restrict to their intersection
with the ball B? (0, R) centered at the origin. Our first goal is to establish asymptotic upper bounds
for their volume inside B (0, R), together with their normalized volume, i.e. the ratio relative to
AP(BP(0, R)).

For brevity, all proofs in this section are deferred to Appendix |A.4. We also write wg = A\%(B4(0,1))
for the volume of the d-dimensional unit ball.

Theorem 4.2 (Asymptotic measure for Te(F("))). Fix1<n<Dande>0.Let\J;S; D (™) pe
the union of all subspaces with codimension n containing the order-n discontinuities, where each

S;={zxeRP: Az =d;}, Ay € R™P rank(Ay) = n,
indexed by J. For each J, define the closest point of S'j to the origin by
wy = Aj(AsA]) "y,

and let 65 € R™ be its coordinate in the normal direction to Sy, so that ||0 5| = dist(0,.5).
If R > max;{||0s||} + € then

A(T.(r™) N BP(0,R)) < wp_pwn|J|e" RP™" + ZO((||5JH +e2en Rp_n_2)7
J

and

M(T.(r™)n BP(0, R)) WD pw
) < Db gl R o((ls 2R,
\D(BD(0, R)) S T o | e + ZJ: ([0 +€)"e
Remark 4.3. Theorem 4.2/ shows that the thickening measure scales as e"RP—" since order-n
discontinuities lie on codimension-n flats with € volume in normal and R”~" in tangential directions.
After normalization, the contribution decays as (¢/R)™, so higher-order discontinuities vanish
asymptotically.

While Theorem |4.2| shows that higher—order discontinuities thickening vanish asymptotically, it
does so one order at a time. We now sharpen this by establishing asymptotic ratios between the
e—thickenings of order-n and order-m discontinuities.
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Theorem 4.4 (Relative Volume of e-Thickenings Across Orders). Fix integers 1 < m,n < D and
€ > 0. For each r € {m,n}, suppose

I‘\(’l") g U SST)7 SST) — {x c RD : A(Jr)‘r = d(Jr)}’ rank(AF]T)) =T,
JeTr

with finite J,.. Assume moreover that each slice F(JT) =T n SST) is a (possibly unbounded)
polyhedral subset of the flat Ssr). Define

Uy (R) :== \P(T.(r™)n BP(0, R)).
For each J € J,, set

oy AP=(rY) 0 BP(0, R))
T Rgnoo Wp—r RD_T

1 d—1 1
€ [msax 5145’3,J,r(17583,1,r)( 2 75)7 1:|7

with ss,_ j, defined as in Lemma A.16|and Lemma|A.17,

Then
UTL(R) — ZJEJTL AJn Wp—nWn (i)n m 1 + O l )
Un(R) ZJejm QJm WD—mWm R R

Remark 4.5. Theorem |4.4|shows that the ratio between e—thickenings of order-n and order-m dis-
continuities decays as (¢/R) ™™™, so higher—order sets become negligible compared to lower—order
ones as R grows. This scaling reflects that a codimension-n flat contributes €” volume in normal
directions and RP”~™ in tangential ones, with the prefactor % giving the dimensional correc-
tion. The slice densities s, measure the fraction of each tie-flat occupied by admissible regions,
and Lemma |A.16| with Lemma |A.17| guarantees these densities are strictly positive under linear
independence of the gating weights.

QJr

¢ -thickening of discontinuities. Directly checking whether z € X lies within the Euclidean
e—neighborhood of an order-n discontinuity is expensive, since it requires proximity tests against all
order-n subspaces. We therefore introduce a more tractable ¢,,—based thickening.

Definition 4.6 (/. .~thickening). Let ' C X and let z : X — R denote the vector of gating logits.
Define the ¢,—distance from x to I by

distoo (2, T') := inf ||2(2) — 2(¥)||oo-
yel
The corresponding ¢, —thickening of I is
TN = {z € X : distoo(x,T) < e}.
Intuitively, this is the set of inputs whose gating logits lie within € (in {,) of a discontinuity. By

Proposition |A.20, it suffices to check whether some non top- logit is within € of z[)(z), giving an
efficient proximity test directly in logit space.

Theorem 4.7 (Relative Volume of /., -thickening Across Orders). Fix integers 1 < m,n < D and
e > 0. For each r € {m,n}, suppose

e ¢ U SF]T), S(Jr) ={zeR": Asr)x = d_(]r)}, rank(A(Jr)) =r,
JET,

with finite J,. Each slice I‘Fp =T N SF]T) is a polyhedral subset of the flat S‘(]r). Set
Uy (R) :== AP(T)(1)) n BP(0, R)),
and for each J € T, let

) )\D*T(I‘(]T)OBD(O,R)) 1 d—1 1

k= (det(AT (AT T)) 72,
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with ss_j ., defined as in Lemma|A.16 and Lemmal|A.17

Then
( ) Z Rin O Jn -~
Un R SH - <2€> - ( < 1 ))
= - 1 + O - .
Un(®) S hypmagm @p-m \R R

JETm
Remark 4.8. Theorem 4.7/ shows that the ratio between /., .—thickenings of order-n and order-m
discontinuities decays as (¢/R) "™, so higher—order sets remain negligible at large scales. Compared
to the Euclidean case, the prefactor includes « ;. ., reflecting the axis-aligned nature of ¢, tubes and
their sensitivity to slice orientation. The densities oz, again capture the admissible fraction, while
the O(R~!) term accounts for finer geometry.

5 RANDOM PERTURBATION PROCESS: HITTING AND OCCUPATION TIME
NEAR DISCONTINUITIES

In this section, we analyze how a random perturbation process, such as an adversarial actor making
small stochastic updates, can drive xo from the open top-k cell Cs (the region where the active set
S is fixed) to a discontinuity boundary. Neighborhoods of these boundaries are precisely where
small changes can flip the top-k active set. For simplicity, we assume a time-independent, invertible
diffusion coefficient o € R?*, so the input evolves as the Itd diffusion
diEt = O'dBt, xTo € Cg,

where B, is standard d-dimensional Brownian motion. Under this model we first derive explicit
probabilistic bounds on the boundary hitting time. For brevity, all proofs in this section are deferred
to Appendix A.5|

Theorem 5.1 (Exit through order-1 discontinuities with hitting-time bound). Let z; solve the diffusion
process in Equation |5, with Cs is the open polyhedral cell associated with the k-subset S, given by

Cs = ﬂ {x cR?: (Wg(i) — Wéj))Tx > bgj) — bgi)}.
i€S, j¢S
Denote a7 = Wq(z) - Wq(j), d®9) .= b_gj) - bg), and ) = |lo T a9 |, and assume uniform
nondegeneracy (/) > 0 for all i, j. Define the minimal normalized distance to the boundary by
GDT o — dUsd)
¢ T > 0.

Tmin = iGISIT’[IJI_lgS —HJTa(i7-j)H
Let

Ts:=1inf{t > 0: z; ¢ Cs}
be the exit time. Then the following hold:

1. (Exit location.) Almost surely,
Pz, eTM) =1, PBla,eT™)=0 foraln>2,
i.e. exit occurs on an order-1 discontinuity with probability one.

2. (Hitting-time bound.) For every t > (),
P(rs <t) > 2(1 - q)(rmin/\/i))a

where ®(x) = \/% ffoo e~%"/2 du is the standard normal CDF. Moreover, by continuity of the
sample paths and Lemma A.25)

T, € I'  almost surely.

Remark 5.2. Theorem |5.1|shows that higher—order discontinuities '™ p > 2, are almost surely
never hit by the diffusion, i.e. P(x,, € F(")) = 0. The key proof idea is that projecting onto directions
orthogonal to each discontinuity subspace yields an n-dimensional Brownian motion, which for
n > 2 almost surely does not hit a fixed point (Lemma|A.27). Hence exits occur only along order-1
boundaries corresponding to pairwise logit ties. Moreover, the bound P(7g < t) > 2(1—®(rmin/V1))
highlights how the minimal normalized distance rn;, governs the law of 7g, linking separating
hyperplane geometry with exit-time behavior.
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In summary, order-1 discontinuities are almost surely hit in finite time (Proposition|A.3), while higher
orders n > 2 are not, though diffusion may still linger near them. To quantify this, we use the
e-thickening and state the following theorem.

Theorem 5.3 (Occupation time near order-n discontinuities). Let x; solve the diffusion equation|5
with initial condition xy € Cs, where Cs is an open top-k cell. Assume

r c U Ssn), Sgn) ={z eRP: Af]n)x = dsn)}, rank AS") =n.
JETn

For each J, choose an orthonormal basis Ny of (SS'L))J‘ and set

S1.0:=NJENs, Aning = Aain(E1,7), s7:=NJy(yeST™), =N
Define

Wn —1/2 € (5J,e)?-
K= , 56;:H2 sy— Hfi by = Lt
T am)n2 At (B ) ’ L1 (81 =) ming ’ 2
Let

T
A0y = [ g Ty
0
Then, for all T > 0,
> Kon€ by T0/2 = 1,0y /T), n>2,

J
E[AM™(T;T)] < > Kio2e® Ebye/T), n=2,
J
2(ZKJ»1)E\/T7 n=1.
J

where T'(-, -) is the upper incomplete gamma function and E1(z) = fzoo e "u ! du.

Remark 5.4. Theorem 5.3|gives an upper bound on the expected occupation time that the diffusion
X, spends inside the e-thickening of order-n discontinuities. The leading factor €” reflects the
codimension-n geometry of the thickening. As n increases, € decays exponentially for 0 < e < 1.
Moreover, the sum over slices J is finite, so the upper bound decreases with n in the small-e regime.

6 CONTINUITY VIA /o, .-THICKENING LOCAL SMOOTHING

From Section |5, random perturbations in the input space almost surely intersect a discontinuity
boundary, with low-order ones encountered most often. Motivated by this, we propose smoothing the
SMoE map whenever the input lies in an ¢, —thickening of a discontinuity set. Unlike Euclidean
e—thickening, the ¢ . version allows efficient proximity testing via gating logits, making it both
theoretically justified and computationally practical.

{c local smoothing (Figure 2/ from Appendix|A.2). From Proposition |A.20, we established that

local smoothing within an £, —thickening requires only inputs = &€ TE(OC) (T") such that there exists a
non top-k index ¢ with
0 < zpy(x) — 2zi(x) <e.

We propose to smooth non top-k logits z;(x) within the e-strip and discard those below it, while
keeping all top-k logits unchanged. The smoothing is applied uniformly, but only affects logits z;(x)
that satisfy the specified inequality. A key consequence is that if x lies in the £, —thickening of an
order-n discontinuity, at most n additional experts can be activated. Since the measure of higher-order
¢, —thickenings decays rapidly (Theorem|4.7), a small € ensures that the expected number of extra
experts remains low.

We define the log-smoothstep h : R — R by

u
h(u) = —oQ l{ugo} +0- 1{u21} + log(m> 1{0<u<1}7 a, b>0.
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Figure 1: Effect of /., . smoothing on discontinuity boundaries. (a) Standard SMoE shows a jump
at the boundary. (b) SmoothSMoE, with identical weights, removes the jump and yields continuity.
(c) Continuity check: maximum output difference vs. perturbation ||Az||. For SmoothSMoE (orange)
it vanishes as ||Az|| — 0, while for SMoE (blue) it remains nonzero.

Given € > 0, we define the smoothed coefficient
m;(x) = h((zz(a:) — 2y () + e)/e) .
The smoothed gating logit is then defined as
Zi(x) = zi(x) + my(z).

As shown in Figure 2| from Appendix [A.2| the soft margin discards logits below the cutoff, smoothly
boosts those within the margin, and leaves those above the cutoff unchanged. Although h is continu-
ous, the continuity of 2 — zp)(z) is not immediate; Proposition A.7 establishes this and hence the
continuity of the smoothed SMoE.

Boundary loss for adaptive e. Choosing e is nontrivial since smoothing acts in logit space. We
therefore introduce a boundary loss that adaptively tunes e under a fixed budget of extra experts. Let
K be the average number of activated experts with threshold € (top-£ plus those within € of z(;)), and
k* the target budget. With a learning coefficient @ > 0, we define

Eboundary = € (K: — k’*)

Minimizing Lyoundary Naturally adjusts e: when K > k* the loss drives € down, and when K < k*
it drives € up. In practice, we set k* = k + 0.5, allowing on average half an additional expert
for boundary smoothing. For a geometric intuition behind our theoretical results and smoothing
mechanism, please see Section|(B.1|

7 EMPIRICAL RESULTS

In this section, we empirically investigate the behaviour of the ¢ . local smoothing method. We
first demonstrate, through a small experiment, that the vanilla top-k SMoE map exhibits nontrivial
discontinuity, while £ . local smoothing effectively enforces continuity in the SMoE map. We
further show that the proposed smoothing can also yield improvements over its top-k counterpart
when applied to other tasks. Appendix B.4|shows how the boundary loss adapts € and controls the
average number of active experts. The complete experimental setup and training hyperparameters are
reported in Appendix |C!

7.1 fs,LOCAL SMOOTHING VS. VANILLA SMOE NEAR DISCONTINUITY BOUNDARIES

To visualize the effect of /. local smoothing, we analyze a 4-layer SMoE pretrained on CIFAR-10
and compare it with SmoothSMOoE initialized from the same weights with 32 experts and top-4
routing, isolating stochastic effects. Focusing on Layer 3, we select a random input point with a large
discontinuity gap based on its orthogonal projection onto the nearest boundary, and then evaluate the
model’s output along the normal direction. As shown in Figure|l(a), SMoE exhibits a sharp jump,
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Table 1: Perplexity (PPL) of SmoothSMoE compared to baseline models on clean and attacked
WikiText-103 datasets. Means and standard deviations are computed over 3 random seeds.

Model WikiText-103 Attacked WikiText-103
Valid PPL | Test PPL | Valid PPL | Test PPL |

SMoE 33.79+0.07  35.524+0.13 4221 £0.08  44.18 +0.12

ReMoE 33.60+0.14  35.35+0.12  42.19+0.19  44.00£0.45

SmoothSMoE  32.72+0.08 34.35+0.22 40.99+0.26 42.85+0.29

where tiny perturbations cause large output changes, while SmoothSMoE in Figure [I(b) removes
this jump and yields a continuous map. FigureI[c) plots the maximum output difference of a fixed
dimension versus perturbation magnitude ||Az|| along a normal direction. For SMoE (blue) the
difference persists as ||Az|| — 0, whereas for SmoothSMoE (orange) it vanishes, confirming that
smoothing restores continuity. Additional results, including visualizations for other layers, are given

in Appendix
7.2 LANGUAGE MODELING ON WIKITEXT-103 AND ENWIKI-8

We follow [Pham et al.| (2024) for language modeling pretraining on WikiText-103 (Merity et al.]
and EnWiki-8 (Mahoney, using a Switch Transformer (Fedus et al.l [2022)) with 16
experts and top-2 routing, reporting PPL. on WikiText-103 and BPC on EnWiki-8. Robustness on
WikiText-103 is tested by training on the clean corpus and evaluating on attacked versions
[2024). We include ReMoE (Wang et al.,[2024) as another baseline to compare against other
continuous routing methods; for this baseline, we allow dense expert training for the first 2 epochs
before enforcing the sparsity loss. As shown in Table [I, SmoothSMoE reduces WikiText-103
validation/test PPL from 33.79/35.52 to 32.72/34.35 (improvements of 1.07 and 1.17), and similarly
lowers Attacked WikiText-103 validation/test PPL from 42.21/44.18 to 40.99/42.85 compared
to SMoE. ReMoE yields slightly lower perplexity than SMoE but is consistently outperformed
by SmoothSMOoE, ranking second across all four metrics. On EnWiki-8 (Table |4, Appendix [B),
SmoothSMoE achieves 1.122 BPC vs. 1.153 for SMoE, confirming gains across both standard and
robust language modeling.

Table 2: Results on GLUE benchmarks. Means and standard deviations are computed over 5 random
seeds.

Model RTE MRPC COLA QNLI MNLI Average
SMoE (K=16, k=2) 73.28 +1.02 89.17 £ 0.42 64.25+£1.49 92.56+0.05 86.60 & 0.06 81.17
ReMoE (K=16, k=2) 73.10£0.74  88.60 +1.90 649+1.2 92.53£0.14 86.69 £ 0.13 81.18
SmoothSMoE (K=16,k=2) 73.40+0.85 90.15+0.60 65.41+0.39 9240+£0.12 86.90+0.20 81.65
SMoE (K=16, k=4) 73.85+1.17  89.26 £1.29 63.90 + 0.62 92.20 £0.14 86.49 +£0.15 81.14
ReMoE (K=16, k=4) 72.20 +1.35 89.49£0.49 65.07+1.61 92.5140.03 86.51 £0.12 81.16

SmoothSMoE (K=16,k=4) 74.60+1.11 89.88+0.87 64.82+0.41 9253+0.28 86.82+0.12 81.73

7.3 IMAGE CLASSIFICATION ON DOMAINBED BENCHMARK

We evaluate smoothing on vision tasks using DomainBed (Gulrajani & Lopez-Paz| [2020). Fol-
lowing |Guo et al.| (2024), GMoE is built from a ViT-S/16 backbone (Dosovitskiy!
et al.}2021) pretrained on ImageNet-1K. We add our £ ¢ local smoothing to GMoE and compare
against the original across four DomainBed tasks. As shown in Table |3, SmoothGMOoE achieves
steady improvements over GMoE across most benchmarks, with an average gain of 0.56% and a
notable 2.1% increase on Terralnc. The larger datasets show consistent improvements, suggesting
that smoothing is especially effective in large-data regimes by activating extra experts near ties and
stabilizing optimization.

'All baseline results in Table are from (2023)), except DomainNet, which we carefully tuned and
reproduced.
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Table 3: Mean accuracy (%) on DomainBed with ViT-S/16. Mean and standard deviation are
computed over 5 random seeds.

Algorithms PACS VLCS OfficeHome Terralnc DomainNet Average
GMoFE! 87702 79.6+04 73.14+0.3 454+ 0.3 48.4+£0.1 66.84
SmoothGMoE 87.6+0.32 79.9+£0.2 73.46+041 475+091 488+0.1 67.4

7.4 GLUE BENCHMARK: LANGUAGE INFERENCE AND CLASSIFICATION TASKS

We evaluate our smoothing mechanism on natural language understanding using five GLUE
tasks (Wang et al., 2018): CoLA (Warstadt et al.l 2019), MRPC (Dolan & Brockett, [2005),
MNLI (Wang et al.;|2018)), QNLI, and RTE (Bentivogli et al.|[2009). Following experiment settings
in MokEfication (Zhang et al., [2022) and EMoE (Qiu et al., [2023)), we augment BERT-1arge (Devlin
et al.|[2019b) by replacing one FFN layer with our MoE layer and compare against SMoE baselines,
reporting validation performance. As shown in Table|2|in Appendix Bl SmoothSMoE achieves higher
accuracy on almost all tasks and settings, with the largest gain of 1.32% on RTE. Averaged across
each top-k € {2,4} yields a consistent improvement of 0.25%-0.42%, indicating that smoothing
benefits SMoE models for language understanding on the GLUE benchmark.

We evaluate our smoothing mechanism on natural language understanding using five GLUE
tasks (Wang et al., 2018): CoLA (Warstadt et al.l 2019), MRPC (Dolan & Brockett, [2005),
MNLI (Wang et al.,|2018)), QNLI, and RTE (Bentivogli et al.}[2009). Following experiment settings
in MokEfication (Zhang et al.| |2022) and EMoE (Qiu et al., [2023), we augment BERT-large (De-
vlin et al.| [2019b) by replacing one FFN layer with our MoE layer and compare against SMoE
baselines, reporting validation performance. We additionally include ReMoE (Wang et al.| [2024)
as a continuous-routing baseline to broaden the comparison. As shown in Table [2, SmoothSMoE
achieves the strongest performance across both k=2 and k=4 settings, improving over SMoE and
ReMOoE on nearly all tasks. The largest gain is observed on MRPC (up to 1.55%), and smoothing
also yields consistent improvements on RTE, CoLA, and MNLI. Averaged across all GLUE tasks,
SmoothSMoE improves over the next best baseline by 0.47% for k=2 and 0.57% for k=4, indicating
that smoothing provides robust benefits for language understanding.

8 CONCLUSION

In this paper, we provide a theoretical investigation of discontinuities in Sparse Mixture-of-Experts
from both geometric and stochastic perspectives. On the geometric side, we classify discontinuities
by order and, using measure-theoretic slicing arguments, derive asymptotic volume bounds for both
Euclidean e-thickenings and /., -thickenings around these sets. On the stochastic side, we analyze
the hitting times of discontinuities as well as the occupation times of a random diffusion process in
their neighborhoods. Building on these insights, we propose a simple smoothing mechanism that can
be applied directly to SMoEs and demonstrate its effectiveness across multiple tasks. One possible
limitation of our analysis is that adversarial or structured perturbations may deviate from random
diffusion, making them more challenging to study; addressing such cases remains an interesting
direction for future work.

10
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Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
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used in this paper are publicly available.

LLM usage. In this paper, large language models (LLMs) were used solely as a tool to assist
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Supplement to ‘“Discontinuities in Sparse Mixture-of-Experts: A
Measure-Stochastic Analysis”
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A.1 MATH NOTATIONS

Numbers and Arrays

a A scalar (integer or real)
a A vector
A A matrix
A A tensor
I, Identity matrix with n rows and n columns
I Identity matrix with dimensionality implied by context
e® Standard basis vector [0,...,0,1,0,...,0] with a I at posi-
tion ¢
diag(a) A square, diagonal matrix with diagonal entries given by a
a A scalar random variable
a A vector-valued random variable
A A matrix-valued random variable
Sets and Graphs
A A set
R The set of real numbers
{0,1} The set containing 0 and 1
{0,1,...,n} The set of all integers between 0 and n
[a, b] The real interval including a and b
(a, b] The real interval excluding a but including b
A\B Set subtraction, i.e., the set containing the elements of A
that are not in B
g A graph
Pag(x;) The parents of x; in G
Indexing
a; Element ¢ of vector a, with indexing starting at 1
a_; All elements of vector a except for element ¢
A Element ¢, j of matrix A
A;. Row i of matrix A
A ; Column 7 of matrix A
Ak Element (i, j, k) of a 3-D tensor A
A, 2-D slice of a 3-D tensor
a; Element ¢ of the random vector a
Calculus
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Z—i Derivative of y with respect to =
y . . .
e Partial derivative of y with respect to x
Vazy Gradient of y with respect to x
Vxy Matrix derivatives of y with respect to X
Vxy Tensor containing derivatives of y with respect to X
% Jacobian matrix J € R™*™ of f : R™ — R™
V2 f(z)or H(f)(x) The Hessian matrix of f at input point
/ f(x)dx Definite integral over the entire domain of
: f(x)dx Definite integral with respect to & over the set S

Probability and Information Theory

P(a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or over
a variable whose type has not been specified

a~ P Random variable a has distribution P

Ex~p[f(z)]or Ef(xz)  Expectation of f(z) with respect to P(x)

Var(f(x)) Variance of f(z) under P(x)

Cov(f(z),g(x)) Covariance of f(z) and g(x) under P(x)

H(x) Shannon entropy of the random variable x

DxL(P|Q) Kullback-Leibler divergence of P and Q

N(z;p, %) gaussian distribution over & with mean p and covariance

Functions

f:A—DB The function f with domain A and range B

fog Composition of the functions f and g

f(z;0) A function of x parametrized by 6. (Sometimes we write
f () and omit the argument 6 to lighten notation)

log x Natural logarithm of x

o(x) Logistic sigmoid, m

¢(z) Softplus, log(1 + exp(x))

llz||, LP norm of

||| L? norm of

xt Positive part of z, i.e., max(0, )

1condition is 1 if the condition is true, O otherwise
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A.2 MATHEMATICAL FORMULATION FOR MIXTURE OF EXPERTS

Zi(x) = zi(x) + mi(x)

Zi)(x) — € 2zi() z[k]:(m) Z[Il](:lt)

Figure 2: Illustration for gating logit smoothing within the ¢, -thickening.

A.2.1 MIXTURE-OF-EXPERTS

Let X = R? and Y = R?’, each regarded as a finite-dimensional normed vector space with
the Euclidean inner product. We equip them with their Borel o-algebras B(X), B(Y), and with the

standard Lebesgue measures A”, AP ', respectively. Then, we define the input space as (X, B(X), AP)
and the output space as (Y, B()), A\P").

Assume that we have M experts. A gating function G is a map
G: X — AM—ly
where Ay = {a € Rgfo : Zﬁ1 a; = 1} denotes the (M — 1)-dimensional probability simplex.

For each input x € X, the vector G(z) = (G1(z), ..., Gn(x)) specifies the weights assigned to the
M experts.

Fori =1,..., M, each expert is given by a map

EiSX*)Y,

Then, we can write the Mixture-of-Experts as a function f : X — Y in the form
M
fl@) = Gi(x)Ei(x)
i=1

A.2.2 ToOP-K SPARSE MIXTURE-OF-EXPERTS (SMOE)

We now state the 3 assumptions used in the proofs. They are mild and typically satisfied by pretrained
SMoE models in practice; they exclude pathological corner cases and streamline the theoretical
analysis.

Assumption:

1. The number of experts is smaller than the input dimension (M < D).

2. The number of experts activated is positive and less than the full set of available expert
(1<k<M).

3. W, € RM*D has full row rank.

Remark A.1. On the space RM*P we define the product measure AM*P induced by the row

measures AW If each AW is absolutely continuous with respect to the Lebesgue measure A” or
has the Lebesgue measure itself, it follows that the set of weight matrices W, that are not full row
rank has product A *P-measure zero.

Define z : X — RM as the gating score function componentwise by

zi(x) = (WO, 2) 400, i=1,...,M,

18



Under review as a conference paper at ICLR 2026

so that z(z) = (z1(x), ..., zm(x)).
Fixk € {1,..., M} and let Si(x) C {1,..., M} be the indices of the k largest entries of z(z). The
top-k softmax gate G : X — Apy_q is

exp(2i(2)) Liies, (=)}
Zjesk(w) exp(z; (7)) ’

Gl(x): izl,...,M,

Then, the Sparse Mixture-of-Experts (SMoE) is the map f : X — Y defined by f(z) =
Zij\il G;(x)E;(x), where G is the top-k softmax gate and each expert map is F; : X — ).

A.3 DISCONTINUITIES OF TOP-K SPARSE MIXTURE-OF-EXPERTS

A.3.1 PARTITION INDUCED BY TOP-k AFFINE GATING AND THE DISCONTINUITY SET.

Let z;(z) = (W;”,x) + bgi) fori =1,..., M be the affine gatings, and fix k € {1,..., M}. For
each k-subset S C {1, ..., M}, define the open cell

Cs = {2z eX :z(x) > z(x)forallie S, j¢ 5}

Then {Cs}s|— is dense in X, while the remaining points in R” \UIS|: « Cs constitute the discontinuity
set of the Top-k gating, which will be analyzed later.

Proposition A.2. Cs is a full-dimensional region in RP, i.e. dim(Cs) = D.

Proof. Fori € S, j ¢ S, we have the following
zi(x) > zj(z) <= (Wg(i) - Wg(j))—rw > béj) - béi).
Hence ‘ ‘ ‘ A
Cs= () {zeRP: WO -WiHTz>pl — b}
€S, j¢S
By Assumption 3, (W_(gi) - Wg(j)) # 0 for all ¢ # j. Each inequality z;(x) > z;(x) then defines a
nontrivial open halfspace in R”. Their finite intersection gives Cs, which is an open subset of R”.
So its affine hull equals R” and

dim(Cs) = dim(aff(Cs)) = D. O

On the relative interior relint(Cs) of Cs, the active expert set is constant, S (x) = S, and the gate is

exp(z; (7)) Liesy
Zjes exp(z;(z))

Gl(l') =

For each k-subset Sand i € S, j ¢ S, we define the boundary Fs ; ; as follow
Foig = {2 €XP: 2(2) = 2(x), 2i(2) < 20(2) VL € S\[i}, 2m (@) < 2(2) Vm ¢ (SU{D) |-
Intuitively, this set is the boundary where the k-th largest score z;(x) from the active set S ties with

the (k + 1)-th largest score z;(z) from the inactive set, so that crossing such a boundary swaps 7 and
J between active and inactive experts.

The discontinuous set of the Top-k gating is the union

r=1 U Fsis

|S|=k i€S, j¢S

Proposition A.3. The discontinuous set T has Lebesgue measure zero in RP, i.e. \P(T) = 0.
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Proof. Fori # j, we define the tie set H;; := {z € R : z;(x) = z;(z)} is an affine hyperplane
given by
D . i iNT .. _ 105 i
{r eR”: (Wg( ) — [/]’/éﬂ)) T = b!(]J) _ b!(])},

with Wg(i) — W;j ) # 0. Hence H;; has Lebesgue measure zero. Each boundary piece Fg ; ; is a
polyhedral subset of H;;, so AP (Fs; ;) = 0. Since

r=U U Fsiy
|S|=Fk €S, j¢S

is a finite union of these s ; ; terms, hence, countable subadditivity gives us AP (T") = 0. O

A.3.2 ORDERS OF DISCONTINUITIES

Within the discontinuity set I" there are, in fact, different types of discontinuities. For instance, one
may encounter a pairwise tie where only two scores satisfy z;(x) = z;(z) with one index inside
and one outside the top-£ set. Alternatively, higher-order ties may occur, such as a triple equality

zir(x) = zjr(z) = zp ().

To analyze these discontinuities, we classify them by order: a pairwise tie is called a order-1 disconti-
nuity, a triple tie a order-3 discontinuity, and more generally an order-n discontinuity corresponds to
n + 1 scores becoming equal across the top-k threshold.

Definition A.4 (Order statistics of the scores). Given scores z1(x), ..., zy(x) at z € X, define the
order statistics

(@) = z(e) > - = zp(e)

denote the order statistics, i.e. the sorted values of {z;(x)}, in nonincreasing order, and ties are
broken by lexical order of the original index.

Definition A.5 (Order-n discontinuity). Fix 1 < k < M and let the gating scores be affine maps
z(x) = Wyx + by, W, e RM*P b c RM,
with rows a; and entries b;, 50 z;(z) = a, = + b;.
A point x € X is an order-n discontinuity if there exists a tie set
I={i1,...,int1} C{1,..., M}
such that the scores in [ tie exactly at the switching threshold,
2y (1) = oo = 24,1, (2) = 234 (1) = 204 (@),

so that x lies in the affine subspace

S[:{LEERDt (ai, —ai,) "z =b;y, — by, , r:27...,n+1}.

At such a point, some but not all indices of I belong to the Top-k set S. The corresponding
discontinuity slice is the polyhedron

) = {x €S (aj—as,) o> by, —b;, ¥j €S\I; (ac—as,) @ < b, —by, VU € S“\I}.

The discontinuity component associated with [ is

-y

SC{L,...,M}, S|=k
INS#@, INS#I

and the full order-n discontinuity set is

reo =) 1.

IC{1,..,M}
| I|=n+1
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Proposition A.6 (Dimension of order-n discontinuity sets). For any tie set I of size n+1, the
associated discontinuity component an) lies in an affine subspace of codimension n. Consequently,

dim(F&")) =D —n.

Proof. Fix atieset I = {iy,...,i,+1}. By definition, z € an) satisfies
(ai, —a;,) "z =1b;, — b, r=2,...,n+1,

which are n linear equations.
Since the rows of W, are linearly independent, the difference vectors
{a;,, —a;, :r=2,...,n+1}

are also linearly independent. Thus the system has rank n, and the solution set Sy is an affine subspace
of codimension n.

The additional inequalities restrict S to a polyhedral subset but do not reduce its dimension. Therefore
every component F(In) has dimension D — n. O

A.3.3 SMOOTHED SMOE IS CONTINUOUS

In this part, we prove the fact that our Smoothed SMoE mapping is continuous under some mild
assumptions. First, we assume that the base set of assumption in Section|A.2.2|is satisfied. In addition,
we assume that the set of expert mapping E;(x)’s are continuous, which holds in practice when it is
usally parameterized as an MLP network with ReLU activation.

Proposition A.7. Let X = RP and Y = RP " be endowed with the standard Euclidean topology.
Define the gating logits

zi(x) = (WD z) + ), i=1,...,M,

and the order statistics
zu(@) = zpy(@) = - = (),
with ties broken lexicographically by the original indices. Let h : R — R be continuous and set

() h(zi(x) — 2 (@) + e) |

€
Define the gating scores and the SmoothSMoE

Zi(z) = zi(x) + my(x).

Gi(z):= ?Xp(éi(x)) , ) (@) Bu(a),
D= @) T ; (z) Bi(z)

where each expert map E; : X — Y is continuous. Then f is continuous.
Proof. We write > for the strict total order on logits that respects values and breaks ties by index:
zi(x) >1ex zj(x) if either z;(x) > z;(x) or z;(x) = z;(x) and ¢ < j. Thus

Z[1) () >1ex Z[2] () >lex -++ >lex Z[M] ().

Consider zj : X - R. Let B= {(a —r,a+7) : a € R,r € R=} be a basis for the topology on R,
and fix B = (a —r,a+ 1) € B. Then
z[;]l(B) ={zeX:a—r<zyle) <a+r}.
For any permutation (i1, ...,ip) of {1,..., M},
Uty i) =12 € X0 24, (T) >lex - >lex Zing (T) }

is open, since it is a finite intersection of open half-spaces and subspaces. Also {z € X: a —r <
zi, (x) < a+ r} is open because z;, is affine (hence continuous). Consequently,

z[;]l(B) = U (U(il,i..,iM) N{z:a—-r<z.(z)<a Jrr})

(415eeesinr)
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is a union of open sets, hence open. Since 2[2]1(3) is open for any B € B, so z|;) is continu-

ous (Munkres, [1997).
Since 2z and each z; are continuous, the composition m;(x) = h((zi(x) — zp(z) + €)/€) is
continuous, and so is 2; = z; + m,;. The softmax map is smooth, hence each G; is continuous.

Finally, f(z) = Zi\i1 G;(z) E;(z) is a finite sum of products of continuous functions, so f is
continuous. O

A.4 ASYMPTOTIC MEASURE OF ¢-THICKENED DISCONTINUITIES

In this part, we are interested in quantifying how much of the input space lies close to the disconti-
nuities. While the discontinuity set itself has Lebesgue measure zero in the input space X, it is not
immediately clear how large the measure of an e-neighborhood of this set can be. For instance, on
the real line the rationals form a measure-zero set, yet their closure is the entire line.

Motivated by this analogy, we now ask whether an e-thickening set around the discontinuities can
occupy a non-negligible portion of the space. Our goal is to analyze this behavior separately for each
order-n discontinuity. To make this precise, we recall the classical notion of an e-thickening.

Definition A.8 (e-thickening). For a set A C R” and ¢ > 0, the Euclidean e-thickening of A is
defined as
T.(A) = {x € RP : dist(z, A) < ¢},

where dist(z, A) := inf,c 4 ||z — y|| is the Euclidean distance.

A.4.1 BASE CASE: ¢-THICKENING MEASURE OF ORDER-1 DISCONTINUITIES IN A BOUNDED
REGION

Consider the bounded ball Bp (0, R) C X of radius R centered at the origin. We are interested in
quantifying the asymptotic Lebesgue measure of the e-thickening set of the order-1 discontinuity
restricted to this region, i.e.,

AP(T.(rM) N B(0, R)).
Intuitively, this corresponds to the volume of an e-thickening set surrounding the discontinuity facets
') within the bounded domain B(0, R).

Proposition A.9 (Measure of the ethickening set of I'") inside B (0, R)). Let\JM_, H,, > T
be the union of all order-1 facets, where each

H,={zecRP: a' z=4d,}, am # 0,
and define the e—thickening set (tube) of any S C RP by
T.(S) := {x € RV : dist(z, S) < €}.
Write the distance from the origin to facet m as 6., := dp, /||am |-

D—1
m 2

Letwp_1 = denote the volume of the unit (D — 1)-ball. Then, for any R > 0:

Foreachm =1,..., M,

min{R, 6, +e} D—1
AP(T.(H,,) N BP(0, R)) =/ wp—1 (R? —u?) 7 du.
max{—R, 8, —€}

Consequently,

M min{R, &§,,+€} D—1
)\D(TE(F(l)) N BD(()’R)) < Z wWp—1 (R2 — U2) 2 du,
m—1 Y max{—R, &y —e}

Proof. Fix m. Choose an orthonormal basis e1, . .., ep such that ep = a,, /|| am |-
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In these coordinates, every x € RP can be written as = (y,u), where y € RP~! lies in the
subspace orthogonal to a.,,, and u = egﬂc € R is the coordinate in the normal direction. Then

Hy = {(y,u): u=20y},  dist((y,u), Hpn) = |u—6ml.
Let
FE = Te(Hm> ﬁBD(O,R) = {(y’u) . "U/ _ 6771‘ <€, HyHQ +U2 < RQ}
The measure of F is

I=)\P(E)= /RD 15(y, u) dy du.

I:/R(/RDllE(y,u)dy) du.

For each fixed u, the inner integral is the (D — 1)—dimensional measure of the cross-section

{y: Iwl? < R? = u?} 0 {Ju— dm| < e}
This is nonempty only if |u| < R and |u — d,,| < €, i.e. u € (max{—R, d,, — €}, min{ R, d,, + €}).
Thus,

By Fubini’s theorem,

min{R, 6, +€}
I= / /\D_l(BD_l(O, R? —u?)) du.
max{—R, 8, —¢€}

Since AP~ (BP~=1(0,7)) = wp_1rP~! for any radius r > 0, we obtain

min{R, 6, +e€} D-1
I= / wp-1 (R? —u?)77 du.
max{—R, oy —e€}

Finally, since

=

7.0 C | | T.(H,),

m=1
subadditivity of Lebesgue measure gives the bound. O

Remark A.10. In Proposition |A.9| we adopt the convention that ff() = 0 whenever a > b. This
corresponds to the geometric situation where the e—thickening set lies entirely outside the ball, i.e.
when the minimal distance from the origin to the set satisfies d,, — ¢ > R. In that case we have
)‘D(T6<Hm) N BD(Oa R)) =0.
Proposition A.11 (Asymptotic measure of a facet’s e-tube). Fix € > 0 and a facet

Hy, ={zcRP: a)z=d,}, am # 0,
with signed distance 6., := dp, [||am|| from the origin. Assume R > |0,,| + € so that the e~thickening
slab of H,, intersects the ball B” (0, R). Then:

D
AP(T.(H,,) N B (0, R)) = wp-1 7

O —€
B((§m+6)2(%7 4;1> — Sgn<7R )B(&mie)Q(%, D;l)‘| ,
R? R2

where B, («, ) is the incomplete beta function.
Dividing by the ball volume AP (BP (0, R)) = wpRP, one has

M(T.(H,) N BP(0,R))  wp_y e
B<6m+e>2(%v %) - Sgn(ié"}z )B(ém—e)z(
R? R?

AP (BP(0, R)) ~ 2wp

=

As R — 00 with 6y, € fixed,
AP(T,(H,y) O BP (0, R)) = 2wp_1 e RO~ + O((\6m| +e)Ze RD*‘),

and hence

AT (H,,) NBP(0,R))  2wp_y € (16m] + €)%e
MNBPOR) . wp o)
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Proof. From Proposition|A.9, for each facet H,,, we have
Omte D—1
N(T.(H,,) N BP(0,R)) = /5 Wb (R* —u*) "2 du,
whenever R > |0,,| + € so that the integration interval lies inside (—R, R).
Setu = Rs, so that s € [(0,, — €)/R, (0, + €)/R] and du = Rds. Then
(Om+e)/R D-1

v%fxﬂﬁ>mBD«LR»::wD,u#{/ (1-s%) 77 ds.
(6m—e€)/R

Leta = %. Splitting the integral at s = 0 we obtain

b b 0
I= / (1—s*)°"1ds = / (1—s%2"tds + / (1—s*)2"1ds,
a 0 a

where a = (0, — €)/Rand b = (,, + €)/R.

Using substitution u = 5%, ds = sgn(s)3u~'/2du, we obtain

b 1 b? 1 1
/ (1—s%)*"1ds = ~sgn(b) / u”2(1—u)*" ! du = sgn(b) Bb2(%’ a)'
0 2 0 2

Similarly, for the second term,

0 1 o 1
/ (1—s*)"tds = ——sgn(a)/ u”2(1—u)*"du =~ sgn(a) Ba?(%’a)'
a 2 0 2

Therefore

I= % lsgn(b) B,p(%, a) —sgn(a) Baz(;,Cu)] .

Substituting back yields the exact formula

1 D+1 Om—¢€ 1 D41
B(6m+e>2<§v 2 )—Sgn( R )B(ém—e)Q(EV 2 )]
R? R?

UJD,1RD
2

AP(T.(H,,) N BP(0,R)) =

Dividing by AP (BP(0, R)) = wp RP gives the normalized fraction.
For the asymptotics, put 2+ = ((&,, £ €)?/R?) — 0 as R — oo. Using

Bz(%vOK):/ w1 - w) Tt du =222 4 0(P2) (2 - 0),

0
we obtain
Om + S +€)3 Sm — Om —€)3
sgn(b) By2 (%,a) =2 = E+O<( 73 J ), —sgn(a)Bg> (%,a) =2 = €+O(( 73 J )
And
D D wD,1RD 4e ((Sm + 6)3 (6m — 6)3 walRD 4e (18 |+€)2e
NAT(H)OBP (0, R)) = S5 | T+ O = 2 ) | = =2 | o) |

—2wp 1 eRP! 1 o((|5m| + e)%RD*?').
Dividing by wp R yields

MN(T(Hy) N BP(0, R))  2wp-1 € (|6m] + €)%
(BP0 R) . wp o)

as claimed. ]
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Corollary A.12 (Asymptotic measure of the e~tube of I'M)). Fix e > 0 and let\JY_, H,, > T be
the union of all order-1 facets. Then for any R > 0,

M
AP(T.(rMW) N BP(0,R)) < > A(T.(Hn)NBP(0,R)).
m=1
In particular, if R > |0,,| + € for each m, then by Proposition|A.11|

M
A(T.(rMYN BP(0,R)) < 2Mwp_1eRP™ + O(Z(|5m|—|—e)26RD_3>.

Equivalently, dividing by \P (BP (0, R)) = wpRP,

AP(T.(TWYN BP(0,R))  2Mwp_1 € M (|6 + €)2€
AD(BD(0, R)) S T, R O<Z R3 '

m=1

Corollary A.12|is not tight, as it bounds the asymptotic measure of I'") using the aggregate bounds
derived from the measures of the individual facets H,,. This section should therefore be viewed
as a schematic illustration of our proof strategy rather than a final result. In the next section, we
establish stronger bounds for general order-n discontinuities, yielding a sharper characterization of
their asymptotic measure.

A.4.2 GENERALIZED CASE: e-THICKENING MEASURE OF ORDER-n DISCONTINUITY IN A
BOUNDED REGION

Having proved the result for order-1 discontinuity, now we aim to establish a similar result for general
order-n discontinuity for all n > 1.

Upper bound on the measure of the e-thickening of the subspace S; .

Proposition A.13 (Measure of the e—thickening set of I'("™) inside B (0, R)). Fix1 <n < D. Let

U,Ss> (™) be the union of all order-n subspaces containing the order-n discontinuities, where
each
S;={zeRP: Az =d;}, Ay e R™P rank(Aj) =n,

indexed by .J, and let e~thickening set of any S C R be
T.(S) :={x € RP : dist(z, S) < €}.

For each J, define the closest point of S'j to the origin by
wh = A (AsAL) Ny,

and let 65 € R™ be its coordinate in the normal direction to S, so that ||6;|| = dist(0, Sy).
Choosing an orthogonal basis, any x € R can then be written x = (y,u) with y € RP~" tangent
to Sy and u € R" normal, and Sy = {(y,u) : u=107}.

For each J and any R > 0,

NP(Te(S7) N BP(0,R)) = / werr: wp—n (R? —|lul?) 2 du,
lu—dsll<e
lul <R

Consequently,

D—n
A(T(r™)NBP(0,R)) < ) / werr: wpon (BZ = |lul?) 2" du.
||’l‘t|—‘(‘5JHR<6
ul|<
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Proof. Fix J. In the orthonormal coordinates (y,u) € RP~=" x R™ with S; = {(y,u) : u = d,},
we have

E =T.(S,) N BP(0,R) = {(y,u) : [lu— 8,1l < e, yl> + lull® < R2}.
The measure of F is

I=\"(E) :/ 1p(y,w) dy du,
RD

where we decompose = = (y,u) with y € RP~" tangent to S; and u € R™ normal.

([ ) i

For each fixed v € R™, the inner integral is the (D — n)—dimensional measure of the cross—section

{y: Iyll? < B = lull?} 0 {llu— 45| < e}.

By Fubini’s theorem,

This set is nonempty only if ||u|| < R and ||u — 0| < e.
Thus,
I= AP=(BP=(0, \/R2 — |Ju]|2)) du.

n,

uceR™:
lu=ésll<e, lull<R

Since AP~"(BP="(0,7)) = wp_,rP~™, we obtain

D—n
- wpn (B2~ ) 2" du,

n.

ue :
lu—dsll<e lull<R
which yields the first identity.
The union bound directly follows from 7,(I'™)) C |J, T.(S).
O

Proposition A.14 (Asymptotic measure for T..(S;) and T.(T'(™)). With the same setup as Proposi-
tionA. 13| fix 1 <n < D ande > 0.

(i) Single subspace S;. If R > ||0|| + €, then
NP(T(85) 0V BP(0, R)) = wp e € RO+ O(([16,] + €)2 " RP=72),
and consequently

AD(T.(Sy) D(0,R) WD—nWn [ €\" e\ /e
) = oomen (' o (I (Y1),

(i) Union T™. For T™ c |J, Sy, if R > max;{||04]} + € then

AP(T.(T™)n BP(0, R)) ZAD (S7)NBP(0,R)),

so that
AXT.(T™M) A BP(0,R)) < wpnw, e RP"|J| + ZO((||5JH+6)2 ¢n RP—n- 2),
J
and

AP (BD(0, R)) = R

AP(T,(T™) n BP(0, R)) _ WD—nWn |J|( ) N ZO( <|5J|| +e) (7>n)
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Proof. (i) Single subspace S ;. From Proposition|A.13| for each J we have

AP(Te(S7) N BP(0, R)) = wpn (B = ||ul|?) 2 du.

n,

ueR™:
lu=dsll<e, [Jull<R

By the assumption R > ||0| + €, so the u-region {u : |[u — §;|| < €} lies inside {||u|| < R}.
Expand for ||u|| < R:

(7 =) = = ro (1= BE) T = o (1 o ).

Integrating over the n—ball B™ (47, €) gives
M(T.(S;)NBP(0,R)) = wp_, R X(B"(64,¢€)) + O <wD_nRD”2/ ||| du> .
7L(6J’ )

Now, the volume of the n—ball is explicit:

A" (B™(04,€)) = A"(B"(0,€)) = wpe™.

For the error term, note that for any u € B™(d, €),
full < llu—=3dsll+ sl < e+ (161,

)
2 2
Jull® < (61 +€)*.
Therefore

/ [ull®du < (|61 + €)* X"(B"(35,€)) = (|41 + €)* wne”
B"(d7,¢€)

Substituting these into the previous expression gives
NP(T(85) 0V BP(0, R)) = wp e € RP™" 4 O(([16,] + €)2 " RP="72),
which is the claimed asymptotic expansion.

Dividing the asymptotic by A\P(B” (0, R)) = wpRP gives

AP(T.(S;) N BP(0, R) WD_pWp [ €\" e\’ /ey
Pyt sonen (1 of (L) ()1,

(ii) Union T, For T'™) C |, Sy, if R > max,;{||d,]} + ¢, then

AP(T.(T™) N BP(0, R)) Z/\D (S7) N BP(0, R)).

Applying the asymptotic expansion from part (i) to each term gives

AT (T™)NBP(0,R)) < wp_nwn € RP"|J| + ZO((naJH +e)2e RD*H).
J

Dividing both sides by AP (B (0, R)) = wp RP yields

D( (p(n D WD W ¢ n
R < s ) ool () ()
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Proposition A.15. With the same setup as Proposition A.13, fix 1 < m,n < D, € > 0, and index
sets Jn, J, with m,n elements. Define

I, = \P(T.(S;,)nBP(0,R)) I, =A\’(T.(S;,)NnB"(0,R))

Then

I, WD—nWn (€T U7, I8, 1 +€)*
In _ € 1+ O( U0zl #1807 lI+e)” )
Im WD —mWm (R) ( * ( " )

Proof. By Proposition|A.13| for any index set .J;, with &k elements:

I = u€ERF: wD—k(RQ - ||U||2)T du, 1<k<D,
lu=d7, lI<e, lull<R

when R > |0, || + €.

Write u = 6, + v with [|v[| < € and set & = £3%. Then

2\ @
Ik = wD_kRD_k/ (1 — 7“51)}%21)” ) dv.

llvll<e

On ||v]| < e we have t(v) := ||d, + v||?/R? < ((||04, ] + €)/R)?, hence

o2\ @ Sr.ll+€)?
(1 — 7“6"’}; ! ) =140 <(” L}!z 2 ) when [jv]| <.

Integrating over the k—ball B*(0, ¢) gives

_ 51| +€)? _ S5 | +e)?
Iy = wp_,R” k{)\k(Bk(Oaﬁ))+O (W) )\k(Bk(OaE))} = wp_pwp € RP7F 1+O(%) .
)

Apply previous Equation with k = n and k = m:
Iy = wppwne RP7 14+ O( L) [ 1y = wpopwome™ R 14 O Uyl t97) ]
Let

(116, 1l +€)? (16,11 + )

Up = O (R2 5 Um = O T .

Hence

In _ wp_nwn (3)”—"1 L+ un

I B Wp-—mwm \R 1+om ’
We have the identity

L U 1 O

140, Um 14+ v, Um):
Therefore
L+ un (16,1l + ) 116,11 + )
o, = (1+un) (140 (vp)) = 14Uy +O0(vm)+0(upvy,) = H—O(RQ +0 -
Consequently,
I _ @D-ontn (£) " hi+o 1651+ + (U190 + 0\ ]
I,  wWp_pmwm \R R?
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Upper bound on the measure of the e-thickening set of the discontinuities TE(I‘(T) ).

We begin with a lemma that provides asymptotic bounds on the measure of a polyhedral set P lying
in a subspace of codimension r, defined by a system of linear inequalities. This result will later
allow us to pass from the measure of the polyhedral region carved out by the top-k constraints to the
measure of a bounded ball in the subspace.

Lemma A.16 (Slice density with mixed inequalities). Let S C RP be an affine subspace of
codimension r and set d :== D — r. Let P C S be a (nonempty) polyhedral set given by the system of
linear inequalities:

P:{xES: chz<bj (G=1,...,p), d)x>en (m:l,...,q)}.

Define the (asymptotic) slice density

. )\d(POBD(O,R))
Oé(P) = Rh—r>noo wde '

Suppose there exists u € Lin(S) \ {0} such that
c;-ru<0 forallj=1,... p, and d;u>0 forallm=1,...,q.
Set 0 := u/||u| and
1= 1211}21){—6;@}, P2 = 1énwiLr%q{dTTnﬂ}, p:=min{py, p2} >0, L:= maX{mjachjH, max ||de}

Let
5 = min{%, ﬁ} € (0,1/v2], 6 := 2 arcsin(s) € (0,7/2].

Then o P) satisfies the two—sided bounds
Maeaoo(55 1) < alp) <

where I, (a,b) is the regularized incomplete beta function.

SIS

Proof. By hypothesis, —c @ > 0 for all j and d,) @ > 0 for all m, hence p > 0 is well-defined. For
unit vectors w, the linear fzorms vary continuously in w:

m

ey w—cJal < 2ejllsin( 24D, jdfw—dal < 2lidn sin(£52).

Set
5:= min{%, ﬁ}, 6 := 2 arcsin(s).
Then whenever Z(w, ) < 6 we have

T T
cjw< —p+2Ls < -5, dpw>p—2Ls > &.

Fix zy € S. For such w and all sufficiently large ¢,
ch(xo + tw) < by, d} (zo 4+ tw) > ey,
so the ray xg + tw eventually lies in P. Thus every w in the spherical cap
C:={weLin(S): |w| =1, Lw,u) <6}
contributes to P, giving for large R,

/\d(P n BR)

o R > 0q-1(C).

In spherical coordinates, using the result from (Li,|[2011), the cap area ratio is
1 _
0a-1(C) = 5 Law o %52 3)-
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Since sin? § = sin®(2 arcsin s) = 4s%(1 — s?), this yields the explicit lower bound

a(P) > %I4s2(1—52)(%7 %) > 0.

Upper bound. The feasible cone {cJTw <0, d,) w > 0} is an intersection of hemispheres. Any such
intersection is contained in some hemisphere, so its normalized measure cannot exceed that of a
hemisphere:

a(P) = 04-1(Coe NS 1) < 3.

This proves the claimed two-sided bounds. O

To invoke Lemma |A.16/in the Top-k setting, we first show that the system of linear inequalities
induced by the Top-k constraints indeed satisfies the hypothesis of Lemma|A.16|

Lemma A.17 (Top-k slices satisfy Lemma A.16). Assume affine scores z;(x) = a] x + b; with
{a;}M, linearly independent. Fix an order-r tie set J = {i1,...,i,11} and let

S = S((]r):{xE]RD: Ajx =dy}, V :=Lin(S) =ker A;.
For any admissible top-k index set S C {1, ..., M}, define the polyhedral slice

FL(;% = {a: €S: (aj—ay) x>by,—b; Vj€S\J, (am—ai) x< by —bn VmESE\J}.

s

Then I‘(]T é satisfies the condition of LemmalA.16]

In particular, writing ¢; = a; — a;, for j € S\ J and dp, := @, — a;, form € st \ J, there exists
u € V '\ {0} such that
chu <0 Vj, d;lu >0 Vm,

Proof. Work inside S and write each x € S as x = x¢ + v with v € V (for an arbitrary xy € S).
Only the V—components of normals matter, so define the orthogonal projection ITy : R” — V and
set

n; ::HV(aj—ail)GV (jES\J), mg::HV(ag—ail)GV (EGSB\J)
For x = x¢ + v we have for all index *:
)T

(ay —ai,) "z = (ay —ai,) "zo + Oy (ay —a;,) v

so the slice inequalities reduce on V' to
n;rv>ﬁj(j€S\J), mz—v<w(£€SC\J),
where

Bj = (biy = bj) = (aj —ai,) Two, e = (biy —be) = (ar — aiy) "xo.

Step 1 (Nondegeneracy of projected normals). We claim n; # 0 forall j € S\ J and my # 0 for
all ¢ € SB\ J. If, say, n; = 0, then a; —a;, € V- =row(Ay) = span{a;, —a;, : s =2,...,7+1},
yielding a nontrivial linear dependence among {a;, , . . a, }, contradicting the independence
of {a;}} . The same argument applies to each m.

o) a/iTJrl 5

Step 2 (A single cone collecting all signs). Introduce the finitely generated cone
K = Cone({fnj: jeS\NJ} U {my: EESG\J}> cV.

We show K is pointed. If K contained a line, then there exist nonzero coefficients o, 3, > 0, not all

zero, such that
Zﬂgmg - Zajnj = 0.
4 J
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Lift this identity back to the original normals: since n; = Iy (a; — a;,) and my = Iy (a; — a;,),

we get
M 32 it =) = (a5 = aa) ) = 0.
4

hence the bracketed vector lies in V- = row(A4 J) = span{a;, — a;, }=5. Therefore there exist
coefficients 75 such that

r+1

E Belag — a;,) — E aj(aj — aj,) E Vs(ai, — ai,).
l

Rearranging terms gives a nontrivial linear dependence among distinct vectors from {a; }:

r+1 r+1

> Biar — Y aja; — Y veai, — (Zﬂe—zaj—ZVS)ail =0,
4 J s=2 ¢ J 5=2

with coefficients not all zero (since some « or 3 is nonzero). This contradicts the linear independence
of {a;}. Hence K is pointed.

Step 3 (Strict separating functional). Because K is a pointed polyhedral cone, its polar K° = {u €

V : {g,u) <0Vg € K} has nonempty interior. Equivalently, there exists « € V' \ {0} such that
(g,u) <0 forevery generator g € {—n;} U {my}.

Unpacking the generators, we have

(—nj,u) <0 = (nj,u) >0 Vi, (mg,u) <0 V.

Step 4 (Sign alignment with Lemma A.16). Define v’ := —u € V' \ {0}. Then
(nj,u'y = —(nj,u)y <0 Vj, (mg,u) = —(mg,u) >0 VL.
Recalling ¢; = a; — a;, and d,,, = a.,, — a;,, and that only their VV—components act on V', we obtain

cju' =nju <0 (VjeS\J), Al =mju >0 (vmeSt\J).
Conclusion. We have constructed v’ € V' \ {0} satisfying the mixed strict sign conditions required
by Lemma|A.16! Therefore that lemma applies to the slice I‘Ef% O

Building on Lemma |A.16 and Lemma |A.17, we conclude that each Top-k slice F(T) c Sy (") has
positive slice density

() _
a(FJ,S) € |:% I4S§7JYT(1—S§1J7T)(%7 %)7 %i|»

where d = D — r and I (a, b) is the regularized incomplete beta function. Since, for fixed J, the

order-r slice is a finite union T = g F%, its density

AP—(T") \ BD(0, R
oy, = lim ( J (©, ))
’ R—00 wD_',-RD_T

is strictly positive and satisfies the trivial bounds
1 d—1 1
agr S [mgx §I4S§1J,T(1—SS%“LT)( 9 5)7 1:|

We now establish asymptotic bounds for the ratio of e—thickenings of discontinuity sets of different
orders. The argument proceeds in 4 steps:

1. Relate the measure of the e—thickening \P(T, ( (F(T)) NnB R) to the base measure of the slice
AT N BR).

31



Under review as a conference paper at ICLR 2026

2. Derive the asymptotics of a single thickened slice using definition of ¢,
)‘D(TE(FEIT)) NBP(0,R)) = wp_rwray, e RP™"+O("RP~1).

3. Estimate overlaps between distinct thickenings TE(F_(]T)) and TE(FSC)) for J # J’, showing
they are bounded by
O(€T+1RD_T_1).

4. Assemble the contributions of all slices J € 7, to obtain
U:(R) = X(T.(T") N BP(0, R)),
and then compare the cases 7 = n and r = m to deduce the asymptotic ratio

Un(R)
Un (R)

We are now ready to state and prove the main theorem.

Theorem A.18 (Ratio of e-thickening of order-n discontinuity vs. e-thickening of order-m disconti-
nuity). Fix integers 1 < m,n < D and € > 0. For eachr € {m,n}, suppose

r0 c [JsP, S ={zeRP: AV =d}, rank(A})) =1,
JeTr

with finite J,.. Assume moreover that each slice F(JT) =T n Sy) is a (possibly unbounded)
polyhedral subset of the flat SST). Define

Ur(R) == A(T.(T)n BP(0,R)),  wa:=A{(B%0,1)).
For each J € J,, set

: )‘D_T(Pgr) nBP(o, R)) 1 d—1 1
aup i= Jim = e € [max g, o, (%4 8) 1),
with ss,_j, defined as in Lemma A.16|and Lemma|A.17,

Then
UT(R) = WD—r WT( Z aJ,T) € RD_T + ()(67’fED_T_1)7
JeTr

UulR) _ Zereg, Cin wpown (07 (1 o (1)),
Unm (R) ZJejm Qjm WD—m Wm R R

and

Proof. We write Br := BP(0, R) and d := D — r when considering a fixed order 7.

Step 1 (relation between thickening and polyhedral slice). Fix a codimension-r flat S € R and a
measurable P C S. Choose an orthogonal decomposition R” = S @ S+ and write z = (y, u) with
y € 8,uec St Then

T.(P) N Br = {(y.w): y€ P, Jull <e Iyl + ull® < B},

Fubini theorem gives us the identity

D —
AP(T.(P) N Bg) _/yep

where pg(y) := minf{e, /R? — [[y[*} € [0, ¢].

Split the base P into the interior band I := {y : ||y|| < R — ¢} and the boundary band B% := {y :
R — ¢ < ||yl < R}. On I we have pr(y) = €; on B we only know 0 < pr(y) < e. Thus

V(B 0pnw) X'0) = [ wepr) X))

yeP

wy € M(PNBr_.) < AP(T.(P)NBg) < w,e" X(PN Bg). )
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The d-volume of the annulus Br \ Br_ is AY(Br \ Br_.) < dwq R? !¢, so subtracting the bounds
in equation 2| yields the explicit error

AP(T.(P) 1 BR) = wr € X(P N Br)| < dwgw, et BRI 3)

Step 2 (asymptotics of one thickened polyhedral slice). By definition of « ., we obtain:
AT 0 BR) = ag,wa R+ O(RT). ©)

For fixed r and J € 7., put S := SJT , P = FST), and d = D — r. Combining equation |3| and
equation 4| yields

/\D( (T )) N Br) = wy " (ah wp_r RP~7 O(RD—T—l)) + O(H RPTY),

ie.
AP(T(T)) N Br) = wp_rwyay, € RP™7 4+ O(¢"RP~"), )
with the O(-) uniform over J € 7, (finite family).

Step 3 (overlap estimate between slices). Let J # J'. Since SST) and SST) are distinct codimension-
r flats, their intersection L := S ST) ns L(,T,‘) (if nonempty) has codimension at least 7 + 1. There exists
a constant ¢ = ¢(D, {S'"}) such that

T.(SS)NT.(ST)) © Tu(L)

(geometrically: the distance to L is bounded by a fixed multiple of the sum of distances to SST) and

SSC), with the constant depending only on the angle between the two flats; a finite family gives a
uniform c). Hence, by the single-flat tube estimate (Proposition A.14)),

AP(T.(SS)YNT.(SY)) N Br) < Cp, e+ RP=7L,

Since I‘ C Sf, ), the same bound holds with 7. (I‘( )) in place of T¢(S. r )). Summing over the
finitely many pairs,

)\D(UT ) mBR) Z)\D 7.(r7) N Br)

(Higher-order intersections are even smaller-codimension > r + 2-and are absorbed into the same
bound.)

< Cp, et RPN (6)

Step 4 (Measure ratio across thickened different orders). Because 7. (I'™) = | J ;. 7. T (F(T))
combining equation 5|over J with equation 6| gives

U,(R) = oJD_TwT< 3 aJ,T) ¢ RP~" 4 O(&'RP— 1), %
JeT,

Apply equation [7| with r = n and r = m with the similar asymptotic division argument as in
Proposition |A.15¢
Un(R) WD—nWn, (ZJGJ“ ayy) €"RP™(14+ O(R™Y))

Un(R) WD mwWm (ZJEJM gm) €MRP=™(1+ O(R™1))

— ZJGJ” Ajn Wp—nWn €\n—m .
- Y Jed,, Qdm WD—m Wi (E) (1+O0(R™)).
O

Building on Lemma|A.16| we also establish an asymptotic ratio for /,,—tubes around discontinuity
slices of different orders. The proof follows the same multi—step strategy as before, adapted to the
{+, geometry:
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1. Derive the fiber decomposition of a slice I’ ¢ 5¢" in the subspace 5.

2. Establish explicit two—sided bounds for the measure of the £, —tube A" (Te(oo) (F(JT)) NnB R)
in terms of the subspace volume )\d(F(JT) N BP(0, R)).

3. Reduce to base volumes in the subspace by evaluating )\d(I‘ST) N BP(0, R)) and derive the
asymptotic expansion of A2 (T°('")) 0 BP(0, R)).
4. Control overlaps between distinct tubes T (I‘(JT)) and 7°°) (FF]C)) for J # J', showing

their contribution is O(e" 1 RP——1),

5. Derive the asymptotic measure of the union | ;¢ ;- Te(oo) (FF]T)) for fixed r, and then compare
U, (R) and U,,(R) to obtain the asymptotic ratio

Un(R)
Um(R) ’

Theorem A.19 (Weighted union—/, tube ratio for orders n vs. m). Fix integers 1 < m,n < D and
€ > 0. For each r € {m,n}, suppose

e c U S‘(]r)7 S(Jr) ={ze RD . A(JT'):C _ d(JT')}’ rank(A(Jr)) =,
JETr

with finite [J.. Assume moreover that each slice FF,T) =T n SF,T) is a (possibly unbounded)
polyhedral subset of the flat Sgr). Define the { ,—tube around S&T) by
Tgoo)(SST)) = {z € RP : ||Af]r)x - dST)HOO < e}, TE(“)(FST)) = {x: distoo(:c,f‘f,r)) < e},

where distoo (2, T") := infyer ||AF,T)x — AF,”yHOO (so the normal thickening is measured via AF,T)).
Set
Un(R) == N(TNT )N BP(0,R)),  wa:=\(B%0,1)),

and for each J € 7, let

: AD_T(FST)QBD(O’R)) 1 d—1 1
war = e © [ b e, ) 1)

r r —1/2
kg = (det(AG(AG)T)) 2,

with ss, . defined as in Lemma|A.16 and Lemmal|A.17

Then
( ) Z Rin O Jn -~
Un R Jejn WD_n <2€> - ( < 1 ))
= - 1 + O ey .
Un(B) S wypmagm @p-m \R R

JETm

Proof. Fixr € {m,n} and abbreviate d := D — r, Br := BP(0, R). We prove
Ur(R) =wpr( Y Kurasy) (267 RP + O(HIRPY), @®)
JeTr

which yields the ratio in the statement after applying it with r = n and r = m.

Step 1 (fiber decomposition of a slice in the subspace). Fix one slice index J and write .S := Sf,r) =

{x : Az = d} withrank(A) = r. Let V := ker A and V+ = row(A). Choose an orthonormal basis
N € RP*7 for V+ and complete with an orthonormal basis for V' so that every x € R decomposes
uniquely as © = y + Nz withy € S and z € R". Then for y € S we have Ay = d, hence

Ar —d=A(y+ Nz) —d = AN z.
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Because N has orthonormal columns, AN € R"*" is invertible and
|det(AN)| = y/det(AAT).

Define
-1/2 1
o |det(AN)|

The /.-tube fiber over any base point y € S is the linear preimage

{zeR": |AN z||oo <€} = (AN)fl([— ge}r),

K= (det(AAT))

whose r-volume equals

N(AN) (= ) = Tqrgan = (297

claimed Size of the fiber in the ambient norm. Since ||wl||2 < /T ||w||s for w € R”, any z in the
fiber satisfies
-1 -1
[zl = [INz]| < [(AN) " 2 [[AN2]l2 < [I((AN) " 2 Vre.

Set the slice-dependent constant
Cy = Vr[l(AN)™!2.

Then every point y + N z in the fiber over y lies within ambient distance < C'ye of y.

Step 2 (two-sided bounds for /..—tubes in terms of subspace volumes). By Fubini in the
orthogonal splitting R” = S @ V+,

AP(T(T)) N B) :/ " M({z; [ANz|oo <€, |ly+ Nz|| < R})d)\d(y).
yel';

Let
In={yer : [y <R-Cye}, BY:={yely: R—Cye<|lyll <R}.

For y € I, the entire full fiber fits in Bp (triangle inequality), so its r-volume equals & ,-(2¢)". For
y€E€B 9 the fiber volume is bounded above by the full fiber volume. Therefore,

ke (26) XU(IR) < AP(TCNTY) N BR) < kyp(260)" MN(IR) + k(26" X(BY).  (9)

Since Ir U B = Ff]r) N Brand Ig = FST) N Br—_c, ¢, We can rewrite equation|9|as the rwo-sided
inequality

k(20" MY N Br_o,) < AP(TETT) N Br) < k(20" MY N Bg).  (10)
Step 3 (reduce to base volumes and apply polyhedral asymptotics). The difference between the
upper and lower terms in equation [10]is supported on the base annulus of thickness Cje in S:

M(Br\ Br_c,c) =wa(R* = (R— Cye)*) < dwyR¥' Cye.
Multiplying by the constant fiber volume ;. (2¢)" gives
‘)\D(TE(OO) (%) N BR) — kp(20)" AT 1 Bp) ’ < dwgky, Cy (207 e RS (11)
In particular,
AP(TENTS)) N BR) = k,(20)" M) 1 Br) + O(+ R,
where the big-O constant may depend on J through « ., and C};.

From the Equation:
AP A BP(0, R))
oy, = lim )
’ R—o0 wp_r RP-T
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we obtain:
AT N Bg) = az,wa R + O(RY). (12)

Combining equation |1 1|and equation |12|yields
AP(TET)) N BR) = Ky agrwa (2€)" RY 4+ O(¢ 1 RITY). (13)
Since 7, is finite, we can take the O(:) uniform in J by enlarging the implicit constant to the

maximum over J.

Step 4 (control overlaps between different /..—tubes). Fix J # J' and set S := Sy), S = S.(]T/),
and L:=SNS" . LetVy :={ueRP: Aju=0, Ayu=0} be the direction space of L, and let
N := Vi (so every z € RP decomposes uniquely as = y + v withy € L, v € N). Define the

linear map
T:N —R xR", T(v) == (Ajv, Ayv).

If T(v) = (0,0) then Ajv = Ayv=0,s0v € V. Since alsov € N = V-, we get v = 0. Thus T
is injective on the finite-dimensional space N; hence there exists ¢ > 0 (such as ¢g = 1/omin(T))
with

9 9 1/2
loll < e |T@)l, = co (A3 + IAs0l3) ~  Wwen. (14)

Now take any = € TE(OO)(S) N TE(OO)(S’). Write x = y + v withy € L,v € N. Because Ay = d;
and Ay = dj/, we have

Ayjv=A xr—djy, Ajv=Apx—dj.
Using [lw]l2 < V7 [|w]leo in R”,
[Asvlle <Vr||Ase —dyllee < Ve, [Asvll2 < Ve
Plugging into equation |14, gives

dist(x, L) = ||v]| < ¢o \/(\/;6)2 +(Vre)2=coV2re =: ce.
Therefore we have the set inclusion

TN(S)N TS ¢ TP (L), (15)

where T2 (L) denotes the Euclidean tube of radius ce around L, and ¢ = ¢(J, J') := cov/2r depends
only on the pair (J, J).

Since L has codimension at least r + 1, the Euclidean tube estimate (Proposition |A.14) yields
MNATP(L)NBg) < Ce ™ RP—1

for some constant C' = C(D, r, {S, S’}). By equation 15| the same bound holds for /\D(TC(OO) (S)n

Te(oo)(S’ ) N Bg). Because Ff]r) C S and FST,) C 5, intersecting with the slices can only decrease
the measure; hence

A(TEITTY AT N BR) < et RPTL

Summing this over the finitely many unordered pairs (J,J’) and applying inclusion—exclusion
truncated at first order gives

)\D(U Te(OO) (FST)) N BR) _ Z )‘D<Te(OO) (FST)) N BR) < C/€r+1 RD—r—l7 (16)
J J

with C” depending only on (D, ) and the finite family {5 '(]7') Yre.

Step 5 (union asymptotics and ratio for orders n vs. m). Summing equation|13|over J € 7, and
invoking equation 16| gives

UT(R) = wD—T‘( Z KJJJ‘O[JJ,) (26)r RDiT + O(e""i’lRD*Tfl),
JeTr
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which is equation (8|

Applying equation §|with » = n and » = m and dividing using the same argument as Proposition|A.15

yields
8- B e ()7 (-o(3)
Un(R) Y jeq. BImQim Wp-m \ R R))’
as claimed. O

Proposition A.20 (Characterization of ¢, —thickening). An input x belongs to T (T") if and only
if there exists an index i such that 0 < z(x) — z;(x) < €. In other words, at least one non top-k

logit lies within € of the k-th logit zj (7).

Proof. (=) Assume z € T.°°)(T'). By the definition of T.°* (T"), there exist a tie set .J and a top-k
active set S such that J \ S # @. Leti € J \ S. Then 0 < 2, (x) — zi(z) < e.

(<=) Assume there exists ¢ with 0 < zp)(z) — 2i(z) < e. Let J = {[k], i}. Then z € Te(oo)(l"f,z)) C
TN, O

A.5 HITTING AND OCCUPATION TIME NEAR DISCONTINUITIES

Suppose we wish to study an adversarial process that drives the input xy € Cs toward a discontinuity
boundary. We model this process by the stochastic differential equation

day = y(t,x¢) dt + o(t, x¢) dBy,

where B; is a standard n-dimensional Brownian motion. The drift term ~(¢, z) represents the
adversarial drive, while the diffusion term o (¢, ) models uncertainty and random perturbations. Such
noise may arise from stochastic gradient descent when the adversarial direction is estimated from
minibatches, from measurement errors in the input, or from inherent randomness injected into the
system.

A.5.1 RANDOMLY PERTURBED DIFFUSION PROCESS IS GUARANTEED TO HIT THE TOP-K CELL
BOUNDARY

We consider the stochastic dynamic that consist only of the diffusion term. In this case, the evolution
of the system is driven purely by random perturbations. For simplicity, we assume that the diffusion
coefficient is time-independent, i.e., o (¢, z;) = o for all ¢, with invertible 0 € R?*4. Then z; is an
It6 process with initial condition x € Cs satisfying

dx; = o dB;y.

A key step in our analysis is to understand the hitting time of such processes against linear boundaries.
The Proposition|A.21|is a classical result that provides a probabilistic bound for the hitting time, and
it will later be applied to establish the exit-time behavior from the polyhedral cell Cs.

Proposition A.21 (Probabilistic bound for the hitting time). Let Y; = Yy + ¢ Et with Yy > 0 and
c > 0, and define

T:=inf{t >0:Y; <0}.
Then, for every t > 0,

P(r<t)=2(1-0(2%)),
and hence for any § € (0,1),
2
IP’(T§ (%) ) 1-46, qs ::@71(1725),

2 . . . . . .
where ®(x) = \/%7 / foo e~ /2 du is the standard normal cumulative distribution function.
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Proof. Write Y; = Y; + ¢B; with Yy > 0. Then

T=inf{t>0:Y; <0} =inf{t >0: Et < —Yy/c}.
For standard Brownian motion By, the reflection principle gives

IP’< min By < —a) = QIP’(Et < —a) = 2(1 — q)(a/\/i)), a > 0.
0<s<t

Where the second equality terms from the fact that B; ~ N(0, t).

Applying the equality with a = Yp/c yields

pr<n=2(1-2(20)).

2
Letgs = ! (#) Setting t5 = (C}/T(is) gives ¢ (C%) = #, hence

1
P(Tgté)zzu_%(s):pa.

O

The above proposition shows that for a one-dimensional diffusion of the form Y; = Yy + ¢ Et, the
first hitting time of zero admits an explicit probabilistic bound. In our multidimensional setting, each
face of the polyhedral cell Cs is described by a linear inequality a(*") Tz > d(*9), and projecting the
diffusion z, onto the normal direction a(*-7) reduces the problem to exactly this one-dimensional case.
Applying Proposition|A.21|to all such faces yields the following bound for the exit time from Cs.

Theorem A.22 (Probabilistic bound of the cell boundary hitting time). Assume x; follows the
diffusion equation dx, = o dB; with o € R*? and initial condition xo € Cs, the open polyhedral
cell associated with the k-subset S,

G= () {zer: (WO WD) Ta>v)) — b},
i€S, j¢S

Denote a(7) = W;i) — Wg(j), dd) = b(gj) — bgi), and ¢ = |0 T a9
nondegeneracy ¢\) > 0 for all i, j. Define

, and assume uniform

LTy
Tmi = min —_— .
mm ies, jgs  |joTaltd)||

The hitting time of Cs is
Tee = 1nf{t > 0: z; ¢ Cs}.

P(re, <t) > 2(1—@(7"“‘\/;1»,

=u*/2 du, is the standard normal CDE.

Then for every t > 0,

where ®(x) = \/%7 [Foe

Moreover, by continuity of the sample paths, x., € 0Cs almost surely.

Proof. By the uniform nondegeneracy assumption, we have ||o " a;;|| = ¢(¥) > 0.

Consider the gap process
)/t(lj) = a;'gXt o d(z,])

We observe that Yt(i’j ) = 0 when x; is on the boundary created by experts ¢, j.
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Applying Itd’s formula and using the equation dx; = o dB;, we obtain

dv" = alio dB,

T ..
Letu = o3ty € RY, 50 [Ju| = 1, and define
ij
.
~ ~r a..o
B{" :=u"B, (e.B" = 2. B).
! v B ! loTai|| g

Since B, is a d-dimensional Brownian motion and  is constant, ng ) is a continuous local martingale
with BY"7) = 0. Its quadratic variation is (B{"?), = jot |lul|? ds = t.

By Lévy’s characterization for Brownian motion, a continuous local martingale starting at 0 with
9)

quadratic variation ¢ is a standard one-dimensional Brownian motion; hence Bt(l is a standard

1-dimensional Brownian motion.

We can rewrite:
dYt(iJ) _ a;;CT dB, = ||0Taij Hdgt(i,j)
Thus Y (%9) is a nondegenerate 1-dimensional Brownian motion starting from
Yo(i’j) = a;;xo —d®) > .

Define the stopping time
T; = 1inf{t > 0: Y;;(t) <0}

Intuitively, 7;; is the first time the process Y;; (t), which starts positive, touches zero; i.e., the random
moment when expert ¢ and j’s scores become equal and the trajectory hits the boundary.

In summary, we have the following:
dv\") = alodB, = |0 ai,l|dB{"”
Yo(z',j) _ a;;xo _ g
7;; = inf{t > 0: Y;;(t) < 0}.
We want to bound the hitting time 7;; using Proposition|A.21|

Apply Proposition|A.21| with Y = Yo(i’j) = aj.xg — d9) c = |0 " a;;| we obtain:

ij

a-zjo — d9)
Plry <t)=2(1—a 280”2 ")),
’ loTallv

Since the first exit time 7¢, from the open cell Cs is the infimum of the exit times through all boundary
faces, we have

For every t > 0,

o, = inf 7.
S ies, jgs

Thus
{re, <ty = | {my<th
i€S, j¢S
The probability of the union is at least as large as the maximum probability of its members. Therefore

Plre. < t) > P(r;; < t).
(Tcs_)_ign&ajég (ri <)

Let . i)
. aijl'o — d ©J
Pmin = min ————— > 0.
TR s, jés lloTai;
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T (i:9)
. a; xo—d . . . .
Since P(1;; <t) =2 (1 - (M)) decreases as r;; increases, the maximum is attained
i

at rmin. Hence, for every t > 0,
P(re, <) > 2(1-@(%p)).

By construction, at the exit time 7g at least one inequality becomes tight, i.e. YT(Si’j ) = 0 for some pair
(4,7), s0 z, € OCs. Since x has continuous sample paths, the exit occurs on dCs almost surely. [

From Theorem |A.22, we can establish that the exit time 7 is finite almost surely in the next corollary.

Corollary A.23. The exit time Ts of the diffusion process from the polyhedral cell Cs is finite almost
surely; that is,
P(Tg < OO) =1.

Proof. By Theorem |A.22|we have for every ¢t > 0,

Plrs < 1) > 2(1 - @(Tmin)) 1,
which implies P(15 < o0) = 1. O

Remark A.24. Theorem|A.22|and Corollary|A.23|asserts two key properties of the randomly perturbed
diffusion process dx; = o dBy in relation to the polyhedral cell Cs: (i) the exit time s is finite almost
surely, so the process cannot remain in Cgs indefinitely; (ii) due to continuity of the sample paths, the
exit occurs on the boundary 0Cs.

A.5.2 EQUIVALENCE BETWEEN CELL BOUNDARIES AND THE DISCONTINUITY SET

In Section|A.5, we established that a randomly perturbed diffusion process starting inside any top-k
cell Cs with fixed diffusion coefficient almost surely exits the cell in finite time, i.e., it hits the
boundary 0Cs with probability one. However, we have not proved that the union of all such cell
boundaries coincides with the discontinuity set I'. This result can be proved directly from the
definitions, which we provide a proof in Lemma|A.25|

Lemma A.25 (Union of all boundaries and the discontinuous set coincides). For each k-subset S, let
the open cell be

Cs={z: zi(x) >z(z) VieS, j&S}, Cs={x: zi(z)>z(x) VieSs, j¢S}

Define the switching facets

Fs,; = {x s zi(w) = z(x), zi(x) < zo(x) V0 € S\ {3}, zm(z) < zj(x) Ym ¢ (SU {j})},

and
r=1) U Fsis

IS|=Fk €S, j¢S
Then
r = J acs.

Sl=k

Proof. (i)T" C U‘S‘:k OCs.

FixSandi €S, j ¢ S. If x € Fg; ;, then z;(x) = z;(x) and z;(z) < z;(x) forall £ € S\ {i} while
zm(z) < zj(x) forallm ¢ (SU{j}). Hence x € Cs and = ¢ Cs, so z € 9Cs. Thus Fs; ; C 9Cs,
and the union gives the inclusion.

(ii) UISI:k dCs CT.
Let 2 € 9Cs for some S. Then 2 € Cs but z ¢ Cs, so there exists an inside—outside pair with equality:

Ji €8, j ¢ Ssuch that z;(x) = z;(x). Let i* € argminges 2¢(x) and j* € arg max,,¢s 2m ().
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Since = € Cs, we have mingeg z¢(z) > max,,¢s zm(); because x ¢ Cs, the strict inequality fails,
hence

zis(x) = min ze(x) = rnrll%c Zm(z) = zjx ().

By construction, z;+ (z) < z¢(z) forall £ € S\ {¢*} and 2z, () < zj« (z) forall m ¢ (SU{j*}), i.e.
2 € Fg 4+ j«. Therefore v € I'.

Combining (i) and (ii) yields I' = U\s\= 1 9Cs. O
Remark A.26. Using Lemma|A.25/and Theorem A.22, we can conclude that a randomly perturbed

diffusion process initiated inside any top-k cell Cs with fixed, nondegenerate diffusion coefficient
almost surely reaches a discontinuity boundary in finite time.

A.5.3 FIRST EXIT ALMOST SURELY AS ORDER-1 DISCONTINUITY

From Theorem |A.22|and Lemma |A.25}, we know that the first hitting time of the discontinuity set is
almost surely finite. What remains unclear is the type of discontinuity reached at exit. In the next
part, we show that, with probability one, the process exits through an order-1 discontinuity. The key
tool is a classical lemma: an r-dimensional Brownian motion (r > 2) almost surely never hits a fixed
point in R” at any time.

Lemma A.27. Let (B;):>0 be standard d-dimensional Brownian motion with d > 2 and By = 0.
For any fixed a € R with a # 0,

P(3t>0: By=a) =0.

Proof. Letr < |a] < R and define R, = ||B; — al|. Set the stopping times
Tr:=1inf{t >0: R, =71}, T :=inf{t > 0: R; = R}.

Case d > 3:
Let u(z) = ||x — a||>~9, which is harmonic on R? \ {a}.

Applying It6’s formula,
d’LL(Bt) = VU(Bt) . dBt,

so u(B;) is a local martingale.
By optional stopping theorem for the bounded stopping time 7, A 7, we obtain
]E[U(B‘rr/\m)] = u(By) = ‘a|2_d-
Since B, - lies on the sphere of radius 7 or R centered at a, we have
P(r, < TR) 7?4+ P(rgp < 7.) R*™¢ = |a|*~ %

Thus

‘a|2—d _ R2—d

Pl <7r) = " 5g—pa-a-

Letting | 0, R 1 oo gives

P(7, < o0) — 0.
rl0

That is, the probability that the Brownian path ever enters an arbitrarily small neighborhood of a
vanishes. Consequently, the event of hitting the exact point a has probability zero, and hence

P(3t>0: By =a)=0.
Case d = 2:
Let v(z) = log ||z — a||, which is harmonic on R? \ {a}.
By 1td’s formula, v(By) is a local martingale, hence by optional stopping at 7,- A T,

log |a| = E[v(B;, arg)] = (logr) P(7, < 7r) + (log R) P(1r < 7).
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Therefore log R — log|al
og R —log|a
P(r. < = =" —0,
(7 < 7r) log R —logr rio0

Letting r | 0, R T oo gives
P(7, < 00) — 0.
rl0
and, as above, P(3t > 0: B, =a) = 0.
O
Corollary A.28. By translation invariance of Brownian motion, Lemma |A.27| implies that if a
standard d-dimensional Brownian motion (By),>¢ starts at By = a with a # 0, then it almost surely

never hits the origin:
P(3t>0: B, =0) =0.
Lemma A.29 (Linear image of Brownian motion). Let (B;):>o be a standard d-dimensional Brown-

ian motion and let A € R"*% have rank n < d. Define Z, := AB;. Then (Z4)i>0 is an n-dimensional
Brownian motion with covariance matrix AAT, i.e.

Zy =0, Z has continuous paths, Z; — Zs ~ N (0, (t — s) AAT)

with independent, stationary increments. In particular, By := (AAT)"Y2Z, is a standard n-
dimensional Brownian motion.

Proof. Since By = 0 and t — B, is continuous, we have Zp = ABy = 0and t — Z; = AB; is
continuous.

For 0 < s < t, the increment B; — By is independent of Fs := o(B, : u < s) and has law
N(0, (t — s)I4). Applying the linear map A,

Zy—Zs = A(B; — By),
which is (joint) Gaussian with mean 0 and covariance

Cov(Zy — Zs) = ACov(B, — Bs) AT = A((t —s)I))AT = (t—s)AAT.

Independence of increments is preserved under linear maps: if (X1, ..., X,,) are independent, then
so are (AXy,...,AX,,). Hence (Z;) has independent, stationary Gaussian increments with the
stated covariance, and is adapted with continuous paths.

By the characterization of Brownian motion as a continuous Gaussian process with independent, sta-
tionary increments and covariance E[Z;Z]] = (t A s) AAT, we conclude that Z is an n-dimensional
Brownian motion with covariance AA . Finally, since AA " is symmetric positive definite (rank n),
(AAT)~1/2 exists and

Et = (AAT)71/2Z,§

has covariance (¢t — s)I,, for each increment, hence is standard n-dimensional Brownian motion. [J
We now use Corollary |A.28|to show that the exit almost surely occurs on an order-1 discontinuity.

The Corollary |A.28|is applied here to rule out the simultaneous satisfaction of multiple independent
boundary equalities, which almost surely does not occur.

Theorem A.30 (Exit occurs on an order-1 discontinuity). Let x; solve dxy = o dBy with invertible
o € R and xy € Cs, and let 75 := inf{t > 0: x; & Cs}. Then

]P(J:TS € F(l)) =1 and P(J?TS S F(”)) =0 foralln > 2.

Proof. Define y; := o~ 'x; then v, is a standard Brownian motion in R? (denoted B;), and D :=
o~ 'Cs is a polyhedral domain.

Suppose the exit occurs at an order-n discontinuity with n > 2. Then there exists an index set
I={i1,...,in41} with [I| = n + 1 such that

Ziy (x‘rs) == Z’in+1('x‘rs)v
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and this common value coincides with the k¥ — k+1 threshold. Equivalently, at y,, we have n
independent equalities

Zig (y) — Ziy (y) == B (y) — Ziy (y) =0.
Define the n-dimensional process
Ut = (Zi2 (yf) — Ziy (yt)a sy Ripga (yt) — Ziy (yt))
Since each z; is affine, there exist A € R"*¢ and b € R” such that
Ut :Ayt—Fb:ABt—l-b
By construction, A is obtained by taking n independent row differences of Wy; since W, has full
row rank, it follows that rank(A) = n. Consequently, AAT is symmetric positive definite, and
(AAT)~1/2 exists uniquely.
By Lemma |A.29, AB; is an n-dimensional Brownian motion with covariance AAT. Hence the
centered process

U :=U —b
is an n-dimensional Brownian motion with nonstandard covariance AAT. Define
B, = (AAT)12 0,
which has the law of a standard n-dimensional Brownian motion (this follows by the same reasoning
as Lemma|A.29).

Because x( € Cs, we have Uy = b # 0, hence
(3t>0: U, =0} ={3t>0: U, = —b} = {at >0: B, = —(AAT)‘l/Qb}.

Since n > 2 and —(AAT)~1/2b + 0, Corollary |A.28| yields
]P(Elt>0: Ut:O) =0.

Exiting at an order-n discontinuity would necessarily require that the process U; reaches the origin,
ie. U, = 0. However, as shown in Corollary |A.28, an n-dimensional Brownian motion with
n > 2 almost surely never hits any fixed point distinct from its initial condition. Since Uy # 0, the
probability of U, ever reaching 0 is therefore zero. It follows that exits through order-n discontinuities
with n > 2 occur with probability zero, and consequently the exit must almost surely take place on
an order-1 discontinuity, that is,

Pz, eT™W) =1 and Pz, € T™) =0 foralln > 2.

A.5.4 OCCUPATION TIME NEAR DISCONTINUITY SETS

Fix € > 0 and, for each order n > 1, let TE(I‘(”)) be the e—tube around the order-n discontinuity set
),
Let (X;)¢>0 be an Itd process in R with initial condition X = z¢ € Cs for some polyhedral cell

Cs,
dXt = O'dBt,

where B; is a standard D—dimensional Brownian motion and o € RP*P

is constant.
The occupation time of X in the tube of order r up to horizon 7' is

T
AT ) = / X, € T.(r™)} dt,
0

and its time-average (fraction of time spent in the tube) is
1
LT xo) = T AT 2).

For expectations,

T T
Eq[A(T)] = /0 Po{Xe e TN dr, Bl [LOO(T)] = /0 Pa{ X¢ € T(D™) } dt.
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Proposition A.31 (Occupation time near one codimension-n flat). Let 1 < n < D andlet S = {x €
RP : Az = d} be an affine flat with rank(A) = n. Let X; solve dX; = o dB;, Xo = o, where By
is standard D—dimensional Brownian motion and ¥ := oo ! > 0. Choose an orthonormal basis

N € RPX" of St and set
Y= NTEN e R™*™, Amin = Amin(ZL)-

Fix any yo € S and write sg := NTyo and p := NTzo. Fore >0and T > 0, define the occupation
time

T
A (T §) = / 1{dist(X,, §) < €} dt.
0

Let
T n Wn -1/2 € (66)
wy = A (B"(0,1)), K, := , 0= |2 So—p)||— y o b=
( ( >) (27r)”/2\/det(2l) H + ( 0 M)H V)\min

Then, for all T > 0,
Koe®be 2D(2 - 1,%), n>2
T
shaoms] < e [[eoro s imeat, ans
< 2K; 6\/T, n=1,

where I'(-, -) is the upper incomplete gamma function and E1(z) = fz e "u! du.

Proof. Step 1 (normal coordinates). Because N has orthonormal columns spanning S+, every
r € RP decomposes as x = y + Nv with y € S and v € R"; moreover dist(z, S) = |lv|| and
N Ty = sq (independent of yy € 9).

Step 2 (projected process and its density). Define the normal projection Z; := N ' X, € R™. Since
dZ; = N7 o dB;, we have

Zy ~ N(u, t31), p=N"zy, ¥, :=NT'ZN.
Hence the transition density of Z; is

1
ex
(2mt)n/2\/det(X ) p<

(2) = - I= G- l).

Step 3 (event {dist(X¢, S) < €} in normal coords). We have
dist(X;,S8) <e <= || Z;—sol <e.

Therefore
P{dist(X;,S) < e} = / gi(z) dz.

[|z—sol|<e

Step 4 (uniform bound on the integrand over the ball). Let B := {z € R" : ||z — s¢|| < €}. By
the triangle inequality in the Mahalanobis norm,

inf HZIl/z(z - M)H > HEIlm(so — ,u)H — sup HEIl/z(z — So)H.
zeB zeB

Since |5 *w|| < 157122 [lw] and 572 = 1/v A, we get
€
Amin.

sup HEI_I/Q(Z — So)H <
z€B

Hence
€

527 8. 2700 0] -

zeB
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Step 5 (probability bound at time ¢). Using the bound from Step 4 in the density from Step 2, for

all z € B,

gi(z) <

Therefore

P{dist(X;, S) < ¢} < \"(B) -

1 (892
(2mt)n/2\/det(21) exp( 2t >

o (53 /(21)

(2mt)n/2/det(2, ) B

since \"(B) = w,e" and b = 1(5¢) 2.

2

Step 6 (time integration). Integrating from O to 7,

T
Ba0 )] = [ Plais(x,5) < cha < K e
0

Step 7 (evaluation of the integral).

» If n > 2, substitute u = b/t

0

0

(sot = be/u, dt = —b.u~2du):

T 1—n o n 1-z n
/ ter/Qefbe/tdt:bE 2 / uffzefudu:bg 2F<1 <
be/T 2

 If n = 2, the integral equals F; (b./T) (the exponential integral).

\ " t—n/2 e~ bF/t’

T
/ /2 e be/t gt

e If n = 1, drop the exponential to get the simple bound fOT t=12e= b/t gt < fOT t=Y2dt =

2VT.

Multiplying by K, €™ gives the stated bounds in all cases.

O

Apply the previous proposition to the union over all tie sets JJ of an order-n discontinuity gives us the

next theorem.

Theorem A.32 (Occupation time near order-n discontinuities). Assume rm c U, eTn Syl) with
Sgn) ={z eRP: A(Jn)x = d(Jn)}, rank(A(Jn)) = r. Let X; solve dX; = 0dBy, Xo = xg, with

Y =00 = 0. For each J, choose an orthonormal basis N of (S5

Y17 =N/ENs, Aming = Amin(Z1y), s7:=Njy(yc SS")), py = N .

Define

KJ,n = n 5
(27‘(’)"/2\ / det(ZJ_,J)

Let

Jyei= Hzi}f(”’”ﬂ” _

(n))J— and set

€

\V4 )\min,J ’

T
AM(T;T) = / X, € T.(I™)} dt.
0

Then, for all T > 0,

E[A™(T;T)]

In particular,

E[AM™(T;D)] <

T
< Z ijnﬁn‘/o t/ 2= e/t gt

Jej’!l

nl—% n b]}e
N Kine bJ’62F<§—1, T), n>2,
! b
z}:KJgEQEl( ;6)7
Z(ZKJJ)e\/T, n = 1.
7
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A coarser but convenient bound (using K™ := ZJ K, and by '=mingby.)is

T
BACD)] < gmer [ by
0

Proof. (Step 1: union domination) Since I'™) C U, Ssn),

T.(r™) ¢ Te(USS")> c Y1,
J J

hence pointwise 1y, cr. (remyy < D2 1{Xt€TE(Sg,L>)}.

(Step 2: integrate and take expectations) Integrate in ¢ € [0, 7] and take expectations:
T T
E[AM(T;T)] < Y E U 1{X, € T.(S!")} dt] - Z/ P{X, € T.(S"™)} dt.
J 0 J 70

(Step 3: apply the single—flat bound to each J) For each fixed J, apply Proposition (with
Ny, X1.75,87, 7). This gives

P{X: € Te(SSn))} < Kjn€" t_”/2e_va‘/t,

hence equation |17 Evaluating the time integral case-wise yields the formulas. For the coarser bound,
uSse byin < by so that e~b7e/t < e=bmin/t factor out Y ; K ;,, and integrate. O

Table 4: Bits-per-character (BPC) of SmoothSMoE compared to baseline model on EnWiki-8 dataset.
Model Test BPC |

SMoE 1.153

SmoothSMoE 1.122

B FURTHER THEORETICAL ANALYSIS AND ABLATION STUDIES

B.1 GEOMETRIC INTUITION BEHIND THEORETICAL ANALYSIS

Geometrically, the Top-k SMoE gate partitions the input space into polyhedral regions (cells) where
the active expert set is fixed. Inside each cell, the MoE map is a smooth combination of a fixed subset
of experts; all nonsmooth behavior comes from crossing the boundaries between cells, where the
Top-k set changes. These boundaries are given by hyperplanes of the form z;(x) = z;(z), that is,
the locations where at least two experts tie. The order of a discontinuity simply counts how many
experts tie exactly at the Top-k score. For a simple illustration, consider in three-dimensional space,
order-1 sets can be understood as “walls” partitioning the space where one active and one inactive
expert swap. Higher-order sets correspond to intersections of several such walls, forming “edges”
and “corners”.

Our theoretical volume results explicitly formalize the intuition that, in a bounded region where the
data live and are perturbed randomly, collisions with walls occur with probability 1, while collisions
with “edges” and “corners” essentially do not occur (probability 0). Moreover, the distribution of
the first collision time is closely linked to the shortest normalized distance from the starting point
to these “walls” (Theorem [5.1). If we take a thin band of thickness € around these sets inside a
ball of radius R, the fraction of the band volume contributed by higher-order intersections shrinks
polynomially in €/ R (Theorem [4.4), so as we increase R or decrease €, almost all near-boundary
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mass concentrates on simple walls. Finally, for a randomly perturbed process, the upper bound on
the occupation time inside the e-band of an n-th order intersection decays exponentially as €” in the
small-¢ regime (Theorem [5.3).

Our smoothing layer is designed exactly around this picture. Instead of letting the output jump
abruptly when crossing a wall, we replace the hard switch by a narrow transition band around the
corresponding hyperplanes. Within this band, the contributions of the involved experts vary smoothly
with the logits, so that moving across a wall interpolates between experts rather than flipping them
discretely. Outside these bands, the model behaves like the original Top-k gate, preserving sparsity
and the usual MoE structure. Due to the dominant geometry of lower order discontinuities (For
example “walls” compared to “edges” and “corners”), the number of additionally activated experts,
which equals the order of the discontinuity (1 for walls, 2 for edges, and 3 for corners) is small,
providing a theoretical guarantee for the efficiency of our smoothing mechanism.

B.2 SMOOTHSMOE VvSs. OTHER DIFFERENTIABLE ROUTING METHODS

Recent works such as Soft MoE (Puigcerver et al., [2024), SMEAR (Mugeeth et al, [2023)), and
ReMoE (Wang et al.| [2024) enforce full differentiability of the MoE routing map by altering the

routing mechanism itself. Soft MoE and SMEAR achieve differentiability via token or expert merging,
effectively replacing the sparse Top-k selection map by a dense, smooth probability assignment
over experts. From a functional perspective, this turns the piecewise-constant Top-£ map into a
globally smooth map into the probability simplex, at the expense of token-wise sparsity and causality
for autoregressive tasks. ReMOoE instead replaces Top-k and Softmax with a ReLLU-based router
equipped with an ¢;-type load-balancing regularizer, thereby producing continuous gating scores
but changing the underlying Top-k-induced polyhedral structure and requiring a different gating
mechanism to be trained. In contrast, our SmoothSMoE keeps the original Top-k gate and its
polyhedral partition of the input space and only modifies logits for tokens whose scores fall inside an
{,—thickening of the discontinuity set. That is, we leave the routing map unchanged away from
boundaries and apply smoothing only to near-ties 0 < 2 () — 2i(x) < &, which activates at most n
additional experts on an order-n discontinuity (Proposition[A.20). This design preserves sparsity and
causal routing, while our measure-theoretic and stochastic analysis quantifies the volume of these
thickened regions and the occupation time of a diffusion near them, providing explicit bounds on how
frequently smoothing is used and hence limiting the extra computation it incurs. Thus SmoothSMoE
is complementary to prior differentiable routing: it achieves continuity of the SMoE map locally
around theoretically characterized discontinuity sets, rather than globally replacing Top-k routing
with a different differentiable router.

B.3 DETAILED ANALYSIS ON /o, c LOCAL SMOOTHING VS. VANILLA SMOE NEAR
DISCONTINUITY BOUNDARIES

To provide a concrete, empirical counterpart to our theoretical findings, this section presents a
targeted experiment designed to visualize the behavior of SMoE and our proposed SmoothSMoE at
the decision boundary. The primary objective is to isolate and illustrate the direct architectural impact
of our smoothing mechanism on the model’s output function, independent of other training dynamics.

Experiment setup. Our experiment utilizes a multi-layer SMoE model pre-trained on the CIFAR-
10 dataset. The architecture for each MoE layer consists of an input dimension of D = 3072, E/ = 32
experts, and a Top-k gating mechanism with k = 4. Each expert is a standard two-layer MLP with a
hidden size of 128.

The analysis proceeds on a per-layer basis. For a given layer, we first instantiate the original SMoE
using its pre-trained weights. We then create an instance of our SmoothSMoE. To ensure a controlled
comparison, the SmoothSMoE’s weights are directly copied from the pretrained SMoE. This setup
guarantees that any observed differences in behavior are attributable solely to our proposed smoothing
architecture.

The core of our methodology is to identify and analyze a critical order-1 discontinuity. An order-1
discontinuity boundary is defined by the hyperplane where the gating scores of the k-th active expert
and the highest-scoring inactive expert are equal (z[,41](x) = 2 (x)). We employ Monte Carlo
sampling strategy, generating thousands of random input vectors x to locate a boundary region that
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Figure 3: Visualizing the effect of our smoothing mechanism on SMoE layer outputs. Each row
corresponds to a different SMoE layer from a pre-trained model. The columns show the standard
SMOoE, our SmoothSMoE, and the maximum output change, respectively. Left Column (SMoE): The
standard SMoE exhibits sharp discontinuities as the input crosses the decision boundary. Middle
Column (SmoothSMoE): Our SmoothSMOoE, using identical weights, eliminates these jumps and
produces a continuous output. Right Column: The maximum output gap max(| f(x + Ax) — f(z)]) is
plotted against the perturbation size || Az||. Our method shows the gap converging to zero, confirming
continuity, while the SMoE maintains a large gap.

exhibit significant output jumps along a specific dimension. We then analyze the MoE map restricted
to the chosen dimension, denoted fsmor : X — R for the Sparse MoE and fsmoothsmoE @ X — R
for the SmoothSMoE. For each selected boundary, we compute the exact orthogonal projection,
obtaining the point z.

To visualize the function’s behavior when the input passing a discontinuity boundary, we analyze
the output along a line x = x* + [f passing thought the discontinuity boundary, where 1 is the unit
normal vector to the boundary hyperplane and [ € R. This line represents the traversal across the
discontinuity. The variable [ (the horizontal axis in our plots) corresponds to the signed Euclidean
distance from the boundary, with the boundary itself precisely at [ = 0.

Results Figure 3|presents the comparative results for four distinct layers of the model. The left
column visualizes the output of the standard SMoE. As predicted by our analysis, the SMoE map is
piecewise continuous but exhibits a pronounced jump discontinuity at the boundary. The magnitude of
this jump is non-trivial, highlighting a potential source of instability for gradient-based optimization,
reduced robustness to adversarial perturbations, and unpredictable outputs behavior when inputs are
near these boundaries.
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The middle column shows the output of our SmoothSMoE on the exact same line in the input
space. The effect of our mechanism is immediately apparent: the discontinuity is completely
removed. SmoothSMOoE transitions smoothly and continuously across the boundary. This is a
direct consequence of our method’s ability to create a ”soft” handoff between experts by continuous
re-weighting, rather than the abrupt expert swapping inherent to Top-k gating.

The right column provides a quantitative analysis of this smoothness. It plots the maximum output
difference, max || f(x + Az) — f(z)||, against the magnitude of the input perturbation || Az || within
a shrinking window around z*. For the SMoE, the output gap plateaus at a large, non-zero value,
confirming that the discontinuity persists even for infinitesimally small perturbations. In stark contrast,
the plot for our SmoothSMoE shows the output difference converging to zero as ||Ax|| — 0. This
behavior provides a visual confirmation of the continuity induced by our method which is formally
proved in Proposition|A.7| a critical property for model stability and generalization that the standard
SMOE lacks.

B.4 How BOUNDARY L0OSS CONTROLS € AND THE AVERAGE NUMBER OF ACTIVATED
EXPERTS

L
S A SO JS SO B 035 A A o 25 e

Figure 4: The effect of boundary loss on controlling € and the average number of activated experts
(KC) across various layers.

In this study, we analyze the training log from pretraining a 6-layer SmoothSMoE on WikiText-103
for 80 epochs, recording at each epoch the boundary threshold € and the average number of activated
experts /K for every layer. Figure 4|shows how ¢ and K evolve during training. At the start, both
values are close to 0, since ¢ is initialized small to ensure efficiency. They initially grow slowly due
to the learning-rate warmup, after which e increases sharply until KC approaches the target budget
(k* = 2.5 experts on average). This marks an adjustment phase where the model tunes € so that XC
converges toward £*. Once this balance is reached, both € and I stabilize, with e exhibiting only
small fluctuations to keep K near the budget as training dynamics evolve. These observations confirm
that the boundary loss effectively updates € to maintain the desired average number of activated
experts.

B.5 ANNEALING BOUNDARY SMOOTHING TO HARD TOP-k

In this analysis, we investigate the hypothesis that boundary smoothing makes the loss landscape more
amenable to optimization, improves training dynamics and final performance. To test this hypothesis,
we adopt an 80-epoch annealing schedule in which smoothing is progressively removed. For the
first 40 epochs, we set the target budget to k* = 2.5 to warm up the model, so that the smoothing
mechanism can stabilize optimization by activating additional experts near switching surfaces. For
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Table 5: Perplexity (PPL) of annealed SmoothSMoE compared to baseline SMoE and SmoothSMoE
on clean and attacked WikiText-103 datasets.

Model WikiText-103 Attacked WikiText-103

Valid PPL | TestPPL| Valid PPL | TestPPL |

SMoE (k = 2) 33.79 35.52 42.21 44.18
SmoothSMoE annealed (k = 2) 32.97 34.59 41.14 4291
SmoothSMoE (k = 2.5) 32.72 34.35 40.99 42.85

the next 20 epochs, we linearly anneal £* from 2.5 down to 2, so that the routing gradually converges
toward the target hard Top-k regime. In the final 20 epochs, we fix £* = 2, which effectively turns off
smoothing and forces the learned e parameter to converge to 0, allowing the parameters to fully adapt
to hard Top-k gating and eliminating train-inference mismatch. We refer to this training protocol as
SmoothSMoE annealed. At inference time, we completely remove smoothing and evaluate with a
standard Top-2 SMoE router.

As shown in Table[5] the SmoothSMoE annealed model achieves test perplexity 34.59 on WikiText-
103, improving over the baseline SMoE (35.52) and placing its performance between SMoE and the
full SmoothSMoE model. The same behaviour can be observed on Attacked WikiText-103 dataset.
These results confirm our hypothesis that boundary smoothing, by allowing experts near routing
boundaries to contribute and by making the loss landscape easier to optimize, improves the final
Top-k SMoE performance even when smoothing is completely removed at inference.

Figure[5|reports the average number of activated experts K across layers under the three-stage training
schedule: K quickly rises and stabilizes around 2.5 during the warm-up stage, then is linearly reduced
to 2 as smoothing is annealed, and finally remains at 2 throughout the hard Top-2 adaptation stage.

Figure 5: Average number of activated experts K training dynamic across layers under the three-stage
smoothing schedule.

C EXPERIMENTAL DETAILS

Before proceeding to the experiments, we establish the choice of coefficients for the log-smoothstep
function h defined in Section|6, We have experimented with various values for the coefficients a and
b, and found that setting a = 1 and b = 50 provides consistent and effective smoothing behavior
across the evaluation. Therefore, we use it for all experiments presented below.
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C.1 LANGUAGE MODELING

C.1.1 DATASET.

We evaluate our approach on two widely used language modeling benchmarks: WikiText-103 and
EnWik-8. The WikiText-103 dataset (Merity et al., 2017b) contains Wikipedia articles with the
training set consisting of about 28K articles and 103M tokens in total. The validation and test sets
each contain 60 held-out articles, corresponding to 218K and 246K tokens, respectively. The EnWik-8
dataset is a byte-level benchmark derived from a compressed dump of English Wikipedia. It consists
of 100 million bytes of data, including not only English text but also markup, special characters, and
snippets in other languages. The dataset is split into 90M characters for training, SM for validation,
and 5M for testing.

We follow the experimental setup of [Pham et al. (2024)) for pretraining on WikiText-103 (Merity
et al.| [2017a) and EnWik-8 (Mahoneyl |2006). For WikiText-103, we report perplexity (PPL) on
both validation and test sets. Additionally, we evaluate robustness using the Attacked WikiText-103
dataset constructed by replacing random words with the generic token "AAA” at a rate of 2.5%,
following |Han et al.| (2024); [Teo & Nguyen| (2024)); |Abdullaev & Nguyen| (2025). For EnWik-8,
we evaluate using bits-per-character (BPC) as the primary metric, consistent with prior work on
byte-level language modeling.

C.1.2 IMPLEMENTATION DETAILS.

We employ a standard Switch Transformer (Fedus et al.,2022) as our backbone, with 16 experts and
top-2 routing. The model specifications are summarized in Table |6,

Table 6: Backbone specifications for language modeling tasks. All models use 16 experts with top-2
routing.

Model SA Layers FFN Layers MOoE Layers Att. Span Embed Size
Switch Transformer (WikiText-103) 6 - 6 1024 352
Switch Transformer (EnWik-8) 8 - 8 2048 352

We use the Adam optimizer (Kingma & Ba, |[2015) with a base learning rate of 7 X 10~%. A linear
warmup schedule is applied for 4,000 steps for both models. For WikiText-103, the Switch-medium
backbone is trained for 80 epochs with batch size 48. For EnWik-8, the Switch-small backbone is
trained for 80 epochs with batch size 48. In all cases, we apply an auxiliary load-balancing loss with
weight 0.01 to encourage balanced expert utilization. All models are trained on 2 x NVIDIA H100
80GB GPUs using mixed-precision training.

C.2 VISION TASK ON DOMAINBED BENCHMARK
C.2.1 DATASET.

We evaluate on the standard DomainBed benchmark (Gulrajani & Lopez-Paz|[2020), which includes
the datasets: PACS (L1 et al.,|2017), VLCS (Fang et al.,[2013), OfficeHome (Venkateswara et al.
2017), Terralncognita (Beery et al.,[2018), and DomainNet (Peng et al.,[2019). The statistics of these
datasets, including the number of domains, classes, and examples, are summarized in Table 7|

Table 7: Statistics of DomainBed datasets used in our experiments.

Dataset PACS VLCS OfficecHome Terralnc DomainNet
# Domains 4 4 4 4 6
# Classes 7 5 65 10 345

# Examples 9,991 10,729 15,588 24,788 586,575
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In detail, the five multi-domain image classification datasets are comprised of:

1. PACS (Li et al.,[2017) comprises four domains: art, cartoons, photos, sketches. This dataset
contains 9,991 examples of dimension (3,224, 224) and 7 classes.

2. VLCS (Fang et al., 2013)) comprises photographic domains: Caltech101, LabelMe, SUNOQ9,
VOC2007. This dataset contains 10,729 examples of dimension (3, 224,224) and 5 classes.

3. Office-Home (Venkateswara et al.|[2017) includes domains: art, clipart, product, real. This
dataset contains 15,588 examples of dimension (3,224, 224) and 65 classes.

4. Terralncognita (Beery et al.|[2018) contains photographs of wild animals taken by camera
traps at locations: L100, L38, L43, L46. This dataset contains 24,788 examples of dimension
(3,224,224) and 10 classes.

5. DomainNet (Peng et al.,[2019) has six domains: clipart, infograph, painting, quickdraw, real,
sketch. This dataset contains 586,575 examples of size (3,224, 224) and 345 classes.

We follow the standard DomainBed evaluation protocol using train-domain validation. For each test
domain, we train on the remaining domains and use the left-out domain for validation. We select the
model maximizing validation accuracy and report the final accuracy on the held-out test domain.

C.2.2 IMPLEMENTATION DETAILS.

We adopt a ViT-S/16 backbone (Dosovitskiy et al.,[2021) pretrained on ImageNet-1K following|Li
et al.|(2023). Images are processed into patch embeddings by ViT-S/16 with a patch size of 16 x 16, 6
attention heads, and 12 transformer blocks. Each MoE block contains 6 experts, and the cosine router
selects the top-2 experts for each patch. Experts are initialized from the corresponding pretrained ViT
blocks, while cosine routers are randomly initialized to ensure even routing at the start.

Training uses the Adam optimizer (Kingma & Ba} [2015) with dataset-specific hyperparameters, as
shown in Table|8| Batch size is fixed to 32 per domain. For DomainNet, we train for 15,000 iterations
to compare fairly with prior work, while for the other datasets, we train for 5,000 iterations.

Table 8: Hyperparameters for different datasets in DomainBed.

Dataset PACS VLCS OfficeHome Terralnc DomainNet
Learning Rate  3e-5 3e-5 le-5 Se-5 Se-5
Weight Decay 0 le-6 le-6 le-4 0

C.3 LANGUAGE TASK (GLUE BENCHMARK)
C.3.1 DATASET.

We evaluate on a subset of the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., [2018), selecting five representative tasks: CoLA, MRPC, MNLI, QNLI, and RTE. These
tasks cover a wide range of linguistic phenomena including grammatical acceptability, paraphrase
detection, question answering, and textual entailment. The tasks are briefly summarized as follows:

* CoLA (Corpus of Linguistic Acceptability) (Warstadt et al.,[2019): A binary classification
task assessing whether a sentence is grammatically acceptable.

* MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett,[2005): A paraphrase
identification task determining whether two sentences are semantically equivalent.

e MNLI (Multi-Genre Natural Language Inference) (Xu et al.| [2020): A large-scale three-
way natural language inference task (entailment, contradiction, neutral) spanning multiple
domains.

* QNLI (Question Natural Language Inference) (Wang et al.,[2018): A binary classification
task derived from the Stanford Question Answering Dataset (SQuAD), reformulated as a
sentence pair classification problem.
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* RTE (Recognizing Textual Entailment) (Bentivogli et al., [2009): A binary entailment
classification task combining several RTE challenges (RTE1-RTES).

Dataset statistics, including sizes, task types, and domains, are summarized in Table |9}

Table 9: Overview of selected GLUE benchmark tasks. Sizes follow |Wang et al.| (2018).

Task Domain Train / Dev / Test Size Task Type Metric
CoLA Miscellaneous 8.5k / 1k / 1k Acceptability classification MCC
MRPC News 3.7k /408 / 1.7k Paraphrase detection Acc/F1
MNLI  Multi-genre text 393k / 20k / 20k Natural language inference ~ Acc (m/mm)
QNLI Wikipedia QA 105k / 5.5k / 5.4k QA/NLI conversion Accuracy
RTE News/Wikipedia 2.5k /276 / 3k Textual entailment Accuracy

We follow the official GLUE evaluation protocols (Wang et al.,2018)). Specifically, we use Matthew’s
correlation coefficient (MCC) for CoL A, accuracy and F1-score for MRPC, matched and mismatched
accuracy for MNLI, and accuracy for both QNLI and RTE. Each task is fine-tuned independently, and
the best-performing checkpoint on the validation set is used for final test submission. Experiments
are repeated with five random seeds, and we report the best validation result for each configuration.

C.3.2 IMPLEMENTATION DETAILS.

We adopt BERT-large (Devlin et al.,[2019b) as the backbone model, augmented with our MoE design.
We replace the FFN layer in one Transformer block of BERT-large with an MoE layer containing
16 experts, using top-k routing strategies with k£ = 2 and k£ = 4. To encourage balanced expert
utilization, we incorporate the GShard load balancing loss (Lepikhin et al.|[2021) with auxiliary loss
weight 0.01. We also set gate noise to 1.0 and capacity factor to 1.5 to stabilize routing and mitigate
expert overflows.

Fine-tuning is performed with the Adam optimizer (Kingma & Ba,2015). A grid search over learning
rates {2 x 107°,3 x 107°,5 x 10~°} is conducted, while the batch size is fixed at 32. Training is
run for up to 10 epochs with early stopping on validation performance. We apply a linear learning
rate scheduler. All experiments are executed on NVIDIA H100 80GB GPUs with mixed-precision
training. Checkpoints are saved and evaluated every epoch, with the best validation checkpoint
retained for testing.
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