

DISCONTINUITIES IN SPARSE MIXTURE-OF-EXPERTS: A MEASURE-STOCHASTIC ANALYSIS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Sparse Mixture-of-Experts (SMoE) architectures are now widely deployed in state-
012 of-the-art language and vision models, where conditional routing allows scaling
013 to very large networks. However, this very Top- k expert selection that enables
014 conditional routing also renders the SMoE map inherently discontinuous. In the
015 vicinity of these discontinuity surfaces, even inputs that are arbitrarily close may
016 activate substantially different sets of experts resulting in significantly different
017 outputs. In this work we give a rigorous geometric and stochastic analysis of
018 these discontinuities. We first classify them by order, determined by the number
019 of tied experts at a switching event. Using measure-theoretic slicing arguments,
020 we establish asymptotic volume estimates for the thickened discontinuity surfaces,
021 showing that lower-order discontinuity sets dominate, whereas higher-order ones
022 occupy a vanishingly small relative volume. Next, modeling random perturbations
023 in the input space via a diffusion process, we prove that the path eventually en-
024 counter a discontinuity, and moreover that the first hit almost surely occurs on
025 an order-1 discontinuity with explicit finite-time probability bounds. We further
026 derive occupation-time bounds that quantify the duration the random path spend
027 in the neighborhoods of each discontinuity order. These theoretical results imply
028 that inputs are more likely to lie near lower order discontinuities. Motivated by this
029 insight, we propose a simple smoothing mechanism that can be directly applied
030 to existing SMoEs, softly incorporating experts near discontinuities; our analysis
031 guarantees that the added computational overhead remains small while providing
032 localized smoothing near discontinuities, and experiments across language and
033 vision tasks show that smoothing not only enforces continuity of the SMoE map
034 but also enhances empirical performance.

1 INTRODUCTION

035 The Transformer architecture (Vaswani, 2017) has been successfully applied to a wide range of
036 tasks, most notably in language (Devlin et al., 2019a; Radford et al., 2019; Hoffmann et al., 2022;
037 Chowdhery et al., 2023), vision (Bao et al., 2022b; Dosovitskiy et al., 2021; Bao et al., 2022a; Liu
038 et al., 2023), and other tasks (Radford et al., 2021; Chen et al., 2020; Tan & Bansal, 2019; Lu et al.,
039 2019). However, scaling Transformers to very large models demands substantial computational
040 resources and extended training time. To alleviate this, the Sparse Mixture-of-Experts (Jacobs
041 et al., 1991) (SMoE) has been introduced as an architectural extension, replacing the standard feed-
042 forward layers with sparsely activated expert modules, thereby enabling scaling while controlling
043 computational overhead. The most common mechanism for this selection is Top- k sparse gating,
044 which has been widely adopted in large pretrained language models (Narayanan et al., 2021; Liu
045 et al., 2024a; Shazeer et al., 2017; Rajbhandari et al., 2022) and vision models (Chen et al., 2023; Lin
046 et al., 2024; Liu et al., 2024b).

047 Despite its practical success, Top- k gating introduces inherent discontinuities in the input–output
048 map of SMoEs. While sparsity is achieved by activating only k experts, inputs that are nearly
049 identical may be routed to substantially different expert sets near the switching boundaries, leading to
050 uncontrolled variation in the outputs. Prior works (Chen et al., 2022; Wang et al., 2024; Shazeer et al.,
051 2017) have acknowledged the existence of such discontinuities, but to the best of our knowledge, no
052 systematic theoretical analysis of their structure and properties has been undertaken. Several recent
053 studies have focused on mitigating the problem in practice by making MoE routing differentiable.

054 SMEAR (Muqeeth et al., 2023) does so by merging experts, and Soft MoE (Puigcerver et al., 2024) by
 055 mixing tokens across experts. While effective in removing hard switches, these methods compromise
 056 the causal structure required for autoregressive language modeling and are therefore limited in
 057 generation tasks. More recently, ReMoE (Wang et al., 2024) replaced Top- k gating with ReLU-based
 058 gating, but this approach requires retraining the gating from scratch due to its fundamental difference
 059 from Top- k gating and includes a costly initialization phase that is nearly as expensive as training a
 060 dense model. [For a theoretical discussion between our paper and other continuous routing method, please refer to Section B.2 in Appendix B.](#)
 061

062 2 PROBLEM FORMULATION

063 Top- k gating partitions the input space into regions with fixed active experts, and discontinuities
 064 occur where scores tie at the top- k threshold. A pairwise tie between one active and one inactive
 065 expert gives an order-1 discontinuity; simultaneous ties among more experts yield higher-order ones.
 066 Though measure-zero (Proposition A.3), inputs near them are unstable since tiny perturbations can
 067 switch the active set.

068 We address two questions. *Geometry*: how often do different tie patterns occur, and how much space
 069 lies near their boundaries? *Dynamics*: under random perturbations, does a trajectory remain in its
 070 region or hit a boundary, and of which order?

071 **Contributions.** Addressing the questions above from both geometric and stochastic viewpoints,
 072 our main contributions are:

- 073 **Asymptotic measure.** Discontinuities are classified by order (number of tied experts). Using
 074 slicing arguments, we show ϵ -thickened order-1 sets dominate while higher orders vanish in
 075 relative measure. The result extends to ℓ_∞ -thickening, enabling efficient logit-based tests
 076 with similar bounds.
- 077 **Stochastic behavior.** Modeling perturbations as diffusion, we prove trajectories almost
 078 surely hit a discontinuity in finite time, with the first hit almost surely order-1. We bound
 079 occupation time in ϵ -neighborhoods, showing it decreases with order in the small- ϵ regime.
- 080 **Smoothing mechanism.** Based on these insights, we propose a simple method that enforces
 081 continuity in Top- k SMoE and is demonstrated to be effective in practice.

082 3 SPARSE MIXTURE-OF-EXPERT AND DISCONTINUITIES

083 3.1 BACKGROUND ON SPARSE MIXTURE-OF-EXPERTS

084 The Mixture-of-Experts (MoE) framework defines a model as a collection of expert functions
 085 combined through a gating mechanism. Formally, one considers an input space $(\mathbb{X}, \mathcal{B}(\mathbb{X}), \lambda^D)$ and
 086 an output space $(\mathbb{Y}, \mathcal{B}(\mathbb{Y}), \lambda^{D'})$. Here λ^D and $\lambda^{D'}$ denote the Lebesgue measures on \mathbb{R}^D and $\mathbb{R}^{D'}$.

087 A gating function $G : \mathbb{X} \rightarrow \Delta_{M-1}$ maps each input to a point on the $(M-1)$ -dimensional probability
 088 simplex, assigning nonnegative weights to M expert functions $\{E_i : \mathbb{X} \rightarrow \mathbb{Y}\}_{i=1}^M$. The MoE map is
 089 then given by

$$090 f(x) = \sum_{i=1}^M G_i(x) E_i(x).$$

091 In practice, the gating weights are often derived from a linear scoring function $z : \mathbb{X} \rightarrow \mathbb{R}^M$, where
 092 $z_i(x) = \langle W_g^{(i)}, x \rangle + b_g^{(i)}$. The most widely used variant is the Top- k Sparse Mixture-of-Experts
 093 (SMoE), where only the k largest scores are retained. In this case, the gate takes the form

$$094 G_i(x) = \frac{\exp(z_i(x)) \mathbf{1}_{\{i \in S_k(x)\}}}{\sum_{j \in S_k(x)} \exp(z_j(x))},$$

095 with $S_k(x)$ denoting the indices of the k largest components of $z(x)$.

108 The resulting model is sparse, since only k experts contribute for each input. This sparsity makes
 109 SMoEs computationally efficient and widely used in large-scale language and vision models, but also
 110 introduces discontinuities in the input–output map, which is the focus of this work.
 111

112 **3.2 DISCONTINUITIES IN SPARSE MIXTURE-OF-EXPERTS**
 113

114 In a Sparse Mixture-of-Experts (SMoE), the gating scores are affine functions
 115

$$z_i(x) = \langle W_g^{(i)}, x \rangle + b_g^{(i)}, \quad i = 1, \dots, M.$$

116 For each k -subset $\mathbb{S} \subseteq \{1, \dots, M\}$, we define the open cell
 117

$$\mathcal{C}_{\mathbb{S}} = \{x \in \mathbb{X} : z_i(x) > z_j(x) \text{ for all } i \in \mathbb{S}, j \notin \mathbb{S}\},$$

118 which consists of all inputs where the same k experts form the top set. The collection $\{\mathcal{C}_{\mathbb{S}} : |\mathbb{S}| = k\}$
 119 partitions \mathbb{X} into regions of constant active set, and the SMoE map is smooth within each region. The
 120 complement
 121

$$\Gamma = \mathbb{X} \setminus \bigcup_{|\mathbb{S}|=k} \mathcal{C}_{\mathbb{S}}$$

122 is the *discontinuity set*, where ties occur between active and inactive experts. Crossing such a
 123 boundary produces a jump in the output map $f(x)$, making Γ the source of all discontinuities in
 124 SMoEs.
 125

126 However, not all discontinuities are alike. The simplest case is a pairwise tie: the k -th and $(k+1)$ -th
 127 largest gate scores coincide, so that an infinitesimal change swaps membership of the Top- k set. More
 128 generally, simultaneous ties among multiple scores give rise to higher-order discontinuities.
 129

130 **Definition 3.1** (Order statistics of the scores). Given scores $z_1(x), \dots, z_M(x)$ at $x \in \mathbb{X}$, define the
 131 order statistics
 132

$$z_{[1]}(x) \geq z_{[2]}(x) \geq \dots \geq z_{[M]}(x)$$

133 , i.e. the sorted values of $\{z_i(x)\}_{i=1}^M$ in nonincreasing order.
 134

135 **Definition 3.2** (Order- n discontinuity). Fix $1 < k < M$. A point $x \in \mathbb{X}$ is an *order- n discontinuity*
 136 if there exists an index set $J = \{i_1, \dots, i_{n+1}\} \subseteq \{1, \dots, M\}$ such that
 137

$$z_{i_1}(x) = z_{i_2}(x) = \dots = z_{i_{n+1}}(x) = z_{[k]}(x) = z_{[k+1]}(x),$$

138 that is, $n+1$ distinct scores tie exactly at the threshold between the k -th and $(k+1)$ -th largest values.
 139 For each such index set J , we define the corresponding discontinuity component
 140

$$\Gamma_J^{(n)} = \{x \in \mathbb{X} : z_i(x) = z_{[k]}(x) = z_{[k+1]}(x) \ \forall i \in J\},$$

141 and the full set of order- n discontinuities as
 142

$$\Gamma^{(n)} = \bigcup_{\substack{J \subseteq \{1, \dots, M\} \\ |J|=n+1}} \Gamma_J^{(n)}.$$

143 *Remark 3.3.* For readability, Definition 3.2 leaves implicit the affine inequality constraints that specify
 144 the active top- k set; the equivalent, explicit formulation appears in Definition A.5. These inequalities
 145 imply $\Gamma_J^{(n)}$ is a finite union of translated affine cones contained in $(D - n)$ -dimensional subspace.
 146

147 Given a subset $J = \{i_1, \dots, i_{n+1}\}$ of expert indices, we use J to specify *which* experts are tied in
 148 score. Concretely, the order- n tie condition
 149

$$z_{i_1}(x) = z_{i_2}(x) = \dots = z_{i_{n+1}}(x)$$

150 is equivalent to the n independent equalities $z_{i_s}(x) = z_{i_1}(x)$ for $s = 2, \dots, n+1$, i.e.
 151

$$(W_g^{(i_s)} - W_g^{(i_1)})^\top x = b_g^{(i_1)} - b_g^{(i_s)}.$$

152 Stacking these rows defines the linear system
 153

$$A_J x = d_J, \quad A_J = \begin{pmatrix} (W_g^{(i_2)} - W_g^{(i_1)})^\top \\ \vdots \\ (W_g^{(i_{n+1})} - W_g^{(i_1)})^\top \end{pmatrix}, \quad d_J = \begin{pmatrix} b_g^{(i_1)} - b_g^{(i_2)} \\ \vdots \\ b_g^{(i_1)} - b_g^{(i_{n+1})} \end{pmatrix}.$$

162 Thus J encodes the labels of the tied experts, and $A_J x = d_J$ describes the affine flat
 163

$$164 S_J^{(n)} := \{x \in \mathbb{R}^D : A_J x = d_J\}$$

$$165$$

166 on which exactly those experts in J have equal logits. In the later part, sometimes we write $A_J^{(n)}, d_J^{(n)}$
 167 to denote that it corresponds to order- n discontinuity.

168 4 ASYMPTOTIC MEASURE OF THICKENING DISCONTINUITIES

171 **Euclidean ϵ -thickening of discontinuities.** Although the discontinuity set Γ itself has Lebesgue
 172 measure zero in \mathbb{X} (Proposition A.3), it is not immediately clear how large the surrounding region of
 173 “near discontinuities” can be. For instance, on the real line the rationals have measure zero, yet their
 174 ϵ -neighborhood is the whole line. This motivates studying the neighborhoods of these discontinuities.

175 **Definition 4.1** (Euclidean ϵ -thickening). For a set $A \subseteq \mathbb{R}^D$ and $\epsilon > 0$, the Euclidean ϵ -thickening of
 176 A is defined as

$$177 T_\epsilon(A) := \{x \in \mathbb{R}^D : \text{dist}(x, A) < \epsilon\},$$

$$178$$

179 where $\text{dist}(x, A) := \inf_{y \in A} \|x - y\|$ is the Euclidean distance.

180 For brevity, we will refer to the Euclidean ϵ -thickening as the ϵ -thickening from now on. We
 181 write $T_\epsilon(\Gamma^{(n)})$ for the ϵ -thickening of order- n discontinuities. Quantifying the volume of these
 182 neighborhoods is central to understanding how much of the input space lies close to discontinuities.

183 In this section we investigate how much of the input space \mathbb{X} is occupied by the ϵ -thickening of
 184 order- n discontinuity sets. Since these sets are generally unbounded, we restrict to their intersection
 185 with the ball $B^D(0, R)$ centered at the origin. Our first goal is to establish asymptotic upper bounds
 186 for their volume inside $B^D(0, R)$, together with their normalized volume, i.e. the ratio relative to
 187 $\lambda^D(B^D(0, R))$.

188 For brevity, all proofs in this section are deferred to Appendix A.4. We also write $\omega_d = \lambda^d(B^d(0, 1))$
 189 for the volume of the d -dimensional unit ball.

190 **Theorem 4.2** (Asymptotic measure for $T_\epsilon(\Gamma^{(n)})$). Fix $1 \leq n < D$ and $\epsilon > 0$. Let $\bigcup_J S_J \supset \Gamma^{(n)}$ be
 191 the union of all subspaces with codimension n containing the order- n discontinuities, where each

$$192 S_J = \{x \in \mathbb{R}^D : A_J x = d_J\}, \quad A_J \in \mathbb{R}^{n \times D}, \text{rank}(A_J) = n,$$

$$193$$

194 indexed by J . For each J , define the closest point of S_J to the origin by

$$195 x_J^* = A_J^\top (A_J A_J^\top)^{-1} d_J,$$

$$196$$

197 and let $\delta_J \in \mathbb{R}^n$ be its coordinate in the normal direction to S_J , so that $\|\delta_J\| = \text{dist}(0, S_J)$.

198 If $R > \max_J \{\|\delta_J\|\} + \epsilon$, then

$$199 \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \omega_{D-n} \omega_n |J| \epsilon^n R^{D-n} + \sum_J O\left((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{D-n-2}\right),$$

$$200$$

201 and

$$202 \frac{\lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} \leq \frac{\omega_{D-n} \omega_n}{\omega_D} |J| \epsilon^n R^{-n} + \sum_J O\left((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{-n-2}\right).$$

$$203$$

204 **Remark 4.3.** Theorem 4.2 shows that the thickening measure scales as $\epsilon^n R^{D-n}$, since order- n
 205 discontinuities lie on codimension- n flats with ϵ^n volume in normal and R^{D-n} in tangential directions.
 206 After normalization, the contribution decays as $(\epsilon/R)^n$, so higher-order discontinuities vanish
 207 asymptotically.

208 While Theorem 4.2 shows that higher-order discontinuities thickening vanish asymptotically, it
 209 does so one order at a time. We now sharpen this by establishing asymptotic ratios between the
 210 ϵ -thickenings of order- n and order- m discontinuities.

216 **Theorem 4.4** (Relative Volume of ϵ -Thickenings Across Orders). *Fix integers $1 \leq m, n < D$ and*
 217 *$\epsilon > 0$. For each $r \in \{m, n\}$, suppose*

$$219 \quad \Gamma^{(r)} \subseteq \bigcup_{J \in \mathcal{J}_r} S_J^{(r)}, \quad S_J^{(r)} = \{x \in \mathbb{R}^D : A_J^{(r)}x = d_J^{(r)}\}, \quad \text{rank}(A_J^{(r)}) = r,$$

221 *with finite \mathcal{J}_r . Assume moreover that each slice $\Gamma_J^{(r)} := \Gamma^{(r)} \cap S_J^{(r)}$ is a (possibly unbounded)*
 222 *polyhedral subset of the flat $S_J^{(r)}$. Define*

$$224 \quad U_r(R) := \lambda^D(T_\epsilon(\Gamma^{(r)}) \cap B^D(0, R)).$$

226 *For each $J \in \mathcal{J}_r$, set*

$$228 \quad \alpha_{J,r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}} \in \left[\max_{\mathbb{S}} \frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), 1 \right],$$

230 *with $s_{\mathbb{S}, J, r}$ defined as in Lemma A.16 and Lemma A.17.*

231 *Then*

$$232 \quad \frac{U_n(R)}{U_m(R)} = \frac{\sum_{J \in \mathcal{J}_n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \alpha_{J,m}} \frac{\omega_{D-n} \omega_n}{\omega_{D-m} \omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} \left(1 + O \left(\frac{1}{R} \right) \right).$$

235 *Remark 4.5.* Theorem 4.4 shows that the ratio between ϵ -thickenings of order- n and order- m dis-
 236 *continuities decays as $(\epsilon/R)^{n-m}$, so higher-order sets become negligible compared to lower-order*
 237 *ones as R grows. This scaling reflects that a codimension- n flat contributes ϵ^n volume in normal*
 238 *directions and R^{D-n} in tangential ones, with the prefactor $\frac{\omega_{D-n} \omega_n}{\omega_{D-m} \omega_m}$ giving the dimensional correc-
 239 *tion. The slice densities $\alpha_{J,r}$ measure the fraction of each tie-flat occupied by admissible regions,*
 240 *and Lemma A.16 with Lemma A.17 guarantees these densities are strictly positive under linear*
 241 *independence of the gating weights.**

242 **$\ell_{\infty, \epsilon}$ -thickening of discontinuities.** Directly checking whether $x \in \mathbb{X}$ lies within the Euclidean
 243 ϵ -neighborhood of an order- n discontinuity is expensive, since it requires proximity tests against all
 244 *order- n subspaces. We therefore introduce a more tractable ℓ_∞ -based thickening.*

245 **Definition 4.6** ($\ell_{\infty, \epsilon}$ -thickening). Let $\Gamma \subseteq \mathbb{X}$ and let $z : \mathbb{X} \rightarrow \mathbb{R}^M$ denote the vector of gating logits.
 246 Define the ℓ_∞ -distance from x to Γ by

$$248 \quad \text{dist}_\infty(x, \Gamma) := \inf_{y \in \Gamma} \|z(x) - z(y)\|_\infty.$$

250 The corresponding $\ell_{\infty, \epsilon}$ -thickening of Γ is

$$251 \quad T_\epsilon^{(\infty)}(\Gamma) := \{x \in \mathbb{X} : \text{dist}_\infty(x, \Gamma) \leq \epsilon\}.$$

253 Intuitively, this is the set of inputs whose gating logits lie within ϵ (in ℓ_∞) of a discontinuity. By
 254 Proposition A.20, it suffices to check whether some non top- k logit is within ϵ of $z_{[k]}(x)$, giving an
 255 efficient proximity test directly in logit space.

256 **Theorem 4.7** (Relative Volume of $\ell_{\infty, \epsilon}$ -thickening Across Orders). *Fix integers $1 \leq m, n < D$ and*
 257 *$\epsilon > 0$. For each $r \in \{m, n\}$, suppose*

$$259 \quad \Gamma^{(r)} \subseteq \bigcup_{J \in \mathcal{J}_r} S_J^{(r)}, \quad S_J^{(r)} = \{x \in \mathbb{R}^D : A_J^{(r)}x = d_J^{(r)}\}, \quad \text{rank}(A_J^{(r)}) = r,$$

262 *with finite \mathcal{J}_r . Each slice $\Gamma_J^{(r)} := \Gamma^{(r)} \cap S_J^{(r)}$ is a polyhedral subset of the flat $S_J^{(r)}$. Set*

$$263 \quad U_r(R) := \lambda^D(T_\epsilon^{(\infty)}(\Gamma^{(r)}) \cap B^D(0, R)),$$

265 *and for each $J \in \mathcal{J}_r$ let*

$$267 \quad \alpha_{J,r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}} \in \left[\max_{\mathbb{S}} \frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), 1 \right],$$

$$269 \quad \kappa_{J,r} := (\det(A_J^{(r)}(A_J^{(r)})^\top))^{-1/2},$$

270 with $s_{\mathbb{S}, J, r}$ defined as in Lemma A.16 and Lemma A.17

271 Then

$$273 \quad \frac{U_n(R)}{U_m(R)} = \frac{\sum_{J \in \mathcal{J}_n} \kappa_{J,n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \kappa_{J,m} \alpha_{J,m}} \frac{\omega_{D-n}}{\omega_{D-m}} \left(\frac{2\epsilon}{R} \right)^{n-m} \left(1 + O\left(\frac{1}{R}\right) \right).$$

277 **Remark 4.8.** Theorem 4.7 shows that the ratio between $\ell_{\infty, \epsilon}$ -thickenings of order- n and order- m
278 discontinuities decays as $(\epsilon/R)^{n-m}$, so higher-order sets remain negligible at large scales. Compared
279 to the Euclidean case, the prefactor includes $\kappa_{J,r}$, reflecting the axis-aligned nature of ℓ_∞ tubes and
280 their sensitivity to slice orientation. The densities $\alpha_{J,r}$ again capture the admissible fraction, while
281 the $O(R^{-1})$ term accounts for finer geometry.

283 5 RANDOM PERTURBATION PROCESS: HITTING AND OCCUPATION TIME 284 NEAR DISCONTINUITIES

286 In this section, we analyze how a random perturbation process, such as an adversarial actor making
287 small stochastic updates, can drive x_0 from the open top- k cell $\mathcal{C}_{\mathbb{S}}$ (the region where the active set
288 \mathbb{S} is fixed) to a discontinuity boundary. Neighborhoods of these boundaries are precisely where
289 small changes can flip the top- k active set. For simplicity, we assume a time-independent, invertible
290 diffusion coefficient $\sigma \in \mathbb{R}^{d \times d}$, so the input evolves as the Itô diffusion

$$291 \quad dx_t = \sigma dB_t, \quad x_0 \in \mathcal{C}_{\mathbb{S}},$$

292 where B_t is standard d -dimensional Brownian motion. Under this model we first derive explicit
293 probabilistic bounds on the boundary hitting time. For brevity, all proofs in this section are deferred
294 to Appendix A.5.

295 **Theorem 5.1** (Exit through order-1 discontinuities with hitting-time bound). *Let x_t solve the diffusion
296 process in Equation 5, with $\mathcal{C}_{\mathbb{S}}$ is the open polyhedral cell associated with the k -subset \mathbb{S} , given by*

$$297 \quad \mathcal{C}_{\mathbb{S}} = \bigcap_{i \in \mathbb{S}, j \notin \mathbb{S}} \left\{ x \in \mathbb{R}^d : (W_g^{(i)} - W_g^{(j)})^\top x > b_g^{(j)} - b_g^{(i)} \right\}.$$

300 Denote $a^{(i,j)} := W_g^{(i)} - W_g^{(j)}$, $d^{(i,j)} := b_g^{(j)} - b_g^{(i)}$, and $c^{(i,j)} := \|\sigma^\top a^{(i,j)}\|$, and assume uniform
301 nondegeneracy $c^{(i,j)} > 0$ for all i, j . Define the minimal normalized distance to the boundary by

$$302 \quad r_{\min} := \min_{i \in \mathbb{S}, j \notin \mathbb{S}} \frac{a^{(i,j)\top} x_0 - d^{(i,j)}}{\|\sigma^\top a^{(i,j)}\|} > 0.$$

305 Let

$$306 \quad \tau_{\mathbb{S}} := \inf\{t \geq 0 : x_t \notin \mathcal{C}_{\mathbb{S}}\}$$

307 be the exit time. Then the following hold:

308 1. **(Exit location.)** Almost surely,

$$309 \quad \mathbb{P}(x_{\tau_{\mathbb{S}}} \in \Gamma^{(1)}) = 1, \quad \mathbb{P}(x_{\tau_{\mathbb{S}}} \in \Gamma^{(n)}) = 0 \quad \text{for all } n \geq 2,$$

311 i.e. exit occurs on an order-1 discontinuity with probability one.

312 2. **(Hitting-time bound.)** For every $t > 0$,

$$313 \quad \mathbb{P}(\tau_{\mathbb{S}} \leq t) \geq 2(1 - \Phi(r_{\min}/\sqrt{t})),$$

315 where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$ is the standard normal CDF. Moreover, by continuity of the
316 sample paths and Lemma A.25,

$$317 \quad x_{\tau_{\mathbb{S}}} \in \Gamma \quad \text{almost surely.}$$

318 **Remark 5.2.** Theorem 5.1 shows that higher-order discontinuities $\Gamma^{(n)}$, $n \geq 2$, are almost surely
319 never hit by the diffusion, i.e. $\mathbb{P}(x_{\tau_{\mathbb{S}}} \in \Gamma^{(n)}) = 0$. The key proof idea is that projecting onto directions
320 orthogonal to each discontinuity subspace yields an n -dimensional Brownian motion, which for
321 $n \geq 2$ almost surely does not hit a fixed point (Lemma A.27). Hence exits occur only along order-1
322 boundaries corresponding to pairwise logit ties. Moreover, the bound $\mathbb{P}(\tau_{\mathbb{S}} \leq t) \geq 2(1 - \Phi(r_{\min}/\sqrt{t}))$
323 highlights how the minimal normalized distance r_{\min} governs the law of $\tau_{\mathbb{S}}$, linking separating
hyperplane geometry with exit-time behavior.

In summary, order-1 discontinuities are almost surely hit in finite time (Proposition A.3), while higher orders $n \geq 2$ are not, though diffusion may still linger near them. To quantify this, we use the ϵ -thickening and state the following theorem.

Theorem 5.3 (Occupation time near order- n discontinuities). *Let x_t solve the diffusion equation 5 with initial condition $x_0 \in \mathcal{C}_{\mathbb{S}}$, where $\mathcal{C}_{\mathbb{S}}$ is an open top- k cell. Assume*

$$\Gamma^{(n)} \subseteq \bigcup_{J \in \mathcal{J}_n} S_J^{(n)}, \quad S_J^{(n)} := \{x \in \mathbb{R}^D : A_J^{(n)} x = d_J^{(n)}\}, \quad \text{rank } A_J^{(n)} = n.$$

For each J , choose an orthonormal basis N_J of $(S_J^{(n)})^\perp$ and set

$$\Sigma_{\perp,J} := N_J^\top \Sigma N_J, \quad \lambda_{\min,J} := \lambda_{\min}(\Sigma_{\perp,J}), \quad s_J := N_J^\top y \ (y \in S_J^{(n)}), \quad \mu_J := N_J^\top x_0.$$

Define

$$K_{J,n} := \frac{\omega_n}{(2\pi)^{n/2} \sqrt{\det(\Sigma_{\perp,J})}}, \quad \delta_{J,\epsilon} := \left\| \Sigma_{\perp,J}^{-1/2} (s_J - \mu_J) \right\| - \frac{\epsilon}{\sqrt{\lambda_{\min,J}}}, \quad b_{J,\epsilon} := \frac{(\delta_{J,\epsilon})_+^2}{2}.$$

Let

$$A_\epsilon^{(n)}(T; \Gamma) := \int_0^T \mathbf{1}\{x_t \in T_\epsilon(\Gamma^{(n)})\} dt.$$

Then, for all $T > 0$,

$$\mathbb{E}[A_\epsilon^{(n)}(T; \Gamma)] \leq \begin{cases} \sum_J K_{J,n} \epsilon^n b_{J,\epsilon}^{1-\frac{n}{2}} \Gamma(n/2 - 1, b_{J,\epsilon}/T), & n > 2, \\ \sum_J K_{J,2} \epsilon^2 E_1(b_{J,\epsilon}/T), & n = 2, \\ 2 \left(\sum_J K_{J,1} \right) \epsilon \sqrt{T}, & n = 1. \end{cases}$$

where $\Gamma(\cdot, \cdot)$ is the upper incomplete gamma function and $E_1(z) = \int_z^\infty e^{-u} u^{-1} du$.

Remark 5.4. Theorem 5.3 gives an upper bound on the expected occupation time that the diffusion X_t spends inside the ϵ -thickening of order- n discontinuities. The leading factor ϵ^n reflects the codimension- n geometry of the thickening. As n increases, ϵ^n decays exponentially for $0 < \epsilon < 1$. Moreover, the sum over slices J is finite, so the upper bound decreases with n in the small- ϵ regime.

6 CONTINUITY VIA $\ell_{\infty,\epsilon}$ -THICKENING LOCAL SMOOTHING

From Section 5, random perturbations in the input space almost surely intersect a discontinuity boundary, with low-order ones encountered most often. Motivated by this, we propose smoothing the SMoE map whenever the input lies in an $\ell_{\infty,\epsilon}$ -thickening of a discontinuity set. Unlike Euclidean ϵ -thickening, the $\ell_{\infty,\epsilon}$ version allows efficient proximity testing via gating logits, making it both theoretically justified and computationally practical.

$\ell_{\infty,\epsilon}$ local smoothing (Figure 2 from Appendix A.2). From Proposition A.20, we established that local smoothing within an $\ell_{\infty,\epsilon}$ -thickening requires only inputs $x \in T_\epsilon^{(\infty)}(\Gamma)$ such that there exists a non top- k index i with

$$0 < z_{[k]}(x) - z_i(x) < \epsilon.$$

We propose to smooth non top- k logits $z_i(x)$ within the ϵ -strip and discard those below it, while keeping all top- k logits unchanged. The smoothing is applied uniformly, but only affects logits $z_i(x)$ that satisfy the specified inequality. A key consequence is that if x lies in the $\ell_{\infty,\epsilon}$ -thickening of an order- n discontinuity, at most n additional experts can be activated. Since the measure of higher-order $\ell_{\infty,\epsilon}$ -thickenings decays rapidly (Theorem 4.7), a small ϵ ensures that the expected number of extra experts remains low.

We define the *log-smoothstep* $h : \mathbb{R} \rightarrow \mathbb{R}$ by

$$h(u) = -\infty \mathbf{1}_{\{u \leq 0\}} + 0 \cdot \mathbf{1}_{\{u \geq 1\}} + \log\left(\frac{u^a}{u^a + (1-u)^b}\right) \mathbf{1}_{\{0 < u < 1\}}, \quad a, b > 0.$$

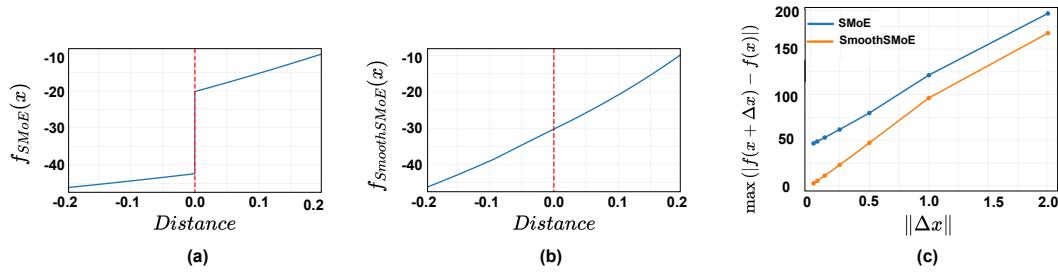


Figure 1: Effect of $\ell_{\infty,\epsilon}$ smoothing on discontinuity boundaries. (a) Standard SMoE shows a jump at the boundary. (b) SmoothSMoE, with identical weights, removes the jump and yields continuity. (c) Continuity check: maximum output difference vs. perturbation $\|\Delta x\|$. For SmoothSMoE (orange) it vanishes as $\|\Delta x\| \rightarrow 0$, while for SMoE (blue) it remains nonzero.

Given $\epsilon > 0$, we define the smoothed coefficient

$$m_i(x) = h((z_i(x) - z_{[k]}(x) + \epsilon)/\epsilon).$$

The smoothed gating logit is then defined as

$$\hat{z}_i(x) = z_i(x) + m_i(x).$$

As shown in Figure 2 from Appendix A.2, the soft margin discards logits below the cutoff, smoothly boosts those within the margin, and leaves those above the cutoff unchanged. Although h is continuous, the continuity of $x \mapsto z_{[k]}(x)$ is not immediate; Proposition A.7 establishes this and hence the continuity of the smoothed SMoE.

Boundary loss for adaptive ϵ . Choosing ϵ is nontrivial since smoothing acts in logit space. We therefore introduce a *boundary loss* that adaptively tunes ϵ under a fixed budget of extra experts. Let \mathcal{K} be the average number of activated experts with threshold ϵ (top- k plus those within ϵ of $z_{[k]}$), and k^* the target budget. With a learning coefficient $\alpha > 0$, we define

$$\mathcal{L}_{\text{boundary}} = \alpha \epsilon (\mathcal{K} - k^*).$$

Minimizing $\mathcal{L}_{\text{boundary}}$ naturally adjusts ϵ : when $\mathcal{K} > k^*$ the loss drives ϵ down, and when $\mathcal{K} < k^*$ it drives ϵ up. In practice, we set $k^* = k + 0.5$, allowing on average half an additional expert for boundary smoothing. [For a geometric intuition behind our theoretical results and smoothing mechanism, please see Section B.1.](#)

7 EMPIRICAL RESULTS

In this section, we empirically investigate the behaviour of the $\ell_{\infty,\epsilon}$ local smoothing method. We first demonstrate, through a small experiment, that the vanilla top- k SMoE map exhibits nontrivial discontinuity, while $\ell_{\infty,\epsilon}$ local smoothing effectively enforces continuity in the SMoE map. We further show that the proposed smoothing can also yield improvements over its top- k counterpart when applied to other tasks. Appendix B.4 shows how the boundary loss adapts ϵ and controls the average number of active experts. The complete experimental setup and training hyperparameters are reported in Appendix C.

7.1 $\ell_{\infty,\epsilon}$ LOCAL SMOOTHING VS. VANILLA SMoE NEAR DISCONTINUITY BOUNDARIES

To visualize the effect of $\ell_{\infty,\epsilon}$ local smoothing, we analyze a 4-layer SMoE pretrained on CIFAR-10 and compare it with SmoothSMoE initialized from the same weights with 32 experts and top-4 routing, isolating stochastic effects. Focusing on Layer 3, we select a random input point with a large discontinuity gap based on its orthogonal projection onto the nearest boundary, and then evaluate the model’s output along the normal direction. As shown in Figure 1(a), SMoE exhibits a sharp jump,

432
 433 Table 1: Perplexity (PPL) of SmoothSMoE compared to baseline models on clean and attacked
 434 WikiText-103 datasets. Means and standard deviations are computed over 3 random seeds.

435 Model	436 WikiText-103		437 Attacked WikiText-103	
	438 Valid PPL \downarrow	439 Test PPL \downarrow	440 Valid PPL \downarrow	441 Test PPL \downarrow
<i>SMoE</i>	33.79 ± 0.07	35.52 ± 0.13	42.21 ± 0.08	44.18 ± 0.12
<i>ReMoE</i>	33.60 ± 0.14	35.35 ± 0.12	42.19 ± 0.19	44.00 ± 0.45
SmoothSMoE	32.72 ± 0.08	34.35 ± 0.22	40.99 ± 0.26	42.85 ± 0.29

442
 443 where tiny perturbations cause large output changes, while SmoothSMoE in Figure 1(b) removes
 444 this jump and yields a continuous map. Figure 1(c) plots the maximum output difference of a fixed
 445 dimension versus perturbation magnitude $\|\Delta x\|$ along a normal direction. For SMoE (blue) the
 446 difference persists as $\|\Delta x\| \rightarrow 0$, whereas for SmoothSMoE (orange) it vanishes, confirming that
 447 smoothing restores continuity. Additional results, including visualizations for other layers, are given
 448 in Appendix B.3.

450 7.2 LANGUAGE MODELING ON WIKITEXT-103 AND ENWIKI-8

451
 452 We follow Pham et al. (2024) for language modeling pretraining on WikiText-103 (Merity et al.,
 453 2017a) and EnWiki-8 (Mahoney, 2006) using a Switch Transformer (Fedus et al., 2022) with 16
 454 experts and top-2 routing, reporting PPL on WikiText-103 and BPC on EnWiki-8. Robustness on
 455 WikiText-103 is tested by training on the clean corpus and evaluating on attacked versions (Han
 456 et al., 2024). We include ReMoE (Wang et al., 2024) as another baseline to compare against other
 457 continuous routing methods; for this baseline, we allow dense expert training for the first 2 epochs
 458 before enforcing the sparsity loss. As shown in Table 1, SmoothSMoE reduces WikiText-103
 459 validation/test PPL from $33.79/35.52$ to $32.72/34.35$ (improvements of 1.07 and 1.17), and similarly
 460 lowers Attacked WikiText-103 validation/test PPL from $42.21/44.18$ to $40.99/42.85$ compared
 461 to SMoE. ReMoE yields slightly lower perplexity than SMoE but is consistently outperformed
 462 by SmoothSMoE, ranking second across all four metrics. On EnWiki-8 (Table 4, Appendix B),
 463 SmoothSMoE achieves 1.122 BPC vs. 1.153 for SMoE, confirming gains across both standard and
 464 robust language modeling.

465 Table 2: Results on GLUE benchmarks. Means and standard deviations are computed over 5 random
 466 seeds.

467 Model	468 RTE	469 MRPC	470 COLA	471 QNLI	472 MNLI	473 Average
<i>SMoE</i> (K=16, k=2)	73.28 ± 1.02	89.17 ± 0.42	64.25 ± 1.49	92.56 ± 0.05	86.60 ± 0.06	81.17
<i>ReMoE</i> (K=16, k=2)	73.10 ± 0.74	88.60 ± 1.90	64.9 ± 1.2	92.53 ± 0.14	86.69 ± 0.13	81.18
SmoothSMoE (K=16, k=2)	73.40 ± 0.85	90.15 ± 0.60	65.41 ± 0.39	92.40 ± 0.12	86.90 ± 0.20	81.65
<i>SMoE</i> (K=16, k=4)	73.85 ± 1.17	89.26 ± 1.29	63.90 ± 0.62	92.20 ± 0.14	86.49 ± 0.15	81.14
<i>ReMoE</i> (K=16, k=4)	72.20 ± 1.35	89.49 ± 0.49	65.07 ± 1.61	92.51 ± 0.03	86.51 ± 0.12	81.16
SmoothSMoE (K=16, k=4)	74.60 ± 1.11	89.88 ± 0.87	64.82 ± 0.41	92.53 ± 0.28	86.82 ± 0.12	81.73

474 7.3 IMAGE CLASSIFICATION ON DOMAINBED BENCHMARK

475
 476 We evaluate smoothing on vision tasks using DomainBed (Gulrajani & Lopez-Paz, 2020). Following
 477 Guo et al. (2024), GMoE (Li et al., 2023) is built from a ViT-S/16 backbone (Dosovitskiy
 478 et al., 2021) pretrained on ImageNet-1K. We add our $\ell_{\infty, \epsilon}$ local smoothing to GMoE and compare
 479 against the original across four DomainBed tasks. As shown in Table 3, SmoothGMoE achieves
 480 steady improvements over GMoE across most benchmarks, with an average gain of 0.56% and a
 481 notable 2.1% increase on TerraInc. The larger datasets show consistent improvements, suggesting
 482 that smoothing is especially effective in large-data regimes by activating extra experts near ties and
 483 stabilizing optimization.

484
 485 ¹All baseline results in Table 3 are from Li et al. (2023), except DomainNet, which we carefully tuned and
 486 reproduced.

486
 487 Table 3: Mean accuracy (%) on DomainBed with ViT-S/16. Mean and standard deviation are
 488 computed over 5 random seeds.

489 Algorithms	PACS	VLCS	OfficeHome	TerraInc	DomainNet	Average
490 <i>GMoE</i> ¹	87.7 ± 0.2	79.6 ± 0.4	73.1 ± 0.3	45.4 ± 0.3	48.4 ± 0.1	66.84
491 SmoothGMoE	87.6 ± 0.32	79.9 ± 0.2	73.46 ± 0.41	47.5 ± 0.91	48.8 ± 0.1	67.4

493
 494 7.4 GLUE BENCHMARK: LANGUAGE INFERENCE AND CLASSIFICATION TASKS
 495

496 We evaluate our smoothing mechanism on natural language understanding using five GLUE
 497 tasks (Wang et al., 2018): CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett, 2005),
 498 MNLI (Wang et al., 2018), QNLI, and RTE (Bentivogli et al., 2009). Following experiment settings
 499 in MoEfication (Zhang et al., 2022) and EMoE (Qiu et al., 2023), we augment BERT-large (Devlin
 500 et al., 2019b) by replacing one FFN layer with our MoE layer and compare against SMoE baselines,
 501 reporting validation performance. As shown in Table 2 in Appendix B, SmoothSMoE achieves higher
 502 accuracy on almost all tasks and settings, with the largest gain of 1.32% on RTE. Averaged across
 503 each top- $k \in \{2, 4\}$ yields a consistent improvement of 0.25%–0.42%, indicating that smoothing
 504 benefits SMoE models for language understanding on the GLUE benchmark.

505 We evaluate our smoothing mechanism on natural language understanding using five GLUE
 506 tasks (Wang et al., 2018): CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett, 2005),
 507 MNLI (Wang et al., 2018), QNLI, and RTE (Bentivogli et al., 2009). Following experiment settings
 508 in MoEfication (Zhang et al., 2022) and EMoE (Qiu et al., 2023), we augment BERT-large (De-
 509 vlin et al., 2019b) by replacing one FFN layer with our MoE layer and compare against SMoE
 510 baselines, reporting validation performance. **We additionally include ReMoE (Wang et al., 2024)**
 511 as a continuous-routing baseline to broaden the comparison. As shown in Table 2, SmoothSMoE
 512 achieves the strongest performance across both $k=2$ and $k=4$ settings, improving over SMoE and
 513 ReMoE on nearly all tasks. The largest gain is observed on MRPC (up to 1.55%), and smoothing
 514 also yields consistent improvements on RTE, CoLA, and MNLI. Averaged across all GLUE tasks,
 515 SmoothSMoE improves over the next best baseline by 0.47% for $k=2$ and 0.57% for $k=4$, indicating
 516 that smoothing provides robust benefits for language understanding.

517 8 CONCLUSION
 518

519 In this paper, we provide a theoretical investigation of discontinuities in Sparse Mixture-of-Experts
 520 from both geometric and stochastic perspectives. On the geometric side, we classify discontinuities
 521 by order and, using measure-theoretic slicing arguments, derive asymptotic volume bounds for both
 522 Euclidean ϵ -thickenings and $\ell_{\infty, \epsilon}$ -thickenings around these sets. On the stochastic side, we analyze
 523 the hitting times of discontinuities as well as the occupation times of a random diffusion process in
 524 their neighborhoods. Building on these insights, we propose a simple smoothing mechanism that can
 525 be applied directly to SMoEs and demonstrate its effectiveness across multiple tasks. One possible
 526 limitation of our analysis is that adversarial or structured perturbations may deviate from random
 527 diffusion, making them more challenging to study; addressing such cases remains an interesting
 528 direction for future work.

529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 **Ethics Statement.** Given the nature of the work, we do not foresee any negative societal and ethical
 541 impacts of our work.

542 **Reproducibility Statement.** Source codes for our experiments are provided in the supplementary
 543 materials of the paper. The details of our experimental settings are given in Section C. All datasets
 544 used in this paper are publicly available.

545 **LLM usage.** In this paper, large language models (LLMs) were used solely as a tool to assist
 546 and refine the writing process. They helped with phrasing, clarity, and stylistic polishing, but all
 547 conceptual work, analyses, and conclusions were developed independently by the authors. The LLM
 548 served only to improve readability and presentation, without contributing to the research content itself

550
 551 REFERENCES

552 Laziz Abdullaev and Tan M Nguyen. Transformer meets twicing: Harnessing unattended residual
 553 information. *The Thirteenth International Conference on Learning Representations*, 2025.

554
 555 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers.
 556 In *International Conference on Learning Representations*, 2022a. URL <https://openreview.net/forum?id=p-BhZSz59o4>.

557
 558 Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Subhajit
 559 Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with mixture-
 560 of-modality-experts. *Advances in Neural Information Processing Systems*, 35:32897–32912,
 561 2022b.

562
 563 Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In *Proceedings of the*
 564 *European Conference on Computer Vision (ECCV)*, September 2018.

565
 566 Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The fifth
 567 pascal recognizing textual entailment challenge. In *Proceedings of the Text Analysis Conference*
 568 (*TAC*), 2009.

569
 570 Tianlong Chen, Zhenyu Zhang, Ajay Kumar Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse
 571 moe as the new dropout: Scaling dense and self-slimmable transformers. In *ICLR*, 2023. URL
https://openreview.net/pdf?id=w1hwFUb_81.

572
 573 Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
 574 Jingjing Liu. Uniter: Universal image-text representation learning. In *European conference on*
 575 *computer vision*, pp. 104–120. Springer, 2020.

576
 577 Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
 578 mixture-of-experts layer in deep learning. *Advances in neural information processing systems*, 35:
 23049–23062, 2022.

579
 580 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 581 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 582 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
 2023.

583
 584 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 585 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 586 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the*
 587 *Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and*
 588 *Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019a. Association for Computational
 589 Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423>.

590
 591 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 592 bidirectional transformers for language understanding. In *Proceedings of NAACL-HLT*, pp. 4171–
 4186, 2019b.

593
 594 William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
 595 In *Proceedings of the Third International Workshop on Paraphrasing (IWP)*, 2005.

594 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 595 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 596 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 597 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

598

599 Chen Fang, Zhenyong Lin, Ngoi Chen, and Jinhui Wang. Unbiased metric learning: On the utilization
 600 of multiple datasets and web images for softening bias. In *Proceedings of the IEEE International
 601 Conference on Computer Vision (ICCV)*, pp. 1657–1664, 2013.

602

603 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 604 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 605 2022.

606

607 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization, 2020. URL
 608 <https://arxiv.org/abs/2007.01434>.

609

610 Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic mixture of ex-
 611 perts: An auto-tuning approach for efficient transformer models. *arXiv preprint arXiv:2405.14297*,
 612 2024.

613

614 Xing Han, Tongzheng Ren, Tan Nguyen, Khai Nguyen, Joydeep Ghosh, and Nhat Ho. Designing
 615 robust transformers using robust kernel density estimation. *Advances in Neural Information
 616 Processing Systems*, 36, 2024.

617

618 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 619 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 620 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

621

622 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 623 local experts. *Neural computation*, 3(1):79–87, 1991.

624

625 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 626 Conference on Learning Representations*, 2015.

627

628 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 629 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with con-
 630 ditional computation and automatic sharding. In *International Conference on Learning Representa-
 631 tions*, 2021. URL <https://openreview.net/forum?id=qrwe7XHTmYb>.

632

633 Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
 634 Liu. Sparse mixture-of-experts are domain generalizable learners. In *The Eleventh International
 635 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=RecZ9nB9Q4>.

636

637 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
 638 generalization. *2017 IEEE International Conference on Computer Vision (ICCV)*, pp. 5543–5551,
 639 2017. URL <https://api.semanticscholar.org/CorpusID:6037691>.

640

641 Shengqiao Li. Concise formulas for the area and volume of a hyperspherical cap. *Asian Journal of
 642 Mathematics & Statistics*, 2011.

643

644 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
 645 Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. *arXiv
 646 preprint arXiv:2401.15947*, 2024.

647

648 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 649 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
 650 experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

651

652 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 653 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=w0H2xGH1kw>.

648 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 649 *neural information processing systems*, 36, 2024b.

650

651 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
 652 representations for vision-and-language tasks. *Advances in neural information processing systems*,
 653 32, 2019.

654 Matt Mahoney. Large text compression benchmark. <http://mattmahoney.net/dc/text.html>, 2006.

655

656 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 657 models. In *International Conference on Learning Representations*, 2017a. URL <https://openreview.net/forum?id=Byj72udxe>.

658

659 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 660 models. *arXiv preprint arXiv:1609.07843*, 2017b.

661

662 James R. Munkres. *Topology: A first course*. Prentice Hall International, 1997.

663

664 Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
 665 *arXiv preprint arXiv:2306.03745*, 2023.

666

667 Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostafa Patwary, Vijay
 668 Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
 669 Efficient large-scale language model training on gpu clusters using megatron-lm. In *Proceedings*
 670 *of the international conference for high performance computing, networking, storage and analysis*,
 671 pp. 1–15, 2021.

672

673 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 674 for multi-source domain adaptation. In *2019 IEEE/CVF International Conference on Computer*
 675 *Vision (ICCV)*, pp. 1406–1415, 2019. doi: 10.1109/ICCV.2019.00149.

676

677 Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T
 678 Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, et al. Competesmoe—effective training of
 679 sparse mixture of experts via competition. *arXiv preprint arXiv:2402.02526*, 2024.

680

681 Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, and Neil Houlsby. From sparse to soft
 682 mixtures of experts. In *The Twelfth International Conference on Learning Representations*, 2024.
 683 URL <https://openreview.net/forum?id=jxpSAj71tE>.

684

685 Xinyu Qiu, Yufan Zhang, Rong Zhu, Zhuseng Zhang, Yang Liu, and Hai Zhao. Emoe: Efficient
 686 mixture-of-experts for large language models. In *Findings of the Association for Computational*
 687 *Linguistics: ACL*, pp. 13944–13957, 2023.

688

689 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 690 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

691

692 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 693 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 694 models from natural language supervision. In *International conference on machine learning*, pp.
 695 8748–8763. PMLR, 2021.

696

697 Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
 698 mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
 699 inference and training to power next-generation ai scale. In *International conference on machine*
 700 *learning*, pp. 18332–18346. PMLR, 2022.

701

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
 layer. In *International Conference on Learning Representations (ICLR)*, 2017. URL <https://arxiv.org/abs/1701.06538>.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
 formers. *arXiv preprint arXiv:1908.07490*, 2019.

702 Rachel SY Teo and Tan Nguyen. Unveiling the hidden structure of self-attention via kernel principal
703 component analysis. *Advances in Neural Information Processing Systems*, 37:101393–101427,
704 2024.

705 706 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

707 708 Hemanth Venkateswara, José Eusébio, Shayok Chakraborty, and Sethuraman Panchanathan.
709 Deep hashing network for unsupervised domain adaptation. *2017 IEEE Conference on Com-
710 puter Vision and Pattern Recognition (CVPR)*, pp. 5385–5394, 2017. URL <https://api.semanticscholar.org/CorpusID:2928248>.

711 712 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
713 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings
714 of the 2018 EMNLP Workshop BlackboxNLP*, pp. 353–355, 2018.

715 716 Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu
717 routing. *arXiv preprint arXiv:2412.14711*, 2024.

718 719 Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. The corpus of linguistic acceptability.
720 In *Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL)*, pp. 119–124, 2019.

721 722 Yichong Xu, Shujie Liu, Jiajun Zhu, and Ming Zhou. An evaluation of transfer learning for
723 automatic humor recognition. In *Proceedings of the 58th Annual Meeting of the Association
724 for Computational Linguistics (ACL)*, pp. 6057–6064, 2020.

725 726 Aston Zhang, Xiaodong Zhao, Zhuoning He, Shuxin Lin, Aayush Sinha, Han Zhao, Mu Li, and
727 Alexander Smola. Moefication: Transformer feed-forward layers are mixtures of experts. In
728 *International Conference on Learning Representations (ICLR)*, 2022.

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **Supplement to “Discontinuities in Sparse Mixture-of-Experts: A**
759 **Measure-Stochastic Analysis”**
760761 **Table of Contents**
762

763	A.1	Math Notations	16
764	A.2	Mathematical formulation for Mixture of Experts	18
765	A.2.1	Mixture-of-experts	18
766	A.2.2	Top-k Sparse Mixture-of-Experts (SMOE)	18
767	A.3	Discontinuities of Top-k Sparse Mixture-of-Experts	19
768	A.3.1	Partition induced by Top- k affine gating and the discontinuity set.	19
769	A.3.2	Orders of discontinuities	20
770	A.3.3	Smoothed SMoE is continuous	21
771	A.4	Asymptotic Measure of ϵ -Thickened Discontinuities	22
772	A.4.1	Base case: ϵ -thickening measure of order-1 discontinuities in a bounded region	22
773	A.4.2	Generalized case: ϵ -thickening measure of order- n discontinuity in a bounded region	25
774	A.5	Hitting and Occupation Time Near Discontinuities	37
775	A.5.1	Randomly perturbed diffusion process is guaranteed to hit the top- k cell boundary	37
776	A.5.2	Equivalence between cell boundaries and the discontinuity set	40
777	A.5.3	First exit almost surely as order-1 discontinuity	41
778	A.5.4	Occupation time near discontinuity sets	43
779	B	Further Theoretical Analysis and Ablation Studies	46
780	B.1	Geometric intuition behind theoretical analysis	46
781	B.2	SmoothSMoE vs. Other Differentiable Routing Methods	47
782	B.3	Detailed analysis on $\ell_{\infty, \epsilon}$ Local Smoothing vs. Vanilla SMoE Near Discontinuity Boundaries	47
783	B.4	How Boundary Loss Controls ϵ and the Average Number of Activated Experts	49
784	B.5	Annealing Boundary Smoothing to Hard Top- k	49
785	C	Experimental Details	50
786	C.1	Language Modeling	51
787	C.1.1	Dataset	51
788	C.1.2	Implementation Details	51
789	C.2	Vision Task on DomainBed Benchmark	51
790	C.2.1	Dataset	51
791	C.2.2	Implementation Details	52
792	C.3	Language Task (GLUE Benchmark)	52

810	C.3.1	Dataset	52
811	C.3.2	Implementation Details	53

813

814

815

816

A.1 MATH NOTATIONS

817

818

Numbers and Arrays

819

 a A scalar (integer or real)

820

 \mathbf{a} A vector

821

 \mathbf{A} A matrix

822

 \mathbf{A} A tensor

823

 \mathbf{I}_n Identity matrix with n rows and n columns

824

 \mathbf{I} Identity matrix with dimensionality implied by context

825

 $\mathbf{e}^{(i)}$ Standard basis vector $[0, \dots, 0, 1, 0, \dots, 0]$ with a 1 at position i

826

 $\text{diag}(\mathbf{a})$ A square, diagonal matrix with diagonal entries given by \mathbf{a}

827

 \mathbf{a} A scalar random variable

828

 \mathbf{a} A vector-valued random variable

829

 \mathbf{A} A matrix-valued random variable

830

Sets and Graphs

831

 \mathbb{A} A set

832

 \mathbb{R} The set of real numbers

833

 $\{0, 1\}$ The set containing 0 and 1

834

 $\{0, 1, \dots, n\}$ The set of all integers between 0 and n

835

 $[a, b]$ The real interval including a and b

836

 $(a, b]$ The real interval excluding a but including b

837

 $\mathbb{A} \setminus \mathbb{B}$ Set subtraction, i.e., the set containing the elements of \mathbb{A} that are not in \mathbb{B}

838

 \mathcal{G} A graph

839

 $\text{Pa}_{\mathcal{G}}(\mathbf{x}_i)$ The parents of \mathbf{x}_i in \mathcal{G}

840

Indexing

841

 a_i Element i of vector \mathbf{a} , with indexing starting at 1

842

 \mathbf{a}_{-i} All elements of vector \mathbf{a} except for element i

843

 $A_{i,j}$ Element i, j of matrix \mathbf{A}

844

 $\mathbf{A}_{i,:}$ Row i of matrix \mathbf{A}

845

 $\mathbf{A}_{:,i}$ Column i of matrix \mathbf{A}

846

 $A_{i,j,k}$ Element (i, j, k) of a 3-D tensor \mathbf{A}

847

 $\mathbf{A}_{:,:,i}$ 2-D slice of a 3-D tensor

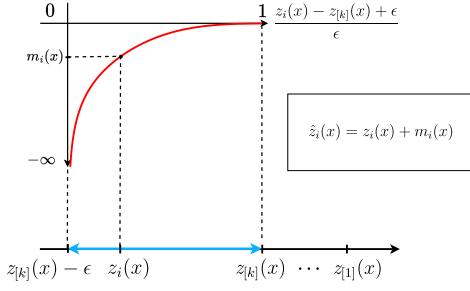
848

 \mathbf{a}_i Element i of the random vector \mathbf{a}

849

Calculus

864	$\frac{dy}{dx}$	Derivative of y with respect to x
865	$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
866	$\nabla_{\mathbf{x}} y$	Gradient of y with respect to \mathbf{x}
867	$\nabla_{\mathbf{X}} y$	Matrix derivatives of y with respect to \mathbf{X}
868	$\nabla_{\mathbf{X}} y$	Tensor containing derivatives of y with respect to \mathbf{X}
869	$\frac{\partial f}{\partial \mathbf{x}}$	Jacobian matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$
870	$\nabla_{\mathbf{x}}^2 f(\mathbf{x})$ or $\mathbf{H}(f)(\mathbf{x})$	The Hessian matrix of f at input point \mathbf{x}
871	$\int f(\mathbf{x}) d\mathbf{x}$	Definite integral over the entire domain of \mathbf{x}
872	$\int_{\mathbb{S}} f(\mathbf{x}) d\mathbf{x}$	Definite integral with respect to \mathbf{x} over the set \mathbb{S}
873	Probability and Information Theory	
874	$P(a)$	A probability distribution over a discrete variable
875	$p(a)$	A probability distribution over a continuous variable, or over a variable whose type has not been specified
876	$a \sim P$	Random variable a has distribution P
877	$\mathbb{E}_{x \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
878	$\text{Var}(f(x))$	Variance of $f(x)$ under $P(x)$
879	$\text{Cov}(f(x), g(x))$	Covariance of $f(x)$ and $g(x)$ under $P(x)$
880	$H(x)$	Shannon entropy of the random variable x
881	$D_{\text{KL}}(P \ Q)$	Kullback-Leibler divergence of P and Q
882	$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$	Gaussian distribution over \mathbf{x} with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$
883	Functions	
884	$f : \mathbb{A} \rightarrow \mathbb{B}$	The function f with domain \mathbb{A} and range \mathbb{B}
885	$f \circ g$	Composition of the functions f and g
886	$f(\mathbf{x}; \boldsymbol{\theta})$	A function of \mathbf{x} parametrized by $\boldsymbol{\theta}$. (Sometimes we write $f(\mathbf{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation)
887	$\log x$	Natural logarithm of x
888	$\sigma(x)$	Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$
889	$\zeta(x)$	Softplus, $\log(1 + \exp(x))$
890	$\ \mathbf{x}\ _p$	L^p norm of \mathbf{x}
891	$\ \mathbf{x}\ $	L^2 norm of \mathbf{x}
892	x^+	Positive part of x , i.e., $\max(0, x)$
893	$\mathbf{1}_{\text{condition}}$	is 1 if the condition is true, 0 otherwise
894		
895		
896		
897		
898		
899		
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		

918 A.2 MATHEMATICAL FORMULATION FOR MIXTURE OF EXPERTS
919930 Figure 2: Illustration for gating logit smoothing within the $\ell_{\infty, \epsilon}$ -thickening.
931932 A.2.1 MIXTURE-OF-EXPERTS
933

934 Let $\mathbb{X} = \mathbb{R}^D$ and $\mathbb{Y} = \mathbb{R}^{D'}$, each regarded as a finite-dimensional normed vector space with
935 the Euclidean inner product. We equip them with their Borel σ -algebras $\mathcal{B}(\mathbb{X})$, $\mathcal{B}(\mathbb{Y})$, and with the
936 standard Lebesgue measures λ^D , $\lambda^{D'}$, respectively. Then, we define the input space as $(\mathbb{X}, \mathcal{B}(\mathcal{X}), \lambda^D)$
937 and the output space as $(\mathbb{Y}, \mathcal{B}(\mathcal{Y}), \lambda^{D'})$.
938

939 Assume that we have M experts. A gating function G is a map
940

$$G : \mathcal{X} \rightarrow \Delta_{M-1},$$

942 where $\Delta_{M-1} = \{\alpha \in \mathbb{R}_{\geq 0}^M : \sum_{i=1}^M \alpha_i = 1\}$ denotes the $(M-1)$ -dimensional probability simplex.
943 For each input $x \in \mathcal{X}$, the vector $G(x) = (G_1(x), \dots, G_M(x))$ specifies the weights assigned to the
944 M experts.
945

946 For $i = 1, \dots, M$, each expert is given by a map
947

$$E_i : \mathbb{X} \rightarrow \mathbb{Y},$$

949 Then, we can write the Mixture-of-Experts as a function $f : \mathbb{X} \rightarrow \mathbb{Y}$ in the form
950

$$f(x) = \sum_{i=1}^M G_i(x) E_i(x)$$

954 A.2.2 TOP-K SPARSE MIXTURE-OF-EXPERTS (SMOE)
955

956 We now state the 3 assumptions used in the proofs. They are mild and typically satisfied by pretrained
957 SMoE models in practice; they exclude pathological corner cases and streamline the theoretical
958 analysis.
959

Assumption:

- 961 1. The number of experts is smaller than the input dimension ($M < D$).
- 962 2. The number of experts activated is positive and less than the full set of available expert
($1 \leq k < M$).
- 963 3. $W_g \in \mathbb{R}^{M \times D}$ has full row rank.
964

965 *Remark A.1.* On the space $\mathbb{R}^{M \times D}$ we define the product measure $\lambda^{M \times D}$ induced by the row
966 measures $\lambda^{W^{(i)}}$. If each $\lambda^{W^{(i)}}$ is absolutely continuous with respect to the Lebesgue measure λ^D or
967 has the Lebesgue measure itself, it follows that the set of weight matrices W_g that are not full row
968 rank has product $\lambda^{M \times D}$ -measure zero.
969

970 Define $z : \mathcal{X} \rightarrow \mathbb{R}^M$ as the gating score function componentwise by
971

$$z_i(x) = \langle W_g^{(i)}, x \rangle + b_g^{(i)}, \quad i = 1, \dots, M,$$

972 so that $z(x) = (z_1(x), \dots, z_M(x))$.
 973

974 Fix $k \in \{1, \dots, M\}$ and let $S_k(x) \subseteq \{1, \dots, M\}$ be the indices of the k largest entries of $z(x)$. The
 975 top- k softmax gate $G : \mathcal{X} \rightarrow \Delta_{M-1}$ is

$$976 \quad 977 \quad 978 \quad G_i(x) = \frac{\exp(z_i(x)) \mathbf{1}_{\{i \in S_k(x)\}}}{\sum_{j \in S_k(x)} \exp(z_j(x))}, \quad i = 1, \dots, M,$$

979 Then, the Sparse Mixture-of-Experts (SMoE) is the map $f : \mathcal{X} \rightarrow \mathcal{Y}$ defined by $f(x) =$
 980 $\sum_{i=1}^M G_i(x) E_i(x)$, where G is the top- k softmax gate and each expert map is $E_i : \mathcal{X} \rightarrow \mathcal{Y}$.
 981

982 A.3 DISCONTINUITIES OF TOP-K SPARSE MIXTURE-OF-EXPERTS

983 A.3.1 PARTITION INDUCED BY TOP- k AFFINE GATING AND THE DISCONTINUITY SET.

984 Let $z_i(x) = \langle W_g^{(i)}, x \rangle + b_g^{(i)}$ for $i = 1, \dots, M$ be the affine gatings, and fix $k \in \{1, \dots, M\}$. For
 985 each k -subset $\mathbb{S} \subseteq \{1, \dots, M\}$, define the open cell
 986

$$987 \quad \mathcal{C}_{\mathbb{S}} = \{x \in \mathbb{X} : z_i(x) > z_j(x) \text{ for all } i \in \mathbb{S}, j \notin \mathbb{S}\}.$$

988 Then $\{\mathcal{C}_{\mathbb{S}}\}_{|\mathbb{S}|=k}$ is dense in \mathbb{X} , while the remaining points in $\mathbb{R}^D \setminus \bigcup_{|\mathbb{S}|=k} \mathcal{C}_{\mathbb{S}}$ constitute the discontinuity
 989 set of the Top- k gating, which will be analyzed later.
 990

991 **Proposition A.2.** $\mathcal{C}_{\mathbb{S}}$ is a full-dimensional region in \mathbb{R}^D , i.e. $\dim(\mathcal{C}_{\mathbb{S}}) = D$.
 992

993 *Proof.* For $i \in \mathcal{S}, j \notin \mathcal{S}$, we have the following
 994

$$995 \quad z_i(x) > z_j(x) \iff (W_g^{(i)} - W_g^{(j)})^\top x > b_g^{(j)} - b_g^{(i)}.$$

996 Hence
 997

$$998 \quad \mathcal{C}_{\mathcal{S}} = \bigcap_{i \in \mathcal{S}, j \notin \mathcal{S}} \{x \in \mathbb{R}^D : (W_g^{(i)} - W_g^{(j)})^\top x > b_g^{(j)} - b_g^{(i)}\}.$$

1000 By Assumption 3, $(W_g^{(i)} - W_g^{(j)}) \neq 0$ for all $i \neq j$. Each inequality $z_i(x) > z_j(x)$ then defines a
 1001 nontrivial open halfspace in \mathbb{R}^D . Their finite intersection gives $\mathcal{C}_{\mathcal{S}}$, which is an open subset of \mathbb{R}^D .
 1002 So its affine hull equals \mathbb{R}^D and
 1003

$$1004 \quad \dim(\mathcal{C}_{\mathcal{S}}) = \dim(\text{aff}(\mathcal{C}_{\mathcal{S}})) = D. \quad \square$$

1005 On the relative interior $\text{relint}(\mathcal{C}_{\mathbb{S}})$ of $\mathcal{C}_{\mathbb{S}}$, the active expert set is constant, $S_k(x) = \mathbb{S}$, and the gate is
 1006

$$1007 \quad 1008 \quad G_i(x) = \frac{\exp(z_i(x)) \mathbf{1}_{\{i \in \mathbb{S}\}}}{\sum_{j \in \mathbb{S}} \exp(z_j(x))}.$$

1009 For each k -subset \mathbb{S} and $i \in \mathbb{S}, j \notin \mathbb{S}$, we define the boundary $\mathbb{F}_{\mathbb{S},i,j}$ as follow
 1010

$$1011 \quad \mathbb{F}_{\mathbb{S},i,j} = \left\{ x \in \mathbb{X}^D : z_i(x) = z_j(x), z_i(x) \leq z_\ell(x) \forall \ell \in \mathbb{S} \setminus \{i\}, z_m(x) \leq z_j(x) \forall m \notin (\mathbb{S} \cup \{j\}) \right\}.$$

1012 Intuitively, this set is the boundary where the k -th largest score $z_i(x)$ from the active set \mathbb{S} ties with
 1013 the $(k+1)$ -th largest score $z_j(x)$ from the inactive set, so that crossing such a boundary swaps i and
 1014 j between active and inactive experts.
 1015

1016 The discontinuous set of the Top- k gating is the union
 1017

$$1018 \quad 1019 \quad \Gamma = \bigcup_{|\mathbb{S}|=k} \bigcup_{i \in \mathbb{S}, j \notin \mathbb{S}} \mathbb{F}_{\mathbb{S},i,j}.$$

1020 \square

1021 **Proposition A.3.** The discontinuous set Γ has Lebesgue measure zero in \mathbb{R}^D , i.e. $\lambda^D(\Gamma) = 0$.
 1022

1026 *Proof.* For $i \neq j$, we define the tie set $\mathbb{H}_{ij} := \{x \in \mathbb{R}^D : z_i(x) = z_j(x)\}$ is an affine hyperplane
 1027 given by

$$1028 \quad \{x \in \mathbb{R}^D : (W_g^{(i)} - W_g^{(j)})^\top x = b_g^{(j)} - b_g^{(i)}\},$$

1029 with $W_g^{(i)} - W_g^{(j)} \neq 0$. Hence \mathbb{H}_{ij} has Lebesgue measure zero. Each boundary piece $\mathbb{F}_{\mathbb{S},i,j}$ is a
 1030 polyhedral subset of \mathbb{H}_{ij} , so $\lambda^D(\mathcal{F}_{\mathbb{S},i,j}) = 0$. Since

$$1032 \quad \Gamma = \bigcup_{|\mathbb{S}|=k} \bigcup_{i \in \mathbb{S}, j \notin \mathbb{S}} \mathbb{F}_{\mathbb{S},i,j}$$

1033 is a finite union of these $\mathbb{F}_{\mathbb{S},i,j}$ terms, hence, countable subadditivity gives us $\lambda^D(\Gamma) = 0$. \square

1037 A.3.2 ORDERS OF DISCONTINUITIES

1038 Within the discontinuity set Γ there are, in fact, different types of discontinuities. For instance, one
 1039 may encounter a pairwise tie where only two scores satisfy $z_i(x) = z_j(x)$ with one index inside
 1040 and one outside the top- k set. Alternatively, higher-order ties may occur, such as a triple equality
 1041 $z_{i'}(x) = z_{j'}(x) = z_{k'}(x)$.

1042 To analyze these discontinuities, we classify them by order: a pairwise tie is called a order-1 discontinuity,
 1043 a triple tie a order-3 discontinuity, and more generally an order- n discontinuity corresponds to
 1044 $n + 1$ scores becoming equal across the top- k threshold.

1045 **Definition A.4** (Order statistics of the scores). Given scores $z_1(x), \dots, z_M(x)$ at $x \in \mathbb{X}$, define the
 1046 order statistics

$$1047 \quad z_{[1]}(x) \geq z_{[2]}(x) \geq \dots \geq z_{[M]}(x)$$

1048 denote the order statistics, i.e. the sorted values of $\{z_i(x)\}_{i=1}^M$ in nonincreasing order, and ties are
 1049 broken by lexical order of the original index.

1050 **Definition A.5** (Order- n discontinuity). Fix $1 < k < M$ and let the gating scores be affine maps

$$1053 \quad z(x) = W_g x + b_g, \quad W_g \in \mathbb{R}^{M \times D}, b_g \in \mathbb{R}^M,$$

1054 with rows a_i^\top and entries b_i , so $z_i(x) = a_i^\top x + b_i$.

1055 A point $x \in \mathbb{X}$ is an *order- n discontinuity* if there exists a tie set

$$1056 \quad I = \{i_1, \dots, i_{n+1}\} \subseteq \{1, \dots, M\}$$

1057 such that the scores in I tie exactly at the switching threshold,

$$1058 \quad z_{i_1}(x) = \dots = z_{i_{n+1}}(x) = z_{[k]}(x) = z_{[k+1]}(x),$$

1059 so that x lies in the affine subspace

$$1060 \quad S_I = \left\{ x \in \mathbb{R}^D : (a_{i_r} - a_{i_1})^\top x = b_{i_1} - b_{i_r}, \quad r = 2, \dots, n+1 \right\}.$$

1061 At such a point, some but not all indices of I belong to the Top- k set \mathbb{S} . The corresponding
 1062 discontinuity slice is the polyhedron

$$1063 \quad \Gamma_{I,\mathbb{S}}^{(n)} = \left\{ x \in S_I : (a_j - a_{i_1})^\top x > b_{i_1} - b_j, \quad \forall j \in \mathbb{S} \setminus I; \quad (a_\ell - a_{i_1})^\top x < b_{i_1} - b_\ell, \quad \forall \ell \in \mathbb{S}^C \setminus I \right\}.$$

1064 The discontinuity component associated with I is

$$1065 \quad \Gamma_I^{(n)} = \bigcup_{\substack{\mathbb{S} \subseteq \{1, \dots, M\}, |\mathbb{S}|=k \\ I \cap \mathbb{S} \neq \emptyset, I \cap \mathbb{S} \neq I}} \Gamma_{I,\mathbb{S}}^{(n)},$$

1066 and the full order- n discontinuity set is

$$1067 \quad \Gamma^{(n)} = \bigcup_{\substack{I \subseteq \{1, \dots, M\} \\ |I|=n+1}} \Gamma_I^{(n)}.$$

1080
 1081 **Proposition A.6** (Dimension of order- n discontinuity sets). *For any tie set I of size $n+1$, the
 1082 associated discontinuity component $\Gamma_I^{(n)}$ lies in an affine subspace of codimension n . Consequently,*
 1083

$$1084 \dim(\Gamma_I^{(n)}) = D - n.$$

1085 *Proof.* Fix a tie set $I = \{i_1, \dots, i_{n+1}\}$. By definition, $x \in \Gamma_I^{(n)}$ satisfies
 1086

$$1087 (a_{i_r} - a_{i_1})^\top x = b_{i_1} - b_{i_r}, \quad r = 2, \dots, n+1,$$

1088 which are n linear equations.
 1089

1090 Since the rows of W_g are linearly independent, the difference vectors
 1091

$$\{a_{i_r} - a_{i_1} : r = 2, \dots, n+1\}$$

1092 are also linearly independent. Thus the system has rank n , and the solution set S_I is an affine subspace
 1093 of codimension n .
 1094

1095 The additional inequalities restrict S_I to a polyhedral subset but do not reduce its dimension. Therefore
 1096 every component $\Gamma_I^{(n)}$ has dimension $D - n$. \square
 1097

1098 A.3.3 SMOOTHED SMOE IS CONTINUOUS

1099 In this part, we prove the fact that our Smoothed SMoE mapping is continuous under some mild
 1100 assumptions. First, we assume that the base set of assumption in Section A.2.2 is satisfied. In addition,
 1101 we assume that the set of expert mapping $E_i(x)$'s are continuous, which holds in practice when it is
 1102 usually parameterized as an MLP network with ReLU activation.
 1103

1104 **Proposition A.7.** *Let $\mathbb{X} = \mathbb{R}^D$ and $\mathbb{Y} = \mathbb{R}^{D'}$ be endowed with the standard Euclidean topology.
 1105 Define the gating logits*

$$1106 z_i(x) = \langle W_g^{(i)}, x \rangle + b_g^{(i)}, \quad i = 1, \dots, M,$$

1107 and the order statistics

$$1108 z_{[1]}(x) \geq z_{[2]}(x) \geq \dots \geq z_{[M]}(x),$$

1109 with ties broken lexicographically by the original indices. Let $h : \mathbb{R} \rightarrow \mathbb{R}$ be continuous and set
 1110

$$1111 m_i(x) := h\left(\frac{z_i(x) - z_{[k]}(x) + \epsilon}{\epsilon}\right), \quad \hat{z}_i(x) := z_i(x) + m_i(x).$$

1112 Define the gating scores and the SmoothSMoE
 1113

$$1114 G_i(x) := \frac{\exp(\hat{z}_i(x))}{\sum_{j=1}^M \exp(\hat{z}_j(x))}, \quad f(x) := \sum_{i=1}^M G_i(x) E_i(x),$$

1115 where each expert map $E_i : \mathbb{X} \rightarrow \mathbb{Y}$ is continuous. Then f is continuous.
 1116

1117 *Proof.* We write $>_{\text{lex}}$ for the strict total order on logits that respects values and breaks ties by index:
 1118 $z_i(x) >_{\text{lex}} z_j(x)$ if either $z_i(x) > z_j(x)$ or $z_i(x) = z_j(x)$ and $i < j$. Thus
 1119

$$z_{[1]}(x) >_{\text{lex}} z_{[2]}(x) >_{\text{lex}} \dots >_{\text{lex}} z_{[M]}(x).$$

1120 Consider $z_{[k]} : \mathbb{X} \rightarrow \mathbb{R}$. Let $\mathcal{B} = \{(a - r, a + r) : a \in \mathbb{R}, r \in \mathbb{R}^{\geq 0}\}$ be a basis for the topology on \mathbb{R} ,
 1121 and fix $B = (a - r, a + r) \in \mathcal{B}$. Then
 1122

$$z_{[k]}^{-1}(B) = \{x \in \mathbb{X} : a - r < z_{[k]}(x) < a + r\}.$$

1123 For any permutation (i_1, \dots, i_M) of $\{1, \dots, M\}$,
 1124

$$U_{(i_1, \dots, i_M)} := \{x \in \mathbb{X} : z_{i_1}(x) >_{\text{lex}} \dots >_{\text{lex}} z_{i_M}(x)\}$$

1125 is open, since it is a finite intersection of open half-spaces and subspaces. Also $\{x \in \mathbb{X} : a - r < z_{i_k}(x) < a + r\}$ is open because z_{i_k} is affine (hence continuous). Consequently,
 1126

$$z_{[k]}^{-1}(B) = \bigcup_{(i_1, \dots, i_M)} (U_{(i_1, \dots, i_M)} \cap \{x : a - r < z_{i_k}(x) < a + r\})$$

1134 is a union of open sets, hence open. Since $z_{[k]}^{-1}(B)$ is open for any $B \in \mathcal{B}$, so $z_{[k]}$ is continuous.
 1135 (Munkres, 1997).

1136 Since $z_{[k]}$ and each z_i are continuous, the composition $m_i(x) = h((z_i(x) - z_{[k]}(x) + \epsilon)/\epsilon)$ is
 1137 continuous, and so is $\hat{z}_i = z_i + m_i$. The softmax map is smooth, hence each G_i is continuous.
 1138 Finally, $f(x) = \sum_{i=1}^M G_i(x) E_i(x)$ is a finite sum of products of continuous functions, so f is
 1139 continuous. \square

1140

1141 1142 A.4 ASYMPTOTIC MEASURE OF ϵ -THICKENED DISCONTINUITIES

1143 In this part, we are interested in quantifying how much of the input space lies close to the discontinuities.
 1144 While the discontinuity set itself has Lebesgue measure zero in the input space \mathbb{X} , it is not
 1145 immediately clear how large the measure of an ϵ -neighborhood of this set can be. For instance, on
 1146 the real line the rationals form a measure-zero set, yet their closure is the entire line.

1147

1148 Motivated by this analogy, we now ask whether an ϵ -thickening set around the discontinuities can
 1149 occupy a non-negligible portion of the space. Our goal is to analyze this behavior separately for each
 1150 order- n discontinuity. To make this precise, we recall the classical notion of an ϵ -thickening.

1151 **Definition A.8** (ϵ -thickening). For a set $A \subseteq \mathbb{R}^D$ and $\epsilon > 0$, the Euclidean ϵ -thickening of A is
 1152 defined as

$$1153 T_\epsilon(A) := \{x \in \mathbb{R}^D : \text{dist}(x, A) < \epsilon\},$$

1154 where $\text{dist}(x, A) := \inf_{y \in A} \|x - y\|$ is the Euclidean distance.

1155

1156 1157 A.4.1 BASE CASE: ϵ -THICKENING MEASURE OF ORDER-1 DISCONTINUITIES IN A BOUNDED REGION

1158 Consider the bounded ball $B_D(0, R) \subset \mathbb{X}$ of radius R centered at the origin. We are interested in
 1159 quantifying the asymptotic Lebesgue measure of the ϵ -thickening set of the order-1 discontinuity
 1160 restricted to this region, i.e.,

$$1161 1162 \lambda^D(T_\epsilon(\Gamma^{(1)}) \cap B(0, R)).$$

1163 Intuitively, this corresponds to the volume of an ϵ -thickening set surrounding the discontinuity facets
 1164 $\Gamma^{(1)}$ within the bounded domain $B(0, R)$.

1165 **Proposition A.9** (Measure of the ϵ -thickening set of $\Gamma^{(1)}$ inside $B^D(0, R)$). *Let $\bigcup_{m=1}^M H_m \supset \Gamma^{(1)}$ be the union of all order-1 facets, where each*

$$1166 1167 H_m = \{x \in \mathbb{R}^D : a_m^\top x = d_m\}, \quad a_m \neq 0,$$

1168 and define the ϵ -thickening set (tube) of any $S \subset \mathbb{R}^D$ by

$$1169 1170 T_\epsilon(S) := \{x \in \mathbb{R}^D : \text{dist}(x, S) < \epsilon\}.$$

1171 Write the distance from the origin to facet m as $\delta_m := d_m/\|a_m\|$.

1172

1173 Let $\omega_{D-1} = \frac{\pi^{\frac{D-1}{2}}}{\Gamma(\frac{D+1}{2})}$ denote the volume of the unit $(D-1)$ -ball. Then, for any $R > 0$:

1174

1175 For each $m = 1, \dots, M$,

$$1176 1177 \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \int_{\max\{-R, \delta_m - \epsilon\}}^{\min\{R, \delta_m + \epsilon\}} \omega_{D-1} (R^2 - u^2)^{\frac{D-1}{2}} du.$$

1178

1179 Consequently,

$$1180 1181 \lambda^D(T_\epsilon(\Gamma^{(1)}) \cap B^D(0, R)) \leq \sum_{m=1}^M \int_{\max\{-R, \delta_m - \epsilon\}}^{\min\{R, \delta_m + \epsilon\}} \omega_{D-1} (R^2 - u^2)^{\frac{D-1}{2}} du,$$

1182

1183 *Proof.* Fix m . Choose an orthonormal basis e_1, \dots, e_D such that $e_D = a_m/\|a_m\|$.

1188 In these coordinates, every $x \in \mathbb{R}^D$ can be written as $x = (y, u)$, where $y \in \mathbb{R}^{D-1}$ lies in the
 1189 subspace orthogonal to a_m , and $u = e_D^\top x \in \mathbb{R}$ is the coordinate in the normal direction. Then
 1190

$$1191 H_m = \{(y, u) : u = \delta_m\}, \quad \text{dist}((y, u), H_m) = |u - \delta_m|.$$

1192 Let

$$1193 E = T_\epsilon(H_m) \cap B^D(0, R) = \{(y, u) : |u - \delta_m| < \epsilon, \|y\|^2 + u^2 < R^2\}.$$

1194 The measure of E is

$$1195 I = \lambda^D(E) = \int_{\mathbb{R}^D} \mathbf{1}_E(y, u) dy du.$$

1197 By Fubini's theorem,

$$1198 I = \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{D-1}} \mathbf{1}_E(y, u) dy \right) du.$$

1200 For each fixed u , the inner integral is the $(D-1)$ -dimensional measure of the cross-section

$$1201 \{y : \|y\|^2 < R^2 - u^2\} \cap \{|u - \delta_m| < \epsilon\}.$$

1203 This is nonempty only if $|u| < R$ and $|u - \delta_m| < \epsilon$, i.e. $u \in (\max\{-R, \delta_m - \epsilon\}, \min\{R, \delta_m + \epsilon\})$.

1204 Thus,

$$1205 I = \int_{\max\{-R, \delta_m - \epsilon\}}^{\min\{R, \delta_m + \epsilon\}} \lambda^{D-1}(B^{D-1}(0, \sqrt{R^2 - u^2})) du.$$

1208 Since $\lambda^{D-1}(B^{D-1}(0, r)) = \omega_{D-1} r^{D-1}$ for any radius $r > 0$, we obtain

$$1209 I = \int_{\max\{-R, \delta_m - \epsilon\}}^{\min\{R, \delta_m + \epsilon\}} \omega_{D-1} (R^2 - u^2)^{\frac{D-1}{2}} du.$$

1212 Finally, since

$$1213 T_\epsilon(\Gamma^{(1)}) \subseteq \bigcup_{m=1}^M T_\epsilon(H_m),$$

1216 subadditivity of Lebesgue measure gives the bound. \square

1217 *Remark A.10.* In Proposition A.9 we adopt the convention that $\int_a^b(\cdot) = 0$ whenever $a \geq b$. This
 1218 corresponds to the geometric situation where the ϵ -thickening set lies entirely outside the ball, i.e.
 1219 when the minimal distance from the origin to the set satisfies $\delta_m - \epsilon > R$. In that case we have
 1220 $\lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = 0$.

1221 **Proposition A.11** (Asymptotic measure of a facet's ϵ -tube). *Fix $\epsilon > 0$ and a facet*

$$1222 H_m = \{x \in \mathbb{R}^D : a_m^\top x = d_m\}, \quad a_m \neq 0,$$

1224 with signed distance $\delta_m := d_m / \|a_m\|$ from the origin. Assume $R > |\delta_m| + \epsilon$ so that the ϵ -thickening
 1225 slab of H_m intersects the ball $B^D(0, R)$. Then:

1226

$$1227 \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \frac{\omega_{D-1} R^D}{2} \left[B_{\frac{(\delta_m + \epsilon)^2}{R^2}}\left(\frac{1}{2}, \frac{D+1}{2}\right) - \text{sgn}\left(\frac{\delta_m - \epsilon}{R}\right) B_{\frac{(\delta_m - \epsilon)^2}{R^2}}\left(\frac{1}{2}, \frac{D+1}{2}\right) \right],$$

1230 where $B_z(\alpha, \beta)$ is the incomplete beta function.

1231

1232 Dividing by the ball volume $\lambda^D(B^D(0, R)) = \omega_D R^D$, one has

$$1233 \frac{\lambda^D(T_\epsilon(H_m) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} = \frac{\omega_{D-1}}{2\omega_D} \left[B_{\frac{(\delta_m + \epsilon)^2}{R^2}}\left(\frac{1}{2}, \frac{D+1}{2}\right) - \text{sgn}\left(\frac{\delta_m - \epsilon}{R}\right) B_{\frac{(\delta_m - \epsilon)^2}{R^2}}\left(\frac{1}{2}, \frac{D+1}{2}\right) \right].$$

1236

1237 As $R \rightarrow \infty$ with δ_m, ϵ fixed,

$$1238 \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = 2\omega_{D-1} \epsilon R^{D-1} + O\left((|\delta_m| + \epsilon)^2 \epsilon R^{D-3}\right),$$

1239 and hence

$$1240 \frac{\lambda^D(T_\epsilon(H_m) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} = \frac{2\omega_{D-1}}{\omega_D} \frac{\epsilon}{R} + O\left(\frac{(|\delta_m| + \epsilon)^2 \epsilon}{R^3}\right).$$

1242 *Proof.* From Proposition A.9, for each facet H_m we have
 1243

$$1244 \quad \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \int_{\delta_m - \epsilon}^{\delta_m + \epsilon} \omega_{D-1} (R^2 - u^2)^{\frac{D-1}{2}} du,$$

1246 whenever $R > |\delta_m| + \epsilon$ so that the integration interval lies inside $(-R, R)$.
 1247

1248 Set $u = Rs$, so that $s \in [(\delta_m - \epsilon)/R, (\delta_m + \epsilon)/R]$ and $du = R ds$. Then
 1249

$$1250 \quad \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \omega_{D-1} R^D \int_{(\delta_m - \epsilon)/R}^{(\delta_m + \epsilon)/R} (1 - s^2)^{\frac{D-1}{2}} ds.$$

1252 Let $\alpha = \frac{D+1}{2}$. Splitting the integral at $s = 0$ we obtain
 1253

$$1254 \quad I = \int_a^b (1 - s^2)^{\alpha-1} ds = \int_0^b (1 - s^2)^{\alpha-1} ds + \int_a^0 (1 - s^2)^{\alpha-1} ds,$$

1257 where $a = (\delta_m - \epsilon)/R$ and $b = (\delta_m + \epsilon)/R$.
 1258

1259 Using substitution $u = s^2, ds = \text{sgn}(s) \frac{1}{2} u^{-1/2} du$, we obtain
 1260

$$1261 \quad \int_0^b (1 - s^2)^{\alpha-1} ds = \frac{1}{2} \text{sgn}(b) \int_0^{b^2} u^{-\frac{1}{2}} (1 - u)^{\alpha-1} du = \frac{1}{2} \text{sgn}(b) B_{b^2} \left(\frac{1}{2}, \alpha \right).$$

1263 Similarly, for the second term,
 1264

$$1265 \quad \int_a^0 (1 - s^2)^{\alpha-1} ds = -\frac{1}{2} \text{sgn}(a) \int_0^{a^2} u^{-\frac{1}{2}} (1 - u)^{\alpha-1} du = -\frac{1}{2} \text{sgn}(a) B_{a^2} \left(\frac{1}{2}, \alpha \right).$$

1267 Therefore

$$1269 \quad I = \frac{1}{2} \left[\text{sgn}(b) B_{b^2} \left(\frac{1}{2}, \alpha \right) - \text{sgn}(a) B_{a^2} \left(\frac{1}{2}, \alpha \right) \right].$$

1272 Substituting back yields the exact formula
 1273

$$1274 \quad \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \frac{\omega_{D-1} R^D}{2} \left[B_{\frac{(\delta_m + \epsilon)^2}{R^2}} \left(\frac{1}{2}, \frac{D+1}{2} \right) - \text{sgn} \left(\frac{\delta_m - \epsilon}{R} \right) B_{\frac{(\delta_m - \epsilon)^2}{R^2}} \left(\frac{1}{2}, \frac{D+1}{2} \right) \right].$$

1276 Dividing by $\lambda^D(B^D(0, R)) = \omega_D R^D$ gives the normalized fraction.
 1277

1278 For the asymptotics, put $z_\pm = ((\delta_m \pm \epsilon)^2 / R^2) \rightarrow 0$ as $R \rightarrow \infty$. Using
 1279

$$1280 \quad B_z \left(\frac{1}{2}, \alpha \right) = \int_0^z u^{-1/2} (1 - u)^{\alpha-1} du = 2 z^{1/2} + O(z^{3/2}) \quad (z \rightarrow 0),$$

1282 we obtain
 1283

$$1284 \quad \text{sgn}(b) B_{b^2} \left(\frac{1}{2}, \alpha \right) = 2 \frac{\delta_m + \epsilon}{R} + O \left(\frac{(\delta_m + \epsilon)^3}{R^3} \right), \quad -\text{sgn}(a) B_{a^2} \left(\frac{1}{2}, \alpha \right) = -2 \frac{\delta_m - \epsilon}{R} + O \left(\frac{(\delta_m - \epsilon)^3}{R^3} \right).$$

1285 And
 1286

$$1287 \quad \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)) = \frac{\omega_{D-1} R^D}{2} \left[\frac{4\epsilon}{R} + O \left(\frac{(\delta_m + \epsilon)^3}{R^3} - \frac{(\delta_m - \epsilon)^3}{R^3} \right) \right] = \frac{\omega_{D-1} R^D}{2} \left[\frac{4\epsilon}{R} + O \left(\frac{(|\delta_m| + \epsilon)^2 \epsilon}{R^3} \right) \right],$$

$$1290 \quad = 2 \omega_{D-1} \epsilon R^{D-1} + O \left((|\delta_m| + \epsilon)^2 \epsilon R^{D-3} \right).$$

1291 Dividing by $\omega_D R^D$ yields
 1292

$$1293 \quad \frac{\lambda^D(T_\epsilon(H_m) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} = \frac{2 \omega_{D-1}}{\omega_D} \frac{\epsilon}{R} + O \left(\frac{(|\delta_m| + \epsilon)^2 \epsilon}{R^3} \right)$$

1295 as claimed. □

1296 **Corollary A.12** (Asymptotic measure of the ϵ -tube of $\Gamma^{(1)}$). *Fix $\epsilon > 0$ and let $\bigcup_{m=1}^M H_m \supset \Gamma^{(1)}$ be*
 1297 *the union of all order-1 facets. Then for any $R > 0$,*
 1298

$$1299 \quad \lambda^D(T_\epsilon(\Gamma^{(1)}) \cap B^D(0, R)) \leq \sum_{m=1}^M \lambda^D(T_\epsilon(H_m) \cap B^D(0, R)).$$
 1300
 1301

1302 *In particular, if $R > |\delta_m| + \epsilon$ for each m , then by Proposition A.11,*
 1303

$$1304 \quad \lambda^D(T_\epsilon(\Gamma^{(1)}) \cap B^D(0, R)) \leq 2M \omega_{D-1} \epsilon R^{D-1} + O\left(\sum_{m=1}^M (|\delta_m| + \epsilon)^2 \epsilon R^{D-3}\right).$$
 1305
 1306

1307 *Equivalently, dividing by $\lambda^D(B^D(0, R)) = \omega_D R^D$,*
 1308

$$1309 \quad \frac{\lambda^D(T_\epsilon(\Gamma^{(1)}) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} \leq \frac{2M \omega_{D-1}}{\omega_D} \frac{\epsilon}{R} + O\left(\sum_{m=1}^M \frac{(|\delta_m| + \epsilon)^2 \epsilon}{R^3}\right).$$
 1310
 1311
 1312

1313 Corollary A.12 is not tight, as it bounds the asymptotic measure of $\Gamma^{(1)}$ using the aggregate bounds
 1314 derived from the measures of the individual facets H_m . This section should therefore be viewed
 1315 as a schematic illustration of our proof strategy rather than a final result. In the next section, we
 1316 establish stronger bounds for general order- n discontinuities, yielding a sharper characterization of
 1317 their asymptotic measure.
 1318

1319 A.4.2 GENERALIZED CASE: ϵ -THICKENING MEASURE OF ORDER- n DISCONTINUITY IN A 1320 BOUNDED REGION

1321 Having proved the result for order-1 discontinuity, now we aim to establish a similar result for general
 1322 order- n discontinuity for all $n \geq 1$.
 1323

1324 **Upper bound on the measure of the ϵ -thickening of the subspace S_J .**

1325 **Proposition A.13** (Measure of the ϵ -thickening set of $\Gamma^{(n)}$ inside $B^D(0, R)$). *Fix $1 \leq n < D$. Let*
 1326 *$\bigcup_J S_J \supset \Gamma^{(n)}$ be the union of all order- n subspaces containing the order- n discontinuities, where*
 1327 *each*

$$1328 \quad S_J = \{x \in \mathbb{R}^D : A_J x = d_J\}, \quad A_J \in \mathbb{R}^{n \times D}, \text{ rank}(A_J) = n,$$

1329 *indexed by J , and let ϵ -thickening set of any $S \subset \mathbb{R}^D$ be*

$$1330 \quad T_\epsilon(S) := \{x \in \mathbb{R}^D : \text{dist}(x, S) < \epsilon\}.$$
 1331
 1332

1333 *For each J , define the closest point of S_J to the origin by*

$$1334 \quad x_J^* = A_J^\top (A_J A_J^\top)^{-1} d_J,$$

1335 *and let $\delta_J \in \mathbb{R}^n$ be its coordinate in the normal direction to S_J , so that $\|\delta_J\| = \text{dist}(0, S_J)$. Choosing an orthogonal basis, any $x \in \mathbb{R}^D$ can then be written $x = (y, u)$ with $y \in \mathbb{R}^{D-n}$ tangent to S_J and $u \in \mathbb{R}^n$ normal, and $S_J = \{(y, u) : u = \delta_J\}$.*
 1336

1337 *For each J and any $R > 0$,*
 1338

$$1339 \quad \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)) = \int_{\substack{u \in \mathbb{R}^n : \\ \|u - \delta_J\| < \epsilon \\ \|u\| < R}} \omega_{D-n} (R^2 - \|u\|^2)^{\frac{D-n}{2}} du,$$
 1340
 1341
 1342
 1343
 1344
 1345

1346 *Consequently,*
 1347

$$1348 \quad \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \sum_J \int_{\substack{u \in \mathbb{R}^n : \\ \|u - \delta_J\| < \epsilon \\ \|u\| < R}} \omega_{D-n} (R^2 - \|u\|^2)^{\frac{D-n}{2}} du.$$
 1349

1350 *Proof.* Fix J . In the orthonormal coordinates $(y, u) \in \mathbb{R}^{D-n} \times \mathbb{R}^n$ with $S_J = \{(y, u) : u = \delta_J\}$,
 1351 we have

$$1352 \quad 1353 \quad E = T_\epsilon(S_J) \cap B^D(0, R) = \{(y, u) : \|u - \delta_J\| < \epsilon, \|y\|^2 + \|u\|^2 < R^2\}.$$

1354 The measure of E is

$$1355 \quad 1356 \quad I = \lambda^D(E) = \int_{\mathbb{R}^D} \mathbf{1}_E(y, u) dy du,$$

1357 where we decompose $x = (y, u)$ with $y \in \mathbb{R}^{D-n}$ tangent to S_J and $u \in \mathbb{R}^n$ normal.

1359 By Fubini's theorem,

$$1360 \quad 1361 \quad I = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^{D-n}} \mathbf{1}_E(y, u) dy \right) du.$$

1363 For each fixed $u \in \mathbb{R}^n$, the inner integral is the $(D-n)$ -dimensional measure of the cross-section

$$1364 \quad 1365 \quad \{y : \|y\|^2 < R^2 - \|u\|^2\} \cap \{\|u - \delta_J\| < \epsilon\}.$$

1366 This set is nonempty only if $\|u\| < R$ and $\|u - \delta_J\| < \epsilon$.

1368 Thus,

$$1369 \quad 1370 \quad I = \int_{\substack{u \in \mathbb{R}^n : \\ \|u - \delta_J\| < \epsilon, \|u\| < R}} \lambda^{D-n}(B^{D-n}(0, \sqrt{R^2 - \|u\|^2})) du.$$

1372 Since $\lambda^{D-n}(B^{D-n}(0, r)) = \omega_{D-n} r^{D-n}$, we obtain

$$1374 \quad 1375 \quad I = \int_{\substack{u \in \mathbb{R}^n : \\ \|u - \delta_J\| < \epsilon, \|u\| < R}} \omega_{D-n} (R^2 - \|u\|^2)^{\frac{D-n}{2}} du,$$

1377 which yields the first identity.

1378 The union bound directly follows from $T_\epsilon(\Gamma^{(n)}) \subseteq \bigcup_J T_\epsilon(S_J)$.

1379 \square

1381 **Proposition A.14** (Asymptotic measure for $T_\epsilon(S_J)$ and $T_\epsilon(\Gamma^{(n)})$). *With the same setup as Proposition A.13, fix $1 \leq n < D$ and $\epsilon > 0$.*

1384 (i) Single subspace S_J . If $R > \|\delta_J\| + \epsilon$, then

$$1385 \quad 1386 \quad \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)) = \omega_{D-n} \omega_n \epsilon^n R^{D-n} + O((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{D-n-2}),$$

1387 and consequently

$$1389 \quad 1390 \quad \frac{\lambda^D(T_\epsilon(S_J) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} = \frac{\omega_{D-n} \omega_n}{\omega_D} \left(\frac{\epsilon}{R}\right)^n + O\left(\left(\frac{\|\delta_J\| + \epsilon}{R}\right)^2 \left(\frac{\epsilon}{R}\right)^n\right).$$

1393 (ii) Union $\Gamma^{(n)}$. For $\Gamma^{(n)} \subset \bigcup_J S_J$, if $R > \max_J \{\|\delta_J\|\} + \epsilon$, then

$$1394 \quad 1395 \quad \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \sum_J \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)),$$

1397 so that

$$1398 \quad 1399 \quad \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \omega_{D-n} \omega_n \epsilon^n R^{D-n} |J| + \sum_J O((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{D-n-2}),$$

1400 and

$$1402 \quad 1403 \quad \frac{\lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} \leq \frac{\omega_{D-n} \omega_n}{\omega_D} |J| \left(\frac{\epsilon}{R}\right)^n + \sum_J O\left(\left(\frac{\|\delta_J\| + \epsilon}{R}\right)^2 \left(\frac{\epsilon}{R}\right)^n\right).$$

1404 *Proof.* (i) *Single subspace S_J .* From Proposition A.13, for each J we have
 1405

$$1406 \quad \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)) = \int_{\substack{u \in \mathbb{R}^n : \\ \|u - \delta_J\| < \epsilon, \|u\| < R}} \omega_{D-n} (R^2 - \|u\|^2)^{\frac{D-n}{2}} du.$$

1409 By the assumption $R > \|\delta_J\| + \epsilon$, so the u -region $\{u : \|u - \delta_J\| < \epsilon\}$ lies inside $\{\|u\| < R\}$.
 1410 Expand for $\|u\| \ll R$:

$$1412 \quad (R^2 - \|u\|^2)^{\frac{D-n}{2}} = R^{D-n} \left(1 - \frac{\|u\|^2}{R^2}\right)^{\frac{D-n}{2}} = R^{D-n} \left(1 + O(\|u\|^2/R^2)\right).$$

1415 Integrating over the n -ball $B^n(\delta_J, \epsilon)$ gives
 1416

$$1417 \quad \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)) = \omega_{D-n} R^{D-n} \lambda^n(B^n(\delta_J, \epsilon)) + O\left(\omega_{D-n} R^{D-n-2} \int_{B^n(\delta_J, \epsilon)} \|u\|^2 du\right).$$

1420 Now, the volume of the n -ball is explicit:
 1421

$$1422 \quad \lambda^n(B^n(\delta_J, \epsilon)) = \lambda^n(B^n(0, \epsilon)) = \omega_n \epsilon^n.$$

1424 For the error term, note that for any $u \in B^n(\delta_J, \epsilon)$,

$$1425 \quad \|u\| \leq \|u - \delta_J\| + \|\delta_J\| \leq \epsilon + \|\delta_J\|,$$

1427 so

$$1428 \quad \|u\|^2 \leq (\|\delta_J\| + \epsilon)^2.$$

1429 Therefore

$$1431 \quad \int_{B^n(\delta_J, \epsilon)} \|u\|^2 du \leq (\|\delta_J\| + \epsilon)^2 \lambda^n(B^n(\delta_J, \epsilon)) = (\|\delta_J\| + \epsilon)^2 \omega_n \epsilon^n.$$

1433 Substituting these into the previous expression gives

$$1435 \quad \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)) = \omega_{D-n} \omega_n \epsilon^n R^{D-n} + O\left((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{D-n-2}\right),$$

1437 which is the claimed asymptotic expansion.
 1438

1439 Dividing the asymptotic by $\lambda^D(B^D(0, R)) = \omega_D R^D$ gives

$$1441 \quad \frac{\lambda^D(T_\epsilon(S_J) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} = \frac{\omega_{D-n} \omega_n}{\omega_D} \left(\frac{\epsilon}{R}\right)^n + O\left(\left(\frac{\|\delta_J\| + \epsilon}{R}\right)^2 \left(\frac{\epsilon}{R}\right)^n\right).$$

1444 (ii) *Union $\Gamma^{(n)}$.* For $\Gamma^{(n)} \subset \bigcup_J S_J$, if $R > \max_J \{\|\delta_J\|\} + \epsilon$, then

$$1445 \quad \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \sum_J \lambda^D(T_\epsilon(S_J) \cap B^D(0, R)).$$

1448 Applying the asymptotic expansion from part (i) to each term gives
 1449

$$1450 \quad \lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R)) \leq \omega_{D-n} \omega_n \epsilon^n R^{D-n} |J| + \sum_J O\left((\|\delta_J\| + \epsilon)^2 \epsilon^n R^{D-n-2}\right).$$

1453 Dividing both sides by $\lambda^D(B^D(0, R)) = \omega_D R^D$ yields

$$1455 \quad \frac{\lambda^D(T_\epsilon(\Gamma^{(n)}) \cap B^D(0, R))}{\lambda^D(B^D(0, R))} \leq \frac{\omega_{D-n} \omega_n}{\omega_D} |J| \left(\frac{\epsilon}{R}\right)^n + \sum_J O\left(\left(\frac{\|\delta_J\| + \epsilon}{R}\right)^2 \left(\frac{\epsilon}{R}\right)^n\right).$$

1457 \square

1458 **Proposition A.15.** *With the same setup as Proposition A.13, fix $1 \leq m, n < D$, $\epsilon > 0$, and index*
 1459 *sets J_n, J_m with m, n elements. Define*

$$1461 \quad I_n = \lambda^D(T_\epsilon(S_{J_n}) \cap B^D(0, R)) \quad I_m = \lambda^D(T_\epsilon(S_{J_m}) \cap B^D(0, R))$$

1462 *Then*

$$1464 \quad \frac{I_n}{I_m} = \frac{\omega_{D-n}\omega_n}{\omega_{D-m}\omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} \left(1 + O\left(\frac{(\|\delta_{J_n}\| + \|\delta_{J_m}\| + \epsilon)^2}{R^2} \right) \right).$$

1466 *Proof.* By Proposition A.13, for any index set J_k with k elements:

$$1469 \quad I_k = \int_{\substack{u \in \mathbb{R}^k : \\ \|u - \delta_{J_k}\| < \epsilon, \|u\| < R}} \omega_{D-k} (R^2 - \|u\|^2)^{\frac{D-k}{2}} du, \quad 1 \leq k < D,$$

1472 when $R > \|\delta_{J_k}\| + \epsilon$.

1473 Write $u = \delta_{J_k} + v$ with $\|v\| < \epsilon$ and set $\alpha = \frac{D-k}{2}$. Then

$$1475 \quad I_k = \omega_{D-k} R^{D-k} \int_{\|v\| < \epsilon} \left(1 - \frac{\|\delta_{J_k} + v\|^2}{R^2} \right)^\alpha dv.$$

1478 On $\|v\| \leq \epsilon$ we have $t(v) := \|\delta_{J_k} + v\|^2 / R^2 \leq ((\|\delta_{J_k}\| + \epsilon) / R)^2$, hence

$$1480 \quad \left(1 - \frac{\|\delta_{J_k} + v\|^2}{R^2} \right)^\alpha = 1 + O\left(\frac{(\|\delta_{J_k}\| + \epsilon)^2}{R^2} \right) \quad \text{when } \|v\| \leq \epsilon.$$

1482 Integrating over the k -ball $B^k(0, \epsilon)$ gives

$$1485 \quad I_k = \omega_{D-k} R^{D-k} \left[\lambda^k(B^k(0, \epsilon)) + O\left(\frac{(\|\delta_{J_k}\| + \epsilon)^2}{R^2} \right) \lambda^k(B^k(0, \epsilon)) \right] = \omega_{D-k} \omega_k \epsilon^k R^{D-k} \left[1 + O\left(\frac{(\|\delta_{J_k}\| + \epsilon)^2}{R^2} \right) \right]. \quad (\star)$$

1488 Apply previous Equation with $k = n$ and $k = m$:

$$1490 \quad I_n = \omega_{D-n} \omega_n \epsilon^n R^{D-n} \left[1 + O\left(\frac{(\|\delta_{J_n}\| + \epsilon)^2}{R^2} \right) \right], \quad I_m = \omega_{D-m} \omega_m \epsilon^m R^{D-m} \left[1 + O\left(\frac{(\|\delta_{J_m}\| + \epsilon)^2}{R^2} \right) \right].$$

1492 Let

$$1494 \quad u_n = O\left(\frac{(\|\delta_{J_n}\| + \epsilon)^2}{R^2} \right), \quad v_m = O\left(\frac{(\|\delta_{J_m}\| + \epsilon)^2}{R^2} \right).$$

1496 Hence

$$1497 \quad \frac{I_n}{I_m} = \frac{\omega_{D-n}\omega_n}{\omega_{D-m}\omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} \frac{1 + u_n}{1 + v_m}.$$

1499 We have the identity

$$1501 \quad \frac{1}{1 + v_m} = 1 - v_m + \frac{v_m^2}{1 + v_m} = 1 + O(v_m).$$

1503 Therefore

$$1505 \quad \frac{1 + u_n}{1 + v_m} = (1 + u_n)(1 + O(v_m)) = 1 + u_n + O(v_m) + O(u_n v_m) = 1 + O\left(\frac{(\|\delta_{J_n}\| + \epsilon)^2}{R^2} \right) + O\left(\frac{(\|\delta_{J_m}\| + \epsilon)^2}{R^2} \right),$$

1507 Consequently,

$$1509 \quad \frac{I_n}{I_m} = \frac{\omega_{D-n}\omega_n}{\omega_{D-m}\omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} \left[1 + O\left(\frac{(\|\delta_{J_n}\| + \epsilon)^2 + (\|\delta_{J_m}\| + \epsilon)^2}{R^2} \right) \right].$$

1511 \square

1512 **Upper bound on the measure of the ϵ -thickening set of the discontinuities $T_\epsilon(\Gamma^{(r)})$.**

1513 We begin with a lemma that provides asymptotic bounds on the measure of a polyhedral set P lying
 1514 in a subspace of codimension r , defined by a system of linear inequalities. This result will later
 1515 allow us to pass from the measure of the polyhedral region carved out by the top- k constraints to the
 1516 measure of a bounded ball in the subspace.

1517 **Lemma A.16** (Slice density with mixed inequalities). *Let $S \subset \mathbb{R}^D$ be an affine subspace of
 1518 codimension r and set $d := D - r$. Let $P \subset S$ be a (nonempty) polyhedral set given by the system of
 1519 linear inequalities:*

$$1520 \quad P = \left\{ x \in S : c_j^\top x < b_j \ (j = 1, \dots, p), \ d_m^\top x > e_m \ (m = 1, \dots, q) \right\}.$$

1522 Define the (asymptotic) slice density

$$1524 \quad \alpha(P) := \lim_{R \rightarrow \infty} \frac{\lambda^d(P \cap B^D(0, R))}{\omega_d R^d}.$$

1526 Suppose there exists $u \in \text{Lin}(S) \setminus \{0\}$ such that

$$1528 \quad c_j^\top u < 0 \quad \text{for all } j = 1, \dots, p, \quad \text{and} \quad d_m^\top u > 0 \quad \text{for all } m = 1, \dots, q.$$

1530 Set $\hat{u} := u/\|u\|$ and

$$1532 \quad \rho_1 := \min_{1 \leq j \leq p} \{-c_j^\top \hat{u}\}, \quad \rho_2 := \min_{1 \leq m \leq q} \{d_m^\top \hat{u}\}, \quad \rho := \min\{\rho_1, \rho_2\} > 0, \quad L := \max \left\{ \max_j \|c_j\|, \max_m \|d_m\| \right\}.$$

1534 Let

$$1535 \quad s := \min \left\{ \frac{1}{\sqrt{2}}, \frac{\rho}{4L} \right\} \in (0, 1/\sqrt{2}], \quad \theta := 2 \arcsin(s) \in (0, \pi/2].$$

1536 Then $\alpha(P)$ satisfies the two-sided bounds

$$1538 \quad \frac{1}{2} I_{4s^2(1-s^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right) \leq \alpha(P) \leq \frac{1}{2},$$

1540 where $I_x(a, b)$ is the regularized incomplete beta function.

1541 *Proof.* By hypothesis, $-c_j^\top \hat{u} > 0$ for all j and $d_m^\top \hat{u} > 0$ for all m , hence $\rho > 0$ is well-defined. For
 1543 unit vectors w , the linear forms vary continuously in w :

$$1544 \quad |c_j^\top w - c_j^\top \hat{u}| \leq 2\|c_j\| \sin \left(\frac{\angle(w, \hat{u})}{2} \right), \quad |d_m^\top w - d_m^\top \hat{u}| \leq 2\|d_m\| \sin \left(\frac{\angle(w, \hat{u})}{2} \right).$$

1546 Set

$$1548 \quad s := \min \left\{ \frac{1}{\sqrt{2}}, \frac{\rho}{4L} \right\}, \quad \theta := 2 \arcsin(s).$$

1549 Then whenever $\angle(w, \hat{u}) \leq \theta$ we have

$$1551 \quad c_j^\top w \leq -\rho + 2Ls \leq -\frac{\rho}{2}, \quad d_m^\top w \geq \rho - 2Ls \geq \frac{\rho}{2}.$$

1553 Fix $x_0 \in S$. For such w and all sufficiently large t ,

$$1555 \quad c_j^\top (x_0 + tw) \leq b_j, \quad d_m^\top (x_0 + tw) \geq e_m,$$

1556 so the ray $x_0 + tw$ eventually lies in P . Thus every w in the spherical cap

$$1558 \quad \mathcal{C} := \{ w \in \text{Lin}(S) : \|w\| = 1, \angle(w, \hat{u}) \leq \theta \}$$

1559 contributes to P , giving for large R ,

$$1561 \quad \frac{\lambda^d(P \cap B_R)}{\omega_d R^d} \geq \sigma_{d-1}(\mathcal{C}).$$

1563 In spherical coordinates, using the result from (Li, 2011), the cap area ratio is

$$1565 \quad \sigma_{d-1}(\mathcal{C}) = \frac{1}{2} I_{\sin^2 \theta} \left(\frac{d-1}{2}, \frac{1}{2} \right).$$

1566 Since $\sin^2 \theta = \sin^2(2 \arcsin s) = 4s^2(1 - s^2)$, this yields the explicit lower bound
 1567

$$1568 \quad \alpha(P) \geq \frac{1}{2} I_{4s^2(1-s^2)}\left(\frac{d-1}{2}, \frac{1}{2}\right) > 0.$$

1570

1571 *Upper bound.* The feasible cone $\{c_j^\top w < 0, d_m^\top w > 0\}$ is an intersection of hemispheres. Any such
 1572 intersection is contained in some hemisphere, so its normalized measure cannot exceed that of a
 1573 hemisphere:

$$1574 \quad \alpha(P) = \sigma_{d-1}(C_\infty \cap S^{d-1}) \leq \frac{1}{2}.$$

1575

1576 This proves the claimed two-sided bounds. \square

1577

1578 To invoke Lemma A.16 in the Top- k setting, we first show that the system of linear inequalities
 1579 induced by the Top- k constraints indeed satisfies the hypothesis of Lemma A.16.

1580 **Lemma A.17** (Top- k slices satisfy Lemma A.16). *Assume affine scores $z_i(x) = a_i^\top x + b_i$ with
 1581 $\{a_i\}_{i=1}^M$ linearly independent. Fix an order- r tie set $J = \{i_1, \dots, i_{r+1}\}$ and let*

$$1582 \quad S := S_J^{(r)} = \{x \in \mathbb{R}^D : A_J x = d_J\}, \quad V := \text{Lin}(S) = \ker A_J.$$

1583

1584 For any admissible top- k index set $\mathbb{S} \subset \{1, \dots, M\}$, define the polyhedral slice
 1585

$$1586 \quad \Gamma_{J,\mathbb{S}}^{(r)} = \left\{ x \in S : (a_j - a_{i_1})^\top x > b_{i_1} - b_j \quad \forall j \in \mathbb{S} \setminus J, \quad (a_m - a_{i_1})^\top x < b_{i_1} - b_m \quad \forall m \in \mathbb{S}^C \setminus J \right\}.$$

1587

1588 Then $\Gamma_{J,\mathbb{S}}^{(r)}$ satisfies the condition of Lemma A.16.

1589

1590 In particular, writing $c_j := a_j - a_{i_1}$ for $j \in \mathbb{S} \setminus J$ and $d_m := a_m - a_{i_1}$ for $m \in \mathbb{S}^C \setminus J$, there exists
 1591 $u \in V \setminus \{0\}$ such that

$$1592 \quad c_j^\top u < 0 \quad \forall j, \quad d_m^\top u > 0 \quad \forall m,$$

1593

1594 *Proof.* Work inside S and write each $x \in S$ as $x = x_0 + v$ with $v \in V$ (for an arbitrary $x_0 \in S$).
 1595 Only the V -components of normals matter, so define the orthogonal projection $\Pi_V : \mathbb{R}^D \rightarrow V$ and
 1596 set

$$1597 \quad n_j := \Pi_V(a_j - a_{i_1}) \in V \quad (j \in \mathbb{S} \setminus J), \quad m_\ell := \Pi_V(a_\ell - a_{i_1}) \in V \quad (\ell \in \mathbb{S}^C \setminus J).$$

1598

1599 For $x = x_0 + v$ we have for all index \star :

$$1600 \quad (a_\star - a_{i_1})^\top x = (a_\star - a_{i_1})^\top x_0 + \Pi_V(a_\star - a_{i_1})^\top v$$

1601

1602 so the slice inequalities reduce on V to

$$1603 \quad n_j^\top v > \beta_j \quad (j \in \mathbb{S} \setminus J), \quad m_\ell^\top v < \gamma_\ell \quad (\ell \in \mathbb{S}^C \setminus J),$$

1604

1605 where

$$1606 \quad \beta_j := (b_{i_1} - b_j) - (a_j - a_{i_1})^\top x_0, \quad \gamma_\ell := (b_{i_1} - b_\ell) - (a_\ell - a_{i_1})^\top x_0.$$

1607

1608

1609 **Step 1 (Nondegeneracy of projected normals).** We claim $n_j \neq 0$ for all $j \in \mathbb{S} \setminus J$ and $m_\ell \neq 0$ for
 1610 all $\ell \in \mathbb{S}^C \setminus J$. If, say, $n_j = 0$, then $a_j - a_{i_1} \in V^\perp = \text{row}(A_J) = \text{span}\{a_{i_s} - a_{i_1} : s = 2, \dots, r+1\}$,
 1611 yielding a nontrivial linear dependence among $\{a_{i_1}, \dots, a_{i_{r+1}}, a_j\}$, contradicting the independence
 1612 of $\{a_i\}_{i=1}^M$. The same argument applies to each m_ℓ .

1613

1614 **Step 2 (A single cone collecting all signs).** Introduce the finitely generated cone

$$1615 \quad K := \text{Cone}\left(\{-n_j : j \in \mathbb{S} \setminus J\} \cup \{m_\ell : \ell \in \mathbb{S}^C \setminus J\} \right) \subset V.$$

1616

1617

1618 We show K is pointed. If K contained a line, then there exist nonzero coefficients $\alpha_j, \beta_\ell \geq 0$, not all
 1619 zero, such that

$$1619 \quad \sum_\ell \beta_\ell m_\ell - \sum_j \alpha_j n_j = 0.$$

1620 Lift this identity back to the original normals: since $n_j = \Pi_V(a_j - a_{i_1})$ and $m_\ell = \Pi_V(a_\ell - a_{i_1})$, we get
 1621
 1622

$$\Pi_V \left(\sum_\ell \beta_\ell (a_\ell - a_{i_1}) - \sum_j \alpha_j (a_j - a_{i_1}) \right) = 0,$$

1623 hence the bracketed vector lies in $V^\perp = \text{row}(A_J) = \text{span}\{a_{i_s} - a_{i_1}\}_{s=2}^{r+1}$. Therefore there exist
 1624 coefficients γ_s such that
 1625

$$\sum_\ell \beta_\ell (a_\ell - a_{i_1}) - \sum_j \alpha_j (a_j - a_{i_1}) = \sum_{s=2}^{r+1} \gamma_s (a_{i_s} - a_{i_1}).$$

1626 Rearranging terms gives a nontrivial linear dependence among distinct vectors from $\{a_i\}$:
 1627

$$\sum_\ell \beta_\ell a_\ell - \sum_j \alpha_j a_j - \sum_{s=2}^{r+1} \gamma_s a_{i_s} - \left(\sum_\ell \beta_\ell - \sum_j \alpha_j - \sum_{s=2}^{r+1} \gamma_s \right) a_{i_1} = 0,$$

1628 with coefficients not all zero (since some α or β is nonzero). This contradicts the linear independence
 1629 of $\{a_i\}$. Hence K is pointed.
 1630

1631 **Step 3 (Strict separating functional).** Because K is a pointed polyhedral cone, its polar $K^\circ = \{u \in V : \langle g, u \rangle \leq 0 \forall g \in K\}$ has nonempty interior. Equivalently, there exists $u \in V \setminus \{0\}$ such that
 1632

$$\langle g, u \rangle < 0 \quad \text{for every generator } g \in \{-n_j\} \cup \{m_\ell\}.$$

1633 Unpacking the generators, we have
 1634

$$\langle -n_j, u \rangle < 0 \Rightarrow \langle n_j, u \rangle > 0 \quad \forall j, \quad \langle m_\ell, u \rangle < 0 \quad \forall \ell.$$

1635 **Step 4 (Sign alignment with Lemma A.16).** Define $u' := -u \in V \setminus \{0\}$. Then
 1636

$$\langle n_j, u' \rangle = -\langle n_j, u \rangle < 0 \quad \forall j, \quad \langle m_\ell, u' \rangle = -\langle m_\ell, u \rangle > 0 \quad \forall \ell.$$

1637 Recalling $c_j = a_j - a_{i_1}$ and $d_m = a_m - a_{i_1}$, and that only their V -components act on V , we obtain
 1638

$$c_j^\top u' = n_j^\top u' < 0 \quad (\forall j \in \mathbb{S} \setminus J), \quad d_m^\top u' = m_\ell^\top u' > 0 \quad (\forall m \in \mathbb{S}^C \setminus J).$$

1639 **Conclusion.** We have constructed $u' \in V \setminus \{0\}$ satisfying the mixed strict sign conditions required
 1640 by Lemma A.16. Therefore that lemma applies to the slice $\Gamma_{J, \mathbb{S}}^{(r)}$. \square
 1641

1642 Building on Lemma A.16 and Lemma A.17, we conclude that each Top- k slice $\Gamma_{J, \mathbb{S}}^{(r)} \subset S_J^{(r)}$ has
 1643 positive slice density
 1644

$$\alpha(\Gamma_{J, \mathbb{S}}^{(r)}) \in \left[\frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), \frac{1}{2} \right],$$

1645 where $d = D - r$ and $I_x(a, b)$ is the regularized incomplete beta function. Since, for fixed J , the
 1646 order- r slice is a finite union $\Gamma_J^{(r)} = \bigcup_{\mathbb{S}} \Gamma_{J, \mathbb{S}}^{(r)}$, its density
 1647

$$\alpha_{J, r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}}$$

1648 is strictly positive and satisfies the trivial bounds
 1649

$$\alpha_{J, r} \in \left[\max_{\mathbb{S}} \frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), 1 \right].$$

1650 We now establish asymptotic bounds for the ratio of ϵ -thickenings of discontinuity sets of different
 1651 orders. The argument proceeds in 4 steps:
 1652

- 1653 Relate the measure of the ϵ -thickening $\lambda^D(T_\epsilon(\Gamma_J^{(r)}) \cap B_R)$ to the base measure of the slice
 1654 $\lambda^d(\Gamma_J^{(r)} \cap B_R)$.

1674 2. Derive the asymptotics of a single thickened slice using definition of $\alpha_{J,r}$:
 1675

$$1676 \lambda^D(T_\epsilon(\Gamma_J^{(r)}) \cap B^D(0, R)) = \omega_{D-r} \omega_r \alpha_{J,r} \epsilon^r R^{D-r} + O(\epsilon^r R^{D-r-1}).$$

1677
 1678 3. Estimate overlaps between distinct thickenings $T_\epsilon(\Gamma_J^{(r)})$ and $T_\epsilon(\Gamma_{J'}^{(r)})$ for $J \neq J'$, showing
 1679 they are bounded by

$$1680 O(\epsilon^{r+1} R^{D-r-1}).$$

1681 4. Assemble the contributions of all slices $J \in \mathcal{J}_r$ to obtain

$$1683 U_r(R) = \lambda^D(T_\epsilon(\Gamma^{(r)}) \cap B^D(0, R)),$$

1684 and then compare the cases $r = n$ and $r = m$ to deduce the asymptotic ratio

$$1685 \frac{U_n(R)}{U_m(R)}.$$

1686 We are now ready to state and prove the main theorem.
 1687

1688 **Theorem A.18** (Ratio of ϵ -thickening of order- n discontinuity vs. ϵ -thickening of order- m discontinuity). *Fix integers $1 \leq m, n < D$ and $\epsilon > 0$. For each $r \in \{m, n\}$, suppose*

$$1692 \Gamma^{(r)} \subseteq \bigcup_{J \in \mathcal{J}_r} S_J^{(r)}, \quad S_J^{(r)} = \{x \in \mathbb{R}^D : A_J^{(r)} x = d_J^{(r)}\}, \quad \text{rank}(A_J^{(r)}) = r,$$

1693 with finite \mathcal{J}_r . Assume moreover that each slice $\Gamma_J^{(r)} := \Gamma^{(r)} \cap S_J^{(r)}$ is a (possibly unbounded)
 1694 polyhedral subset of the flat $S_J^{(r)}$. Define

$$1698 U_r(R) := \lambda^D(T_\epsilon(\Gamma^{(r)}) \cap B^D(0, R)), \quad \omega_d := \lambda^d(B^d(0, 1)).$$

1699 For each $J \in \mathcal{J}_r$, set

$$1701 \alpha_{J,r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}} \in \left[\max_{\mathbb{S}} \frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), 1 \right],$$

1702 with $s_{\mathbb{S}, J, r}$ defined as in Lemma A.16 and Lemma A.17.

1703 Then

$$1706 U_r(R) = \omega_{D-r} \omega_r \left(\sum_{J \in \mathcal{J}_r} \alpha_{J,r} \right) \epsilon^r R^{D-r} + O(\epsilon^r R^{D-r-1}),$$

1707 and

$$1709 \frac{U_n(R)}{U_m(R)} = \frac{\sum_{J \in \mathcal{J}_n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \alpha_{J,m}} \frac{\omega_{D-n} \omega_n}{\omega_{D-m} \omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} \left(1 + O \left(\frac{1}{R} \right) \right).$$

1712 *Proof.* We write $B_R := B^D(0, R)$ and $d := D - r$ when considering a fixed order r .

1713
 1714 **Step 1 (relation between thickening and polyhedral slice).** Fix a codimension- r flat $S \subset \mathbb{R}^D$ and a
 1715 measurable $P \subset S$. Choose an orthogonal decomposition $\mathbb{R}^D = S \oplus S^\perp$ and write $x = (y, u)$ with
 1716 $y \in S$, $u \in S^\perp$. Then

$$1717 T_\epsilon(P) \cap B_R = \left\{ (y, u) : y \in P, \|u\| < \epsilon, \|y\|^2 + \|u\|^2 < R^2 \right\}.$$

1718 Fubini theorem gives us the identity

$$1721 \lambda^D(T_\epsilon(P) \cap B_R) = \int_{y \in P} \lambda^r(B^r(0, \rho_R(y))) d\lambda^d(y) = \int_{y \in P} \omega_r \rho_R(y)^r d\lambda^d(y), \quad (1)$$

1722 where $\rho_R(y) := \min\{\epsilon, \sqrt{R^2 - \|y\|^2}\} \in [0, \epsilon]$.

1723 Split the base P into the interior band $I_R := \{y : \|y\| \leq R - \epsilon\}$ and the boundary band $B_R^\partial := \{y : R - \epsilon < \|y\| < R\}$. On I_R we have $\rho_R(y) = \epsilon$; on B_R^∂ we only know $0 \leq \rho_R(y) \leq \epsilon$. Thus

$$1727 \omega_r \epsilon^r \lambda^d(P \cap B_{R-\epsilon}) \leq \lambda^D(T_\epsilon(P) \cap B_R) \leq \omega_r \epsilon^r \lambda^d(P \cap B_R). \quad (2)$$

1728 The d -volume of the annulus $B_R \setminus B_{R-\epsilon}$ is $\lambda^d(B_R \setminus B_{R-\epsilon}) \leq d \omega_d R^{d-1} \epsilon$, so subtracting the bounds
 1729 in equation 2 yields the explicit error
 1730

$$1731 \quad \left| \lambda^D(T_\epsilon(P) \cap B_R) - \omega_r \epsilon^r \lambda^d(P \cap B_R) \right| \leq d \omega_d \omega_r \epsilon^{r+1} R^{d-1}. \quad (3)$$

1733 **Step 2 (asymptotics of one thickened polyhedral slice).** By definition of $\alpha_{J,r}$, we obtain:
 1734

$$1735 \quad \lambda^d(\Gamma_J^{(r)} \cap B_R) = \alpha_{J,r} \omega_d R^d + O(R^{d-1}). \quad (4)$$

1737 For fixed r and $J \in \mathcal{J}_r$, put $S := S_J^{(r)}$, $P := \Gamma_J^{(r)}$, and $d = D - r$. Combining equation 3 and
 1738 equation 4 yields

$$1739 \quad \lambda^D(T_\epsilon(\Gamma_J^{(r)}) \cap B_R) = \omega_r \epsilon^r \left(\alpha_{J,r} \omega_{D-r} R^{D-r} + O(R^{D-r-1}) \right) + O(\epsilon^{r+1} R^{D-r-1}),$$

1741 i.e.

$$1742 \quad \lambda^D(T_\epsilon(\Gamma_J^{(r)}) \cap B_R) = \omega_{D-r} \omega_r \alpha_{J,r} \epsilon^r R^{D-r} + O(\epsilon^r R^{D-r-1}), \quad (5)$$

1743 with the $O(\cdot)$ uniform over $J \in \mathcal{J}_r$ (finite family).

1745 **Step 3 (overlap estimate between slices).** Let $J \neq J'$. Since $S_J^{(r)}$ and $S_{J'}^{(r)}$ are distinct codimension-
 1746 r flats, their intersection $L := S_J^{(r)} \cap S_{J'}^{(r)}$ (if nonempty) has codimension at least $r + 1$. There exists
 1747 a constant $c = c(D, \{S_J^{(r)}\})$ such that
 1748

$$1749 \quad T_\epsilon(S_J^{(r)}) \cap T_\epsilon(S_{J'}^{(r)}) \subset T_{c\epsilon}(L)$$

1751 (geometrically: the distance to L is bounded by a fixed multiple of the sum of distances to $S_J^{(r)}$ and
 1752 $S_{J'}^{(r)}$, with the constant depending only on the angle between the two flats; a finite family gives a
 1753 uniform c). Hence, by the single-flat tube estimate (Proposition A.14),

$$1755 \quad \lambda^D(T_\epsilon(S_J^{(r)}) \cap T_\epsilon(S_{J'}^{(r)}) \cap B_R) \leq C_{D,r} \epsilon^{r+1} R^{D-r-1}.$$

1756 Since $\Gamma_J^{(r)} \subset S_J^{(r)}$, the same bound holds with $T_\epsilon(\Gamma_J^{(r)})$ in place of $T_\epsilon(S_J^{(r)})$. Summing over the
 1757 finitely many pairs,

$$1759 \quad \left| \lambda^D \left(\bigcup_J T_\epsilon(\Gamma_J^{(r)}) \cap B_R \right) - \sum_J \lambda^D(T_\epsilon(\Gamma_J^{(r)}) \cap B_R) \right| \leq C'_{D,r} \epsilon^{r+1} R^{D-r-1}. \quad (6)$$

1762 (Higher-order intersections are even smaller-codimension $\geq r + 2$ and are absorbed into the same
 1763 bound.)

1764 **Step 4 (Measure ratio across thickened different orders).** Because $T_\epsilon(\Gamma^{(r)}) = \bigcup_{J \in \mathcal{J}_r} T_\epsilon(\Gamma_J^{(r)})$,
 1765 combining equation 5 over J with equation 6 gives
 1766

$$1767 \quad U_r(R) = \omega_{D-r} \omega_r \left(\sum_{J \in \mathcal{J}_r} \alpha_{J,r} \right) \epsilon^r R^{D-r} + O(\epsilon^r R^{D-r-1}). \quad (7)$$

1770 Apply equation 7 with $r = n$ and $r = m$ with the similar asymptotic division argument as in
 1771 Proposition A.15:

$$\begin{aligned} 1772 \quad \frac{U_n(R)}{U_m(R)} &= \frac{\omega_{D-n} \omega_n (\sum_{J \in \mathcal{J}_n} \alpha_{J,n}) \epsilon^n R^{D-n} (1 + O(R^{-1}))}{\omega_{D-m} \omega_m (\sum_{J \in \mathcal{J}_m} \alpha_{J,m}) \epsilon^m R^{D-m} (1 + O(R^{-1}))} \\ 1773 \quad &= \frac{\sum_{J \in \mathcal{J}_n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \alpha_{J,m}} \frac{\omega_{D-n} \omega_n}{\omega_{D-m} \omega_m} \left(\frac{\epsilon}{R} \right)^{n-m} (1 + O(R^{-1})). \end{aligned}$$

1778 \square

1780 Building on Lemma A.16, we also establish an asymptotic ratio for ℓ_∞ -tubes around discontinuity
 1781 slices of different orders. The proof follows the same multi-step strategy as before, adapted to the
 ℓ_∞ geometry:

1. Derive the fiber decomposition of a slice $\Gamma_J^{(r)} \subset S_J^{(r)}$ in the subspace $S_J^{(r)}$.
2. Establish explicit two-sided bounds for the measure of the ℓ_∞ -tube $\lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R)$ in terms of the subspace volume $\lambda^d(\Gamma_J^{(r)} \cap B^D(0, R))$.
3. Reduce to base volumes in the subspace by evaluating $\lambda^d(\Gamma_J^{(r)} \cap B^D(0, R))$ and derive the asymptotic expansion of $\lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B^D(0, R))$.
4. Control overlaps between distinct tubes $T_\epsilon^{(\infty)}(\Gamma_J^{(r)})$ and $T_\epsilon^{(\infty)}(\Gamma_{J'}^{(r)})$ for $J \neq J'$, showing their contribution is $O(\epsilon^{r+1} R^{D-r-1})$.
5. Derive the asymptotic measure of the union $\bigcup_{J \in \mathcal{J}_r} T_\epsilon^{(\infty)}(\Gamma_J^{(r)})$ for fixed r , and then compare $U_n(R)$ and $U_m(R)$ to obtain the asymptotic ratio

$$\frac{U_n(R)}{U_m(R)}.$$

Theorem A.19 (Weighted union- ℓ_∞ tube ratio for orders n vs. m). *Fix integers $1 \leq m, n < D$ and $\epsilon > 0$. For each $r \in \{m, n\}$, suppose*

$$\Gamma^{(r)} \subseteq \bigcup_{J \in \mathcal{J}_r} S_J^{(r)}, \quad S_J^{(r)} = \{x \in \mathbb{R}^D : A_J^{(r)}x = d_J^{(r)}\}, \quad \text{rank}(A_J^{(r)}) = r,$$

with finite \mathcal{J}_r . Assume moreover that each slice $\Gamma_J^{(r)} := \Gamma^{(r)} \cap S_J^{(r)}$ is a (possibly unbounded) polyhedral subset of the flat $S_J^{(r)}$. Define the ℓ_∞ -tube around $S_J^{(r)}$ by

$$T_\epsilon^{(\infty)}(S_J^{(r)}) := \{x \in \mathbb{R}^D : \|A_J^{(r)}x - d_J^{(r)}\|_\infty \leq \epsilon\}, \quad T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) := \{x : \text{dist}_\infty(x, \Gamma_J^{(r)}) \leq \epsilon\},$$

where $\text{dist}_\infty(x, \Gamma) := \inf_{y \in \Gamma} \|A_J^{(r)}x - A_J^{(r)}y\|_\infty$ (so the normal thickening is measured via $A_J^{(r)}$). Set

$$U_r(R) := \lambda^D(T_\epsilon^{(\infty)}(\Gamma^{(r)}) \cap B^D(0, R)), \quad \omega_d := \lambda^d(B^d(0, 1)),$$

and for each $J \in \mathcal{J}_r$ let

$$\alpha_{J,r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}} \in \left[\max_{\mathbb{S}} \frac{1}{2} I_{4s_{\mathbb{S}, J, r}^2(1-s_{\mathbb{S}, J, r}^2)} \left(\frac{d-1}{2}, \frac{1}{2} \right), 1 \right],$$

$$\kappa_{J,r} := (\det(A_J^{(r)}(A_J^{(r)})^\top))^{-1/2},$$

with $s_{\mathbb{S}, J, r}$ defined as in Lemma A.16 and Lemma A.17

Then

$$\frac{U_n(R)}{U_m(R)} = \frac{\sum_{J \in \mathcal{J}_n} \kappa_{J,n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \kappa_{J,m} \alpha_{J,m}} \frac{\omega_{D-n}}{\omega_{D-m}} \left(\frac{2\epsilon}{R} \right)^{n-m} \left(1 + O\left(\frac{1}{R}\right) \right).$$

Proof. Fix $r \in \{m, n\}$ and abbreviate $d := D - r$, $B_R := B^D(0, R)$. We prove

$$U_r(R) = \omega_{D-r} \left(\sum_{J \in \mathcal{J}_r} \kappa_{J,r} \alpha_{J,r} \right) (2\epsilon)^r R^{D-r} + O(\epsilon^{r+1} R^{D-r-1}), \quad (8)$$

which yields the ratio in the statement after applying it with $r = n$ and $r = m$.

Step 1 (fiber decomposition of a slice in the subspace). Fix one slice index J and write $S := S_J^{(r)} = \{x : Ax = d\}$ with $\text{rank}(A) = r$. Let $V := \ker A$ and $V^\perp = \text{row}(A)$. Choose an orthonormal basis $N \in \mathbb{R}^{D \times r}$ for V^\perp and complete with an orthonormal basis for V so that every $x \in \mathbb{R}^D$ decomposes uniquely as $x = y + Nz$ with $y \in S$ and $z \in \mathbb{R}^r$. Then for $y \in S$ we have $Ay = d$, hence

$$Ax - d = A(y + Nz) - d = ANz.$$

1836 Because N has orthonormal columns, $AN \in \mathbb{R}^{r \times r}$ is invertible and
 1837

$$1838 \quad |\det(AN)| = \sqrt{\det(AA^\top)}. \\ 1839$$

1840 Define

$$1841 \quad \kappa_{J,r} := (\det(AA^\top))^{-1/2} = \frac{1}{|\det(AN)|}. \\ 1842$$

1843 The ℓ_∞ -tube fiber over any base point $y \in S$ is the linear preimage

$$1844 \quad \{z \in \mathbb{R}^r : \|AN z\|_\infty \leq \epsilon\} = (AN)^{-1}([- \epsilon, \epsilon]^r), \\ 1845$$

1846 whose r -volume equals

$$1847 \quad \lambda^r((AN)^{-1}([- \epsilon, \epsilon]^r)) = \frac{\lambda^r([- \epsilon, \epsilon]^r)}{|\det(AN)|} = \kappa_{J,r} (2\epsilon)^r. \\ 1848 \\ 1849$$

1850 claimed *Size of the fiber in the ambient norm*. Since $\|w\|_2 \leq \sqrt{r} \|w\|_\infty$ for $w \in \mathbb{R}^r$, any z in the
 1851 fiber satisfies

$$1852 \quad \|z\| = \|Nz\| \leq \|(AN)^{-1}\|_2 \|ANz\|_2 \leq \|(AN)^{-1}\|_2 \sqrt{r} \epsilon.$$

1853 Set the slice-dependent constant

$$1854 \quad C_J := \sqrt{r} \|(AN)^{-1}\|_2. \\ 1855$$

1856 Then every point $y + Nz$ in the fiber over y lies within ambient distance $\leq C_J \epsilon$ of y .

1857 **Step 2 (two-sided bounds for ℓ_∞ -tubes in terms of subspace volumes).** By Fubini in the
 1858 orthogonal splitting $\mathbb{R}^D = S \oplus V^\perp$,

$$1860 \quad \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) = \int_{y \in \Gamma_J^{(r)}} \lambda^r\left(\{z : \|ANz\|_\infty \leq \epsilon, \|y + Nz\| \leq R\}\right) d\lambda^d(y). \\ 1861 \\ 1862$$

1863 Let

$$1864 \quad I_R := \{y \in \Gamma_J^{(r)} : \|y\| \leq R - C_J \epsilon\}, \quad B_R^\partial := \{y \in \Gamma_J^{(r)} : R - C_J \epsilon < \|y\| < R\}. \\ 1865$$

1866 For $y \in I_R$, the entire *full* fiber fits in B_R (triangle inequality), so its r -volume equals $\kappa_{J,r}(2\epsilon)^r$. For
 1867 $y \in B_R^\partial$, the fiber volume is bounded above by the full fiber volume. Therefore,

$$1868 \quad \kappa_{J,r}(2\epsilon)^r \lambda^d(I_R) \leq \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) \leq \kappa_{J,r}(2\epsilon)^r \lambda^d(I_R) + \kappa_{J,r}(2\epsilon)^r \lambda^d(B_R^\partial). \quad (9)$$

1870 Since $I_R \cup B_R^\partial = \Gamma_J^{(r)} \cap B_R$ and $I_R = \Gamma_J^{(r)} \cap B_{R-C_J \epsilon}$, we can rewrite equation 9 as the *two-sided*
 1871 *inequality*

$$1873 \quad \kappa_{J,r}(2\epsilon)^r \lambda^d(\Gamma_J^{(r)} \cap B_{R-C_J \epsilon}) \leq \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) \leq \kappa_{J,r}(2\epsilon)^r \lambda^d(\Gamma_J^{(r)} \cap B_R). \quad (10)$$

1875 **Step 3 (reduce to base volumes and apply polyhedral asymptotics).** The difference between the
 1876 upper and lower terms in equation 10 is supported on the base annulus of thickness $C_J \epsilon$ in S :

$$1878 \quad \lambda^d(B_R \setminus B_{R-C_J \epsilon}) = \omega_d(R^d - (R - C_J \epsilon)^d) \leq d \omega_d R^{d-1} C_J \epsilon.$$

1879 Multiplying by the constant fiber volume $\kappa_{J,r}(2\epsilon)^r$ gives

$$1881 \quad \left| \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) - \kappa_{J,r}(2\epsilon)^r \lambda^d(\Gamma_J^{(r)} \cap B_R) \right| \leq d \omega_d \kappa_{J,r} C_J (2\epsilon)^r \epsilon R^{d-1}. \quad (11)$$

1883 In particular,

$$1885 \quad \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) = \kappa_{J,r}(2\epsilon)^r \lambda^d(\Gamma_J^{(r)} \cap B_R) + O(\epsilon^{r+1} R^{d-1}),$$

1886 where the big- O constant may depend on J through $\kappa_{J,r}$ and C_J .

1887 From the Equation:

$$1889 \quad \alpha_{J,r} := \lim_{R \rightarrow \infty} \frac{\lambda^{D-r}(\Gamma_J^{(r)} \cap B^D(0, R))}{\omega_{D-r} R^{D-r}},$$

1890 we obtain:

$$1891 \quad \lambda^d(\Gamma_J^{(r)} \cap B_R) = \alpha_{J,r} \omega_d R^d + O(R^{d-1}). \quad (12)$$

1892 Combining equation 11 and equation 12 yields

$$1894 \quad \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) = \kappa_{J,r} \alpha_{J,r} \omega_d (2\epsilon)^r R^d + O(\epsilon^{r+1} R^{d-1}). \quad (13)$$

1895 Since \mathcal{J}_r is finite, we can take the $O(\cdot)$ uniform in J by enlarging the implicit constant to the maximum over J .

1896 **Step 4 (control overlaps between different ℓ_∞ -tubes).** Fix $J \neq J'$ and set $S := S_J^{(r)}$, $S' := S_{J'}^{(r)}$,
1897 and $L := S \cap S'$. Let $V_L := \{u \in \mathbb{R}^D : A_{Ju} = 0, A_{J'u} = 0\}$ be the direction space of L , and let
1900 $N := V_L^\perp$ (so every $x \in \mathbb{R}^D$ decomposes uniquely as $x = y + v$ with $y \in L, v \in N$). Define the
1901 linear map
1902
$$T : N \longrightarrow \mathbb{R}^r \times \mathbb{R}^r, \quad T(v) := (A_{Jv}, A_{J'v}).$$

1903 If $T(v) = (0, 0)$ then $A_{Jv} = A_{J'v} = 0$, so $v \in V_L$. Since also $v \in N = V_L^\perp$, we get $v = 0$. Thus T
1904 is injective on the finite-dimensional space N ; hence there exists $c_0 > 0$ (such as $c_0 = 1/\sigma_{\min}(T)$)
1905 with
1906
$$1907 \quad \|v\| \leq c_0 \|T(v)\|_2 = c_0 \left(\|A_{Jv}\|_2^2 + \|A_{J'v}\|_2^2 \right)^{1/2} \quad \forall v \in N. \quad (14)$$

1907 Now take any $x \in T_\epsilon^{(\infty)}(S) \cap T_\epsilon^{(\infty)}(S')$. Write $x = y + v$ with $y \in L, v \in N$. Because $A_{Jy} = d_J$
1908 and $A_{J'y} = d_{J'}$, we have
1909

$$1910 \quad A_{Jv} = A_{Jx} - d_J, \quad A_{J'v} = A_{J'x} - d_{J'}.$$

1911 Using $\|w\|_2 \leq \sqrt{r} \|w\|_\infty$ in \mathbb{R}^r ,

$$1912 \quad \|A_{Jv}\|_2 \leq \sqrt{r} \|A_{Jx} - d_J\|_\infty \leq \sqrt{r} \epsilon, \quad \|A_{J'v}\|_2 \leq \sqrt{r} \epsilon.$$

1913 Plugging into equation 14 gives

$$1914 \quad \text{dist}(x, L) = \|v\| \leq c_0 \sqrt{(\sqrt{r} \epsilon)^2 + (\sqrt{r} \epsilon)^2} = c_0 \sqrt{2r} \epsilon =: c \epsilon.$$

1915 Therefore we have the set inclusion

$$1916 \quad T_\epsilon^{(\infty)}(S) \cap T_\epsilon^{(\infty)}(S') \subset T_{c\epsilon}^{(2)}(L), \quad (15)$$

1917 where $T_{c\epsilon}^{(2)}(L)$ denotes the Euclidean tube of radius $c\epsilon$ around L , and $c = c(J, J') := c_0 \sqrt{2r}$ depends
1918 only on the pair (J, J') .

1919 Since L has codimension at least $r + 1$, the Euclidean tube estimate (Proposition A.14) yields

$$1920 \quad \lambda^D(T_{c\epsilon}^{(2)}(L) \cap B_R) \leq C \epsilon^{r+1} R^{D-r-1}$$

1921 for some constant $C = C(D, r, \{S, S'\})$. By equation 15, the same bound holds for $\lambda^D(T_\epsilon^{(\infty)}(S) \cap$
1922 $T_\epsilon^{(\infty)}(S') \cap B_R)$. Because $\Gamma_J^{(r)} \subset S$ and $\Gamma_{J'}^{(r)} \subset S'$, intersecting with the slices can only decrease
1923 the measure; hence
1924

$$1925 \quad \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap T_\epsilon^{(\infty)}(\Gamma_{J'}^{(r)}) \cap B_R) \leq C \epsilon^{r+1} R^{D-r-1}.$$

1926 Summing this over the finitely many unordered pairs (J, J') and applying inclusion-exclusion
1927 truncated at first order gives

$$1928 \quad \left| \lambda^D \left(\bigcup_J T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R \right) - \sum_J \lambda^D(T_\epsilon^{(\infty)}(\Gamma_J^{(r)}) \cap B_R) \right| \leq C' \epsilon^{r+1} R^{D-r-1}, \quad (16)$$

1929 with C' depending only on (D, r) and the finite family $\{S_J^{(r)}\}_{J \in \mathcal{J}_r}$.

1930 **Step 5 (union asymptotics and ratio for orders n vs. m).** Summing equation 13 over $J \in \mathcal{J}_r$ and
1931 invoking equation 16 gives
1932

$$1933 \quad U_r(R) = \omega_{D-r} \left(\sum_{J \in \mathcal{J}_r} \kappa_{J,r} \alpha_{J,r} \right) (2\epsilon)^r R^{D-r} + O(\epsilon^{r+1} R^{D-r-1}),$$

1944 which is equation 8.
 1945

1946 Applying equation 8 with $r = n$ and $r = m$ and dividing using the same argument as Proposition A.15
 1947 yields

$$1948 \frac{U_n(R)}{U_m(R)} = \frac{\sum_{J \in \mathcal{J}_n} \kappa_{J,n} \alpha_{J,n}}{\sum_{J \in \mathcal{J}_m} \kappa_{J,m} \alpha_{J,m}} \frac{\omega_{D-n}}{\omega_{D-m}} \left(\frac{2\epsilon}{R} \right)^{n-m} \left(1 + O\left(\frac{1}{R}\right) \right),$$

1950 as claimed. \square
 1951

1952 **Proposition A.20** (Characterization of ℓ_∞ -thickening). *An input x belongs to $T_\epsilon^{(\infty)}(\Gamma)$ if and only*
 1953 *if there exists an index i such that $0 \leq z_{[k]}(x) - z_i(x) < \epsilon$. In other words, at least one non top- k*
 1954 *logit lies within ϵ of the k -th logit $z_{[k]}(x)$.*

1955
 1956 *Proof.* (\Rightarrow) Assume $x \in T_\epsilon^{(\infty)}(\Gamma)$. By the definition of $T_\epsilon^{(\infty)}(\Gamma)$, there exist a tie set J and a top- k
 1957 active set \mathbb{S} such that $J \setminus \mathbb{S} \neq \emptyset$. Let $i \in J \setminus \mathbb{S}$. Then $0 \leq z_{[k]}(x) - z_i(x) < \epsilon$.
 1958

1959 (\Leftarrow) Assume there exists i with $0 \leq z_{[k]}(x) - z_i(x) < \epsilon$. Let $J = \{[k], i\}$. Then $x \in T_\epsilon^{(\infty)}(\Gamma_J^{(2)}) \subseteq$
 1960 $T_\epsilon^{(\infty)}(\Gamma)$. \square
 1961

1962 A.5 HITTING AND OCCUPATION TIME NEAR DISCONTINUITIES

1963 Suppose we wish to study an adversarial process that drives the input $x_0 \in \mathcal{C}_S$ toward a discontinuity
 1964 boundary. We model this process by the stochastic differential equation

$$1965 dx_t = \gamma(t, x_t) dt + \sigma(t, x_t) dB_t,$$

1966 where B_t is a standard n -dimensional Brownian motion. The drift term $\gamma(t, x)$ represents the
 1967 adversarial drive, while the diffusion term $\sigma(t, x)$ models uncertainty and random perturbations. Such
 1968 noise may arise from stochastic gradient descent when the adversarial direction is estimated from
 1969 minibatches, from measurement errors in the input, or from inherent randomness injected into the
 1970 system.
 1971

1972 A.5.1 RANDOMLY PERTURBED DIFFUSION PROCESS IS GUARANTEED TO HIT THE TOP-K CELL 1973 BOUNDARY

1974 We consider the stochastic dynamic that consist only of the diffusion term. In this case, the evolution
 1975 of the system is driven purely by random perturbations. For simplicity, we assume that the diffusion
 1976 coefficient is time-independent, i.e., $\sigma(t, x_t) = \sigma$ for all t , with invertible $\sigma \in \mathbb{R}^{d \times d}$. Then x_t is an
 1977 Itô process with initial condition $x_0 \in \mathcal{C}_S$ satisfying

$$1978 dx_t = \sigma dB_t.$$

1979 A key step in our analysis is to understand the hitting time of such processes against linear boundaries.
 1980 The Proposition A.21 is a classical result that provides a probabilistic bound for the hitting time, and
 1981 it will later be applied to establish the exit-time behavior from the polyhedral cell \mathcal{C}_S .
 1982

1983 **Proposition A.21** (Probabilistic bound for the hitting time). *Let $Y_t = Y_0 + c \tilde{B}_t$ with $Y_0 > 0$ and
 1984 $c > 0$, and define*

$$1985 \tau := \inf\{t \geq 0 : Y_t \leq 0\}.$$

1986 Then, for every $t > 0$,

$$1987 \mathbb{P}(\tau \leq t) = 2 \left(1 - \Phi\left(\frac{Y_0}{c\sqrt{t}}\right) \right),$$

1988 and hence for any $\delta \in (0, 1)$,

$$1989 \mathbb{P}\left(\tau \leq \left(\frac{Y_0}{cq_\delta}\right)^2\right) = 1 - \delta, \quad q_\delta := \Phi^{-1}\left(\frac{1+\delta}{2}\right),$$

1990 where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$ is the standard normal cumulative distribution function.
 1991

1998 *Proof.* Write $Y_t = Y_0 + c\tilde{B}_t$ with $Y_0 > 0$. Then
 1999

$$2000 \quad \tau = \inf\{t \geq 0 : Y_t \leq 0\} = \inf\{t \geq 0 : \tilde{B}_t \leq -Y_0/c\}.$$

2001

2002 For standard Brownian motion \tilde{B}_t , the reflection principle gives
 2003

$$2004 \quad \mathbb{P}\left(\min_{0 \leq s \leq t} \tilde{B}_s \leq -a\right) = 2\mathbb{P}(\tilde{B}_t \leq -a) = 2\left(1 - \Phi(a/\sqrt{t})\right), \quad a > 0.$$

2006

2007 Where the second equality terms from the fact that $\tilde{B}_t \sim \mathcal{N}(0, t)$.
 2008

2009 Applying the equality with $a = Y_0/c$ yields

$$2010 \quad \mathbb{P}(\tau \leq t) = 2\left(1 - \Phi\left(\frac{Y_0}{c\sqrt{t}}\right)\right).$$

2013 Let $q_\delta = \Phi^{-1}\left(\frac{1+\delta}{2}\right)$. Setting $t_\delta = \left(\frac{Y_0}{cq_\delta}\right)^2$ gives $\Phi\left(\frac{Y_0}{c\sqrt{t_\delta}}\right) = \frac{1+\delta}{2}$, hence
 2014

$$2015 \quad \mathbb{P}(\tau \leq t_\delta) = 2\left(1 - \frac{1+\delta}{2}\right) = 1 - \delta.$$

2018

□

2019

2020 The above proposition shows that for a one-dimensional diffusion of the form $Y_t = Y_0 + c\tilde{B}_t$, the
 2021 first hitting time of zero admits an explicit probabilistic bound. In our multidimensional setting, each
 2022 face of the polyhedral cell \mathcal{C}_S is described by a linear inequality $a^{(i,j)\top} x > d^{(i,j)}$, and projecting the
 2023 diffusion x_t onto the normal direction $a^{(i,j)}$ reduces the problem to exactly this one-dimensional case.
 2024 Applying Proposition A.21 to all such faces yields the following bound for the exit time from \mathcal{C}_S .

2025 **Theorem A.22** (Probabilistic bound of the cell boundary hitting time). *Assume x_t follows the
 2026 diffusion equation $dx_t = \sigma dB_t$ with $\sigma \in \mathbb{R}^{d \times d}$ and initial condition $x_0 \in \mathcal{C}_S$, the open polyhedral
 2027 cell associated with the k -subset S ,*

$$2028 \quad \mathcal{C}_S = \bigcap_{i \in S, j \notin S} \left\{ x \in \mathbb{R}^d : (W_g^{(i)} - W_g^{(j)})^\top x > b_g^{(j)} - b_g^{(i)} \right\}.$$

2031 Denote $a^{(i,j)} := W_g^{(i)} - W_g^{(j)}$, $d^{(i,j)} := b_g^{(j)} - b_g^{(i)}$, and $c^{(i,j)} := \|\sigma^\top a^{(i,j)}\|$, and assume uniform
 2032 nondegeneracy $c^{(i,j)} > 0$ for all i, j . Define
 2033

$$2034 \quad r_{\min} := \min_{i \in S, j \notin S} \frac{a^{(i,j)\top} x_0 - d^{(i,j)}}{\|\sigma^\top a^{(i,j)}\|} > 0.$$

2037 The hitting time of \mathcal{C}_S is
 2038

$$\tau_{\mathcal{C}_S} := \inf\{t \geq 0 : x_t \notin \mathcal{C}_S\}.$$

2040 Then for every $t > 0$,

$$2041 \quad \mathbb{P}(\tau_{\mathcal{C}_S} \leq t) \geq 2\left(1 - \Phi\left(\frac{r_{\min}}{\sqrt{t}}\right)\right),$$

2043 where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$ is the standard normal CDF.
 2044

2045 Moreover, by continuity of the sample paths, $x_{\tau_{\mathcal{C}_S}} \in \partial\mathcal{C}_S$ almost surely.
 2046

2047 *Proof.* By the uniform nondegeneracy assumption, we have $\|\sigma^\top a_{ij}\| = c^{(ij)} > 0$.
 2048

2049 Consider the gap process

$$2050 \quad Y_t^{(i,j)} := a_{ij}^\top X_t - d^{(i,j)}.$$

2051 We observe that $Y_t^{(i,j)} = 0$ when x_t is on the boundary created by experts i, j .

2052 Applying Itô's formula and using the equation $dx_t = \sigma dB_t$, we obtain
 2053

$$2054 \quad dY_t^{(i,j)} = a_{ij}^\top \sigma dB_t$$

2055
 2056 Let $u := \frac{\sigma^\top a_{ij}}{\|\sigma^\top a_{ij}\|} \in \mathbb{R}^d$, so $\|u\| = 1$, and define
 2057

$$2058 \quad \tilde{B}_t^{(i,j)} := u^\top B_t \quad (\text{i.e., } \tilde{B}_t^{(i,j)} = \frac{a_{ij}^\top \sigma}{\|\sigma^\top a_{ij}\|} \cdot B_t).$$

2060
 2061 Since B_t is a d -dimensional Brownian motion and u is constant, $\tilde{B}_t^{(i,j)}$ is a continuous local martingale
 2062 with $\tilde{B}_0^{(i,j)} = 0$. Its quadratic variation is $\langle \tilde{B}_t^{(i,j)} \rangle_t = \int_0^t \|u\|^2 ds = t$.
 2063

2064 By Lévy's characterization for Brownian motion, a continuous local martingale starting at 0 with
 2065 quadratic variation t is a standard one-dimensional Brownian motion; hence $\tilde{B}_t^{(i,j)}$ is a standard
 2066 1-dimensional Brownian motion.

2067 We can rewrite:

2068

$$2069 \quad dY_t^{(i,j)} = a_{ij}^\top \sigma dB_t = \|\sigma^\top a_{ij}\| d\tilde{B}_t^{(i,j)}$$

2070
 2071 Thus $Y^{(i,j)}$ is a nondegenerate 1-dimensional Brownian motion starting from
 2072

$$2073 \quad Y_0^{(i,j)} = a_{ij}^\top x_0 - d^{(i,j)} > 0.$$

2074 Define the stopping time

$$2075 \quad \tau_{ij} := \inf\{t \geq 0 : Y_{ij}(t) \leq 0\}.$$

2076 Intuitively, τ_{ij} is the first time the process $Y_{ij}(t)$, which starts positive, touches zero; i.e., the random
 2077 moment when expert i and j 's scores become equal and the trajectory hits the boundary.
 2078

2079 In summary, we have the following:
 2080

$$2081 \quad dY_t^{(i,j)} = a_{ij}^\top \sigma dB_t = \|\sigma^\top a_{ij}\| d\tilde{B}_t^{(i,j)}$$

$$2083 \quad Y_0^{(i,j)} = a_{ij}^\top x_0 - d^{(i,j)}.$$

$$2084 \quad \tau_{ij} := \inf\{t \geq 0 : Y_{ij}(t) \leq 0\}.$$

2086 We want to bound the hitting time τ_{ij} using Proposition A.21.
 2087

2088 Apply Proposition A.21 with $Y_0 = Y_0^{(i,j)} = a_{ij}^\top x_0 - d^{(i,j)}$, $c = \|\sigma^\top a_{ij}\|$ we obtain:
 2089

For every $t > 0$,

$$2091 \quad \mathbb{P}(\tau_{ij} \leq t) = 2 \left(1 - \Phi \left(\frac{a_{ij}^\top x_0 - d^{(i,j)}}{\|\sigma^\top a_{ij}\| \sqrt{t}} \right) \right),$$

2093 Since the first exit time $\tau_{\mathcal{C}_S}$ from the open cell \mathcal{C}_S is the infimum of the exit times through all boundary
 2094 faces, we have

$$2095 \quad \tau_{\mathcal{C}_S} = \inf_{i \in S, j \notin S} \tau_{ij}.$$

2096 Thus

$$2098 \quad \{\tau_{\mathcal{C}_S} \leq t\} = \bigcup_{i \in S, j \notin S} \{\tau_{ij} \leq t\}.$$

2100 The probability of the union is at least as large as the maximum probability of its members. Therefore
 2101

$$2102 \quad \mathbb{P}(\tau_{\mathcal{C}_S} \leq t) \geq \max_{i \in S, j \notin S} \mathbb{P}(\tau_{ij} \leq t).$$

2103 Let

$$2105 \quad r_{\min} := \min_{i \in S, j \notin S} \frac{a_{ij}^\top x_0 - d^{(i,j)}}{\|\sigma^\top a_{ij}\|} > 0.$$

2106 Since $\mathbb{P}(\tau_{ij} \leq t) = 2 \left(1 - \Phi \left(\frac{a_{ij}^\top x_0 - d^{(i,j)}}{\| \sigma^\top a_{ij} \| \sqrt{t}} \right) \right)$ decreases as r_{ij} increases, the maximum is attained
 2107 at r_{\min} . Hence, for every $t > 0$,
 2108

$$2110 \mathbb{P}(\tau_{\mathcal{S}} \leq t) \geq 2 \left(1 - \Phi \left(\frac{r_{\min}}{\sqrt{t}} \right) \right). \\ 2111$$

2112 By construction, at the exit time $\tau_{\mathcal{S}}$ at least one inequality becomes tight, i.e. $Y_{\tau_{\mathcal{S}}}^{(i,j)} = 0$ for some pair
 2113 (i, j) , so $x_{\tau_{\mathcal{S}}} \in \partial \mathcal{C}_{\mathcal{S}}$. Since x_t has continuous sample paths, the exit occurs on $\partial \mathcal{C}_{\mathcal{S}}$ almost surely. \square
 2114

2115 From Theorem A.22, we can establish that the exit time $\tau_{\mathcal{S}}$ is finite almost surely in the next corollary.
 2116

2117 **Corollary A.23.** *The exit time $\tau_{\mathcal{S}}$ of the diffusion process from the polyhedral cell $\mathcal{C}_{\mathcal{S}}$ is finite almost
 2118 surely; that is,*

$$2119 \mathbb{P}(\tau_{\mathcal{S}} < \infty) = 1.$$

2120 *Proof.* By Theorem A.22 we have for every $t > 0$,
 2121

$$2122 \mathbb{P}(\tau_{\mathcal{S}} \leq t) \geq 2 \left(1 - \Phi \left(\frac{r_{\min}}{\sqrt{t}} \right) \right) \xrightarrow[t \rightarrow \infty]{} 1,$$

2124 which implies $\mathbb{P}(\tau_{\mathcal{S}} < \infty) = 1$. \square
 2125

2126 *Remark A.24.* Theorem A.22 and Corollary A.23 asserts two key properties of the randomly perturbed
 2127 diffusion process $dx_t = \sigma dB_t$ in relation to the polyhedral cell $\mathcal{C}_{\mathcal{S}}$: (i) the exit time $\tau_{\mathcal{S}}$ is finite almost
 2128 surely, so the process cannot remain in $\mathcal{C}_{\mathcal{S}}$ indefinitely; (ii) due to continuity of the sample paths, the
 2129 exit occurs on the boundary $\partial \mathcal{C}_{\mathcal{S}}$.

2130 A.5.2 EQUIVALENCE BETWEEN CELL BOUNDARIES AND THE DISCONTINUITY SET 2131

2132 In Section A.5, we established that a randomly perturbed diffusion process starting inside any top- k
 2133 cell $\mathcal{C}_{\mathcal{S}}$ with fixed diffusion coefficient almost surely exits the cell in finite time, i.e., it hits the
 2134 boundary $\partial \mathcal{C}_{\mathcal{S}}$ with probability one. However, we have not proved that the union of all such cell
 2135 boundaries coincides with the discontinuity set Γ . This result can be proved directly from the
 2136 definitions, which we provide a proof in Lemma A.25.

2137 **Lemma A.25** (Union of all boundaries and the discontinuous set coincides). *For each k -subset \mathcal{S} , let
 2138 the open cell be*

$$2139 \mathcal{C}_{\mathcal{S}} = \{x : z_i(x) > z_j(x) \ \forall i \in \mathcal{S}, j \notin \mathcal{S}\}, \quad \overline{\mathcal{C}_{\mathcal{S}}} = \{x : z_i(x) \geq z_j(x) \ \forall i \in \mathcal{S}, j \notin \mathcal{S}\}.$$

2141 Define the switching facets

$$2143 \mathbb{F}_{\mathcal{S},i,j} = \left\{ x : z_i(x) = z_j(x), z_i(x) \leq z_\ell(x) \ \forall \ell \in \mathcal{S} \setminus \{i\}, z_m(x) \leq z_j(x) \ \forall m \notin (\mathcal{S} \cup \{j\}) \right\},$$

2144 and

$$2146 \Gamma = \bigcup_{|\mathcal{S}|=k} \bigcup_{i \in \mathcal{S}, j \notin \mathcal{S}} \mathbb{F}_{\mathcal{S},i,j}.$$

2148 Then

$$2149 \Gamma = \bigcup_{|\mathcal{S}|=k} \partial \mathcal{C}_{\mathcal{S}}.$$

2152 *Proof.* (i) $\Gamma \subseteq \bigcup_{|\mathcal{S}|=k} \partial \mathcal{C}_{\mathcal{S}}$.

2153 Fix \mathcal{S} and $i \in \mathcal{S}, j \notin \mathcal{S}$. If $x \in \mathbb{F}_{\mathcal{S},i,j}$, then $z_i(x) = z_j(x)$ and $z_i(x) \leq z_\ell(x)$ for all $\ell \in \mathcal{S} \setminus \{i\}$ while
 2154 $z_m(x) \leq z_j(x)$ for all $m \notin (\mathcal{S} \cup \{j\})$. Hence $x \in \overline{\mathcal{C}_{\mathcal{S}}}$ and $x \notin \mathcal{C}_{\mathcal{S}}$, so $x \in \partial \mathcal{C}_{\mathcal{S}}$. Thus $\mathbb{F}_{\mathcal{S},i,j} \subseteq \partial \mathcal{C}_{\mathcal{S}}$,
 2155 and the union gives the inclusion.

2157 (ii) $\bigcup_{|\mathcal{S}|=k} \partial \mathcal{C}_{\mathcal{S}} \subseteq \Gamma$.

2158 Let $x \in \partial \mathcal{C}_{\mathcal{S}}$ for some \mathcal{S} . Then $x \in \overline{\mathcal{C}_{\mathcal{S}}}$ but $x \notin \mathcal{C}_{\mathcal{S}}$, so there exists an inside–outside pair with equality:
 2159 $\exists i \in \mathcal{S}, j \notin \mathcal{S}$ such that $z_i(x) = z_j(x)$. Let $i^* \in \arg \min_{\ell \in \mathcal{S}} z_\ell(x)$ and $j^* \in \arg \max_{m \notin \mathcal{S}} z_m(x)$.

2160 Since $x \in \overline{\mathcal{C}_{\mathbb{S}}}$, we have $\min_{\ell \in \mathbb{S}} z_{\ell}(x) \geq \max_{m \notin \mathbb{S}} z_m(x)$; because $x \notin \mathcal{C}_{\mathbb{S}}$, the strict inequality fails,
 2161 hence

$$2162 \quad z_{i^*}(x) = \min_{\ell \in \mathbb{S}} z_{\ell}(x) = \max_{m \notin \mathbb{S}} z_m(x) = z_{j^*}(x).$$

2164 By construction, $z_{i^*}(x) \leq z_{\ell}(x)$ for all $\ell \in \mathbb{S} \setminus \{i^*\}$ and $z_m(x) \leq z_{j^*}(x)$ for all $m \notin (\mathbb{S} \cup \{j^*\})$, i.e.
 2165 $x \in \mathbb{F}_{\mathbb{S}, i^*, j^*}$. Therefore $x \in \Gamma$.

2166 Combining (i) and (ii) yields $\Gamma = \bigcup_{|\mathbb{S}|=k} \partial \mathcal{C}_{\mathbb{S}}$. □
 2167

2168 *Remark A.26.* Using Lemma A.25 and Theorem A.22, we can conclude that a randomly perturbed
 2169 diffusion process initiated inside any top- k cell $\mathcal{C}_{\mathbb{S}}$ with fixed, nondegenerate diffusion coefficient
 2170 almost surely reaches a discontinuity boundary in finite time.

2171
 2172 **A.5.3 FIRST EXIT ALMOST SURELY AS ORDER-1 DISCONTINUITY**

2173 From Theorem A.22 and Lemma A.25, we know that the first hitting time of the discontinuity set is
 2174 almost surely finite. What remains unclear is the type of discontinuity reached at exit. In the next
 2175 part, we show that, with probability one, the process exits through an order-1 discontinuity. The key
 2176 tool is a classical lemma: an r -dimensional Brownian motion ($r \geq 2$) almost surely never hits a fixed
 2177 point in \mathbb{R}^r at any time.

2178 **Lemma A.27.** *Let $(B_t)_{t \geq 0}$ be standard d -dimensional Brownian motion with $d \geq 2$ and $B_0 = 0$.
 2179 For any fixed $a \in \mathbb{R}^d$ with $a \neq 0$,*

$$2181 \quad \mathbb{P}(\exists t > 0 : B_t = a) = 0.$$

2183 *Proof.* Let $r < |a| < R$ and define $R_t = \|B_t - a\|$. Set the stopping times
 2184

$$\tau_r := \inf\{t \geq 0 : R_t = r\}, \quad \tau_R := \inf\{t \geq 0 : R_t = R\}.$$

2186 *Case $d \geq 3$:*

2188 Let $u(x) = \|x - a\|^{2-d}$, which is harmonic on $\mathbb{R}^d \setminus \{a\}$.
 2189

2190 Applying Itô's formula,

$$2191 \quad du(B_t) = \nabla u(B_t) \cdot dB_t,$$

2192 so $u(B_t)$ is a local martingale.

2193 By optional stopping theorem for the bounded stopping time $\tau_r \wedge \tau_R$, we obtain
 2194

$$2195 \quad \mathbb{E}[u(B_{\tau_r \wedge \tau_R})] = u(B_0) = |a|^{2-d}.$$

2196 Since $B_{\tau_r \wedge \tau_R}$ lies on the sphere of radius r or R centered at a , we have
 2197

$$2198 \quad \mathbb{P}(\tau_r < \tau_R) r^{2-d} + \mathbb{P}(\tau_R < \tau_r) R^{2-d} = |a|^{2-d}.$$

2199 Thus

$$2201 \quad \mathbb{P}(\tau_r < \tau_R) = \frac{|a|^{2-d} - R^{2-d}}{r^{2-d} - R^{2-d}}.$$

2203 Letting $r \downarrow 0, R \uparrow \infty$ gives

$$2204 \quad \mathbb{P}(\tau_r < \infty) \xrightarrow[r \downarrow 0]{} 0.$$

2205 That is, the probability that the Brownian path ever enters an arbitrarily small neighborhood of a
 2206 vanishes. Consequently, the event of hitting the exact point a has probability zero, and hence
 2207

$$2208 \quad \mathbb{P}(\exists t > 0 : B_t = a) = 0.$$

2209 *Case $d = 2$:*

2210 Let $v(x) = \log \|x - a\|$, which is harmonic on $\mathbb{R}^2 \setminus \{a\}$.
 2211

2212 By Itô's formula, $v(B_t)$ is a local martingale, hence by optional stopping at $\tau_r \wedge \tau_R$,

$$2213 \quad \log |a| = \mathbb{E}[v(B_{\tau_r \wedge \tau_R})] = (\log r) \mathbb{P}(\tau_r < \tau_R) + (\log R) \mathbb{P}(\tau_R < \tau_r).$$

2214 Therefore

2215
$$\mathbb{P}(\tau_r < \tau_R) = \frac{\log R - \log |a|}{\log R - \log r} \xrightarrow[r \downarrow 0]{} 0,$$
 2216

2217 Letting $r \downarrow 0, R \uparrow \infty$ gives

2218
$$\mathbb{P}(\tau_r < \infty) \xrightarrow[r \downarrow 0]{} 0.$$
 2219

2220 and, as above, $\mathbb{P}(\exists t > 0 : B_t = a) = 0.$

2221

2222 **Corollary A.28.** *By translation invariance of Brownian motion, Lemma A.27 implies that if a*
2223 *standard d -dimensional Brownian motion $(B_t)_{t \geq 0}$ starts at $B_0 = a$ with $a \neq 0$, then it almost surely*
2224 *never hits the origin:*

2225
$$\mathbb{P}(\exists t > 0 : B_t = 0) = 0.$$
 2226

2227 **Lemma A.29** (Linear image of Brownian motion). *Let $(B_t)_{t \geq 0}$ be a standard d -dimensional Brownian*
2228 *motion and let $A \in \mathbb{R}^{n \times d}$ have rank $n \leq d$. Define $Z_t := AB_t$. Then $(Z_t)_{t \geq 0}$ is an n -dimensional*
2229 *Brownian motion with covariance matrix AA^\top , i.e.*

2230
$$Z_0 = 0, \quad Z \text{ has continuous paths,} \quad Z_t - Z_s \sim \mathcal{N}(0, (t-s)AA^\top)$$
 2231

2232 *with independent, stationary increments. In particular, $\tilde{B}_t := (AA^\top)^{-1/2}Z_t$ is a standard n -*
2233 *dimensional Brownian motion.* 22342235 *Proof.* Since $B_0 = 0$ and $t \mapsto B_t$ is continuous, we have $Z_0 = AB_0 = 0$ and $t \mapsto Z_t = AB_t$ is
2236 continuous.2237 For $0 \leq s < t$, the increment $B_t - B_s$ is independent of $\mathcal{F}_s := \sigma(B_u : u \leq s)$ and has law
2238 $\mathcal{N}(0, (t-s)I_d)$. Applying the linear map A ,

2239
$$Z_t - Z_s = A(B_t - B_s),$$

2240 which is (joint) Gaussian with mean 0 and covariance
2241

2242
$$\text{Cov}(Z_t - Z_s) = A \text{Cov}(B_t - B_s) A^\top = A((t-s)I_d)A^\top = (t-s)AA^\top.$$
 2243

2244 Independence of increments is preserved under linear maps: if (X_1, \dots, X_m) are independent, then
2245 so are (AX_1, \dots, AX_m) . Hence (Z_t) has independent, stationary Gaussian increments with the
2246 stated covariance, and is adapted with continuous paths.2247 By the characterization of Brownian motion as a continuous Gaussian process with independent,
2248 stationary increments and covariance $\mathbb{E}[Z_t Z_s^\top] = (t \wedge s)AA^\top$, we conclude that Z is an n -dimensional
2249 Brownian motion with covariance AA^\top . Finally, since AA^\top is symmetric positive definite (rank n),
2250 $(AA^\top)^{-1/2}$ exists and

2251
$$\tilde{B}_t := (AA^\top)^{-1/2}Z_t$$

2252 has covariance $(t-s)I_n$ for each increment, hence is standard n -dimensional Brownian motion. \square
22542255 We now use Corollary A.28 to show that the exit almost surely occurs on an order-1 discontinuity.
2256 The Corollary A.28 is applied here to rule out the simultaneous satisfaction of multiple independent
2257 boundary equalities, which almost surely does not occur.2258 **Theorem A.30** (Exit occurs on an order-1 discontinuity). *Let x_t solve $dx_t = \sigma dB_t$ with invertible*
2259 *$\sigma \in \mathbb{R}^{d \times d}$ and $x_0 \in \mathcal{C}_\mathbb{S}$, and let $\tau_\mathbb{S} := \inf\{t \geq 0 : x_t \notin \mathcal{C}_\mathbb{S}\}$. Then*

2260
$$\mathbb{P}(x_{\tau_\mathbb{S}} \in \Gamma^{(1)}) = 1 \quad \text{and} \quad \mathbb{P}(x_{\tau_\mathbb{S}} \in \Gamma^{(n)}) = 0 \text{ for all } n \geq 2.$$
 2261

2262

2263 *Proof.* Define $y_t := \sigma^{-1}x_t$; then y_t is a standard Brownian motion in \mathbb{R}^d (denoted B_t), and $\mathcal{D} :=$
2264 $\sigma^{-1}\mathcal{C}_\mathbb{S}$ is a polyhedral domain.2265 Suppose the exit occurs at an order- n discontinuity with $n \geq 2$. Then there exists an index set
2266 $I = \{i_1, \dots, i_{n+1}\}$ with $|I| = n+1$ such that
2267

2268
$$z_{i_1}(x_{\tau_\mathbb{S}}) = \dots = z_{i_{n+1}}(x_{\tau_\mathbb{S}}),$$

2268 and this common value coincides with the $k \rightarrow k+1$ threshold. Equivalently, at y_{τ_S} we have n
 2269 independent equalities
 2270

$$2271 \quad z_{i_2}(y) - z_{i_1}(y) = \dots = z_{i_{n+1}}(y) - z_{i_1}(y) = 0.$$

2272 Define the n -dimensional process
 2273

$$2274 \quad U_t := (z_{i_2}(y_t) - z_{i_1}(y_t), \dots, z_{i_{n+1}}(y_t) - z_{i_1}(y_t)).$$

2275 Since each z_i is affine, there exist $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ such that
 2276

$$2277 \quad U_t = Ay_t + b = AB_t + b.$$

2278 By construction, A is obtained by taking n independent row differences of W_g ; since W_g has full
 2279 row rank, it follows that $\text{rank}(A) = n$. Consequently, AA^\top is symmetric positive definite, and
 2280 $(AA^\top)^{-1/2}$ exists uniquely.

2281 By Lemma A.29, AB_t is an n -dimensional Brownian motion with covariance AA^\top . Hence the
 2282 centered process

$$2283 \quad \tilde{U}_t := U_t - b$$

2284 is an n -dimensional Brownian motion with nonstandard covariance AA^\top . Define
 2285

$$2286 \quad \hat{B}_t := (AA^\top)^{-1/2} \tilde{U}_t,$$

2287 which has the law of a standard n -dimensional Brownian motion (this follows by the same reasoning
 2288 as Lemma A.29).

2289 Because $x_0 \in \mathcal{C}_S$, we have $U_0 = b \neq 0$, hence

$$2290 \quad \{\exists t > 0 : U_t = 0\} = \{\exists t > 0 : \tilde{U}_t = -b\} = \{\exists t > 0 : \hat{B}_t = -(AA^\top)^{-1/2}b\}.$$

2292 Since $n \geq 2$ and $-(AA^\top)^{-1/2}b \neq 0$, Corollary A.28 yields
 2293

$$2294 \quad \mathbb{P}(\exists t > 0 : U_t = 0) = 0.$$

2295 Exiting at an order- n discontinuity would necessarily require that the process U_t reaches the origin,
 2296 i.e. $U_{\tau_S} = 0$. However, as shown in Corollary A.28, an n -dimensional Brownian motion with
 2297 $n \geq 2$ almost surely never hits any fixed point distinct from its initial condition. Since $U_0 \neq 0$, the
 2298 probability of U_t ever reaching 0 is therefore zero. It follows that exits through order- n discontinuities
 2299 with $n \geq 2$ occur with probability zero, and consequently the exit must almost surely take place on
 2300 an order-1 discontinuity, that is,

$$2301 \quad \mathbb{P}(x_{\tau_S} \in \Gamma^{(1)}) = 1 \quad \text{and} \quad \mathbb{P}(x_{\tau_S} \in \Gamma^{(n)}) = 0 \quad \text{for all } n \geq 2.$$

2302 \square
 2303

2304 A.5.4 OCCUPATION TIME NEAR DISCONTINUITY SETS

2305 Fix $\epsilon > 0$ and, for each order $n \geq 1$, let $T_\epsilon(\Gamma^{(n)})$ be the ϵ -tube around the order- n discontinuity set
 2306 $\Gamma^{(n)}$.
 2307

2308 Let $(X_t)_{t \geq 0}$ be an Itô process in \mathbb{R}^D with initial condition $X_0 = x_0 \in \mathcal{C}_S$ for some polyhedral cell
 2309 \mathcal{C}_S ,

$$2310 \quad dX_t = \sigma dB_t,$$

2311 where B_t is a standard D -dimensional Brownian motion and $\sigma \in \mathbb{R}^{D \times D}$ is constant.
 2312

2313 The *occupation time* of X in the tube of order r up to horizon T is
 2314

$$2315 \quad A_\epsilon^{(r)}(T; x_0) := \int_0^T \mathbf{1}\{X_t \in T_\epsilon(\Gamma^{(n)})\} dt,$$

2316 and its time-average (fraction of time spent in the tube) is
 2317

$$2318 \quad L_\epsilon^{(r)}(T; x_0) := \frac{1}{T} A_\epsilon^{(r)}(T; x_0).$$

2319 For expectations,
 2320

$$2321 \quad \mathbb{E}_{x_0}[A_\epsilon^{(n)}(T)] = \int_0^T \mathbb{P}_{x_0}\{X_t \in T_\epsilon(\Gamma^{(n)})\} dt, \quad \mathbb{E}_{x_0}[L_\epsilon^{(n)}(T)] = \frac{1}{T} \int_0^T \mathbb{P}_{x_0}\{X_t \in T_\epsilon(\Gamma^{(n)})\} dt.$$

Proposition A.31 (Occupation time near one codimension- n flat). *Let $1 \leq n < D$ and let $S = \{x \in \mathbb{R}^D : Ax = d\}$ be an affine flat with $\text{rank}(A) = n$. Let X_t solve $dX_t = \sigma dB_t$, $X_0 = x_0$, where B_t is standard D -dimensional Brownian motion and $\Sigma := \sigma\sigma^\top \succ 0$. Choose an orthonormal basis $N \in \mathbb{R}^{D \times n}$ of S^\perp and set*

$$\Sigma_\perp := N^\top \Sigma N \in \mathbb{R}^{n \times n}, \quad \lambda_{\min} := \lambda_{\min}(\Sigma_\perp).$$

Fix any $y_0 \in S$ and write $s_0 := N^\top y_0$ and $\mu := N^\top x_0$. For $\epsilon > 0$ and $T > 0$, define the occupation time

$$A_\epsilon^{(n)}(T; S) := \int_0^T \mathbf{1}\{\text{dist}(X_t, S) < \epsilon\} dt.$$

Let

$$\omega_n := \lambda^n(B^n(0, 1)), \quad K_n := \frac{\omega_n}{(2\pi)^{n/2} \sqrt{\det(\Sigma_\perp)}}, \quad \delta_\epsilon := \left\| \Sigma_\perp^{-1/2}(s_0 - \mu) \right\| - \frac{\epsilon}{\sqrt{\lambda_{\min}}}, \quad b_\epsilon := \frac{(\delta_\epsilon)_+^2}{2}.$$

Then, for all $T > 0$,

$$\mathbb{E}\left[A_\epsilon^{(n)}(T; S)\right] \leq K_n \epsilon^n \int_0^T t^{-n/2} e^{-b_\epsilon/t} dt = \begin{cases} K_n \epsilon^n b_\epsilon^{1 - \frac{n}{2}} \Gamma\left(\frac{n}{2} - 1, \frac{b_\epsilon}{T}\right), & n > 2, \\ K_2 \epsilon^2 E_1\left(\frac{b_\epsilon}{T}\right), & n = 2, \\ \leq 2K_1 \epsilon \sqrt{T}, & n = 1, \end{cases}$$

where $\Gamma(\cdot, \cdot)$ is the upper incomplete gamma function and $E_1(z) = \int_z^\infty e^{-u} u^{-1} du$.

Proof. **Step 1 (normal coordinates).** Because N has orthonormal columns spanning S^\perp , every $x \in \mathbb{R}^D$ decomposes as $x = y + Nv$ with $y \in S$ and $v \in \mathbb{R}^n$; moreover $\text{dist}(x, S) = \|v\|$ and $N^\top y = s_0$ (independent of $y \in S$).

Step 2 (projected process and its density). Define the normal projection $Z_t := N^\top X_t \in \mathbb{R}^n$. Since $dZ_t = N^\top \sigma dB_t$, we have

$$Z_t \sim \mathcal{N}(\mu, t \Sigma_\perp), \quad \mu := N^\top x_0, \quad \Sigma_\perp := N^\top \Sigma N.$$

Hence the transition density of Z_t is

$$g_t(z) = \frac{1}{(2\pi t)^{n/2} \sqrt{\det(\Sigma_\perp)}} \exp\left(-\frac{1}{2t} \left\| \Sigma_\perp^{-1/2}(z - \mu) \right\|^2\right).$$

Step 3 (event $\{\text{dist}(X_t, S) < \epsilon\}$ in normal coords). We have

$$\text{dist}(X_t, S) < \epsilon \iff \|Z_t - s_0\| < \epsilon.$$

Therefore

$$\mathbb{P}\{\text{dist}(X_t, S) < \epsilon\} = \int_{\|z - s_0\| < \epsilon} g_t(z) dz.$$

Step 4 (uniform bound on the integrand over the ball). Let $B := \{z \in \mathbb{R}^n : \|z - s_0\| < \epsilon\}$. By the triangle inequality in the Mahalanobis norm,

$$\inf_{z \in B} \left\| \Sigma_\perp^{-1/2}(z - \mu) \right\| \geq \left\| \Sigma_\perp^{-1/2}(s_0 - \mu) \right\| - \sup_{z \in B} \left\| \Sigma_\perp^{-1/2}(z - s_0) \right\|.$$

Since $\|\Sigma_\perp^{-1/2}w\| \leq \|\Sigma_\perp^{-1/2}\|_2 \|w\|$ and $\|\Sigma_\perp^{-1/2}\|_2 = 1/\sqrt{\lambda_{\min}}$, we get

$$\sup_{z \in B} \left\| \Sigma_\perp^{-1/2}(z - s_0) \right\| \leq \frac{\epsilon}{\sqrt{\lambda_{\min}}}.$$

Hence

$$\inf_{z \in B} \left\| \Sigma_\perp^{-1/2}(z - \mu) \right\| \geq \delta_\epsilon := \left\| \Sigma_\perp^{-1/2}(s_0 - \mu) \right\| - \frac{\epsilon}{\sqrt{\lambda_{\min}}}.$$

2376 **Step 5 (probability bound at time t).** Using the bound from Step 4 in the density from Step 2, for
 2377 all $z \in B$,

$$2378 \quad g_t(z) \leq \frac{1}{(2\pi t)^{n/2} \sqrt{\det(\Sigma_{\perp})}} \exp\left(-\frac{(\delta_{\epsilon})_+^2}{2t}\right).$$

2381 Therefore

$$2382 \quad \mathbb{P}\{\text{dist}(X_t, S) < \epsilon\} \leq \lambda^n(B) \cdot \frac{e^{-(\delta_{\epsilon})_+^2/(2t)}}{(2\pi t)^{n/2} \sqrt{\det(\Sigma_{\perp})}} = K_n \epsilon^n t^{-n/2} e^{-b_{\epsilon}/t},$$

2384 since $\lambda^n(B) = \omega_r \epsilon^n$ and $b_{\epsilon} = \frac{1}{2}(\delta_{\epsilon})_+^2$.

2386 **Step 6 (time integration).** Integrating from 0 to T ,

$$2388 \quad \mathbb{E}\left[A_{\epsilon}^{(n)}(T; S)\right] = \int_0^T \mathbb{P}\{\text{dist}(X_t, S) < \epsilon\} dt \leq K_n \epsilon^n \int_0^T t^{-n/2} e^{-b_{\epsilon}/t} dt.$$

2390 **Step 7 (evaluation of the integral).**

- 2392 • If $n > 2$, substitute $u = b_{\epsilon}/t$ (so $t = b_{\epsilon}/u$, $dt = -b_{\epsilon}u^{-2}du$):

$$2394 \quad \int_0^T t^{-n/2} e^{-b_{\epsilon}/t} dt = b_{\epsilon}^{1-\frac{n}{2}} \int_{b_{\epsilon}/T}^{\infty} u^{\frac{n}{2}-2} e^{-u} du = b_{\epsilon}^{1-\frac{n}{2}} \Gamma\left(\frac{n}{2} - 1, \frac{b_{\epsilon}}{T}\right).$$

- 2397 • If $n = 2$, the integral equals $E_1(b_{\epsilon}/T)$ (the exponential integral).

- 2399 • If $n = 1$, drop the exponential to get the simple bound $\int_0^T t^{-1/2} e^{-b_{\epsilon}/t} dt \leq \int_0^T t^{-1/2} dt = 2\sqrt{T}$.

2402 Multiplying by $K_n \epsilon^n$ gives the stated bounds in all cases. \square

2403 Apply the previous proposition to the union over all tie sets J of an order- n discontinuity gives us the
 2405 next theorem.

2406 **Theorem A.32** (Occupation time near order- n discontinuities). *Assume $\Gamma^{(n)} \subseteq \bigcup_{J \in \mathcal{J}_n} S_J^{(n)}$ with
 2407 $S_J^{(n)} = \{x \in \mathbb{R}^D : A_J^{(n)}x = d_J^{(n)}\}$, $\text{rank}(A_J^{(n)}) = r$. Let X_t solve $dX_t = \sigma dB_t$, $X_0 = x_0$, with
 2408 $\Sigma := \sigma \sigma^{\top} \succ 0$. For each J , choose an orthonormal basis N_J of $(S_J^{(n)})^{\perp}$ and set*

$$2410 \quad \Sigma_{\perp, J} := N_J^{\top} \Sigma N_J, \quad \lambda_{\min, J} := \lambda_{\min}(\Sigma_{\perp, J}), \quad s_J := N_J^{\top} y \ (y \in S_J^{(n)}), \quad \mu_J := N_J^{\top} x_0.$$

2411 Define

$$2413 \quad K_{J, n} := \frac{\omega_n}{(2\pi)^{n/2} \sqrt{\det(\Sigma_{\perp, J})}}, \quad \delta_{J, \epsilon} := \left\| \Sigma_{\perp, J}^{-1/2} (s_J - \mu_J) \right\| - \frac{\epsilon}{\sqrt{\lambda_{\min, J}}}, \quad b_{J, \epsilon} := \frac{(\delta_{J, \epsilon})_+^2}{2}.$$

2415 Let

$$2417 \quad A_{\epsilon}^{(n)}(T; \Gamma) := \int_0^T \mathbf{1}\{X_t \in T_{\epsilon}(\Gamma^{(n)})\} dt.$$

2419 Then, for all $T > 0$,

$$2420 \quad \mathbb{E}\left[A_{\epsilon}^{(n)}(T; \Gamma)\right] \leq \sum_{J \in \mathcal{J}_n} K_{J, n} \epsilon^n \int_0^T t^{-n/2} e^{-b_{J, \epsilon}/t} dt. \quad (17)$$

2423 In particular,

$$2424 \quad \mathbb{E}\left[A_{\epsilon}^{(n)}(T; \Gamma)\right] \leq \begin{cases} \sum_J K_{J, n} \epsilon^n b_{J, \epsilon}^{1-\frac{n}{2}} \Gamma\left(\frac{n}{2} - 1, \frac{b_{J, \epsilon}}{T}\right), & n > 2, \\ \sum_J K_{J, 2} \epsilon^2 E_1\left(\frac{b_{J, \epsilon}}{T}\right), & n = 2, \\ 2 \left(\sum_J K_{J, 1} \right) \epsilon \sqrt{T}, & n = 1. \end{cases}$$

2430 A coarser but convenient bound (using $K_n^{\text{sum}} := \sum_J K_{J,n}$ and $b_{\min} := \min_J b_{J,\epsilon}$) is
 2431

$$2432 \mathbb{E}[A_\epsilon^{(n)}(T; \Gamma)] \leq K_n^{\text{sum}} \epsilon^n \int_0^T t^{-n/2} e^{-b_{\min}/t} dt,$$

2435 *Proof. (Step 1: union domination)* Since $\Gamma^{(n)} \subseteq \bigcup_J S_J^{(n)}$,
 2436

$$2437 T_\epsilon(\Gamma^{(n)}) \subseteq T_\epsilon\left(\bigcup_J S_J^{(n)}\right) \subseteq \bigcup_J T_\epsilon(S_J^{(n)}),$$

2439 hence pointwise $\mathbf{1}_{\{X_t \in T_\epsilon(\Gamma^{(n)})\}} \leq \sum_J \mathbf{1}_{\{X_t \in T_\epsilon(S_J^{(n)})\}}$.
 2440

2441 *(Step 2: integrate and take expectations)* Integrate in $t \in [0, T]$ and take expectations:
 2442

$$2443 \mathbb{E}[A_\epsilon^{(n)}(T; \Gamma)] \leq \sum_J \mathbb{E}\left[\int_0^T \mathbf{1}_{\{X_t \in T_\epsilon(S_J^{(n)})\}} dt\right] = \sum_J \int_0^T \mathbb{P}\{X_t \in T_\epsilon(S_J^{(n)})\} dt.$$

2446 *(Step 3: apply the single-flat bound to each J)* For each fixed J , apply Proposition A.31 (with
 2447 $N_J, \Sigma_{\perp,J}, s_J, \mu_J$). This gives
 2448

$$2449 \mathbb{P}\{X_t \in T_\epsilon(S_J^{(n)})\} \leq K_{J,n} \epsilon^n t^{-n/2} e^{-b_{J,\epsilon}/t},$$

2450 hence equation 17. Evaluating the time integral case-wise yields the formulas. For the coarser bound,
 2451 use $b_{\min} \leq b_{J,\epsilon}$ so that $e^{-b_{J,\epsilon}/t} \leq e^{-b_{\min}/t}$, factor out $\sum_J K_{J,r}$, and integrate. \square
 2452

2454 Table 4: Bits-per-character (BPC) of SmoothSMoE compared to baseline model on EnWiki-8 dataset.
 2455

2456 Model	2457 Test BPC \downarrow
2458 <i>SMoE</i>	2459 1.153
2460 SmoothSMoE	1.122

2464 B FURTHER THEORETICAL ANALYSIS AND ABLATION STUDIES

2467 B.1 GEOMETRIC INTUITION BEHIND THEORETICAL ANALYSIS

2469 Geometrically, the Top- k SMoE gate partitions the input space into polyhedral regions (cells) where
 2470 the active expert set is fixed. Inside each cell, the MoE map is a smooth combination of a fixed subset
 2471 of experts; all nonsmooth behavior comes from crossing the boundaries between cells, where the
 2472 Top- k set changes. These boundaries are given by hyperplanes of the form $z_i(x) = z_j(x)$, that is,
 2473 the locations where at least two experts tie. The order of a discontinuity simply counts how many
 2474 experts tie exactly at the Top- k score. For a simple illustration, consider in three-dimensional space,
 2475 order-1 sets can be understood as “walls” partitioning the space where one active and one inactive
 2476 expert swap. Higher-order sets correspond to intersections of several such walls, forming “edges”
 2477 and “corners”.

2478 Our theoretical volume results explicitly formalize the intuition that, in a bounded region where the
 2479 data live and are perturbed randomly, collisions with walls occur with probability 1, while collisions
 2480 with “edges” and “corners” essentially do not occur (probability 0). Moreover, the distribution of
 2481 the first collision time is closely linked to the shortest normalized distance from the starting point
 2482 to these “walls” (Theorem 5.1). If we take a thin band of thickness ϵ around these sets inside a
 2483 ball of radius R , the fraction of the band volume contributed by higher-order intersections shrinks
 polynomially in ϵ/R (Theorem 4.4), so as we increase R or decrease ϵ , almost all near-boundary

2484 mass concentrates on simple walls. Finally, for a randomly perturbed process, the upper bound on
 2485 the occupation time inside the ϵ -band of an n -th order intersection decays exponentially as ϵ^n in the
 2486 small- ϵ regime (Theorem 5.3).

2487 Our smoothing layer is designed exactly around this picture. Instead of letting the output jump
 2488 abruptly when crossing a wall, we replace the hard switch by a narrow transition band around the
 2489 corresponding hyperplanes. Within this band, the contributions of the involved experts vary smoothly
 2490 with the logits, so that moving across a wall interpolates between experts rather than flipping them
 2491 discretely. Outside these bands, the model behaves like the original Top- k gate, preserving sparsity
 2492 and the usual MoE structure. Due to the dominant geometry of lower order discontinuities (For
 2493 example “walls” compared to “edges” and “corners”), the number of additionally activated experts,
 2494 which equals the order of the discontinuity (1 for walls, 2 for edges, and 3 for corners) is small,
 2495 providing a theoretical guarantee for the efficiency of our smoothing mechanism.

2496 2497 B.2 SMOOTHSMOE VS. OTHER DIFFERENTIABLE ROUTING METHODS

2498 Recent works such as Soft MoE (Puigcerver et al., 2024), SMEAR (Muqeeth et al., 2023), and
 2499 ReMoE (Wang et al., 2024) enforce full differentiability of the MoE routing map by altering the
 2500 routing mechanism itself. Soft MoE and SMEAR achieve differentiability via token or expert merging,
 2501 effectively replacing the sparse Top- k selection map by a dense, smooth probability assignment
 2502 over experts. From a functional perspective, this turns the piecewise-constant Top- k map into a
 2503 globally smooth map into the probability simplex, at the expense of token-wise sparsity and causality
 2504 for autoregressive tasks. ReMoE instead replaces Top- k and Softmax with a ReLU-based router
 2505 equipped with an ℓ_1 -type load-balancing regularizer, thereby producing continuous gating scores
 2506 but changing the underlying Top- k -induced polyhedral structure and requiring a different gating
 2507 mechanism to be trained. In contrast, our SmoothSMoE keeps the original Top- k gate and its
 2508 polyhedral partition of the input space and only modifies logits for tokens whose scores fall inside an
 2509 $\ell_{\infty, \epsilon}$ -thickening of the discontinuity set. That is, we leave the routing map unchanged away from
 2510 boundaries and apply smoothing only to near-ties $0 < z_{[k]}(x) - z_i(x) < \epsilon$, which activates at most n
 2511 additional experts on an order- n discontinuity (Proposition A.20). This design preserves sparsity and
 2512 causal routing, while our measure-theoretic and stochastic analysis quantifies the volume of these
 2513 thickened regions and the occupation time of a diffusion near them, providing explicit bounds on how
 2514 frequently smoothing is used and hence limiting the extra computation it incurs. Thus SmoothSMoE
 2515 is complementary to prior differentiable routing: it achieves continuity of the SMoE map locally
 2516 around theoretically characterized discontinuity sets, rather than globally replacing Top- k routing
 2517 with a different differentiable router.

2518 2519 B.3 DETAILED ANALYSIS ON $\ell_{\infty, \epsilon}$ LOCAL SMOOTHING VS. VANILLA SMOE NEAR 2520 DISCONTINUITY BOUNDARIES

2521 To provide a concrete, empirical counterpart to our theoretical findings, this section presents a
 2522 targeted experiment designed to visualize the behavior of SMoE and our proposed SmoothSMoE at
 2523 the decision boundary. The primary objective is to isolate and illustrate the direct architectural impact
 2524 of our smoothing mechanism on the model’s output function, independent of other training dynamics.

2525 **Experiment setup.** Our experiment utilizes a multi-layer SMoE model pre-trained on the CIFAR-
 2526 10 dataset. The architecture for each MoE layer consists of an input dimension of $D = 3072$, $E = 32$
 2527 experts, and a Top- k gating mechanism with $k = 4$. Each expert is a standard two-layer MLP with a
 2528 hidden size of 128.

2529 The analysis proceeds on a per-layer basis. For a given layer, we first instantiate the original SMoE
 2530 using its pre-trained weights. We then create an instance of our SmoothSMoE. To ensure a controlled
 2531 comparison, the SmoothSMoE’s weights are directly copied from the pretrained SMoE. This setup
 2532 guarantees that any observed differences in behavior are attributable solely to our proposed smoothing
 2533 architecture.

2534 The core of our methodology is to identify and analyze a critical order-1 discontinuity. An order-1
 2535 discontinuity boundary is defined by the hyperplane where the gating scores of the k -th active expert
 2536 and the highest-scoring inactive expert are equal ($z_{[k+1]}(x) = z_{[k]}(x)$). We employ Monte Carlo
 2537 sampling strategy, generating thousands of random input vectors x_0 to locate a boundary region that

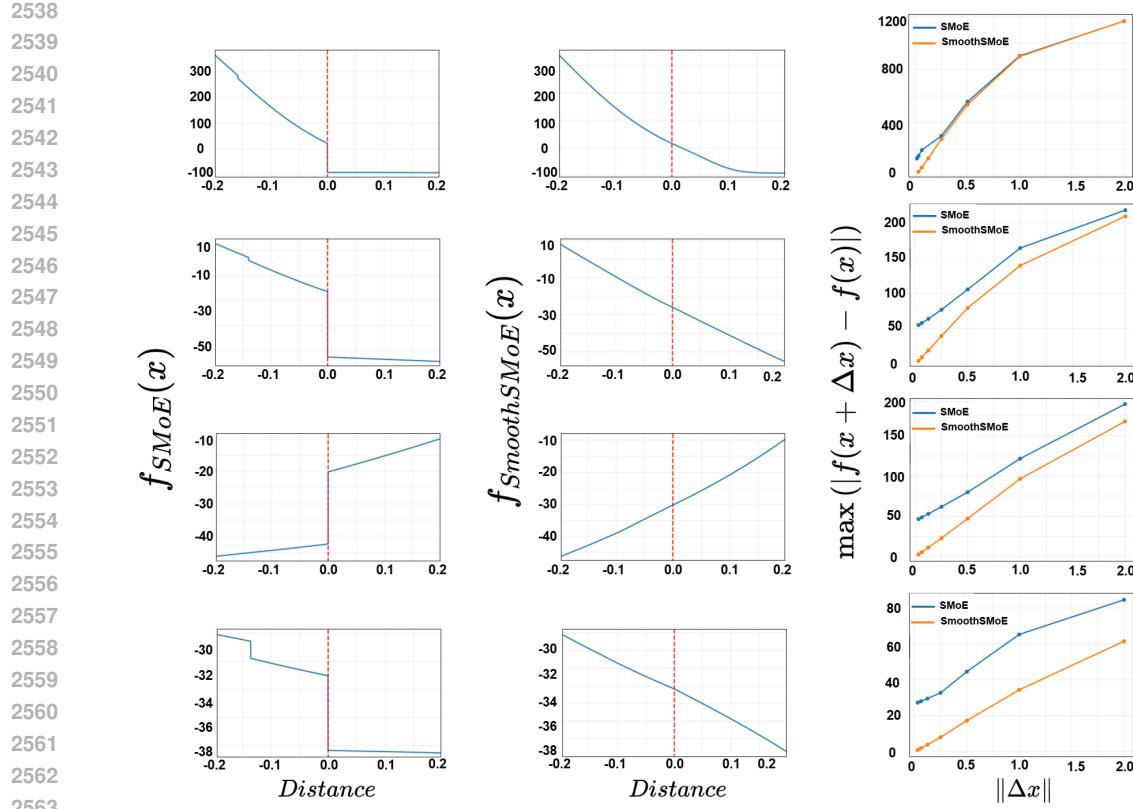


Figure 3: Visualizing the effect of our smoothing mechanism on SMoE layer outputs. Each row corresponds to a different SMoE layer from a pre-trained model. The columns show the standard SMoE, our SmoothSMoE, and the maximum output change, respectively. Left Column (SMoE): The standard SMoE exhibits sharp discontinuities as the input crosses the decision boundary. Middle Column (SmoothSMoE): Our SmoothSMoE, using identical weights, eliminates these jumps and produces a continuous output. Right Column: The maximum output gap $\max(|f(x + \Delta x) - f(x)|)$ is plotted against the perturbation size $\|\Delta x\|$. Our method shows the gap converging to zero, confirming continuity, while the SMoE maintains a large gap.

exhibit significant output jumps along a specific dimension. We then analyze the MoE map restricted to the chosen dimension, denoted $f_{\text{SMoE}} : \mathbb{X} \rightarrow \mathbb{R}$ for the Sparse MoE and $f_{\text{SmoothSMoE}} : \mathbb{X} \rightarrow \mathbb{R}$ for the SmoothSMoE. For each selected boundary, we compute the exact orthogonal projection, obtaining the point x^\perp .

To visualize the function's behavior when the input passing a discontinuity boundary, we analyze the output along a line $x = x^\perp + l\hat{n}$ passing thought the discontinuity boundary, where \hat{n} is the unit normal vector to the boundary hyperplane and $l \in \mathbb{R}$. This line represents the traversal across the discontinuity. The variable l (the horizontal axis in our plots) corresponds to the signed Euclidean distance from the boundary, with the boundary itself precisely at $l = 0$.

Results Figure 3 presents the comparative results for four distinct layers of the model. The left column visualizes the output of the standard SMoE. As predicted by our analysis, the SMoE map is piecewise continuous but exhibits a pronounced jump discontinuity at the boundary. The magnitude of this jump is non-trivial, highlighting a potential source of instability for gradient-based optimization, reduced robustness to adversarial perturbations, and unpredictable outputs behavior when inputs are near these boundaries.

The middle column shows the output of our SmoothSMoE on the exact same line in the input space. The effect of our mechanism is immediately apparent: the discontinuity is completely removed. SmoothSMoE transitions smoothly and continuously across the boundary. This is a direct consequence of our method’s ability to create a ”soft” handoff between experts by continuous re-weighting, rather than the abrupt expert swapping inherent to Top- k gating.

The right column provides a quantitative analysis of this smoothness. It plots the maximum output difference, $\max \|f(x + \Delta x) - f(x)\|$, against the magnitude of the input perturbation $\|\Delta x\|$ within a shrinking window around x^\perp . For the SMoE, the output gap plateaus at a large, non-zero value, confirming that the discontinuity persists even for infinitesimally small perturbations. In stark contrast, the plot for our SmoothSMoE shows the output difference converging to zero as $\|\Delta x\| \rightarrow 0$. This behavior provides a visual confirmation of the continuity induced by our method which is formally proved in Proposition A.7, a critical property for model stability and generalization that the standard SMoE lacks.

B.4 HOW BOUNDARY LOSS CONTROLS ϵ AND THE AVERAGE NUMBER OF ACTIVATED EXPERTS



Figure 4: The effect of boundary loss on controlling ϵ and the average number of activated experts (\mathcal{K}) across various layers.

In this study, we analyze the training log from pretraining a 6-layer SmoothSMoE on WikiText-103 for 80 epochs, recording at each epoch the boundary threshold ϵ and the average number of activated experts \mathcal{K} for every layer. Figure 4 shows how ϵ and \mathcal{K} evolve during training. At the start, both values are close to 0, since ϵ is initialized small to ensure efficiency. They initially grow slowly due to the learning-rate warmup, after which ϵ increases sharply until \mathcal{K} approaches the target budget ($k^* = 2.5$ experts on average). This marks an adjustment phase where the model tunes ϵ so that \mathcal{K} converges toward k^* . Once this balance is reached, both ϵ and \mathcal{K} stabilize, with ϵ exhibiting only small fluctuations to keep \mathcal{K} near the budget as training dynamics evolve. These observations confirm that the boundary loss effectively updates ϵ to maintain the desired average number of activated experts.

B.5 ANNEALING BOUNDARY SMOOTHING TO HARD TOP- k

In this analysis, we investigate the hypothesis that boundary smoothing makes the loss landscape more amenable to optimization, improves training dynamics and final performance. To test this hypothesis, we adopt an 80-epoch annealing schedule in which smoothing is progressively removed. For the first 40 epochs, we set the target budget to $k^* = 2.5$ to warm up the model, so that the smoothing mechanism can stabilize optimization by activating additional experts near switching surfaces. For

2646

2647 Table 5: Perplexity (PPL) of annealed SmoothSMoE compared to baseline SMoE and SmoothSMoE
2648 on clean and attacked WikiText-103 datasets.

Model	WikiText-103		Attacked WikiText-103	
	Valid PPL ↓	Test PPL ↓	Valid PPL ↓	Test PPL ↓
SMoE ($k = 2$)	33.79	35.52	42.21	44.18
SmoothSMoE annealed ($k = 2$)	32.97	34.59	41.14	42.91
SmoothSMoE ($k = 2.5$)	32.72	34.35	40.99	42.85

2657

2658

2659

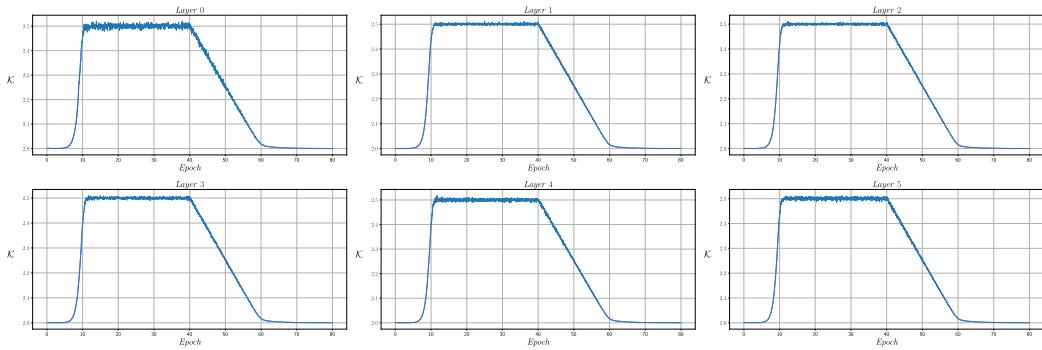
the next 20 epochs, we linearly anneal k^* from 2.5 down to 2, so that the routing gradually converges toward the target hard Top- k regime. In the final 20 epochs, we fix $k^* = 2$, which effectively turns off smoothing and forces the learned ϵ parameter to converge to 0, allowing the parameters to fully adapt to hard Top- k gating and eliminating train-inference mismatch. We refer to this training protocol as SmoothSMoE annealed. At inference time, we completely remove smoothing and evaluate with a standard Top-2 SMoE router.

2665

As shown in Table 5, the SmoothSMoE annealed model achieves test perplexity 34.59 on WikiText-103, improving over the baseline SMoE (35.52) and placing its performance between SMoE and the full SmoothSMoE model. The same behaviour can be observed on Attacked WikiText-103 dataset. These results confirm our hypothesis that boundary smoothing, by allowing experts near routing boundaries to contribute and by making the loss landscape easier to optimize, improves the final Top- k SMoE performance even when smoothing is completely removed at inference.

2671

Figure 5 reports the average number of activated experts \mathcal{K} across layers under the three-stage training schedule: \mathcal{K} quickly rises and stabilizes around 2.5 during the warm-up stage, then is linearly reduced to 2 as smoothing is annealed, and finally remains at 2 throughout the hard Top-2 adaptation stage.



2688

Figure 5: Average number of activated experts \mathcal{K} training dynamic across layers under the three-stage smoothing schedule.

2691

2692

2693

2694

C EXPERIMENTAL DETAILS

2696

2697

2698

2699

Before proceeding to the experiments, we establish the choice of coefficients for the log-smoothstep function h defined in Section 6. We have experimented with various values for the coefficients a and b , and found that setting $a = 1$ and $b = 50$ provides consistent and effective smoothing behavior across the evaluation. Therefore, we use it for all experiments presented below.

2700 C.1 LANGUAGE MODELING
27012702 C.1.1 DATASET.
27032704 We evaluate our approach on two widely used language modeling benchmarks: WikiText-103 and
2705 EnWik-8. The WikiText-103 dataset (Merity et al., 2017b) contains Wikipedia articles with the
2706 training set consisting of about 28K articles and 103M tokens in total. The validation and test sets
2707 each contain 60 held-out articles, corresponding to 218K and 246K tokens, respectively. The EnWik-8
2708 dataset is a byte-level benchmark derived from a compressed dump of English Wikipedia. It consists
2709 of 100 million bytes of data, including not only English text but also markup, special characters, and
2710 snippets in other languages. The dataset is split into 90M characters for training, 5M for validation,
2711 and 5M for testing.2712 We follow the experimental setup of Pham et al. (2024) for pretraining on WikiText-103 (Merity
2713 et al., 2017a) and EnWik-8 (Mahoney, 2006). For WikiText-103, we report perplexity (PPL) on
2714 both validation and test sets. Additionally, we evaluate robustness using the Attacked WikiText-103
2715 dataset constructed by replacing random words with the generic token "AAA" at a rate of 2.5%,
2716 following Han et al. (2024); Teo & Nguyen (2024); Abdullaev & Nguyen (2025). For EnWik-8,
2717 we evaluate using bits-per-character (BPC) as the primary metric, consistent with prior work on
2718 byte-level language modeling.2719 C.1.2 IMPLEMENTATION DETAILS.
27202721 We employ a standard Switch Transformer (Fedus et al., 2022) as our backbone, with 16 experts and
2722 top-2 routing. The model specifications are summarized in Table 6.
27232724 Table 6: Backbone specifications for language modeling tasks. All models use 16 experts with top-2
2725 routing.

Model	SA Layers	FFN Layers	MoE Layers	Att. Span	Embed Size
Switch Transformer (WikiText-103)	6	–	6	1024	352
Switch Transformer (EnWik-8)	8	–	8	2048	352

2731 We use the Adam optimizer (Kingma & Ba, 2015) with a base learning rate of 7×10^{-4} . A linear
2732 warmup schedule is applied for 4,000 steps for both models. For WikiText-103, the Switch-medium
2733 backbone is trained for 80 epochs with batch size 48. For EnWik-8, the Switch-small backbone is
2734 trained for 80 epochs with batch size 48. In all cases, we apply an auxiliary load-balancing loss with
2735 weight 0.01 to encourage balanced expert utilization. All models are trained on 2 × NVIDIA H100
2736 80GB GPUs using mixed-precision training.
27372738 C.2 VISION TASK ON DOMAINBED BENCHMARK
27392740 C.2.1 DATASET.
27412742 We evaluate on the standard DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), which includes
2743 the datasets: PACS (Li et al., 2017), VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al.,
2744 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). The statistics of these
2745 datasets, including the number of domains, classes, and examples, are summarized in Table 7.
2746

2747 Table 7: Statistics of DomainBed datasets used in our experiments.

Dataset	PACS	VLCS	OfficeHome	TerraInc	DomainNet
# Domains	4	4	4	4	6
# Classes	7	5	65	10	345
# Examples	9,991	10,729	15,588	24,788	586,575

2754 In detail, the five multi-domain image classification datasets are comprised of:
 2755

- 2756 1. PACS (Li et al., 2017) comprises four domains: art, cartoons, photos, sketches. This dataset
 2757 contains 9,991 examples of dimension (3, 224, 224) and 7 classes.
- 2758 2. VLCS (Fang et al., 2013) comprises photographic domains: Caltech101, LabelMe, SUN09,
 2759 VOC2007. This dataset contains 10,729 examples of dimension (3, 224, 224) and 5 classes.
- 2760 3. Office-Home (Venkateswara et al., 2017) includes domains: art, clipart, product, real. This
 2761 dataset contains 15,588 examples of dimension (3, 224, 224) and 65 classes.
- 2762 4. TerraIncognita (Beery et al., 2018) contains photographs of wild animals taken by camera
 2763 traps at locations: L100, L38, L43, L46. This dataset contains 24,788 examples of dimension
 2764 (3, 224, 224) and 10 classes.
- 2765 5. DomainNet (Peng et al., 2019) has six domains: clipart, infograph, painting, quickdraw, real,
 2766 sketch. This dataset contains 586,575 examples of size (3, 224, 224) and 345 classes.
 2767

2768 We follow the standard DomainBed evaluation protocol using train-domain validation. For each test
 2769 domain, we train on the remaining domains and use the left-out domain for validation. We select the
 2770 model maximizing validation accuracy and report the final accuracy on the held-out test domain.
 2771

2772 C.2.2 IMPLEMENTATION DETAILS.

2773 We adopt a ViT-S/16 backbone (Dosovitskiy et al., 2021) pretrained on ImageNet-1K following Li
 2774 et al. (2023). Images are processed into patch embeddings by ViT-S/16 with a patch size of 16×16 , 6
 2775 attention heads, and 12 transformer blocks. Each MoE block contains 6 experts, and the cosine router
 2776 selects the top-2 experts for each patch. Experts are initialized from the corresponding pretrained ViT
 2777 blocks, while cosine routers are randomly initialized to ensure even routing at the start.
 2778

2779 Training uses the Adam optimizer (Kingma & Ba, 2015) with dataset-specific hyperparameters, as
 2780 shown in Table 8. Batch size is fixed to 32 per domain. For DomainNet, we train for 15,000 iterations
 2781 to compare fairly with prior work, while for the other datasets, we train for 5,000 iterations.
 2782

2783 Table 8: Hyperparameters for different datasets in DomainBed.

2784 Dataset	2785 PACS	2786 VLCS	2787 OfficeHome	2788 TerraInc	2789 DomainNet
2786 Learning Rate	2787 3e-5	2788 3e-5	2789 1e-5	2790 5e-5	2791 5e-5
2787 Weight Decay	2788 0	2789 1e-6	2790 1e-6	2791 1e-4	2792 0

2790 C.3 LANGUAGE TASK (GLUE BENCHMARK)

2791 C.3.1 DATASET.

2792 We evaluate on a subset of the General Language Understanding Evaluation (GLUE) benchmark
 2793 (Wang et al., 2018), selecting five representative tasks: CoLA, MRPC, MNLI, QNLI, and RTE. These
 2794 tasks cover a wide range of linguistic phenomena including grammatical acceptability, paraphrase
 2795 detection, question answering, and textual entailment. The tasks are briefly summarized as follows:
 2796

- 2797 • CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2019): A binary classification
 2798 task assessing whether a sentence is grammatically acceptable.
- 2799 • MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005): A paraphrase
 2800 identification task determining whether two sentences are semantically equivalent.
- 2801 • MNLI (Multi-Genre Natural Language Inference) (Xu et al., 2020): A large-scale three-
 2802 way natural language inference task (entailment, contradiction, neutral) spanning multiple
 2803 domains.
- 2804 • QNLI (Question Natural Language Inference) (Wang et al., 2018): A binary classification
 2805 task derived from the Stanford Question Answering Dataset (SQuAD), reformulated as a
 2806 sentence pair classification problem.

2808
2809
2810

- RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009): A binary entailment
classification task combining several RTE challenges (RTE1–RTE5).

2811 Dataset statistics, including sizes, task types, and domains, are summarized in Table 9.
2812

2813
2814 Table 9: Overview of selected GLUE benchmark tasks. Sizes follow Wang et al. (2018).
2815

Task	Domain	Train / Dev / Test Size	Task Type	Metric
CoLA	Miscellaneous	8.5k / 1k / 1k	Acceptability classification	MCC
MRPC	News	3.7k / 408 / 1.7k	Paraphrase detection	Acc/F1
MNLI	Multi-genre text	393k / 20k / 20k	Natural language inference	Acc (m/mm)
QNLI	Wikipedia QA	105k / 5.5k / 5.4k	QA/NLI conversion	Accuracy
RTE	News/Wikipedia	2.5k / 276 / 3k	Textual entailment	Accuracy

2824
2825 We follow the official GLUE evaluation protocols (Wang et al., 2018). Specifically, we use Matthew’s
2826 correlation coefficient (MCC) for CoLA, accuracy and F1-score for MRPC, matched and mismatched
2827 accuracy for MNLI, and accuracy for both QNLI and RTE. Each task is fine-tuned independently, and
2828 the best-performing checkpoint on the validation set is used for final test submission. Experiments
2829 are repeated with five random seeds, and we report the best validation result for each configuration.
2830

C.3.2 IMPLEMENTATION DETAILS.

2832 We adopt BERT-large (Devlin et al., 2019b) as the backbone model, augmented with our MoE design.
2833 We replace the FFN layer in one Transformer block of BERT-large with an MoE layer containing
2834 16 experts, using top- k routing strategies with $k = 2$ and $k = 4$. To encourage balanced expert
2835 utilization, we incorporate the GShard load balancing loss (Lepikhin et al., 2021) with auxiliary loss
2836 weight 0.01. We also set gate noise to 1.0 and capacity factor to 1.5 to stabilize routing and mitigate
2837 expert overflows.

2838 Fine-tuning is performed with the Adam optimizer (Kingma & Ba, 2015). A grid search over learning
2839 rates $\{2 \times 10^{-5}, 3 \times 10^{-5}, 5 \times 10^{-5}\}$ is conducted, while the batch size is fixed at 32. Training is
2840 run for up to 10 epochs with early stopping on validation performance. We apply a linear learning
2841 rate scheduler. All experiments are executed on NVIDIA H100 80GB GPUs with mixed-precision
2842 training. Checkpoints are saved and evaluated every epoch, with the best validation checkpoint
2843 retained for testing.

2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861