
The Regularizing Effect of Different Output Layer
Designs in Deep Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep neural networks are prone to overfitting, especially on small datasets. Com-1

mon regularizers such as dropout or dropconnect reduce overfitting, but are complex2

and prone to hyperparameter choices, thus prolonging development cycles in prac-3

tice. In this paper, we propose simple but effective design changes to the output4

layer - namely randomization, sparsity, activation scaling, and ensembling - that5

lead to improved regularization. These designs are motivated by experiments6

showing that standard fully-connected output layers tend to rely on individual7

input neurons, which in turn do not cover the variance of the data. We call these8

two related phenomena neuron dependency and expressivity, propose different9

ways to measure them, and optimize the presented output layers for them. In our10

experiments, we compare these layer types for image classification and semantic11

segmentation across architectures, datasets, and application settings. We report sig-12

nificantly and consistently improved performance of up to 10% points in accuracy13

over standard output layers while reducing the number of trainable parameters by14

up to 90%. It is demonstrated that neither training of output layers is required, nor15

are output layers themselves crucial components of deep networks.16

1 Introduction17

Neural networks are powerful feature extractors that have become the standard approach for a myriad18

of tasks. New architectures are continuously introduced and set records on benchmark datasets19

(e.g. [24, 15, 44]). These networks differ in layer composition, depth/width or use specific concepts20

such as residual connections [15] or self-attention [34]. With growing capacity, their performance on21

large datasets tends to increase [44]. However, model complexity is also associated with overfitting,22

especially for small datasets where fine details of the training data are easily memorized [52, 2, 53].23

Rather than defining another, possibly more complex architecture, we analyze what often remains24

unconsidered: the output layer. In image classification, networks usually end with a fully-connected25

(fc) layer that combines extracted features for the final output [43, 15, 17, 44]. As we will show, this26

layer is prone to overfitting since high dependencies on individual, possibly memorized features can27

arise. The same neurons are subsequently not able to generalize across examples. We call these two28

related phenomena neuron dependency and expressivity and illustrate a simplified example in Fig. 2.29

Both problems can be improved by simple but effective changes to the output layer that require only30

few lines of code and achieve better generalization (i.e., better results on the test set [25], see e.g.31

Fig. 1). Those changes rely on four principles: activation scaling, fixed randomization, sparsity and32

in-layer ensembling (see Fig. 5). This work analyzes all layers in terms of their capability to reduce33

dependencies and/or increase expressivity. Then, the connection to network performance is shown34

through a comprehensive empirical study across datasets, architectures and application settings in35

image classification and segmentation. Furthermore, we investigate how stronger regularization36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Figure 1: Effect of different output layer designs on cross-entropy loss (left) and accuracy (right) in
a ResNet-50 for the STL-10 dataset. Best viewed in color.

A1

A2

O1

O2

A1

A2

O1

O2

a) b)

A1

A2

O1

O2

Model 1
Training input

Model 1
Unseen input

Model 2
Unseen input

c)

Figure 2: Schematic of neuron dependency/expressivity in fc output layers. The left side of each
subfigure represents penultimate layer activations (A1-2), the right shows output neurons for each
class (O1-2). Filled/blank circles indicate high/low activation, up-/downward facing arrows signal
positive/negative weights. Higher activations of O1 lead to correct predictions in this example. Model
1 depends on neuron A1 to be activated to give high prediction scores to O1. This is the case for a
training instance in a). If Model 1 is applied to an unseen input pattern of same class in b), higher
scores are erroneously given to O2 since A1 remains inactive and A2 slightly favors O2. Model 1 fails
to generalize as it depends on A1, which is not expressive enough to cover the variance of the target
class. Instead, Model 2 shown in c) exhibits neurons with low dependency and high expressivity,
where A1 generalizes to unseen patterns, while the activation of A2 can be regarded as backup. Note
that this example is simplified and educational. See Sect. 3.3 for measurements.

can be induced by applying the identified principles to other parts of a network while reducing the37

computational footprint. In contrast to common practice, we find neither training of output layers38

to be necessary, nor that output layers are crucial components of deep networks. In summary, our39

contributions are:40

• Introducing neuron dependency and expressivity as two factors contributing to overfitting41

and proposing ways to measure these factors42

• Showing improved regularization of 5 different output layer designs up to 10% in absolute43

accuracy compared to standard fc layers and other common regularizers44

• Empirical results showing that the proposed layers have improved dependency and expressiv-45

ity, computational efficiency, wide applicability to both small and large datasets, extensibility46

to other parts of the network, and robustness in the choice of hyperparameters47

2 Related Work48

Regularization in deep learning is approached in various ways. Widely used methods are, e.g.,49

normalization [19, 3], weight decay [32], data and adversarial augmentation [40, 1], early stopping [7],50

boosting [38], multitask learning [6], dropout [42], dropconnect [50], and Gaussian noise layers [10].51

To the best of our knowledge, this is the first work that evaluates regularization with respect to52

2

different output layer designs. Similar to dropout/dropconnect, output layers can be categorized as53

affecting the architecture according to the regularization taxonomy described in [25]. Unlike other54

regularizers, our methods are either hyperparameter-free or robust to their choice and can be applied55

to any deep net, including pre-trained ones that are less affected by overfitting (see Sect. 5.4 and 5.7).56

Related to fixed randomization are the output layers used in [16, 39, 14], which show comparable57

performance to trained layers. One can also preallocate output layer weights with a defined struc-58

ture [31, 16]. Besides output layers, weight fixing is for example applied to the first layer in the59

Extreme Learning Machine [18], or to different weight dimensions in [36]. In contrast, we omit60

hand-crafted weights, show improved regularization and relate to neuron dependencies. Further, we61

show that fixing or scaling the last conv block next to the output layer has a strong regularizing effect.62

Sparsity is common in deep learning, e.g. the ReLU activation [13] or a L1 penalty term in the loss63

function [46]. Sparsity has also been applied to the channels of Convolutional Neural Networks64

(CNNs) [8, 29]. Others induce sparsity by pruning connections before training under the lottery65

ticket hypothesis [11, 30], with the goal of reducing the number of parameters while not sacrificing66

performance [27, 45, 51]. Different to them, we show that (extreme) sparsity is not merely useful to67

improve computational efficiency, but to improve performance when applied to the output layer.68

The Network in Network (NIN) [28] and All-CNN [41] both use global average pooling (GAP)69

followed by softmax, which replaces the fc output layer with an identify transform to simplify the70

network. This is further analyzed in [33]. We show its connection to neuron dependency/expressivity71

and achieve comparable or better performance on various datasets. Further, we observe that previous72

works do not leverage the full capacity of the last layer in modern networks, which enables the73

construction of computationally efficient in-layer ensembles that further boost performance in small74

and large datasets.75

3 Neuron dependency and expressivity76

3.1 Setting and notation77

We consider neural networks consisting of an encoder fenc : X → a followed by an output layer78

fout : a → ŷ. In this paper, the encoder is a CNN, taking as input an image X ∈ RC×H×W with79

C, W and H being input channels, width and height, respectively; and transforming it to a feature80

vector a ∈ R1×N . Commonly in CNNs, 2D representations resulting from the final conv layer81

are aggregated by GAP [28] where N corresponds to the number of pooled conv channels. The82

output layer transforms the embedding to output ŷ ∈ RK holding the probabilities of K classes.83

The output layer is parameterized by a weight matrix W ∈ RN×K , and is commonly initialized as84

W random ∼ U(−
√

1/N,
√
1/N) [26]. Both ŷ and target y are used to compute the cross-entropy85

loss ` = −
∑K

i yi log(ŷi). We use the terms features/channels/nodes or neurons interchangeably86

meaning activations a. When required, we refer to individual instances with a superscript, e.g.87

(X(i),y(i)) ∈ D, with D being a dataset. Corresponding subsets are denoted as Dtrain and Dtest.88

3.2 Concepts89

During training, CNNs learn a set of visual patterns that are combined for a classification decision.90

However, if patterns remain undetected, e.g. due to noise in the image or inherent but unseen variance91

in the data, their activation values can become small and thus reduce the output values for the target92

class. When a network is overfitting, it learns malignant image-specific patterns by heart [52]. Such a93

network may depend on the activation of individual nodes, which in turn fail to generalize to patterns94

that are salient to a class. We call these two related phenomena neuron dependency and expressivity.95

96

Neuron dependency: How much does a model depend on a single neuron? In a network97

with high neuron dependencies, output scores and thus performance drop significantly when certain98

neurons remain inactive. In contrast, a network with low neuron dependencies distributes activations99

across many neurons, so that a single inactive node does not have much influence on the classification.100

Neuron expressivity: How much class-specific variance does a neuron cover? Neurons with low101

expressivity focus on unimportant details that do not characterize the properties of a class. In contrast,102

a neuron with high expressivity generalizes by activating to various patterns pertinent to a given class.103

An example of neuron dependency/expressivity for a simplified fc output layer is illustrated in Fig. 2.104

3

Figure 3: The effect of dataset size and activation scale on neuron dependency in a ResNet-50 trained
on subsets of CIFAR-100, evaluated on the test set. Left: Small training sets lead to high neuron
dependencies. Center: Scaling activations results in larger absolute logits. Right: Larger scales lead
to higher dependencies. Best viewed in color.

Figure 4: Neuron dependency (left) and expressivity (right) in a ResNet-50 with 2048 penultimate
layer channels trained on CIFAR-100 for different output layer designs, showing the change in
accuracy on the test set. Best viewed in color.

3.3 Measuring dependency and expressivity105

We introduce two ways of measuring dependency/expressivity: instance-based and class-based. The106

former is used to determine the dependency on the most important node for the predicted class given an107

instance. Importance scores for node n and output class k̂ are computed with Gradient�Activation [4],108

a global attribution method where we leverage the partial derivative of the softmax values:109

an
∂ŷk̂
∂an

. (1)

Instance-based dependency is then measured as avg. reduction in output probabilities when ablating110

the most important feature w.r.t. the output class of any instance. This is illustrated for various111

training set sizes of CIFAR-100 [23] in Fig. 3 (left). With less data, fc output layers tend to depend112

more on single nodes. This is in contrast to class-based measures, which enable quantifying both113

dependency/expressivity and use various features jointly. Importances are determined for each class114

k and over all test instances:115
|Dtest|∑
i=1

a(i)n

∂ŷ
(i)
k

∂a
(i)
n

. (2)

Class-based dependency is then measured as drop in accuracy when ablating a given number of most116

important neurons per class. Measuring expressivity reverses this - the most important neurons per117

class are retained, all others are ablated. This is illustrated for both dependency/expressivity in Fig. 4.118

We see that standard (i.e. trained) fc output layers tend to depend on single channels to achieve high119

performance, but these very channels hold only limited class information.120

4 Output Layer Types121

We describe several simple output layer variants that require minimal changes to standard networks,122

decrease neuron dependency and/or increase neuron expressivity. All types are illustrated in Fig. 5.123

4

Figure 5: A visual comparison of various output layer types. Red/blue represent variable/fixed.

4.1 Standard output layers124

The ubiquitous approach to compute class scores is to learn the parameters of a weight matrix125

W trained, s.t. ŷ = σSM (aW trained) with σSM (·) being softmax. Each feature is considered in the126

computation of each class score. As shown in Sect. 3, trained fc output layers can lead to high neuron127

dependencies, where the deletion of a single neuron might cause significant loss in performance, and128

low neuron expressivity, where multiple features are required for adequate predictions.129

4.2 Scaled output layers130

The reduction of an activation, e.g. due to changing light conditions, has a large influence on the131

output scores. This is simulated in Fig. 3 (center) by multiplying features during training with a132

scalar α > 0, so that ŷ = σSM (αaW scaled). Note that the variances of the output logit distributions133

increase with α, resulting in larger differences (or smaller entropies) after softmax normalization.134

This results in greater dependencies of the model on individual neurons, as shown in Fig. 3 (right).135

However, if α is chosen small, the activations of individual neurons become insufficient for class136

discrimination with high confidence. The model is therefore forced to learn multiple class-specific137

features for each instance, which increases the expressivity of the neurons and also reduces their138

dependencies to some extent, as shown in Fig. 4. If not specified otherwise, we use α = 0.1.139

4.3 Random fixed layers140

This setting uses W random during training/inference, and its classification performance was first141

analyzed in [16]. The encoder learns to extract patterns that adjust to predetermined weights. Unlike142

activation scaling, the parameters are bounded and fixed to a small value range. For any class, the143

chosen uniform initialization is expected to assign similar weight values to multiple neurons, making144

them learn similar features. We suppose that the enforced similarity reduces dependency shown in145

Fig. 3 and 4 (both left), while small initialization values increase expressivity as in Sect. 4.2, shown146

in Fig. 4 (right).147

4.4 Sparse fixed layers148

In sparse output layers, class nodes use predetermined sets of channels, some of which might149

be shared across classes. First, a set of cutting indices Ik is randomly sampled for each class150

k, where sparsity is determined by the proportion q of class-specific connections to cut, so that151

|Ik| = bqNcwith 0 < q < 1. Then, starting from a fixed random initialization as in Sect. 4.3, weights152

connecting to a given class are ablated so that: W sparse
i,k = 0 ∀ i ∈ Ik. Hyperparameter q trades153

off dependency/expressivity. Larger values induce more sparsity, leading to greater dependencies to154

the remaining nodes, but forcing them to activate across instances, making them expressive. We set155

q = 0.9 in the experiments to show that high sparsity benefits generalization.156

4.5 1-to-1 correspondence layers157

The most extreme type of sparsity in an output layer is one with a single connection between a158

feature and a class. If these connections correspond to an identity transform, the activations of the159

penultimate layer are equivalent to the class logits - in practice, the output layer can hence be omitted.160

This was analyzed in [33, 28] and showed comparable results to a standard output layer. Formally, we161

have ŷ = σSM (aW 1to1) with a ∈ R1×K and W 1to1 ∈ RK×K , where W 1to1 = diag(1, 1, . . . , 1).162

In this layer, both the model’s dependency on individual neurons as well as each neuron’s expressivity163

are maximal. If a single neuron is ablated, the output logits for the class this neuron is connected to is164

5

reduced to zero. However, individual neurons learn to cover the whole variance of a given class in the165

training set, which is one conjecture for their performance. Note that as mentioned in [33], we have166

the constraint N = K, which might be restrictive for small networks and large numbers of classes.167

4.6 Ensemble layers168

Is there a way to optimize for both low neuron dependency and high expressivity? Of the approaches169

discussed, 1-to-1 correspondence layers have the highest expressivity. Starting from this layer, a170

simple approach to reduce neuron dependency is to use the capacity of the penultimate layer and171

create multiple heads h = 1 . . . H with N = KH , each head being a 1-to-1 correspondence layer.172

Each head’s output is effectively computed as ŷh = σSM (αah) with ah being the activation part of173

head h. As in Sect 4.2, we introduce a scalar α, which controls the magnitude of feature activations.174

For consistency, we denote this approach as W heads. The loss is computed for each head and175

averaged: 1
H

∑H
h=1 `(ŷ

h,y). Similarly, logits are averaged over heads for inference. Due to the176

induced redundancy, the performance only drops considerably after removing class-related neurons177

from all heads. In our experiments, we set H to its maximum given any setting (architecture/dataset).178

Note that hyperparameter α in ensemble layers is the only one which is tuned to individual settings.179

5 Experiments180

We aim to show that the presented output layers from Sect. 4 outperform standard output layers and181

common regularization methods in various settings. Details about training, compute resources, code,182

datasets as well as additional experiments on dependency/expressivity are included in the appendix.183

5.1 Small-scale and fine-grained classification184

All layer types are first applied to small-scale and/or fine-grained classification, both of which are185

challenging and require regularization. Datasets include STL-10 (500 img/class) [9], CUB-200 (∼30186

img/class) [49], Cars-196 (∼40 img/class) [22] and Food-101 (750 img/class) [5]. Table 1 shows187

results for the two popular backbones ResNet-50 [15] and DenseNet-169 [17], exchanging the output188

layer accordingly. In 53/56 settings, we see improved results over standard layers. Of these, 48189

and 36 are significant with p < 0.1 and p < 0.001, respectively. Although there is no clear best190

method, it is worth noting that sparse and ensemble layers as enhancements of both random and191

1-to-1 layers are significantly better (p < 0.001) in 7/8 settings, respectively. As expected, smaller192

performance differences are exhibited in Food-101, which is a considerably larger dataset, thus193

requiring less regularization. Among the worse settings, only 1 is significant (p < 0.1) for Food-101194

since it involves strong regularization to multiple layers. These regularizers are discussed seperately195

in Sect. 5.5.196

5.2 Large-scale classification and transfer learning197

Machine learning models are subject to the bias-variance tradeoff [12], in which induced biases of198

the presented output layers might be too strong to fit the training data. We therefore want to shed199

light on how these layers behave in large-scale and transfer learning settings, where overfitting is200

less problematic. Datasets include CIFAR-100 (C100, 5000 img/class) [23], ImageNet (IN, ∼1200201

img/class) from ILSVRC2012 [37] reported on the validation set, as well as CUB/Cars/Food with202

models being pre-trained on IN. Table 2 shows the results for the ResNet-50 backbone. In C100,203

we see consistent improvements with at least p < 0.1. On the other datasets, results are mostly204

comparable corroborating widespread applicability. It is worth mentioning thatW 1to1 andW ensemble205

perform consistently better, and W ensemble significantly (p < 0.1) in multiple cases. With growing206

dataset sizes, both layers expose a strong constraint on the class neurons to fit an increasing number207

of examples. We believe this to be responsible for progressively separating the signal from the noise,208

leading to better generalization. On the other hand, neuron dependency is reduced in larger datasets209

(see Fig. 3 left) diminishing the effect of W scale and W random. Moreover, W random and W sparse210

can be affected by predetermined feature-class weights that do not have to match features learned211

during pre-training, which might require larger adjustments to the weights of the last conv layer.212

6

Table 1: Classification accuracy for different output layer designs in small-scale and fine-grained
classification without pre-training. Exponent repeats describe probability values (*: p < 0.1,
: p < 0.01, *: p < 0.001) indicating statistical significance based on a one-tailed normal
approximation interval test comparing accuracy of the proposed layer designs to a baseline fc layer
(W trained). Symbols ∗ and † denote better/worse performance than baseline, respectively. Bold
denotes best performance.

STL-10 CUB-200 Cars-196 Food-101
R

es
N

et
-5

0
W trained (baseline) 81.36 57.18 81.20 83.70
W scaled 83.33∗ 63.46∗∗∗ 87.07∗∗∗ 85.46∗∗∗

W scaled block 86.42∗∗∗ 66.74∗∗∗ 87.53∗∗∗ 85.03∗∗

W random 86.08∗∗∗ 60.91∗∗ 83.02∗ 84.20
W random block 86.59∗∗∗ 67.21∗∗∗ 84.07∗∗∗ 84.04
W sparse 87.23∗∗∗ 66.27∗∗∗ 85.47∗∗∗ 85.45∗∗∗

W 1to1 84.78∗∗∗ 58.56 80.51 84.41∗

W ensemble 87.94∗∗∗ 62.98∗∗∗ 85.76∗∗∗ 85.36∗∗∗

D
en

se
N

et
-1

69

W trained (baseline) 81.88 55.33 80.82 84.31
W scaled 86.53∗∗∗ 63.31∗∗∗ 85.85∗∗∗ 85.05∗

W scaled block 85.89∗∗∗ 65.57∗∗∗ 85.35∗∗∗ 85.44∗∗

W random 86.11∗∗∗ 61.24∗∗∗ 83.52∗∗ 84.90∗

W random block 86.64∗∗∗ 65.99∗∗∗ 82.93∗ 83.25†

W sparse 86.58∗∗∗ 62.75∗∗∗ 85.79∗∗∗ 84.63
W 1to1 86.06∗∗∗ 55.37 83.75∗∗ 84.11
W ensemble 87.00∗∗∗ 64.15∗∗∗ 85.09∗∗∗ 84.91∗

Table 2: Classification results for different output layer designs in large-scale image recognition and
transfer learning. + denotes fine-tuning from ImageNet. See Table 1 for other symbols.

C100 IN-top1 IN-top5 CUB-200+ Cars-196+ Food-101+
W trained 77.75 76.36 93.12 80.91 91.73 87.32
W scaled 79.65∗ 76.08 92.84 78.68† 90.91† 87.21
W random 78.91∗ 76.08 93.15 80.89 91.72 87.29
W sparse 79.46∗ 75.32†† 92.36††† 80.38 92.07 87.31
W 1to1 79.07∗ 76.53 93.32 81.79 91.87 87.31
W ensemble 80.38∗∗∗ 76.62 93.46∗ 82.22∗ 92.77∗ 87.76

5.3 Use Case: Medical imaging213

Output layer design is critical in fields such as medical imaging, which presents special challenges to214

regularization: Datasets tend to be small, imbalanced, abnormalities might fill only a few pixels of215

the image, and appearances between classes are often similar. In addition, transfer learning with IN216

weights is either inaccessible due to architectural differences (e.g. image segmentation, 3D Magnetic217

Resonance Imaging) or less effective due to large domain differences. This is first illustrated on the218

APTOS Kaggle challenge dataset (3662 images, 193-1805 img/class) [20], with the goal of detecting219

diabetic retinopathy severities in retinal fundus images. We use the public training dataset to train a220

multi-class classifier and perform 5-fold cross-validation. Table 3 shows the results. We consistently221

get better performance with regularization and reduce the gap to a pre-trained network. Furthermore,222

an additional experiment in the appendix indicates that the standard output layer is biased towards the223

prevalent class, which is inherently remedied through randomization.224

We provide further evidence that the proposed layer designs positively affect tasks other than225

classification. We learn a U-Net [35] for binary semantic slice-based segmentation of Computed226

Tomography scans of livers comparing a standard 1x1 conv output layer with 64 parameters to both a227

fixed randomized and an ensemble layer. Due to the limited number of parameters, we omit W scale228

andW sparse here. Different to classification, the output of a U-Net itself can be interpreted as a 1-to-1229

layer. One can still build an ensemble by treating each output channel as a head. Both W random and230

W ensemble (H = 10) are then applied to the CHAOS [21] and SLIVER [47] datasets. For CHAOS,231

7

Table 3: Quadratic weighted kappa and
accuracy (with significance) for differ-
ent output layers in ResNet-50 for the
APTOS dataset. + denotes fine-tuning
from IN. See Table 1 for other symbols.

Kappa Acc.

W trained 0.816 77.44
W scaled 0.818 78.38
W random 0.848 79.32∗

W sparse 0.840 79.60∗

W 1to1 0.856 80.08∗

W ensemble 0.866 80.78∗∗

W trained+ 0.909 85.02
W sparse+ 0.910 85.17
W ensemble+ 0.912 85.56

Table 4: Jaccard coefficients in segmentation

CHAOS SLIVER

W trained 0.77 0.83
W random 0.80 0.85
W ensemble 0.78 0.86

Table 5: Regularization comparison

STL CUB CUB+ Cars

Dropout [42] 82.73 63.20 80.26 83.98
Dropconn. [50] 86.15 61.48 80.41 85.06
Add. Noise [10] 82.51 52.74 80.91 76.77

W trained 81.36 57.18 80.91 81.20
W sparse 87.23 66.27 80.38 85.47
W ensemble 87.94 62.98 82.22 85.76

we train on 15 randomly selected patients (2155 slices) and evaluate on the remaining 5 (719 slices).232

We then test for generalization by training on all 20 patients from CHAOS and evaluating on the233

external SLIVER dataset consisting of 20 patients (4159 slices). Table 4 shows improved results in234

both settings.235

5.4 Other regularization techniques236

Table 5 compares our most competitive methods to other popular regularizers when applied to a237

standard output layer. Nodes/connections in dropout/dropconnect are both removed with p = 0.7,238

and the noise layer adds a Gaussian with µ = 0 and σ = 0.1 before applying the fc layer. In all239

cases, our variants perform better. Whereas noise does not benefit training here, dropout/-connect is240

supporting regularization. However, both of the latter methods come with two main disadvantages.241

First, they add complexity by changing states in each iteration and having different behavior during242

training and inference. Second, hyperparameter tuning is necessary, while our layers are either243

hyperparameter-free or stable to them. See the ablation study in Sect. 5.7 for evidence.244

5.5 Beyond output layers - block scaling and randomization245

Activation scaling and randomization are techniques applicable to any layer and increase regulariza-246

tion further. This is demonstrated for ResNet-50 and DenseNet-169 in Table 1. Both architectures247

consist of multiple blocks, each holding groups of conv layer, batch normalization (BN) and activa-248

tion function. For W random block, all layers of the last block and the output layer are kept in their249

initialized state during training. Similarly, in W scaled block, activations of all layer groups in the last250

block are scaled during training. In ResNet-50, block scaling outperforms output layer scaling in 3/4251

datasets by up to 3% points, and block randomization increases performance in 3/4 datasets by up to252

6% points compared to output layer randomization. In DenseNet-169, block scaling outperforms out-253

put layer scaling in 2/4 datasets by up to 2% points, and block randomization increases performance254

in 2/4 datasets by up to 4% points compared to output layer randomization. Only in Food-101 and255

DenseNet, block randomization performs significantly worse than baseline because regularization is256

too strong leading to underfitting (train loss = 0.47 compared to 0.02 in W random).257

5.6 Computational efficiency258

The design of the head of deep CNNs has a great impact on computational efficiency. Standard output259

layers alone can contain a large amount of parameters, as CNNs typically hold more channels as260

they get deeper and the number of classes can become large. In ImageNet and a ResNet-50, for261

example, the output layer alone generates over 2 million parameters, which are saved in W 1to1 and262

W ensemble. This problem compounds when using multiple fc layers. In a VGG-16, for instance, 3 fc263

layers are employed after the last conv layer. As Table 6 shows, omitting all fc layers saves up to264

90% in parameters, a considerable amount of memory, and time for a forward/backward pass while265

8

Table 6: Computational efficiency comparison in CUB-200 highlighting that the number of trainable
parameters can often be reduced while accuracy is improved. + denotes fine-tuning from ImageNet.

Architecture #Params in M. Mem.[GB] GFLOPS Time [ms/it.] Accuracy

VGG16 W trained+ 135.1 7.5 31.1 114 78.68
VGG16 W 1to1+ 13.5 5.9 30.4 106 79.27
VGG16 W ensemble+ 14.7 5.9 30.8 106 81.15∗∗

Res50 W trained 23.9 5.1 8.2 71 57.18
Res50 W random block 8.5 5.0 8.2 67 67.21∗∗∗

CUB-200STL-10

Figure 6: Ablation study showing stability and consistency of our output layer designs

increasing accuracy. If a ResNet-50 is used, randomization of the last conv block next to the output266

layer yields savings of about 65% in trainable parameters while increasing accuracy by 10% points.267

5.7 Ablation study268

Note that W random and W 1to1 are hyperparameter-free compared to other regularizers such as269

dropout/-connect, thus saving the cost of tuning them. Although other layer variants possess hyperpa-270

rameters, we show in Fig. 6 for the ResNet backbone that they are stable (no large jumps in vicinity)271

and consistent (tend to monotonicity w.r.t. performance). In W sparse, the maximum accuracy for272

both datasets is at q = 0.99 (20 nodes per class) and drops only slightly for q = 0.995. Similarly,273

downscaling in W scale improves performance at a small cost if the optimum is not hit. Also, more274

heads in W ensemble tend to increase performance. What is the result of adding more heads than275

given by the constraint N = KH? If N < KH , which is the case for CUB-200 and H > 10, we276

add an additional 1x1 conv layer, BN and ReLU with KH nodes to adjust for the missing channels.277

Although this leads to a considerable increase in parameters (NKH for the conv layer), it helps with278

generalization, contradicting the common belief that overparameterization leads to overfitting [48].279

In contrast, dropout is not stable or consistent. With a dropout rate of 0.9, the network fails to train280

in both datasets. Furthermore, the optimum for CUB lies at 0.8, the same hyperparameter choice in281

STL would result in worse performance than baseline.282

6 Conclusion283

In this work, we introduced neuron dependency and expressivity as factors contributing to overfitting.284

Then, different output layers were defined to optimize both and showed improved regularization in285

various settings while being efficient and robust to hyperparameters. Although these layers are simple,286

they have high practical relevance due to the importance of regularization and the ubiquity of output287

layers in deep nets. In addition to their application, they may also be useful as primitives in future288

(automatically created) architectures. Although improving regularization, we note that optimizing289

for neuron dependencies/expressivity does not solve overfitting. For example, an unknown or noisy290

instance may result in reduced activations in the majority of nodes in the penultimate layer. Finally,291

we speculate that overfitting may not just be a function of the number of parameters in the encoder.292

Instead, it might be more important how the extracted features are combined in the output layer.293

9

References294

[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative295

adversarial networks. arXiv preprint arXiv:1711.04340, 2017.296

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,297

Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.298

A closer look at memorization in deep networks. In International Conference on Machine299

Learning, pages 233–242. PMLR, 2017.300

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint301

arXiv:1607.06450, 2016.302

[4] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and303

Klaus-Robert Müller. How to explain individual classification decisions. The Journal of304

Machine Learning Research, 11:1803–1831, 2010.305

[5] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative306

components with random forests. In European Conference on Computer Vision, 2014.307

[6] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.308

[7] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backpropagation,309

conjugate gradient, and early stopping. Advances in neural information processing systems,310

pages 402–408, 2001.311

[8] Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. The power of sparsity in convolu-312

tional neural networks. arXiv preprint arXiv:1702.06257, 2017.313

[9] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-314

vised feature learning. In Proceedings of the fourteenth international conference on artificial315

intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.316

[10] Terrance DeVries and Graham W Taylor. Dataset augmentation in feature space. arXiv preprint317

arXiv:1702.05538, 2017.318

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable319

neural networks. arXiv preprint arXiv:1803.03635, 2018.320

[12] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance321

dilemma. Neural computation, 4(1):1–58, 1992.322

[13] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In323

Proceedings of the fourteenth international conference on artificial intelligence and statistics,324

pages 315–323. JMLR Workshop and Conference Proceedings, 2011.325

[14] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint326

arXiv:1611.04231, 2016.327

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image328

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,329

pages 770–778, 2016.330

[16] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training331

the last weight layer. arXiv preprint arXiv:1801.04540, 2018.332

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected333

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern334

recognition, pages 4700–4708, 2017.335

[18] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory336

and applications. Neurocomputing, 70(1-3):489–501, 2006.337

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training338

by reducing internal covariate shift. In International conference on machine learning, pages339

448–456. PMLR, 2015.340

10

[20] Kaggle. Aptos 2019 blindness detection, 2019. URL https://www.kaggle.com/c/341

aptos2019-blindness-detection.342

[21] A Emre Kavur, N Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir343

Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan, et al. Chaos challenge-344

combined (ct-mr) healthy abdominal organ segmentation. Medical Image Analysis, 69:101950,345

2021.346

[22] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for347

fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and348

Recognition (3dRR-13), Sydney, Australia, 2013.349

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.350

2009.351

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep352

convolutional neural networks. Advances in neural information processing systems, 25:1097–353

1105, 2012.354

[25] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A355

taxonomy. arXiv preprint arXiv:1710.10686, 2017.356

[26] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop.357

In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.358

[27] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network359

pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.360

[28] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,361

2013.362

[29] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse363

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and364

pattern recognition, pages 806–814, 2015.365

[30] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery366

ticket hypothesis: Pruning is all you need. In International Conference on Machine Learning,367

pages 6682–6691. PMLR, 2020.368

[31] Federico Pernici, Matteo Bruni, Claudio Baecchi, and Alberto Del Bimbo. Fix your features:369

Stationary and maximally discriminative embeddings using regular polytope (fixed classifier)370

networks. arXiv preprint arXiv:1902.10441, 2019.371

[32] David C Plaut, Steven J Nowlan, and Geoffrey E Hinton. Experiments on learning by back372

propagation. 1986.373

[33] Zhongchao Qian. Deep Convolutional Networks without Learning the Classifier Layer. PhD374

thesis, Rochester Institute of Technology, 2020.375

[34] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and376

Jonathon Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909,377

2019.378

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for379

biomedical image segmentation. In International Conference on Medical image computing and380

computer-assisted intervention, pages 234–241. Springer, 2015.381

[36] Amir Rosenfeld and John K Tsotsos. Intriguing properties of randomly weighted networks:382

Generalizing while learning next to nothing. In 2019 16th Conference on Computer and Robot383

Vision (CRV), pages 9–16. IEEE, 2019.384

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng385

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.386

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision387

(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.388

11

https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection

[38] Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural computation, 12(8):389

1869–1887, 2000.390

[39] Gabi Shalev, Gal-Lev Shalev, and Joseph Keshet. Redesigning the classification layer by391

randomizing the class representation vectors. arXiv preprint arXiv:2011.08704, 2020.392

[40] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep393

learning. Journal of Big Data, 6(1):1–48, 2019.394

[41] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving395

for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.396

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.397

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine398

learning research, 15(1):1929–1958, 2014.399

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,400

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.401

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,402

2015.403

[44] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural404

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.405

[45] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks406

without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467,407

2020.408

[46] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal409

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.410

[47] Bram Van Ginneken, Tobias Heimann, and Martin Styner. 3d segmentation in the clinic: A411

grand challenge. In MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge,412

volume 1, pages 7–15, 2007.413

[48] N Vapnik Vladimir and V Vapnik. Statistical learning theory. Xu JH and Zhang XG. translation.414

Beijing: Publishing House of Electronics Industry, 2O04, 1998.415

[49] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011416

Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.417

[50] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of418

neural networks using dropconnect. In International conference on machine learning, pages419

1058–1066. PMLR, 2013.420

[51] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by421

preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.422

[52] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding423

deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.424

[53] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C Mozer, and Yoram Singer. Identity425

crisis: Memorization and generalization under extreme overparameterization. arXiv preprint426

arXiv:1902.04698, 2019.427

12

Checklist428

1. For all authors...429

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s430

contributions and scope? [Yes] See Sect. 3, 5 and the appendix.431

(b) Did you describe the limitations of your work? [Yes] See Sect. 4.5 (N = K con-432

straint), Sect. 5.2 (some layers are not optimal for large-scale datasets and fine-tuning),433

Sect. 5.5 (strong regularization may lead to underfitting), and Sect. 6 (neuron depen-434

dency/expressivity are factors of overfitting, but this does not constitute all factors).435

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Focus436

is on architecture and technical, no particular application affecting society is targeted.437

Note that medical ML applications should be thoroughly evaluated, e.g., for bias and438

generalizability, before being used in practice.439

(d) Have you read the ethics review guidelines and ensured that your paper conforms to440

them? [Yes]441

2. If you are including theoretical results...442

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Only empirical443

results are included.444

(b) Did you include complete proofs of all theoretical results? [N/A] Only empirical results445

are included.446

3. If you ran experiments...447

(a) Did you include the code, data, and instructions needed to reproduce the main ex-448

perimental results (either in the supplemental material or as a URL)? [Yes] Code449

implementing the shown layer types and dataset descriptions are given in the supple-450

mental material/appendix.451

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they452

were chosen)? [Yes] We report the corresponding splits if not defined by the datasets453

themselves. Hyperparameters and information about the training are partly provided in454

the main text (e.g. architecture type, layer hyperparameters) and are detailed further in455

the appendix.456

(c) Did you report error bars (e.g., with respect to the random seed after running experi-457

ments multiple times)? [Yes] We indicate statistical significance for our classification458

results.459

(d) Did you include the total amount of compute and the type of resources used (e.g., type460

of GPUs, internal cluster, or cloud provider)? [Yes] We have not tracked CO2 due to461

missing awareness but some details about the setup are provided in the appendix. We462

plan to track CO2 in subsequent works.463

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...464

(a) If your work uses existing assets, did you cite the creators? [Yes] See Sect. 5. This is465

done after first mentioning the corresponding datasets in the main text.466

(b) Did you mention the license of the assets? [Yes] We mention asset licenses in the467

appendix.468

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]469

We provide code as supplemental material.470

(d) Did you discuss whether and how consent was obtained from people whose data you’re471

using/curating? [N/A] The datasets in Sect. 5.3 are open source from past challenges472

and contain de-identified data to the best of our knowledge. Further details on data473

collection are provided in the corresponding references.474

(e) Did you discuss whether the data you are using/curating contains personally identi-475

fiable information or offensive content? [N/A] All datasets are commonly used for476

benchmarks and/or do not contain obviously offensive content. However, ImageNet477

likely contains images showing persons.478

5. If you used crowdsourcing or conducted research with human subjects...479

13

(a) Did you include the full text of instructions given to participants and screenshots,480

if applicable? [N/A] No crowdsourcing or research with human subjects has been481

conducted.482

(b) Did you describe any potential participant risks, with links to Institutional Review483

Board (IRB) approvals, if applicable? [N/A] See above.484

(c) Did you include the estimated hourly wage paid to participants and the total amount485

spent on participant compensation? [N/A] See above.486

14

	Introduction
	Related Work
	Neuron dependency and expressivity
	Setting and notation
	Concepts
	Measuring dependency and expressivity

	Output Layer Types
	Standard output layers
	Scaled output layers
	Random fixed layers
	Sparse fixed layers
	1-to-1 correspondence layers
	Ensemble layers

	Experiments
	Small-scale and fine-grained classification
	Large-scale classification and transfer learning
	Use Case: Medical imaging
	Other regularization techniques
	Beyond output layers - block scaling and randomization
	Computational efficiency
	Ablation study

	Conclusion

