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ABSTRACT

In psychotherapy, therapeutic outcome assessment, or treatment outcome evalu-
ation, is essential for enhancing mental health care by systematically evaluating
therapeutic processes and outcomes. Existing large language model approaches
often focus on therapist-centered, single-session evaluations, neglecting the client’s
subjective experience and longitudinal progress across multiple sessions. To ad-
dress these limitations, we propose IPAEval, a client-Informed Psychological
Assessment-based Evaluation framework that automates treatment outcome evalu-
ations from the client’s perspective using clinical interviews. IPAEval integrates
cross-session client-contextual assessment and session-focused client-dynamics
assessment to provide a comprehensive understanding of therapeutic progress.
Experiments on our newly developed TheraPhase dataset demonstrate that IPAEval
effectively tracks symptom severity and treatment outcomes over multiple ses-
sions, outperforming previous single-session models and validating the benefits of
items-aware reasoning mechanisms.

1 INTRODUCTION

In psychotherapy, therapeutic outcome assessment, a.k.a treatment outcome evaluation under clinical
settings, refers to the systematic evaluation of therapeutic processes and outcomes (Groth-Marnat,
2009), focusing on factors such as therapist effectiveness (Johns et al., 2019) and treatment effi-
cacy (Jensen-Doss et al., 2018) to improve mental health care delivery. It plays a significant role in
enhancing the quality and effectiveness of mental health care by providing actionable insights that
guide therapists in refining their treatment approaches (Wampold & Imel, 2015), ultimately leading to
better client outcomes and improved therapeutic relationships in real-world clinical practice (Maruish
& Leahy, 2000).

Over the last couple of years, the emergence of large language models has demonstrated their
effectiveness in automatic evaluations, showing a high degree of alignment with human judgment
when provided with proper instruction and contextual guidance (Liu et al., 2023; Li et al., 2024b;
Kim et al., 2024). This aligns with the “LLMs-as-a-judge” paradigm, where LLMs are employed to
simulate human evaluators by providing assessments based on natural language input (Zheng et al.,
2023; Wang et al., 2024b). This paradigm has been extended to therapeutic outcome assessment by
harnessing LLMs’ ability to model complex therapeutic procedures and interactions, offering a novel
pathway for automating the assessment of therapeutic efficacy (Chiu et al., 2024; Lee et al., 2024; Li
et al., 2024a).

In the assessment, compared to psychometric tests (Furr, 2020) that are often constrained by the
limitations of self-reported data, susceptibility to social desirability biases (Braun et al., 2001; Paulhus,
2017), clinical interviews not only provide richer, more nuanced insights into the client’s emotional
and behavioral states but also offer data that is more readily obtainable through natural, conversational
interactions. Therefore, many recent works leverage clinical interviews, potentially enriched by
the client’s profile (Lee et al., 2024), to evaluate therapists from multiple perspectives, including
behavioral labels (Chiu et al., 2024), skills adherence (Lee et al., 2024), and therapeutic rapport (Li
et al., 2024a; Yosef et al., 2024), offering a holistic view of their effectiveness in psychotherapy.

While the above therapist-centered assessments focus on evaluating the therapist’s techniques and
adherence to therapeutic models, they often overlook the subjective experience and evolving needs of
the client, limiting the depth of the evaluation (Wang et al., 2024a; Yosef et al., 2024). In contrast,
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Method Perspective Theory Adherence Reasoning Evaluation Target
CPsyCoun (Zhang et al., 2024) Therapist ✗ ✗ Single Session
Cactus (Lee et al., 2024) Therapist ✓ ✗ Single Session
ClientCAST (Wang et al., 2024a) Client ✓ ✗ Single Session
IPAEval (Ours) Client ✓ ✓ Multiple Sessions

Table 1: A comparison of IPAEval with other treatment outcome evaluation methods. Perspective indicates
whether the evaluation is conducted from the therapist’s or the client’s point of view. Theory Adherence signifies
whether the method is grounded in established psychological theories. Reasoning denotes whether the method
involves generating intermediate reasoning steps before arriving at the final evaluation results. Evaluation
Target refers to whether the method evaluates a single session or multiple sessions.

client-centered assessments, such as treatment outcome evaluation in common practice, prioritize the
client’s perspective, offering a more comprehensive understanding of therapy’s impact by capturing
changes in the client’s emotional, cognitive, and behavioral states across sessions (Hatfield & Ogles,
2004; Rogers, 2012). Although a concurrent work, ClientCAST (Wang et al., 2024a), presents an
LLM-based client simulator for treatment outcome evaluations, which focuses on reducing harmful
outputs and improving answering consistency, we stand fundamentally apart and never fabricate client
responses that could distort the evaluation of treatment outcomes. What’s worse, almost all previous
approaches focus on evaluating individual therapy sessions in isolation, without considering the
broader context of the client’s journey across multiple sessions. This narrow scope limits the ability
to assess longitudinal progress or capture the dynamic shifts in a client’s mental state and therapeutic
needs over time, which are crucial for a comprehensive treatment outcome evaluation (Hayes &
Andrews, 2020).

Motivated by the above therapist-centered and single-session limitations (please see Table 1 for com-
parisons), we design a new evaluation framework, dubbed client-Informed Psychological Assessment-
based Evaluation (IPAEval), for treatment outcomes in the format of clinical interviews.

Specifically, to achieve treatment outcome evaluation, we formulate an information extraction task
that leverages clinical interviews to automatically populate psychometric tests for psychological
assessments, bridging the gap between subjective client dialogues and standardized metrics. As such,
treatment outcomes are evaluated through these assessments of clients conducted both before and after
therapy, allowing for a more comprehensive understanding of therapeutic progress. Upon this new
framework, we first propose a cross-session client-contextual assessment module that integrates client
history and contextual information across multiple sessions to enhance the accuracy of psychological
assessments. Then, we present a session-focused client-dynamics assessment module that evaluates
the effectiveness of individual therapy sessions by tracking real-time client responses and treatment
outcomes within each session. In the meantime, to boost reasoning capability in the extraction, we
also present an items-aware reasoning prompt technique for psychometric test-oriented rationale
generation.

To evaluate the proposed framework, we first develop a new dataset, called TheraPhase, based on
CPsyCoun (Zhang et al., 2024), which includes transcripts from initial and final therapy sessions.
This dataset offers valuable insights into therapy progress and serves as a key resource for evaluating
psychological assessments and treatment outcomes across multiple sessions. Then, we tested nine
LLMs, including closed-source models. These models were evaluated for their performance in
psychological assessments and treatment outcome prediction, particularly in multi-session evaluations.
IPAEval consistently tracked symptom severity and treatment outcomes across multiple sessions, a
capability lacking in previous single-session models. Our ablation study confirmed that the items-
aware reasoning mechanism significantly boosts model performance in both symptom detection and
outcome prediction.

2 RELATED WORK

Therapist Assessment using LLMs. LLMs’ role-playing capabilities have led to increased interest
in developing Role-Play Therapists (Chen et al., 2023; Chiu et al., 2024; Lee et al., 2024), but the lack
of automated metrics for evaluating t herapist is a significant challenge. CPsyCoun (Zhang et al., 2024)
employs an LLM-based evaluation method from the therapist’s perspective to assess single session,
specifically evaluating the therapist’s comprehensiveness, professionalism, authenticity, and safety.
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Lee et al. (2024), Li et al. (2024a), and Yosef et al. (2024) similarly adopt a therapist’s perspective with
LLM-based evaluation, but they address CPsyCoun’s lack of support from psychological theories by
employing the Cognitive Therapy Rating Scale (Goldberg et al., 2020) for CBT skills assessment and
the Working Alliance Inventory (Hatcher & Gillaspy, 2006) for evaluating the therapeutic relationship.
Notably, BOLT (Chiu et al., 2024) applied LLMs to identify therapist behaviors, evaluating the quality
of dialogue sessions based on the frequency and sequence of LLM therapist behaviors. Clinical
evidence (Goodson et al., 2017; Mason et al., 2016) shows that better therapists are linked to improved
outcomes, but evaluating therapists alone may miss how much the client is benefiting (Robinson,
2009). The treatment outcome evaluation based on client-centered psychological assessment focuses
more on results, specifically determining whether the therapy has brought about meaningful changes
in the client’s life, which is the ultimate goal of the treatment (Groth-Marnat, 2009).

Client-centered Psychological Assessment. Client-centered psychological assessment
combines psychometric tests and clinical interviews to provide a comprehensive under-
standing of the individual (Spoto et al., 2013). Psychometric tests offer standard-
ized data on psychological traits, while clinical interviews give deeper insights into the
client’s personal experiences (Groth-Marnat, 2009). While tests may overlook certain
nuances, interviews address these gaps by exploring context and individual differences.

First Psychological Assessment

Final Psychological Assessment

Psychotherapy

Treatm
en

t O
u

tco
m

e

Client Test State

Client Test State

Session Session

Figure 1: What is Treatment Outcome?

In clinical practice, the use of multiple assessment methods
ensures a more complete understanding of the client (Meyer
et al., 2001; Groth-Marnat, 2009). Leveraging the powerful
general language processing capabilities (Luo et al., 2023;
Zhao et al., 2023b) of LLMs enables the realization of com-
plex and diverse assessment tasks. This contrasts with earlier
approaches that focused solely on detecting individual psy-
chological symptoms (Ji et al., 2022; Zhai et al., 2024), and
a substantial body of research (Galatzer-Levy et al., 2023;
Arcan et al., 2024; Rosenman et al., 2024) supports this ad-
vancement. For instance, several studies have utilized LLMs
to analyze interviews (Gratch et al., 2014), assessing depres-
sion and Post-Traumatic Stress Disorder scores based on
widely used psychometric tests like (Kroenke et al., 2009)
and PCL-C (Weathers et al., 1994). However, precise psy-
chological assessments enable therapists to grasp the client’s
psychological state, but a psychological assessment alone
cannot determine whether the treatment has brought about
positive changes for the client.

Treatment outcomes evaluation complements psychological assessment by measuring the effective-
ness of interventions over time (Maruish & Leahy, 2000). While psychological assessments provide a
snapshot of the client’s mental state, as shown in the Figure 1, treatment outcomes evaluation focuses
on tracking changes in symptoms and overall well-being throughout the therapeutic process. This
dynamic evaluation allows therapists to determine whether the treatment has been successful and
adjust strategies as needed to improve results.

3 METHODOLOGY

In this section, starting with a formal task definition (§3.1), we elaborate on our evaluation frame-
work, called client-Informed Psychological Assessment-based Evaluation (IPAEval), which is mainly
composed of 1) cross-session client-contextual assessment module (§3.2) for client-tracking psy-
chological assessment and a session-focused client-dynamics assessment module (§3.3) to derive
session-informed treatment outcome evaluation. Please see Figure 2 for an overall illustration of our
framework. As there is no precursor in clinical interviews-based treatment outcome evaluation, we,
therefore, curate a new dataset, called TheraPhase, as a testbed for our proposed IPAEval framework.
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Cross-Session Client-Contextual Assessment

Items-Aware Reasoning

Assessment Scores

Client Informations

Session-Focused Client-Dynamics Assessment

Cross-Session Client-Contextual Assessment

Assessment Scores

Client Informations

  PSDI

  PSDI

Items-Aware Reasoning

Profile Sessions History

Psychometric Test

Profile Sessions History

Psychometric Test

Client

Client Statement: Recently, I feel like my family is 
starting to try to understand me, but sometimes I still 
feel they don?t fully grasp my thoughts. Occasionally, 
I sense their attitude is still a bit indifferent.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand the 
client or are unsympathetic.
Presence: Yes
Explanation: The client acknowledges some 
improvement in how others perceive them but still 
feels misunderstood and senses occasional 
unsympathetic attitudes. The symptom is present 
but showing signs of improvement.

Client Statement: Recently, I feel like my family is 
starting to try to understand me, but sometimes I still 
feel they don?t fully grasp my thoughts. Occasionally, 
I sense their attitude is still a bit indifferent.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand the 
client or are unsympathetic.
Presence: Yes
Explanation: The client acknowledges some 
improvement in how others perceive them but still 
feels misunderstood and senses occasional 
unsympathetic attitudes. The symptom is present 
but showing signs of improvement.

Client Statement: Recently, I feel like my family is 
starting to try to understand me, but sometimes I still 
feel they don?t fully grasp my thoughts. Occasionally, 
I sense their attitude is still a bit indifferent.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand the 
client or are unsympathetic.
Presence: Yes
Explanation: The client acknowledges some 
improvement in how others perceive them but still 
feels misunderstood and senses occasional 
unsympathetic attitudes. The symptom is present 
but showing signs of improvement.

Client Statement: Recently, I feel like my family is 
starting to try to understand me, but sometimes I still 
feel they don?t fully grasp my thoughts. Occasionally, 
I sense their attitude is still a bit indifferent.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand the 
client or are unsympathetic.
Presence: Yes
Explanation: The client acknowledges some 
improvement in how others perceive them but still 
feels misunderstood and senses occasional 
unsympathetic attitudes. The symptom is present 
but showing signs of improvement.

Client Statement: Recently, I feel like my family is 
starting to try to understand me, but sometimes I still 
feel they don?t fully grasp my thoughts. Occasionally, 
I sense their attitude is still a bit indifferent.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand the 
client or are unsympathetic.
Presence: Yes
Explanation: The client acknowledges some 
improvement in how others perceive them but still 
feels misunderstood and senses occasional 
unsympathetic attitudes. The symptom is present 
but showing signs of improvement.

Client Statement: Now I feel that my friends and 
colleagues can understand my feelings. They 
have become more supportive and sympathetic, 
and I no longer feel misunderstood.
Item Category: Interpersonal Sensibility
Specific Item: Feeling others do not understand 
the client or are unsympathetic.
Presence: No
Explanation: The client expresses that they no 
longer feel misunderstood or that others are 
unsympathetic. This indicates the symptom has 
improved to the point of absence.

? PSDI

High Scores

Low Scores

? PSDI  <  0

? PSDI  >  0

Good Treatment Outcomes:

Good treatment outcomes 
mean significant symptom 
relief, improved health, and 
better quality of life. The 
client feels more supported, 
understood, and manages 
stress effectively.

Bad Treatment Outcomes:

Bad treatment outcomes occur 
when symptoms persist or 
worsen, and the patient may 
feel distressed, lose 
confidence in the treatment, or 
face further emotional 
challenges.

Figure 2: An illustration of client-informed psychological assessment-based evaluation (IPAEval).

3.1 TASK DEFINITION OF IPAEVAL FRAMEWORK

To deliver treatment outcome evaluations for a certain client with profile p, based on multiple sessions
[s1, s2, . . . ], we aim to evaluate the efficacy of a certain session sk in clinical interviews as treatment
outcome. Without sacrificing generalization to one whole treatment composed of several sessions,
sk here could be a combination of the sessions. To achieve the above, we need to split the task into
two sequential sub-tasks – psychological assessment (ak) based on client information and treatment
outcome evaluation (ek) based on two or more assessments. To derive ak and ek, we first define
client-informed input of an assessment after k-th session, i.e.,

ck = p⊕ sk ⊕ hk, where hk = [s1, . . . , si−1]⊕ [a1, . . . ]⊕ [e1, . . . ]. (1)
Here, hk denotes a set of meta client-contextual information from the past, e.g., past interviews
[s1, . . . , si−1], past assessments [a1, . . . ], or/and past outcome evaluations [e1, . . . ]. Upon this, we
could easily define psychological assessment after i-th session as

ak = M(a)(ck,T), (2)
where T is a set of psychometric tests as the criteria to evaluate the client information, and M denotes
an approach to derive ak. Then, the treatment outcome evaluation for k-th session would defined as

ek = M(e)(ck,ak, hk), (3)
In the remaining, we omit the index of session k if no confusion is raised for clear annotations.

To handle the above two sequential sub-tasks, we detail our two modules, which aim to tackle the
sub-tasks respectively, in the following.

3.2 CROSS-SESSION CLIENT-CONTEXTUAL ASSESSMENT

Existing research using client information with LLMs for mental health assessment, particularly
for depression and PTSD, shows promising results (Galatzer-Levy et al., 2023; Arcan et al., 2024;
Rosenman et al., 2024). However, these studies typically focus on specific symptoms and lack broad
coverage of psychological conditions and transparency in interpreting scale results, which may erode
trust among clinicians and clients, limiting clinical applications (Martin & Rouas, 2024).

To address these gaps, we introduce a two-stage prompt scheme that populates information from
clinical interviews to fill psychometric tests by making the best of LLMs’ capability in natural
language understanding (Zhao et al., 2023a; Hua et al., 2024). It’s applicable to various psychometric
tests, specifically designed to provide interpretable psychological assessments. Without sacrificing
generality, in this work we utilize the Symptom Checklist-90 (SCL-90) (Derogatis & Unger, 2010), a
widely used and comprehensive psychometric test for screening psychological symptoms.
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Items-Aware Reasoning. This stage aims to generate detailed reasoning for psychometric test items
using LLMs, leveraging client information. Here, the items of the SCL-90 represent psychological
symptoms. It correlates specific client information with the corresponding symptoms and items from
the SCL-90, determining their presence and providing an interpretation. Given an out-of-the-box
LLM (Dubey et al., 2024; Yang et al., 2024; Jiang et al., 2024) able to follow instructions, we first
curate a prompt to steer the LLM to extract information from interviews to structured psychometric
tests with thought augmentations. Inspired by a recent work Schulhoff et al. (2024), our prompt
design integrates several components: a psychologist role, denoted by r(pi), skilled at recognizing
symptoms, the SCL-90 as additional information T, output formatting o(pi), and specific directives
d(pi). Based on these, we can define psychometric interpretation prompt p(pi) as follows:

p(pi) = f(r(pi),T, o(pi), d(pi)) (4)

Furthermore, given the client information c, an LLM is prompted to generate items-aware reasoning
results X̂:

X̂ = argmax
X

PLLM(X|c, p(pi)), (5)

where p(pi) X̂ represents a set of predicted items-aware reasoning results, each element in the set
consisting of extracted client information, symptom category, specific symptom, presence, and a
detailed explanation. It is noteworthy that this approach helps clinicians quickly trace the source
of evidence for assessments and offers a clear pathway to understanding the interconnections and
relevance of various symptoms presented by the client. The detailed prompt and an example of
Items-Aware Reasoning are provided in Appendix A and Appendix C, respectively.

Psychological Assessment. The other stage is designed to harness the capabilities of LLMs in
conducting psychological assessments based on client information and item-aware reasoning results.
Similar to the items-aware reasoning stage, it comprises four main components: a psychologist
role denoted by r(sa), skilled at symptom assessment, the SCL-90 psychometric test T, alongside
score criteria s serving as additional information, output formatting implemented o(sa), and specific
directives d(sa). Considering the practical constraints of client information, where not all 90 questions
from the SCL-90 are likely to be addressed, we have simplified the scoring criteria. Instead of scoring
each of the 90 items individually, the assessment has been adapted to score across 10 symptom
dimensions derived from these items. Based on these, we can define symptom assessment prompt
p(sa) as follows:

p(sa) = f(r(sa),T, s, o(sa), d(sa)) (6)

Formally, given the client information c and items-aware reasoning result X̂ generated by LLM, an
LLM is prompted to generate assessment scores â:

â = argmax
a

PLLM(a|c, X̂, p(sa)) (7)

Where â represents the estimated assessment scores for each of the 10 symptom dimensions. The
detailed prompt is provided in Appendix B

Remark: Avoiding Excessive Speculation. ClientCAST (Wang et al., 2024a), which simulates
the client’s estimation of psychometric test scores, our approach avoids excessive speculation. By
adjusting the range of psychometric test scores to account for items not yet addressed by the client,
our method more accurately reflects the gradual disclosure of information over time or across multiple
sessions, preventing incomplete or biased assessments due to initially unmentioned items.

3.3 SESSION-FOCUSED CLIENT-DYNAMICS ASSESSMENT

Given the assessment scores â of client information c, we use them to calculate Positive Symptom
Distress Index (PSDI) (Derogatis & Unger, 2010), which quantifies the level of distress associated
with positive psychological symptoms. The PSDI is calculated by averaging the distress scores
assigned to each symptom, providing a numerical indication of the severity and impact of these
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symptoms on the client’s overall mental health. The PSDI is mathematically expressed by the
formula:

PSDI =
1

N

∑
i∈P

âi (8)

Where N is the number of positive symptoms, and âi is the distress score for the i-th symptom, and
P is the set containing the indices of all positive symptoms.

Consider a client whose initial stage information is denoted as ci and final stage information after
completing treatment as cf . By applying Equation 5 and 7 to the client information at each stage,
we can obtain the initial stage assessment scores âi and final stage assessment scores âf . Further,
we can calculate the PSDI for both the initial and post-treatment stages using Equation 8 to assess
the impact of treatment on the client’s positive psychological symptoms. We define the change in
symptoms as

e := ∆PSDI = PSDIf − PSDIi (9)

Where ∆PSDI, defined as treatment outcome evaluation e for the session s in this work, represents
the change in the PSDI from before to after treatment, quantifying the impact of the intervention on
the client’s distress related to positive psychological symptoms.

Remark: Advantages and Versatility of PSDI. Although PSDI is originally derived from the
SCL-90, the method of calculating the average score of positive items offers the advantage of
focusing directly on the relevant items of a psychometric test, leading to a more precise evaluation of
treatment outcomes. This approach is not limited to the SCL-90 and can be easily extended to other
psychometric tests, providing a flexible and reliable tool for assessing progress across different stages
of treatment.

3.4 THERAPHASE DATASET

Popular datasets such as High-Low Quality (Pérez-Rosas et al., 2019), and AnnoMI (Wu et al., 2023),
which contain client information primarily in the form of a single session, originate from public video
sharing sources. These datasets only include client information relevant to the current stage and do
not provide data for subsequent stages. To assess the changes in clients across different stages, we
have constructed the TheraPhase Dataset based on the CPsyCoun (Zhang et al., 2024), which exhibits
significant changes during a single session. Our dataset includes 400 pairs of client information from
both the initial and completion stages of treatment.

Construction Process. To construct the TheraPhase Dataset, we utilize a 5-shot prompting approach
with GPT-4 to extract the initial stage information from a client’s comprehensive information. This
method isolates the beginning portion of the client’s data, forming a paired dataset where each pair
consists of the initial client information and the corresponding full client information. This setup
allows for an analytical comparison between the initial conditions and the outcomes after therapeutic
interventions. The statistics of the resulting dataset are listed in Table 3.

4 EXPERIMENTS

In this section, we first conduct a psychological assessment based on various LLMs, evaluating
their capability to detect and assess symptoms. Subsequently, we investigate their performance in
predicting treatment outcomes.

4.1 EXPERIMENTAL SETTINGS

IPAEval Setting Up. The IPAEval framework is capable of handling various forms of client
information, such as user profiles and interaction histories. However, due to data acquisition limi-
tations, we primarily utilized consultation dialogue data as the main source of client information.
Furthermore, IPAEval supports a variety of symptom-based psychometric tests, such as the General
Health Questionnaire (GHQ) series (Montazeri et al., 2003), the Symptom Checklist (SCL) series,
and the Brief Symptom Inventory (BSI) (Derogatis & Melisaratos, 1983). In this experiment, we
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utilized the Symptom Checklist-90 (SCL-90) (Derogatis et al., 1973), a widely recognized and
comprehensive tool for assessment a broad range of psychological symptoms. The scoring crite-
ria for assessing symptoms, as set up and outlined in Table 2. Additionally, to ensure structured
output, our code utilizes LangChain1 and Pydantic2 for better LLMs integration and data validation.

Table 2: Scoring Criteria for Symptom Assessment

Score Description

-1 Symptom not addressed.
0 Symptom addressed, but no symptoms found;

no signs of distress or dysfunction.
1 Minimal symptoms, minor indications of dis-

tress but no significant dysfunction.
2 Clear symptoms, clear indications of distress,

and significant dysfunction.

Datasets. We have selected two datasets for
psychological assessment, High-Low Quality
Counseling (Pérez-Rosas et al., 2019) and An-
noMI (Wu et al., 2023), which consist of coun-
seling therapy transcripts extracted from pub-
licly available videos on online platforms such
as YouTube and Vimeo. However, there are
issues of data duplication between these two
datasets. Given the higher quality of data in An-
noMI, we have chosen to retain the AnnoMI data from the same sources. Furthermore, considering
the context window limitation of one of our test models, GPT-4, the maximum number of dialogue
turns is set to 102. To increase the testing challenge and ensure the dialogues are sufficiently complex
for evaluating the model’s capability in handling extended therapeutic conversations, the minimum
number of turns is set at 25. Based on these criteria, we have selected 110 client dialogue entries as
our test data.

For treatment outcomes, we have selected the TheraPhase Dataset. This dataset comprises treament
session transcripts that encompass two distinct phases of client interactions. Its advantage lies in
the clear changes observable in clients across these phases, which aids in observing the treatment
outcomes. The statistics of the resulting datasets are listed in Table 3.

Datasets Language # of Clients # of Sessions Avg. # of Utterances Words per Utterance
High-Low Quality Counseling

AnnoMI English 110 110 79.8
(std = 26.1)

22.2
(std = 27.1)

TheraPhase Chinese 400 800 11.5
(std = 6.3)

41.7
(std = 20.9)

Table 3: Summary of key characteristics of the selected datasets, including language, number of clients, sessions,
average number of utterances per session, and the average word count per utterance.

Evaluation Metrics. We conducted a psychological assessment of LLMs focusing on two main
aspects, symptom detection and symptom severity assessment. For symptom detection, we evaluated
the model’s ability to identify symptoms from a broad range of client information using classification
metrics such as Accuracy, Precision, Recall, and F1 scores (Binary, Macro, and Weighted), based on
scoring criteria from Table 2 where -1 indicates a negative class and 0, 1, and 2 represent positive
classes. For assessing symptom severity, we calculated the PSDI score for each client and used error
metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE). To gauge the model’s
reliability, we reported the mean and standard deviation of these evaluation metrics across three runs,
providing insight into the model’s consistency in performance.

In evaluating treatment outcomes, we focus on the change in positive symptom severity, represented
by ∆PSDI, which reflects the difference in mean positive symptom scores between two assessments.
A ∆PSDI greater than 0 indicates a worsening of symptoms or the emergence of new ones, while a
value less than or equal to 0 suggests symptom maintenance or improvement. We further evaluated
the accuracy of predicting the direction of treatment outcome changes using metrics such as Accuracy,
Precision, Recall, and F1 scores (Binary, Macro, and Weighted).

References Generation. To evaluate the performance of the models on psychological assessment
tasks, we first required a set of reference scores for symptom detection and severity assessment.
However, due to the lack of existing labeled data, we manually annotated 30 randomly selected
client sessions. This manual annotation was carried out by two co-authors of this paper, both with

1https://www.langchain.com/
2https://docs.pydantic.dev/
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significant expertise in natural language processing (NLP) and mental health research. The annotation
process achieved a Cohen’s kappa coefficient of 0.73, indicating substantial agreement between
annotators. Following the annotation, we tested the performance of four closed-source models: GPT-
4, GPT-4o, GPT-4-turbo, and GPT-4o-mini. The results, as shown in Table 4, indicated that GPT-4o
outperformed the other models in both symptom detection and severity assessment. Based on these
findings, GPT-4o was selected as the Gold Model for generating reference scores in psychological
assessment tasks.

A similar issue arose in the treatment outcomes evaluation task. To address this, we followed the same
approach as in the psychological assessment task. We manually annotated 60 sessions corresponding
to 30 clients, focusing on their treatment outcomes. This annotation was again conducted by the
two co-authors, achieving a Cohen’s kappa coefficient of 0.81, reflecting a high level of agreement.
The results, as presented in Table 5 shows that GPT-4 achieved the highest performance, thus it was
chosen as the Gold Model for generating reference scores in treatment outcomes evaluation task.

Models Accuracy ↑ Precision ↑ Recall ↑ F1Binary ↑ F1Macro ↑ F1Weighted ↑ MSE ↓ MAE ↓
GPT-4 0.7744±0.01 0.6792±0.01 0.7187±0.01 0.6984±0.01 0.7591±0.01 0.7757±0.01 0.1369±0.02 0.2398±0.01

GPT-4o 0.7833±0.02 0.6674±0.02 0.8043±0.03 0.7295±0.02 0.7744±0.02 0.7867±0.02 0.1207±0.01 0.2272±0.02

GPT-4-turbo 0.7800±0.01 0.7503±0.03 0.5933±0.01 0.6623±0.01 0.7495±0.01 0.7734±0.01 0.2379±0.03 0.3754±0.03

GPT-4o-mini 0.4844±0.04 0.4079±0.02 0.9144±0.04 0.5634±0.01 0.4641±0.05 0.4370±0.06 0.1962±0.03 0.3265±0.02

Table 4: Comparison of different models on various performance metrics using human-annotated data in
psychological assessment. Metrics with an upward arrow ↑ indicate higher values are better, while metrics with a
downward arrow ↓ indicate lower values are better. The results show mean values along with standard deviations
for each metric. Cells highlighted in blue represent the best-performing results.

Models Accuracy ↑ Precision ↑ Recall ↑ F1Binary ↑ F1Macro ↑ F1Weighted ↑
GPT-4 0.7444±0.06 0.8285±0.04 0.8406±0.04 0.8344±0.04 0.6370±0.08 0.7423±0.06

GPT-4o 0.6778±0.06 0.8219±0.02 0.7391±0.07 0.7770±0.05 0.5939±0.05 0.6916±0.05

GPT-4-turbo 0.6778±0.06 0.8046±0.02 0.7681±0.11 0.7815±0.05 0.5660±0.04 0.6809±0.04

GPT-4o-mini 0.7222±0.04 0.8625±0.06 0.7681±0.05 0.8090±0.03 0.6410±0.08 0.7306±0.05

Table 5: Comparison of different models on various performance metrics using human-annotated data in
treatment outcomes.

Models. We conducted an investigation into the performance of several closed-source and open-
source LLMs. The closed-source models we tested include GPT-4 (OpenAI et al., 2024), GPT4o,
GPT-4-turbo, and GPT-4o-mini, which represent the latest advancements in proprietary LLMs
developed by OpenAI3. . Additionally, we tested a variety of open-source models, such as Llama3.1-
405B (Dubey et al., 2024), Llama3.1-70B (Dubey et al., 2024), Qwen2-72B (Yang et al., 2024),
Mistral-8X22B (Jiang et al., 2024), and Mistral-8X7B (Jiang et al., 2024). These models vary
significantly in terms of architecture, parameter size, and training data, providing a comprehensive
overview of both commercial and community-driven LLM development. All of these models were
invoked through API platforms4

4.2 MAIN EVALUATION RESULTS

Psychological Assessments. As shown in Table 6, GPT-4 achieved the best performance in symp-
tom detection, excelling in both accuracy and binary F1 score, highlighting its strong ability to
accurately identify symptoms. GPT-4-turbo demonstrated a more conservative approach with higher
precision but lower recall, indicating it was more cautious in detecting symptoms but missed more
cases. GPT-4o-mini excelled in recall but had reduced overall reliability due to a higher rate of
false positives. Among open-source models, Qwen2-72B and Llama3.1-70B showed the closest
performance to GPT-4, though they still fell short. Notably, Mistral-8X7B’s extremely low recall was
caused by a significant number of output formatting errors, leading to evaluation failures. We will
further discuss these formatting issues in Appendix D.

3Specific versions of the OpenAI models used in the tests were gpt-4-0613, gpt-4o-2024-05-13,
gpt-4-turbo-2024-04-09, gpt-4o-mini-2024-07-18.

4For the OpenAI models, we invoked them via https://platform.openai.com, Mistral models
through https://console.mistral.ai/, Llama3.1 models via https://fireworks.ai/, and
Qwen2 through https://www.together.ai/.
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In symptom severity assessment, GPT-4 once again stood out with the lowest MSE and MAE, making
it the most accurate model. Although GPT-4o-mini and GPT-4-turbo showed more balanced results,
they were less precise compared to GPT-4. Among open-source models, Llama3.1-70B performed
the best, though the gap between open-source and closed-source models remained substantial.
Furthermore, GPT-4 exhibited the greatest consistency and reliability, with minimal variance across
runs, indicating robust performance. In contrast, GPT-4o-mini showed more variability in MAE and
MSE, and open-source models generally exhibited less stability compared to their closed-source
counterparts.

Models Accuracy ↑ Precision ↑ Recall ↑ F1Binary ↑ F1Macro ↑ F1Weighted ↑ MSE ↓ MAE ↓
Closed-Source Models

GPT-4 0.7973±0.01 0.7852±0.01 0.7121±0.01 0.7469±0.01 0.7889±0.01 0.7956±0.01 0.2100±0.02 0.3292±0.03

GPT-4-turbo 0.7561±0.00 0.8726±0.02 0.4913±0.01 0.6285±0.01 0.7234±0.00 0.7386±0.00 0.4055±0.05 0.4490±0.03

GPT-4o-mini 0.4915±0.00 0.4467±0.02 0.8824±0.01 0.5931±0.00 0.4576±0.01 0.4359±0.01 0.2245±0.01 0.3329±0.02

Open-Source Models

Llama3.1-405B 0.7291±0.00 0.6960±0.01 0.6306±0.00 0.6616±0.00 0.7179±0.00 0.7269±0.00 0.3922±0.03 0.4476±0.01

Qwen2-72B 0.7385±0.00 0.7405±0.01 0.5815±0.01 0.6513±0.01 0.7210±0.00 0.7322±0.00 0.3962±0.01 0.4559±0.00

Llama3.1-70B 0.7333±0.01 0.7201±0.01 0.5974±0.01 0.6529±0.01 0.7182±0.01 0.7286±0.01 0.3379±0.01 0.4041±0.00

Mistral-8X22B 0.6215±0.00 0.5405±0.00 0.6616±0.02 0.5948±0.00 0.6198±0.00 0.6238±0.00 0.5205±0.03 0.5452±0.02

Mistral-8X7B 0.6070±0.00 0.6158±0.01 0.1710±0.02 0.2672±0.02 0.4993±0.01 0.5364±0.01 1.5711±0.02 1.0927±0.01

Table 6: Performance comparison between closed-source and open-source models across various evaluation
metrics in psychological assessment.

Treatment Outcomes. Table 7 compares the performance of closed-source and open-source models
on treatment outcome evaluation tasks. Among the closed-source models, GPT-4-turbo achieved
the highest scores across multiple metrics, making it the most effective model in treatment outcome
prediction. GPT-4o and GPT-4o-mini displayed competitive performance but lagged slightly behind
GPT-4-turbo. For the open-source models, Llama3.1-405B led the group with the highest accuracy
and macro F1, demonstrating superior performance in treatment outcome tasks. Qwen2-72B and
Llama3.1-70B also performed well, while Mistral-8X7B had the highest recall but struggled with
lower F1 scores, indicating higher sensitivity but less consistent overall performance. Overall, both
closed-source and open-source models showed strong capabilities, with GPT-4-turbo and Llama3.1-
405B emerging as the top performers in their respective categories.

Models Accuracy ↑ Precision ↑ Recall ↑ F1Binary ↑ F1Macro ↑ F1Weighted ↑
Closed-Source Models

GPT-4o 0.6375±0.02 0.7706±0.01 0.7356±0.02 0.7526±0.01 0.5370±0.02 0.6448±0.02

GPT-4-turbo 0.6800±0.01 0.7824±0.01 0.7944±0.01 0.7883±0.00 0.5660±0.01 0.6772±0.01

GPT-4o-mini 0.6317±0.01 0.7727±0.01 0.7211±0.01 0.7459±0.01 0.5380±0.01 0.6420±0.01

Open-Source Models

Llama3.1-405B 0.6958±0.01 0.7965±0.01 0.7989±0.01 0.7976±0.00 0.5925±0.02 0.6951±0.01

Qwen2-72B 0.6725±0.01 0.7747±0.01 0.7944±0.01 0.7844±0.01 0.5515±0.01 0.6679±0.01

Llama3.1-70B 0.6708±0.01 0.7796±0.01 0.7822±0.01 0.7809±0.01 0.5597±0.02 0.6703±0.01

Mistral-8X22B 0.6383±0.01 0.7544±0.00 0.7678±0.01 0.7610±0.01 0.5089±0.01 0.6350±0.01

Mistral-8X7B 0.6825±0.01 0.7469±0.00 0.8722±0.02 0.8046±0.01 0.4779±0.00 0.6413±0.00

Table 7: Performance comparison between closed-source and open-source models across various evaluation
metrics in treatment outcomes.

Impact of Parameters on Performance. As shown in Figure 3, model parameter size has a clear
impact on performance across tasks such as symptom detection, symptom severity evaluation, and
treatment outcome prediction. Larger models consistently outperform smaller models, exhibiting
higher F1 (Weighted) scores and lower MAE. This trend indicates that increasing model size enhances
the model’s ability to handle complex tasks (Wen et al., 2024), especially in identifying subtle patterns
related to psychological symptoms and predicting treatment outcomes.

4.3 ABLATION STUDY

Impact on Items-aware Reasoning. The ablation study, as shown in Figure 4, demonstrates the
significant impact of items-aware reasoning on both psychological assessment and treatment outcomes
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Figure 3: The impact of model parameters on symptom detection, symptom severity evaluation, and treatment
outcome prediction. Dashed lines represent the best-performing closed-source models.

evaluation tasks. Removing this feature led to a substantial decline in performance across all models.
For psychological assessment tasks, models like GPT-4o and GPT-4 experienced noticeable drops
in their ability to accurately detect symptoms and assess severity, as reflected by decreases in F1
scores and increases in error metrics. Similarly, in treatment outcomes evaluation, the absence of
items-aware reasoning resulted in reduced performance, though the impact was less pronounced
compared to psychological assessment. These results underscore the importance of items-aware
reasoning in improving the precision of the models in these tasks.
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Figure 4: The impact of items-aware reasoning on psychological assessment and treatment outcomes evaluation
using human-annotated data across four OpenAI models.

5 CONCLUSION

We introduced IPAEval, which can address the limitations of existing therapeutic outcome evaluation
approaches by shifting the focus from therapist-centered, single-session assessments to a comprehen-
sive, client-informed framework. By leveraging clinical interviews and integrating both cross-session
client-contextual and session-focused client-dynamics assessments, IPAEval provides a more holistic
evaluation of treatment outcomes. Experiments on the TheraPhase dataset validate its effectiveness in
tracking symptom severity and therapeutic progress over multiple sessions, demonstrating significant
improvements over previous single-session models. This advancement highlights the importance of
client-centered, multi-session evaluations for enhancing mental health care and guiding treatment
adjustments.

LIMITATIONS

The limitations of this paper are as follows: (1) Due to the shortage of professional psychological
annotators, only two individuals were involved in a limited amount of data labeling. This resulted in
fewer human-aligned experimental data. Future research should focus on developing more multi-
session datasets that include psychological assessment scores. (2) As the amount of client information
increases, smaller models with fewer parameters struggle to follow instructions effectively. This
limits the scalability and performance of these models in more complex scenarios. Future research
should explore strategies to enhance model adaptability in handling larger client information inputs.
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Verónica Pérez-Rosas, Xinyi Wu, Kenneth Resnicow, and Rada Mihalcea. What makes a good
counselor? learning to distinguish between high-quality and low-quality counseling conversations.
In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual
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A ITEMS-AWARE REASONING PROMPTS IN EXPERIMENTS

Prompt: Items-Aware Reasoning

Role:
Imagine you are a skilled psychologist adept at identifying potential symptoms from interview.
You can explain how these symptoms relate to the SCL-90 symptom checklist and specific
items within it.

Directives:
Your task is to determine the presence or absence of symptoms from the Client’s statements
and provide detailed reasons for your assessment. Extract specific parts related to SCL-90
symptoms from the Client’s statements. For each extracted part, indicate whether the symptom
is present or not, and explain why this text is related to the SCL-90 symptom and specific item.
If a symptom is mentioned but not present, extract that part and explain why the symptom is
not present.SCL-90 is a psychological symptom assessment tool with 90 items, each evaluating
different aspects of psychological distress.

Additional Information:
Symptom Checklist-90:
<Psychometric Test>
Presence of Symptoms: Extract the relevant part of the Client’s statement. Indicate that the
symptom is present. Explain why this text indicates the presence of the SCL-90 symptom and
specify the item. Absence of Symptoms: Extract the part where the symptom is mentioned but
not present. Indicate that the symptom is not present. Explain why this text does not indicate
the presence of the SCL-90 symptom despite the mention.

Output Formatting:
<Format Instructions>

Client Information:
<Interview>

Please extract specific parts related to SCL-90 symptoms from the Client’s statements. For
each extracted part, indicate whether the symptom is present or not, and explain why this text is
related to the SCL-90 symptom and specific item. If a symptom is mentioned but not present,
extract that part and explain why the symptom is not present.
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B PSYCHOLOGICAL ASSESSMENT PROMPTS IN EXPERIMENTS

Prompt: Psychological Assessment

Role:
As a psychologist specializing in this evaluation task, based on the following interview and the
extracted Symptom Checklist-90 (SCL-90) symptom-related content and explanation, provide
a qualitative score (-1-2) for each symptom category.

Score Criteria:
Scoring criteria: -1 (Symptom not addressed in the interview), 0 (Symptom addressed in
the interview, but no symptoms found, no signs of distress or dysfunction), 1 (Minimal
symptoms, minor indications of distress but no significant dysfunction), 2 (Clear symptoms,
clear indications of distress and significant dysfunction).

Directives:
Please note that this qualitative assessment is based on the state at the end of the interview.
There may be noticeable symptoms during the interview, but these symptoms may become
clarified or alleviated as the discussion progresses.

Additional Information:
<Psychometric Test>

Output Formatting:
<Format Instructions>

Client Information:
<Interview>
<Item-aware Reasoning Result>

Please extract specific parts related to SCL-90 symptoms from the Client’s statements. For
each extracted part, indicate whether the symptom is present or not, and explain why this text is
related to the SCL-90 symptom and specific item. If a symptom is mentioned but not present,
extract that part and explain why the symptom is not present.
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SESSION:
Therapist: So, thank you for coming in today.
Client: Yes.
Therapist: How are you feeling today?
Client: I feel great actually.
Therapist: Yeah? Good.
Client: Yeah.
Therapist: Good.
Client: I feel good.
Therapist: And so you did your clarifications, value clarifications-
Client: Yeah.
Therapist: -and what are your top five?
Client: Yes. It was a good, uh, experience for me. It was different. It was different than usual. There
were several things that were different, and, uh, the number one value that I put was self-respect. And
I-I don’t even know if self-respect has ever been in my top five let alone my number one.
Therapist: Really?
Client: Yeah. And, um—
Therapist: Do you have any idea why that is?
Client: I do have an idea, I think, why that is. Um, I think that there’s been a few things that have
happened recently and something that really came to my awareness, when I visited with my family,
is that I have consistently through my whole life, probably, put other people first. And I have
consistently, uh, almost not even considered myself in the equation. It was, uh, kind of sad in a
way, at the time that I realized it. Uh, I didn’t realize how severe it actually was, but I was kind of
glad that I realized it because I feel like it’s never too late to change-
Therapist: True.
Client: -and I feel like I can- I can, uh, respect and value myself just as much as I have other people.
I know that’s important. And I feel like when I do that, I’m a better person for other people as well.
Therapist: Mm-hmm. By not putting yourself on the back burner so much?
......

ITEMS-AWARE REASONING RESULT:
Client Statement: I have consistently through my whole life, probably, put other people first.
And I have consistently, uh, almost not even considered myself in the equation.
Symptom Category: Interpersonal Sensibility
Specific Symptom: Feeling others do not understand the client or are unsympathetic.
Presence: Yes
Explanation: The client’s statement indicates that they have been prioritizing others over themselves,
which could be a sign of feeling misunderstood or not receiving empathy from others.
......

ASSESSMENT SCORE:
.......; Interpersonal Sensitivity: 1;......

Table 8: Items-Aware Reasoning Output Example

C ITEMS-AWARE REASONING OUTPUT EXAMPLE

D OUTPUT FORMATTING ERRORS

In our two experiments, OpenAI series models produced no errors in output formatting, whereas
open-source models encountered numerous issues. Specifically, the Figure 5 below shows the error
statistics for open-source models during the Assessment task, with the main issue being incorrect
output that did not follow the Pydantic-defined JSON format.
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68.9%

12.3%

7.55%

7.55%

3.77%

Mistral 8X7B
Mistral 8X22B
Llama3.1 70B
Llama3.1 405B
Qwen2 72B

Errors

Loading [MathJax]/extensions/MathMenu.js

Figure 5: Error distribution across different models.

20


	Introduction
	Related Work
	Methodology
	Task Definition of IPAEval Framework
	Cross-session Client-contextual Assessment
	Session-focused Client-dynamics Assessment
	TheraPhase Dataset

	Experiments
	Experimental Settings
	Main Evaluation Results
	Ablation Study

	Conclusion
	Items-Aware Reasoning Prompts in Experiments
	Psychological Assessment Prompts in Experiments
	Items-Aware Reasoning Output Example
	Output Formatting Errors

