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ABSTRACT

Offline reinforcement learning is important in many settings with available observational data but
the inability to deploy new policies online due to safety, cost, and other concerns. Many recent
advances in causal inference and machine learning target estimation of “causal contrast” functions
such as CATE, which is sufficient for optimizing decisions and can adapt to potentially smoother
structure. We develop a dynamic generalization of the R-learner (Nie et al., 2021; Lewis & Syrgka-
nis, 2021) for estimating and optimizing the difference of Qπ-functions, Qπ(s, a) −Qπ(s, a0), for
potential discrete-valued actions a, a0, which can be used to optimize multiple-valued actions with-
out loss of generality. We leverage orthogonal estimation to improve convergence rates, even if Q
and behavior policy (so-called nuisance functions) converge at slower rates and prove consistency of
policy optimization under a margin condition. The method can leverage black-box estimators of the
Q-function and behavior policy to target estimation of a more structured Q-function contrast, and
comprises of simple squared-loss minimization.

1 INTRODUCTION AND RELATED WORK

Learning optimal dynamic treatment rules, or sequential policies for taking actions, is important, although often only
observational data is available. Many recent works in offline reinforcement learning develop methodology to evaluate
and optimize sequential decision rules, without the ability to conduct online exploration.

Offline reinforcement learning is closely connected to causal inference. An extensive literature on causal inference and
machine learning establishes methodologies for learning causal contrasts, such as the conditional average treatment
effect (CATE) (Wager & Athey, 2018; Foster & Syrgkanis, 2019; Künzel et al., 2019; Kennedy, 2020), the covariate-
conditional difference in outcomes under treatment and control, which is sufficient for making optimal decisions.
A key “inductive bias” motivation is that the causal contrast (i.e. the difference that actions make on outcomes)
may be smoother or more structured (e.g., sparser) than what the main effects (what happens under either action by
itself). Therefore methods that specifically estimate these contrast functions could potentially adapt to this favorable
structure when it is available. A classically-grounded and rapidly growing line of work on double, orthogonal, or
debiased machine learning (Kennedy, 2022; Chernozhukov et al., 2018) derives improved estimation procedures for
these targets. Estimating the causal contrast can be statistically favorable, while sufficient for decision-making.

In this work, building on recent advances in heterogeneous treatment effect estimation, we focus on estimating anal-
ogous causal contrasts for offline reinforcement learning, namely τπt (s; a, a0) = Qπ

t (s, a) − Qπ
t (s, a0), for possible

actions a, a0 in the action space A. We focus on the case of two actions, though the method generalizes to multi-
ple actions. This is closely related to, but different from advantage functions in reinforcement learning, defined as
Qπ(s, a)− V π(s), the advantage of taking action a beyond the policy. For brevity, to describe statistical behavior, we
denote the binary-action difference-of-Q τπt (s) = Qπ

t (s, 1) − Qπ
t (s, 0), with the understanding that our analysis in

the sequel is a tool for the multiple-action setting as well.

The sequential setting offers even more motivation to target estimation of the contrast: additional structure can arise
from sparsity patterns induced by the joint (in)dependence of rewards and transition dynamics on the (decompositions
of) the state variable. A number of recent works point out this additional structure (Wang et al.; 2022), for example
of a certain transition-reward factorization, first studied by (Dietterich et al., 2018), that admits a sparse Q-function
contrast (Pan & Schölkopf, 2023). (Zhou, 2024b) proposes a variant of the underlying blockwise pattern that also
admits sparse optimal Q functions and policies. Section 1 illustrates how both of these structures have very different
conditional independence assumptions. Methods designed assuming one model is correct may not perform well if it
is not. However, both structures imply the same property on the difference-of-Q functions: sparsity in the endogenous
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Figure 1: (Left) Reward-relevant/irrelevant factored dynamics of (Zhou, 2024b). (Right) Exogenous-Endogenous
MDP model of (Dietterich et al., 2018). The dotted line from at to sρc

t+1 indicates the presence or absence is permitted
in the model.

component. Our method can adapt to such underlying sparsity structure when it is present in the Q-function contrast,
in addition to other scenarios where the contrast is smoother than the Q-functions themselves.

The contributions of this work are as follows: We develop a dynamic generalization of the R-learner (Nie & Wager,
2021; Lewis & Syrgkanis, 2021) for estimating the Q-function contrast. We show theoretical guarantees of improved
convergence rates. Therefore our method leverages behavior policy estimation to improve estimation without suffering
from unstable propensity weights. We illustrate benefits of adapting to structure in synthetic examples.

Related work for our approach. There is a large body of work on offline policy evaluation and optimization in offline
reinforcement learning (Jin et al., 2021; Xie et al., 2021), including approaches that leverage importance sampling or
introduce marginalized versions (Jiang & Li, 2016; Thomas et al., 2015; Kallus & Uehara, 2019a; Liu et al., 2018). For
Markov decision processes, other papers study statistically semiparametrically efficient or doubly-robust estimation,
but of the averaged policy value E[V πe

1 (S1)], rather than MSE convergence of the difference-of-Q function as we
do here (Kallus & Uehara, 2019a;b; Xie et al., 2023; Kallus & Zhou, 2022). The literature on dynamic treatment
regimes (DTRs) studies a method called advantage learning (Schulte et al., 2014), although DTRs in general lack
reward at every timestep, whereas we are particularly motivated on sparsity implications that arise jointly from reward
and transition structure. In particular, beyond policy value estimation, we aim to recover the entire contrast function.

Advantage functions are widely studied in RL and dynamic treatment regimes (Neumann & Peters, 2008; mur, 2003).
However, policy optimization is hard because which contrast it evaluates is time-t policy dependent when optimizing
at time t. Our difference-of-Q functions are independent of candidate time-t policies when optimizing at time t.

(Pan & Schölkopf, 2023) note the analogy with causal contrast estimation and derive a Q-function independent esti-
mator, but in the online setting. After preparing an initial version of this paper, we became aware of the recent work of
Pan & Schölkopf (2024) in the offline setting. While their method elegantly avoids estimating future Q functions, it re-
quires a nonconvex constraint on the action-average of advantages, which is computationally and statistically difficult.
The motivations are different; the methods are complementary. (See appendix for more discussion.) Our identification
argument is different and we focus on improved statistical guarantees.

At a high level, our method is similar to the dynamic DR learner studied in (Lewis & Syrgkanis, 2021) in that we ex-
tend the R-learner identification approach to a sequential setting, although the estimand is quite different. In particular,
generalize structural nested-mean models (SNMMs) by estimating “blip-to-zero” functions but only consider hetero-
geneity based on a fixed initial state and dynamic treatment regimes with terminal rewards.Consequently, our analysis
is similar at a high level. Overall, a closely related work with a similar goal of estimating contrast functionals in rein-
forcement learning is that of (Shi et al., 2022), which derives a pseudo-outcome for estimating the Q-function contrast
in the infinite horizon setting. We focus on the finite-horizon setting and have a different estimation strategy building
on the R-learner Note that the (single-stage) R-learner loss function is an overlap-weighted (Li et al., 2019) regression
against the doubly-robust score (DR-learner (Kennedy, 2020)). (See (Morzywolek et al., 2023; Chernozhukov et al.,
2024)).

We briefly discuss other approaches. (Nie et al., 2021) studies OPE for advantage functions in a special case of
optimal stopping. Prior works that consider policy optimization under a restricted function class introduce difficult
policy-dependent nuisance functions. Our policy optimization does not restrict functional complexity, which would
otherwise require approximation or re-estimating nuisance functions every iteration of policy parameter optimization,
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as in (Xu et al., 2021). We do make a margin assumption to relate convergence of Q-function contrasts to policy value
convergence, analogous to (Shi et al., 2022).

2 METHOD

Problem Setup: We consider a finite-horizon Markov Decision Process on the full-information state space comprised
of a tuple M = (S,A, r, P, γ, T ) of states, actions, reward function r(s, a), transition probability matrix P , discount
factor γ < 1, and time horizon of T steps, where t = 1, . . . , T . We let the state spaces S ⊆ Rd be continuous, and
assume the action space A is finite. A policy π : S 7→ ∆(A) maps from the state space to a distribution over actions,
where ∆(·) is the set of distributions over (·), and π(a | s) is the probability of taking action a in state s. (At times
we overload notation a bit so that π(s) ∈ A indicates the action random variable under π evaluated at state s). Capital
letters denote random variables (St, At, . . . ), lower case letters s, a denote evaluation at a generic value.

The reward is a function of current state and action, hence a random variable; denoted as Rt = Rt(St, At). The value
function is V π

t (s) = Eπ[
∑T

t′=t γ
t′−tRt′ | s], where Eπ denotes expectation under the joint distribution induced by

the MDP M running policy π. The state-action value function, or Q function is Qπ
t (s, a) = Eπ[

∑T
t′=t γ

t′−tRt′ |
s, a]. These satisfy the Bellman operator, e.g. Qπ

t (s, a) = r(s, a) + γE[V π
t+1(st+1) | s, a]. The optimal value and

q-functions are denoted V ∗, Q∗ under the optimal policy. We focus on estimating the difference of Q-functions (each
under the same policy), τπt (s) = Qπ

t (s, 1) − Qπ
t (s, 0). We focus on the offline reinforcement learning setting where

we have access to a dataset of n offline trajectories, D = {(Si
t , A

i
t, R

i
t, S

i
t+1)

T
t=1}ni=1, where actions were sampled

under a behavior policy πb. We state some notational conventions. For some generic function f , and a choice of norm
u ≥ 0, we define the u-norm ∥f(X)∥u := E[

∫
|f(x)|u · p(x)]1/u. In the context of estimation (rather than discussing

identification), we denote the true population functions with a ◦ superscript, i.e. τπ,◦t and so on.

Policy evaluation: Identification. First we overview deriving the estimating moments of our approach. The argu-
ments are broadly a generalization of the so-called residualized R-learner (Nie & Wager, 2021); (Lewis & Syrgkanis,
2021) considers a similar generalization for structural nested mean models without state-dependent heterogeneity. For
this section, we discuss the true population Q, τ, etc., functions without decoration with ◦, introduced later in the
context of estimation.

Our main identifying assumption is that of Markovian sequential unconfoundedness.

Assumption 1 (Sequential unconfoundedness). The underlying dynamics are from a Markov Decision Process M,
and under the behavior policy πb, actions At were taken with probability depending on observed states St alone (and
not on any unobserved states).

This assumption posits that the state space is sufficient for identification. Informally, it assumes the behavior policy
was acting on observed states alone, rather than in a POMDP. Assumption 1 is basically the implicit assumption in RL
based on MDP rather than POMDP. Denote πt+1 = πt+1:T := {πt+1, . . . , πT } for brevity. Then Q

πt+1

t indicates the
Qt function under policy π. For brevity, we further abbreviate Qπ

t := Q
πt+1

t when this is unambiguous. We seek to
estimate:

τπt (St) = Qπ
t (St, 1)−Qπ

t (St, 0), (1)

Note that the Q-function satisfies: Qπ
t (St, At) = E[Rt+γQπ

t+1(St+1, At+1) | St, At]. Under sequential unconfound-
edness and Markovian properties, we obtain the conditional moment:

ϵt = Rt + γQπ
t+1(St+1, At+1)− {Qπ

t (St, 0) +Atτ
π
t (St)}, and E[ϵt | St, At] = 0. (2)

Define the analogue to the marginal outcome function, which is the state-conditional value function under the behavior

policy: m◦,π(St) = V
πb
t ,πt+1

t = Eπb
t
[Rt + γQπ

t+1(St+1, At+1) | St]. Under sequential unconfoundedness,

Rt + γQπ
t+1(St+1, At+1)− ϵ(At) = Qπ

t (St, 0) +Atτ
π
t (St) (3)

mπ
t (St) = Eπb [Rt + γQπ

t+1(St+1, At+1) | St] = Qπ
t (St, 0) + πb(1 | St)τ

π
t (St)

Hence,
Rt + γQπ

t+1(St+1, At+1)−mπ
t (St) = (A− πb(1 | St))τ

π
t (St) + ϵt. (4)
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Algorithm 1 Dynamic Residualized Difference-of-Q-Evaluation

1: Given: πe, evaluation policy; and for sample splitting, partition of D into K folds, {Dk}Kk=1.

2: On Dk, estimate Q̂πe,k(s, a) and behavior policy π̂b,k
t (s). Evaluate the value function via integrating/summing Q̂

over the empirical distribution of actions, a ∼ πb, so that

m̂(s) = Eπb
t
[Rt + γQ̂πe

t+1(St+1, At+1) | St = s].

3: for timestep t = T, . . . , 1 do

4: τ̂t ∈ argminτ

{
K∑

k=1

∑
i∈Dk

(Ri
t + γQ̂π̂,−k

t+1 (Si
t+1, A

i
t+1)− m̂π̂,−k

t (Si
t)− {Ai

t − π̂b,−k
t (Si

t)}τt(Si
t))

2

}
5: end for

The loss function. This motivates the approach based on (penalized) empirical risk minimization:

τt(·) ∈ argmin
τ

{
E
[(
{Rt + γQπ

t+1(St+1, At+1)−mπ
t (St)} − {A− πb

t (1 | St)} · τ(St)
)2]}

(5)

Again, so far we have discussed identification assuming the true Q,m, πb functions, etc. Next we discuss feasible
estimation, and outside of this section we refer to the population-level true nuisance functions as Qπ,◦,mπ,◦, πb,◦, τπ,◦.

Extension to multiple actions. So far we presented the method with A ∈ {0, 1} for simplicity, but all methods in
this paper will extend to the multi-action case. We give the approach discussed in (Nie & Wager, 2021). For multiple
actions, fix a choice a0 ∈ A, and for a ∈ A \ a0, define τπt (s, a) := τπa,t(s) = Qπ

t (s, a)−Qπ
t (s, a0). For k ∈ |A|, let

πb(k | St) = P (At = k | St). Then a multivariate version of the argument gives the analogous loss function, where
⟨·, ·⟩ is the dot product so that ⟨A⃗− π⃗b(St), τ

π
t (St)⟩ =

∑
a∈A\a0

{(I[At = a]− πb(a | St))τ
π
a,t(St)}:

τ⃗t(·) ∈ argmin
τ

{E[({Rt + γQπ
t+1(St+1, At+1)−mπ

t (St)} − ⟨A⃗− π⃗b(St), τ⃗
π
t (St)⟩)2]} (6)

Feasible estimation. In practice, the Q and behavior policy πb functions need to be estimated. Since they require
auxiliary estimation but are not the final targets of analysis, they are termed “nuisance functions” in the causal ML
literature. We introduce some notation before defining the full estimation algorithm. The nuisance vector is η =
[{Qπ

t }Tt=1, {mπ
t }Tt=1, {πb

t}Tt=1]. We optimize a feasible version of the sequential loss minimization approach implied
by eq. (6) with estimated nuisances (see Algorithm 1). Given an evaluation policy πe, first fit estimates of the Q
function and the behavior policy. Then, evaluate the loss function in eq. (6) and estimate τt.

The Q function nuisance can be estimated with by-now standard approaches such as fitted-Q-evaluation (Le et al.,
2019; Chakraborty & Murphy, 2014; Duan et al., 2021), minimum-distance estimation for conditional moment re-
strictions/GMM (Kallus & Uehara, 2019a), or the finite-horizon analogous version of a DR-learner. Estimating the
behavior policy is a classic probabilistic classification or multi-class classification problem, though often the behavior
policy is known by design.

Cross-fitting. We also introduce cross-fitting, which will differ slightly between policy evaluation and optimization:
splitting the dataset D into K many folds (preserving trajectories, i.e. randomizing over trajectory index i), and
learning the nuisance function η−k on {Dk′}k′∈{[K]\k}. (In scenarios with possible confusion we denote the nuisance
function η(−k) instead.) In evaluating the loss-function, we evaluate the nuisance function η−k using data from the
held-out kth fold. Given the cross-fitting procedure, we introduce the empirical squared loss function:

L̂t(τ, η) =
K∑

k=1

∑
i∈Dk

(Ri
t + γQ̂π,−k

t+1 (Si
t+1, A

i
t+1)− m̂π,−k

t (Si
t)− {Ai

t − π̂b,−k
t (1 | Si

t)}τt(Si
t))

2

and let the population loss function Lt(τ, η) be the population expectation of the above.

Policy optimization. The sequential loss minimization approach also admits an policy optimization procedure. The
policy is greedy with respect to the estimated τt. We describe the algorithm in Algorithm 2. We use a slightly different
cross-fitting approach for policy optimization. We introduce an additional fold, upon which we alternate estimation
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Algorithm 2 Dynamic Residualized Difference-of-Q Optimization

1: Given: Partition of D into 3 folds, {Dk}3k=1.
2: Estimate π̂b

t on D1.
3: At time T: Set Q̂T (s, a) = 0. Estimate mT = Eπb [RT | ST ] on D1 and τ̂T on Dk(T ), where k(t) = 2 if t is odd

and k(t) = 3 if t is even.
Optimize, for two actions π̂T (s) = I[τ̂T (s) > 0].

4: for timestep t = T − 1, . . . , 1 do
5: Estimate Qπ̂t+1 on D1. Evaluate m

π̂t+1

t . Estimate τ̂
π̂t+1

t on Dk(t) by minimizing the empirical loss:

τ̂t(·) ∈ argminτ
∑

i∈Dk(t)

(
Ri

t + γQ̂
π̂,(1)
t+1 (Si

t+1, A
i
t+1)− m̂

π̂,(1)
t (Si

t)− {Ai
t − π̂

b,(1)
t (Si

t)}τt(Si
t)
)2

6: Optimal policy is greedy with respect to the difference-of-Q function. For two actions, π̂t(s) = I[τ̂ π̂t+1

t (s) > 0]

. Else for multiple actions, π̂t(s) ∈ argmaxa′∈A\a0
τ̂
π̂t+1

t (s, a′) if maxa′∈A\a0
τ̂
π̂t+1

t (s, a′) > 0, else a0.
7: end for

of τ̂t. So, overall we use three folds: one for estimating nuisance functions η, and the other two for estimating τ̂
π̂t+1

t .
On these two other folds, between every timestep, we alternate estimation of τ̂t on one of them, in order to break
dependence between the estimated optimal forwards policy π̂t+1 and τ̂t (and therefore the greedy policy π̂t).

Finally, note that the expectation of the empirical squared loss will not in general be an unbiased estimate of the true
squared error, due to the squaring and the expectation over the next transition.
Lemma 1 (Proxy Sequential R-learner loss: Excess Variance ).

E[L̂t(τ
π, η)]− Lt(τ

π, η) = Var[max
a′

Qπ (St+1, a
′) | πb

t ]

Combining Lemma 1 with the identifying equations eq. (3), observe that the R-learner loss function is a “proxy loss”
for estimation of the difference-of-Q function, with an additional variance term due to the squaring over next-transition
stochasticity: E[L̂t (τ

π, η)] = E[Varπb
[A | St](τ

◦,π(St)− τπt (St))
2] + Var[maxa′ Qπ (St+1, a

′) | πb
t ]. In particular,

it estimates a action-variance-weighted version of the MSE for the difference-of-Q-function, upweighting states with
a higher probability of seeing either action.

3 ANALYSIS
We study the improved statistical rates of convergence from orthogonal estimation for policy evaluation (Theorems 1
and 2) and show that this implies convergent policy optimization (Theorem 3). While Theorems 1 and 2 are applica-
tions of orthogonal statistical learning to our new estimand, we establish Neyman-orthogonality of our loss function
(eq. (6)). Policy optimization is more challenging; the novelty of Theorem 3 is showing that estimation error from
policy-dependent nuisance functions is of higher-order than the evaluation rates. Our analysis generally proceeds
under the following assumptions.
Assumption 2 (Independent and identically distributed trajectories). We assume that the data was collected under a
stationary behavior policy, i.e. not adaptively collected from a policy learning over time.
Assumption 3 (Boundedness). Vt ≤ BV , τ ≤ Bτ

Assumption 4 (Bounded transition density). Transitions have bounded density: P (s′ | s, a) ≤ c. Let dπ(s) denote
the marginal state distribution under policy π. Assume that dπb

t
(s) < c, for t = 1, . . . , T.

Assumption 2 highlights that we do not handle the challenges of dependent data or adaptive estimation, we can extend
with standard tools. Assumption 4 permits translating error bounds learned under one state distribution to another,
and it implies an all-policy concentrability coefficient. It is a common assumption and includes a wide class of
MDPs (Munos & Szepesvári, 2008). Recent works improve upon all-policy concentrability though often with some
pessimism or algorithmic modification. We leave improving upon this for future work.

Next we establish convergence rates for τ̂π , depending on convergence rates of the nuisance functions. Broadly we
follow the analysis of (Foster & Syrgkanis, 2019; Lewis & Syrgkanis, 2021) for orthogonal statistical learning. We

5
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establish Neyman-orthogonality of the loss function in Appendix A.2, though this is overall fairly similar to prior work.
The analysis considers some generic candidate τ̂ with small excess risk relative to the projection onto the function
class, i.e. as might arise from an optimization algorithm with some approximation error. For a fixed evaluation policy
πe, define the projection of the true advantage function onto Ψn, τπ

e,n
t = arg infτt∈Ψn

t
∥τt − τ◦,π

e

t ∥2, and the error
νπ

e

t = τ̂π
e

t − τn,π
e

t of some estimate τ̂π
e

t to projection onto the function class:
Theorem 1 (Policy evaluation ). Suppose

{
sups,t E[(At − πb

t )(At − πb
t ) | s]

}
≤ C and Assumptions 1 to 4. Consider

a fixed evaluation policy πe. Consider any estimation algorithm that produces an estimate τ̂π
e

=
(
τπ

e

1 , . . . , τπ
e

T

)
, with

small plug-in excess risk at every t, with respect to any generic candidate τ̃π
e

, at some nuisance estimate η̂, i.e.,

LD,t(τ̂
πe

t ; η̂)− LD,t(τ̃
πe

t ; η̂) ≤ ϵ(τnt , η̂).

Let ρt denote product error terms:

ρπ
e

t (η̂) = Bτ
2∥(π̂b

t − πb,◦
t )2∥u +Bτ∥(π̂b

t − πb,◦
t )(m̂πe

t −mπe,◦
t )∥u

+ γ(Bτ∥(π̂b
t − πb,◦

t )(Q̂πe

t+1 −Qπe,◦
t+1 )∥u + ∥(m̂πe

t −mπe,◦
t )(Q̂πe

t+1 −Qπe,◦
t+1 )∥u). (7)

Then, for σ > 0, and u−1 + u−1 = 1,

λ

2
∥νπ

e

t ∥22 −
σ

4
∥νπ

e

t ∥2u ≤ ϵ(τ̂π
e

t , η̂) +
2

σ

(
∥(τπ

e,◦ − τπ
e,n

t )∥2u + ρπ
e

t (η̂)2
)
.

In the above theorem, ϵ(τ̂π
e

t , η̂) is the excess risk of the empirically optimal solution. Note that in our setting, this
excess risk will be an approximation error incurred from the proxy loss issue described in Lemma 1.

The bias term is ∥(τπe,◦− τπ
e,n

t )∥2u, which describes the model misspecification bias of the function class parametriz-
ing Q−function contrasts, Ψ.

The product error terms ρπ
e

t (η̂) highlight the reduced dependence on individual nuisance error rates. We will instanti-
ate the previous generic theorem for the projection onto Ψn, τπ

e,n
t , also accounting for the sample splitting. We will

state the results with local Rademacher complexity, which we now introduce. For generic 1-bounded functions f in a
function space f ∈ F , f ∈ [−1, 1], the local Rademacher complexity is defined as follows:

Rn(F ; δ) = Eϵ1:n,X1:n

[
supf∈F :∥f∥2≤δ

1
n

∑n
i=1 ϵif (Xi)

]
The critical radius δ2 more tightly quantifies the statistical complexity of a function class, and is any solution to the
so-called basic inequality, Rn(F ; δ) ≤ δ2. The star hull of a generic function class F is defined as star(F) = {cf :
f ∈ F , c ∈ [0, 1]}. Bounds on the critical radius of common function classes like linear and polynomial models, deep
neural networks, etc. can be found in standard references on statistical learning theory, e.g. (Wainwright, 2019). We
can obtain mean-squared error rates for policy evaluation via specializing Theorem 1 to the 2-norm and leveraging
results from (Foster & Syrgkanis, 2019).
Assumption 5 (Product error rates on nuisance function evaluation). Fix an evaluation policy πe. Suppose each
of E[∥(π̂b

t − πb,◦
t )∥22], E[∥(π̂b

t − πb,◦
t )(m̂πe

t − mπe,◦
t )∥22], E[∥(π̂b

t − πb,◦
t )(Q̂πe

t+1 −Qπe,◦
t+1 )∥22], and E[∥(m̂πe

t −
mπe,◦

t )(Q̂πe

t+1 −Qπe,◦
t+1 )∥22] are of order O(δ2n/2 + ∥τπ

e,◦
t − τπ

e,n
t ∥22).

Denote the leading order of the product-error rate as ρ, i.e. O(δ2n/2 + ∥τπ
e,◦

t − τπ
e,n

t ∥22) = O(n−ρ).

Assumption 5 summarizes both the product-error estimation rates and the misspecification error for τ , ∥τπ
e,◦

t −
τπ

e,n
t ∥22, in the rate term ρ. We further assume well-specification, leaving a more refined analysis for future work.

Assumption 6 (Well-specified estimation of τ ). ∥τπ
e,◦

t − τπ
e,n

t ∥22 = 0.

Note that Assumption 6 pertains to the well-specification of the function class for estimating τ , not Q. Meanwhile,
Assumption 5 requires consistent estimation of the Q function. Therefore we inherit potentially stringent structural
restrictions for Q-function estimation such as Bellman completeness or linear Bellman completeness (Foster et al.,
2021). Our orthogonal estimation enjoys the so-called “rate-double robustness” property, i.e. requiring only product-
error n− 1

2 convergence of Q, πb, but not the “mixed-bias” property of double-robustness wherein only one of Q or πb

need to be well-specified for unbiased estimation (Rotnitzky et al., 2021).
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Theorem 2 (MSE rates for policy evaluation). Suppose
{
sups,t E[(At − πb

t )(At − πb
t ) | s]

}
≤ C and Assumptions 1

to 4. Suppose Assumption 5 holds with rate ρ, i.e. Consider a fixed policy πe. Then

E[∥τ̂π
e

t − τπ
e,◦

t ∥22] = O
(
δ2n/2 + ∥τπ

e,◦
t − τπ

e,n
t ∥22

)
For example, this states that estimation of πb, Q

πe

needs to be only n− 1
4 convergent to guarantee that the product error

rate of Assumption 5 holds with rate n− 1
2 . Standard methods for Q-function estimation alone would require n− 1

2

convergence directly. Working with the orthogonalized estimate results in the weaker product-error rate requirements
included above. However, our estimating moments do include the Q function nuisances, and quarter-root rates are
required for estimating both the Q and πb functions.

Policy optimization. Convergence of τt implies convergence in policy value. We quantify this with the margin
assumption, which is a low-noise condition that quantifies the gap between regions of different optimal action (Tsy-
bakov, 2004). It is commonly invoked to relate estimation error of plug-in quantities to decision regions, in this case
the difference-of-Q functions to convergence of optimal decision values.
Assumption 7 (Margin (Tsybakov, 2004)). Assume there exist some constants α, δ0 > 0 such that

P

(
max

a
Q∗

t (s, a)− max
a′∈A\argmaxa Q∗

t (s,a)
Q∗

t (s, a
′) ≤ ϵ

)
= O (εα) ,∀t ∈ 1, . . . , T

The probability density in Assumption 7 is respect to Lebesgue measure over the state space. Note that (Hu et al.,
2024) establishes margin constants for linear and tabular MDPs; α = ∞ for tabular MDPs, α = 1 for linear MDPs
where Q∗ is linear, and for nonlinear Q∗ under structural assumptions. The margin assumption allows us to translate
advantage-function convergence rates to the policy value convergence rates, summarized in the following Lemma.
Lemma 2 ( Advantage estimation error to policy value via margin.). Suppose Assumptions 1, 4 and 7 (margin as-
sumption holds with α). Suppose that with high probability ≥ 1 − n−κ for any finite κ > 0, the following sup-norm
convergence holds with some rate b∗ > 0,

sups∈S,a∈A |τ̂ π̂t+1

t (s)− τ
π∗
t+1,◦

t (s)| ≤ Kn−b∗,

then
∣∣∣E[V ∗

t (St)− V π̂τ̂
t (St)]

∣∣∣ ≤ (1−γT−t)
1−γ cK2n−b∗(1+α) +O(n−κ),

and
{∫

(Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ ))

2
ds
}1/2

≤ (1−γT−t)
1−γ cK2n−b∗(1+α) +O(n−κ).

Else, assume that ∥τ̂nt (s)− τ◦t (s)∥2 ≤ K
(
n−b∗

)
, for some rate b∗ > 0. Then∣∣∣E[V ∗

t (St)− V π̂τ̂
t (St)]

∣∣∣ = O
(
n−b∗( 2+2α

2+α )
)
, and

{∫
(Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ ))
2
ds
}1/2

= O
(
n−b∗( 2+2α

2+α )
)
.

Next we study policy optimization. Note that Lemma 2 relies on convergence of estimated difference-of-Q under
the estimated-optimal policy to the true difference-of-Q under the optimal policy, while our earlier guarantees in
Theorems 1 and 2 only imply convergence for the estimated-optimal policy alone. The remaining difficulty is the gap
introduced by nuisance functions at estimated vs. true optimal policies; we show with induction and Assumption 7
that it is a higher-order estimation error. We state a simplified version of the full theorem in the main text; see the
appendix for a more general statement.
Theorem 3 (Policy optimization bound). Suppose Assumptions 1 to 4. Further, suppose that Q◦ satisfies Assumption 7
(margin) with α > 0. Suppose the product error rate conditions of Assumption 5 hold for each t for for π̂t+1, the
data-optimal policies evaluated along the algorithm steps, with rates ρt for each timestep. Suppose that then for π̂t,
Theorem 2 holds. Denote the slowest such product-error-rate over timesteps as ρ1:T = mint{ρt}. Then,

∥τ̂ π̂t+1

t − τ
◦,π∗

t+1

t ∥2 ≤ O(n−ρ1:T ), and
∣∣∣E[V π∗

1 (S1)− V π̂τ̂
1 (S1)]

∣∣∣ = O(n−{ρ1:T } 2+2α
2+α ). (8)

The main takeaway is that convergent policy evaluation admits convergent policy optimization, even though the nui-
sance functions evaluate an estimated-optimal, rather than population-optimal policy. This is because our method
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Algorithm 3 Stationary Infinite-Horizon Dynamic Residualized Difference-of-Q Optimization

1: Given: Partition of D into 3 folds, {Dk}3k=1.
2: Estimate π̂b

t on D1.
3: Estimate Q̂π̂′

on D1 with offline policy optimization. Evaluate mπ̂′

t .
4: Estimate τ̂ π̂

′

t on Dk(t) by minimizing the empirical loss:

τ̂t(·) ∈ argminτ
∑

i∈Dk(t)

(
Ri

t + γQ̂π̂′
(Si

t , A
i
t)− m̂π̂′

t (Si
t)− {Ai

t − π̂
b,(1)
t (Si

t)}τt(Si
t)
)2

5: Policy optimization: For two actions, π̂t(s) = I[τ̂ π̂′

t (s) > 0] . Else for multiple actions, π̂t(s) ∈
argmaxa′∈A\a0

τ̂ π̂
′

t (s, a′) if maxa′∈A\a0
τ̂ π̂

′

t (s, a′) > 0, else a0.

Table 1: Validation: 1d example, linear FQE vs orthogonal τ estimation. Entries: Mean-squared error of estimated τ
function, mean + 1.96 standard errors.

Method (n) 5.0 · 101 1.3 · 103 2.5 · 103 3.8 · 103 5.0 · 103
FQE 4 · 10−2 ± 2 · 10−2 2 · 10−3 ± 10−3 10−3 ± 10−4 10−3 ± 10−4 4 · 10−4 ± 10−4

OrthDiff-Q 6 · 10−2 ± 3 · 10−2 3 · 10−3 ± 10−3 2 · 10−3 ± 10−3 2 · 10−3 ± 10−3 2 · 10−3 ± 10−4

introduces auxiliary estimation at every timestep. Although this prevents the accumulation of faster exponentiated
convergence, it also protects the method from error accumulation from policy-dependent nuisance estimation.

Our Theorem 3 presents the main technical novelty in the analysis, whereas Theorems 1 and 2 follow similar ap-
proaches as in previous literature. Because we estimate the optimal policy from time t + 1 forwards, this introduces
challenges in showing benefits of orthogonality due to the policy-dependent nuisance, Qπt+1

t function. We show
that the margin condition allows us to establish that the error due to policy-dependent nuisances, under an estimated
optimal policy, is higher-order relative to the time-t estimation of the advantage functions.

Extension to stationary discounted infinite-horizon setting. The identification argument extends to the stationary
discounted infinite-horizon setting. For policy optimization, we make a small modification: instead of iterative opti-
mization and estimation, we first conduct offline policy optimization to estimate the optimal policy and its Q function,
π̂′ and Q̂π̂′

. We describe the algorithm in Algorithm 3. This can be done with a variety of methods that are common
and popular in practice, such as DQN (Mnih et al., 2015), fitted-Q-iteration (Chen & Jiang, 2019), or other algorithms.

4 EXPERIMENTS
1d validation. In a very small 1d toy example (Sec 5.1, (Kallus & Uehara, 2019a)) we validate our method. See
Appendix C of the appendix for more details.

Adapting to structure in τ(s). Recent research highlights the joint implications of blockwise conditional indepen-
dence properties in RL, where some components are “exogenous” or irrelevant to rewards and actions (Wang et al.,
2022; Wang et al.; Dietterich et al., 2018). Often these methods are designed around specific underlying assump-
tions, and therefore may be brittle under different substructures. Pretesting for the presence or absence of graphical
restrictions warrants caution due to poor statistical properties. We advocate a different approach: by estimating the
difference-of-Q functions, we can exploit statistical implications of underlying structure via sparse τ , without vulner-
ability to assumptions on the underlying d.g.p.

We investigate the benefits of targeting estimation of the difference-of-Qs in two different graphical substructures,
replicated in Section 1, proposed in Zhou (2024b); Dietterich et al. (2018). Orthogonal causal contrast estimation is
robust under noisy nuisance functions, as confirmed by our theory, and that it can adapt to a variety of structures.

First we describe the modified Reward-Filtered DGP (left, fig. 2) of (Zhou, 2024b). In the DGP, |S| = 100 though
the first |ρ| = 15 dimensions are the reward-relevant sparse component, where ρ is the indicator vector of the sparse
support, and A = {0, 1}. The reward and states evolve according to rt(s, a) = β⊤ϕt(s, a) + a ∗

∑5
k=1 sk/2 +

ϵr, st+1(s, a) = Mas+ ϵs, satisfying the graphical restrictions of Section 1. Therefore the transition matrices satisfy
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Figure 2: Adapting to structure. Interacted setting where E[M1 −M0] = 0.1 · I.

the blockwise form Ma =

[
Mρ→ρ

a 0
Mρ→ρc

a Mρc→ρc
a

]
. We generate the coefficient matrices M0,M1 with independent

normal random variables ∼ N(0.2, 1). The nonzero mean ensures the beta-min condition. We normalize Mρ→ρ
a to

have spectral radius 1, then introduce mild instability in the exogenous component by dividing Mρc→ρc
a by 0.8 times

the largest eigenvalue. Therefore, recovering the sparse component is stable while including distracting dimensions
destabilizes. The zero-mean noise terms are normally distributed with standard deviations σs = 0.3, σr = 0.5. In the
estimation, we let ϕ(s, a) = ⟨s, sȧ, 1⟩ is the interacted state-action space. The behavior policy is a mixture of logistic,
with coefficients ∼ N(0, 0.3), and 20% probability of uniform random sampling. The evaluation policy is logistic,
with coefficients ∼ Unif[−0.5, 0.5]. (We fix the random seed).

In Figure 2 we compare against baselines. In blue is FQE-Ridge, i.e. naive fitted-Q-evaluation with ridge regression.
In dotted cyan is FQE-RF, the reward-filtered method of (Zhou, 2024b). Next we have two variants of our framework:
in dotted green τ -TL which uses reward-based thresholding to estimate τ on the recovered support, and dotted-red
τ -TL-η̂ϵ, the same method with sample splitting with noisy nuisances. With τ -TL-η̂ϵ, we investigate semi-synthetic
settings with noisy nuisance functions by adding N(0, n−1/4) noise to nuisance function predictions. For comparison
to illustrate a setting with slow nuisance function convergence, we also include in dot-dashed purple FQE-TL-η̂ϵ,
which adds n−1/4 noise to the oracle difference-of-Q function (estimated with LASSO). For our methods, we solve
the loss function minimization exactly with CVXPY (and l1 norm regularization).

We describe the results left to right. We display the mean over 100 replications (fixing the coefficient matrices and
vectors, etc. with the same random seed); except for sample-splitting where we display the median. (With small
n, sample splitting suffers finite-sample issues of small data splits, though this vanishes as n increases). The y-axis
is the normalized MSE (we divide by the square of the range of the true difference of Qs), and the x axis is the
number of episodes, on a log scale. First on the left, we consider the previously mentioned reward-filtered DGP.
The tailored method of (Zhou, 2024a) is well-specified. For the reward-filtered DGP, we compare against FQE ridge
regression, which we also use as a nuisance estimator for our approach. When compared to oracle-sparse difference-
of-Q estimation, naive ridge FQE even diverges. However, our methods with thresholded LASSO do well, even if
we plug-in the nuisance Q function estimated with Ridge regression. We do see that orthogonality can provide an
estimation rate speed up in the case of noisy nuisances, i.e. the red-dotted line with noisy nuisance functions indicates
the robustness of orthogonal estimation to slower nuisance function convergence. (The additional sample splitting
leads to transient small-data issues and affects the constants in the rate of convergence, but not the rate.)

Next we slightly modify the graphical structure. Our methods adapt to the underlying sparsity in the difference-of-
Q functions, even if the exact graphical independences differ. In all the experiments, naive cross-validation does
poorly. This is consistent with the research literature since cross-validation for predictive error doesn’t ensure support
recovery, unlike thresholded LASSO, and suffers additional challenges of hyperparameter tuning in offline RL.

In “Misaligned endo-exo”, we follow the same data-generating process as for the ”Reward-Filtered DGP” described
earlier, but we change the blockwise conditional independences to follow the exogeneous-endogenous model of
(Dietterich et al., 2018) (see Section 1, right). We additionally added dense rewards to the reward vector, adding
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Table 2: Performance comparison on different sample numbers under the nonlinear setting.

Method (n) 100 200 400 600 800
FQE 2.367± 2.157 0.587± 0.772 1.157± 2.219 1.793± 1.618 4.123± 3.901
DiffQ 2.212± 2.376 0.415± 0.463 1.228± 1.831 1.929± 2.126 2.440± 1.912

DiffQ+MI 2.104± 2.392 0.280± 0.222 1.179± 1.840 1.286± 1.123 2.342± 1.812

β⊤
denseϕt(s, a) where the entries of βdense are 1 w.p. 0.9. In this setting, reward sparsity of R(s, a), a ∈ {0, 1}

alone does not recover the sparse component. Reward-filtered thresholded LASSO is simply misspecified and does
very poorly (MSE greater than graph limits). Likewise, in small samples, vanilla thresholded LASSO FQE (FQE-TL,
dark-blue) simply includes too many extraneous dimensions which destabilize estimation. In contrast for small-data
regimes, imposing thresholded LASSO on the difference of Q functions remains stable.

The final DGP of “Nonlinear main effects” introduces nonlinear main effects: again we generate a 50% dense vector
βdense and we add s⊤βdense + 3 sin(πs49s48) + 0.5(s49 − 0.5)2 + 0.5(s48 − 0.5)2. (These nonlinear main effects
are therefore disjoint from the sparse set and sparse difference-of-Q terms). For small n, FQE wrongly includes
extraneous dimensions that destabilize estimation, and our methods directly estimating τ with reward-thresholded-
LASSO outperform naive FQE with thresholded-LASSO regularization for small data sizes.

Extending to nonlinear settings: mutual information regularization. Our experiments generally indicate that reg-
ularization that achieves support recovery is necessary. To illustrate how the loss function approach permits more
complex parametrizations, we now consider neural-nets and introduce a heuristic regularizer based on mutual in-
formation regularization. We use a cartpole-with-distractors environment, appending additional autoregressive noise
variables to the state representation of CartPole (Brockman et al., 2016). We adapt a specific cartpole-with-distractors
experimental setup found in Hao et al. (2024), which focuses on off-policy evaluation with abstractions , so the meth-
ods are not comparable.1 Given this environment, which is a long finite-horizon environment with time-homogenous
transitions, we learn this as a γ = 0.99 discounted infinite-horizon problem and pool the data across timesteps.

We explore the use of mutual information (MI) as a regularization term to optimize our loss function over a simpler
representation recovers information related to the loss function, and discards irrelevant information that is unrelated
to the proxy loss for the difference-of-Q functions. We use a mutual information regularizer (MIR), L̂MI(ϕ, θ), to
encourage decomposing the state S into independent nonlinear representations Xϕ

c , X
θ
a , parametrized respectively

by ϕ, θ. As mutual information quantifies the dependency between two variables, it equals zero if and only if the
variables are (marginally) independent. We parametrize the difference-of-Q function as τ(Xϕ

c ), depending only on the
the confounding information Xϕ

c which is relevant to the difference-of-Q loss function, while the auxiliary information
Xθ

a is independent of the loss function. We also add a reconstruction loss function L̂rec(ϕ, θ) which ensures that these
two representations jointly recover the state. These additional loss functions are weighted by hyperparameters λm, λr.

L̂nl(τ, η;ϕ, θ) = L̂(τϕ, η) + λmL̂MI(ϕ, θ) + λrL̂rec(ϕ, θ),

where L̂MI = |Î(Xϕ
a ;X

θ
c )|, L̂rec = E[(Xϕ

a +Xθ
c − S)2]

Estimating mutual information is challenging. We use a recently developed mutual information neural-networks based
estimator, abbreviated MINE (Belghazi et al., 2018a). (See Appendix C for more details). MINE defines a neural
information measure IΛ(Xa, Xc) = supλ∈Λ EPXaXc

[Tλ]− log(EPXa⊗PXc
[eTλ ]). Usually MI requires functional form

access to probability densities, though only samples from the joint distribution in machine learning-based methods are
available. MINE empirically uses the samples of joint PXaXc and marginals PXa ⊗ PXc distribution and obtains the
empirical distribution P̂(n) associated to n i.i.d. samples.

We illustrate how our method can improve upon naive FQE (learned with neural nets) learned on the full state space.
We compare to an oracle difference-of-Q function obtained by differencing Q estimates from FQE from a large dataset,
n = 2000, trained only on the original 4-dim state space without distractors. We compare to our DiffQ estimation,
parametrizing τ with neural nets, and a regularized version. Model selection in offline RL is somewhat of an open
problem, we leave investigating approaches for future work.

1In the language of abstractions, the reward-filtered data-generating process is an example of sub-component structure where
linear sparse estimation recovers a model-irrelevant abstraction.
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A PROOFS

A.1 PRELIMINARIES

Lemma 3 (Excess Variance ).
E[L̂t(τ, η)]− Lt(τ, η) = Var[max

a′
Q (St+1, a

′) | πb
t ]

Proof.

E[L̂t(τ, η)]

= E[
(
{Rt + γQπe

t+1(St+1, At+1)−mπ
t (St)} ± E[γQπe

t+1 | St, π
b
t ]− {A− πb

t (1 | St)} · τ(St)
)2

]

= E[
(
{Rt + γE[Qπe

t+1 | St, π
b
t ]−mπ

t (St)} − {A− πb
t (1 | St)} · τ(St) + γ(Qπe

t+1(St+1, At+1)− E[Qπe

t+1 | St, π
b
t ])
)2

]

= E[
(
{Rt + γT Qπe

t+1 −mπ
t } − {A− πb

t (1 | St)} · τ(St)
)2

] (squared loss of identifying moment)

+ E[γ(Qπe

t+1(St+1, At+1)− E[Qπe

t+1 | St, π
b
t ])

2] (residual variance of Qt(s, a)−Rt(s, a))

+ E[
{
Rt + γE[Qπe

t+1 | St, π
b
t ]−mπ

t (St)− {A− πb
t (1 | St)} · τ(St)

}
· γ(Qπe

t+1(St+1, At+1)− E[Qπe

t+1 | St, π
b
t ])]

Note the last term = 0 by iterated expectations and the pull-out property of conditional expectation.

A.2 ORTHOGONALITY

Below we will omit the π superscript; the analysis below holds for any valid π. Define νt = τ̂t − τnt , ν
◦
t = τ̂t − τ◦t .

We define for any functional L(f) the Frechet derivative as:

DfL(f)[ν] =
∂

∂t
L(f + tν)

∣∣∣∣
t=0

Higher order derivatives are denoted as Dg,fL(f, g)[µ, ν].
Lemma 4 (Universal Orthogonality).

Dη,τtLt(τ
n
t ; τ

n
t+1, η

∗)[η − η∗, νt] = 0

Proof of Lemma 4. For brevity, for a generic f , let {f}ϵ denote f + ϵ(f − f◦). Then the first Frechet derivatives are:
d

dϵτ
Lt(τ̃ , η

◦)[τ − τ̃ , η − η◦] = E
[{

Rt + γ{Qπe,◦
t+1 }ϵ − {mπe,◦

t }ϵ − (At − {πb
t
◦}ϵ)τ

}
(At − {πb,◦

t }ϵ)(τ̃ − τ)
]

d

dϵe

d

dϵτ
Lt (τ̃ , η

◦) [η − η◦, τ − τ ]
∣∣∣
ϵ=0

= E
[(

πb
t − πb,◦

t

)
τ(τ − τ̃)(At − et)]+ E

[{
R+ γQπe

t+1 −m
πe,◦
t − (At − et)

}
(τ − τ̃) · − (et − e◦t )

]
= 0

d

dϵQt+1

d

dϵτ
Lt (τ̃ , η

◦) [η − η◦, τ − τ̃ ]
∣∣∣
ϵ=0

= E[γ(Qπe

t+1 −Qπe,◦
t+1 )(At − πb,◦

t )(τt − τ̃t)]]

= 0

d

dϵmt

d

dϵτ
Lt (τ̃ , η

◦) [η − η◦, τ − τ̃ ]
∣∣∣
ϵ=0

= E[−(m
πe

t −m
πe,◦
t )(At − πb,◦

t )(τt − τ̃t)]

= 0
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Lemma 5 (Second order derivatives). For Qt+1, Q
◦
t+1 evaluated at some fixed policy πe:

Dηt,ηtLt[η̂t − η◦t , η̂t − η◦t ]

= E
[
τ2t

(
π̂b
t − πb,◦

t

)2]
+ E

[
(π̂b

t − πb,◦
t )τt(m̂t −m◦

t )
]
+ E

[
(π̂b

t − πb,◦
t )τtγ(Q̂t+1 −Q◦

t+1)
]

− E
[
(m̂t −m◦

t ) γ
(
Q̂t+1 −Q◦

t+1

)]
Proof of Lemma 5. Below, the evaluation policy πe is fixed and omitted for brevity. Note that

DeLD[ê− e◦] = E[(Rt + γQt+1 − πb⊤Qt + (A− πb
t )τt)(−τt)(ê− e◦)]

Dmt
LD[m̂t −m◦

t ] = E[(Rt + γQt+1 − πb⊤Qt + (A− πb
t )τt)(−1) ∗ (mt −m◦)]

By inspection, note that the nonzero terms of the second-order derivatives are as follows:

Dπb
t ,π

b
t
Lt[π̂

b
t − πb,◦

t , π̂b
t − πb,◦

t ] = E
[
τ2t

(
π̂b
t − πb,◦

t

)2]
Dmt,Qt+1

Lt[Q̂t+1 −Q◦
t+1, m̂t −m◦

t ] = E
[
− (m̂t −m◦

t ) γ
(
Q̂t+1 −Q◦

t+1

)]
Dmt,πb

t
Lt[π̂

b
t − πb,◦

t , m̂t −m◦
t ] = E

[
(π̂b

t − πb,◦
t )τt(m̂t −m◦

t )
]

DQt+1,πb
t
Lt[π̂

b
t − πb,◦

t , Q̂t+1 −Q◦
t+1] = E

[
(π̂b

t − πb,◦
t )τtγ(Q̂t+1 −Q◦

t+1)
]

By the chain rule for Frechet differentiation, we have that

Dηt,ηt
Lt[η̂t − η◦t , η̂t − η◦t ] = Dπb

t ,π
b
t
Lt[π̂

b
t − πb,◦

t , π̂b
t − πb,◦

t ]

+Dmt,πb
t
Lt[π̂

b
t − πb,◦

t , m̂t −m◦
t ] +DQt+1,πb

t
Lt[π̂

b
t − πb,◦

t , Q̂t+1 −Q◦
t+1] +Dmt,Qt+1

Lt[Q̂t+1 −Q◦
t+1, m̂t −m◦

t ]

A.3 PROOF OF SAMPLE COMPLEXITY BOUNDS

Proof of Lemma 2.

V ∗
t (s)− V πτ̂

t (s) = V ∗
t (s)− V πτ̂

t (s)±Qπ∗
(s, πτ̂ )

= Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ ) +Q∗

t (s, π̂τ̂ )− V π̂τ̂
t (s)

≤ γEπ̂t

[
V π∗

t+1 − V π̂τ̂
t+1 | s

]
+Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )

Therefore for any t and Markovian policy π inducing a marginal state distribution:

E[V ∗
t (s)]− E[V πτ̂

t (s)] ≤ γE
[
Eπ̂t

[V π∗

t+1 − V π̂τ̂
t+1 | s]

]
+ E[Q∗

t (s, π
∗)−Q∗

t (s, π̂τ̂ )] (9)

Assuming bounded rewards implies that P (st+1 | s, a) ≤ c, which remains true under the state-action distribution
induced by any Markovian policy π(s, a), including the optimal policy. Therefore the second term of the above
satisfies:

Eπ[Q
∗
t (st, π

∗)−Q∗
t (st, π̂τ̂ )] ≤ c

∫
{Q∗

t (s, π
∗)−Q∗

t (s, π̂τ̂} ds, (10)

and fixing t = 1, we obtain:

E[Q∗
1(s1, π

∗)−Q∗
1(s1, π̂τ̂ )] ≤ c

∫
{Q∗

1(s, π
∗)−Q∗

1(s, π̂τ̂} ds.

Next we continue for generic t and bound the right hand side term of eq. (10).
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First we suppose we have a high-probability bound on ℓ∞ convergence of τ̂ . Define the good event

Eg =

{
sup

s∈S,a∈A
|τ̂ π̂t+1(s)− τπ

∗
t+1,◦(s)| ≤ Kn−b∗

}
A maximal inequality gives that P (Eg) ≥ 1− n−κ. We have that∫

{Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ )} ds =

∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} I [Eg] ds+
∫

{Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ )} I

[
Ec
g

]
ds

(11)
Assuming boundedness, the bad event occurs with vanishingly small probability n−κ, which bounds the second term
of eq. (15).

For the first term of eq. (15), note that on the good event, if mistakes occur such that π∗
t (s) ̸= π̂t(s), then the

true contrast function is still bounded in magnitude by the good event ensuring closeness of the estimate, so that∣∣∣τπ∗
t+1,◦

t (s)
∣∣∣ ≤ 2Kn−b∗ . And if no mistakes occur, at s the contribution to the integral is 0. Denote the mistake region

as
Sm = {s ∈ S :

∣∣∣τπ∗
t+1,◦

t (s)
∣∣∣ ≤ 2Kn−b∗}

Therefore∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} ds ≤
∫
s∈Sm

{Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ )} I [s ∈ Sm] I [Eg] ds+O(n−κ) (12)

Note also that (for two actions), if action mistakes occur on the good event Eg , the difference of Q functions must be
near the decision boundaries so that we have the following bound on the integrand:

|Q∗(s, π∗)−Q∗(s, π̂)| ≤ |τπ
∗
t+1,◦| ≤ 2Kn−b∗. (13)

Therefore, ∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} ds ≤ O(n−κ) +Kn−b∗
∫

I [s ∈ Sm] ds

≤ O(n−κ) + (Kn−b∗)(Kn−b∗α)

= O(n−κ) + (K2n−b∗(1+α)) (14)

where the first inequality follows from the above, and the second from assumption 7 (margin).

Combining eqs. (9) and (14), we obtain:

E[V ∗
t (St)]− E[V π̂τ̂

t (St)] ≤
T∑

t=1

γtc

{∫
Qπ̂τ̂

t (s, π∗(s))−Qπ̂τ̂
t (s, π̂τ̂ )ds

}
≤ (1− γT )

1− γ
cT{O(n−κ) + (K2n−b∗(1+α))}

We also obtain analogous results for norm bounds:{∫
(Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ ))
u
ds

}1/u

≤
{∫

s∈Sm

(Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ ))

uI [s ∈ Sm] I [Eg] ds
}1/u

+O(n−κ)

≤ (1− γT )

1− γ
cT{O(n−κ) + (K2n−b∗(1+α))}

The results under an integrated risk bound assumption on convergence of τ follow analogously as (Shi et al., 2022),
which we also include for completeness. For a given ε > 0, redefine the mistake region parametrized by ϵ:

Sϵ =
{
max

a
Q∗(s, a)−Q∗ (s, π̂(s)) ≤ ε

}
.
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Again we obtain the bound by conditioning on the mistake region:∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} ds =
∫

{Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ )} I [Sϵ] ds+

∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} I [Sc
ϵ ] ds

(15)
Using similar arguments as earlier, we can show by Assumption 7:∫

{Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ )} I(s ∈ S∗)ds ≤ ε

∫
x

I(s ∈ S∗)ds = O
(
ε1+α

)
.

As previously argued, we can show mistakes π∗
t (s) ̸= π̂t(s) occur only when

max
a

Q∗
t (s, a)−Q∗(s, π̂(s)) ≤ 2

∣∣∣τ̂ π̂t+1(s)− τπ
∗
t+1,◦(s)

∣∣∣ . (16)

It follows that ∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} I [s ∈ Sc
ϵ ] ds

≤E
∫ 4

∣∣∣τ̂ π̂t+1(s)− τπ
∗
t+1,◦(s)

∣∣∣2
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )}
I [s ∈ Sc

ϵ ] ds

≤4

ε

∫ ∣∣∣τ̂ π̂t+1(s)− τπ
∗
t+1,◦(s)

∣∣∣2 ds = O
(
ε−1|I|−2b∗

)
.

Combining this together with (E.106) and (E.107) yields that∫
{Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )} ds = O
(
ε1+α

)
+O

(
ε−1|I|−2b∗

)
.

The result follows by choosing ε = n−2b∗/(2+α) to balance the two terms.

For the norm bound, the first term is analogously bounded as O
(
ε1+α

)
:{∫

(Q∗
t (s, π

∗(s))−Q∗
t (s, π̂τ̂ ))

2I[s ∈ S∗]ds

}1/2

= O
(
ε1+α

)
.

For the second term,

{∫
(Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ ))
2I [s ∈ Sc

ϵ ] ds

}1/2

≤


∫ 4

∣∣∣τ̂ π̂t+1(s)− τπ
∗
t+1,◦(s)

∣∣∣2
Q∗

t (s, π
∗(s))−Q∗

t (s, π̂τ̂ )


2

I [s ∈ Sc
ϵ ] ds


1/2

≤4

ε
{
∫ ∣∣∣τ̂ π̂t+1(s)− τπ

∗
t+1,◦(s)

∣∣∣4 ds}1/2 = O
(
ε−1|I|−2b∗

)
.

The result follows as previous.

Proof of Theorem 1. In the following, at times we omit the fixed evaluation policy πe from the notation for brevity.
That is, in this proof, τ̂t, τnt are equivalent to τ̂π

e

t , τn,π
e

t . Further define

νt = τ̂t − τnt , ν
◦
t = τ̂t − τ◦t

Strong convexity of the squared loss implies that:

Dτt,τtL (τt, η̂) [νt, νt] ≥ λ ∥νt∥22

therefore
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λ

2
∥νt∥22 ≤ LD(τ̂t, η̂)− LD(τnt , η̂)−DτtLD(τnt , η̂)[νt] (17)

≤ ϵ(τ̂t, η̂)−DτtLD(τnt , η
◦)[νt]

+DτtLD(τnt , η
◦)[νt]−DτtLD(τnt , η̂)[νt]

We bound each term in turn.

To bound |DτtLD(τnt , η
◦)[νt]| , note that

DτtLD(τnt , η
◦)[νt] = E[(R+ γQt+1 − V

πb,πt+1:T

t +
(
A− πb

t

)
τt))

(
A− πb

t

)
νt]

and by the properties of the conditional moment at the true τ◦,

= E[(R+ γQt+1 − V
πb,πt+1:T

t +
(
A− πb

t

)
τ◦t ))

(
A− πb

t

)
νt] = 0

Therefore,
DτtLD(τnt , η

◦)[νt] = −E[(τ◦ − τnt )(A− πb
t )(A− πb

t )(τ̂t − τnt )]

Note that in general, for generic p, q, r such that 1/p + 1/q + 1/r = 1 we have that E[fgh] ≤ ∥fg∥p′∥h∥r ≤
∥f∥p∥g∥q∥h∥r where p′ = pq

p+q or 1
p′ =

1
p + 1

q or 1 = 1
p/p′ +

1
q/p′ .

Therefore,

DτtLD(τnt , η
◦)[νt] ≤ |DτtLD(τnt , η

◦)[νt]|
≤ E[(τ◦ − τnt )E[(At − πb

t )(At − πb
t ) | St](τ̂t − τnt )]

≤ ∥(τ◦ − τnt )∥u∥(τ̂t − τnt )∥u ·
{
sup
s

E[(At − πb
t )(At − πb

t ) | s]
}

where u, u satisfy 1
u + 1

u = 1.

Next we bound DτtLD(τnt , η
◦)[νt]−DτtLD(τnt , η̂)[νt] by universal orthogonality. By a second order Taylor expan-

sion, we have that, where ηϵ = η◦ + ϵ(η̂ − η◦).

Dτt (LD(τnt , η
◦)− LD(τnt , η̂)) [νt] =

1

2

∫ 1

0

Dη,η,τt(τ
n
t , τ

◦
t+1, ηϵ)[η̂ − η◦, η̂ − η◦, νt]

We can deduce from Lemmas 4 and 5 that the integrand is:

E
[
τ2t

(
π̂b
t − πb,◦

t

)2
νt

]
+ E

[
(π̂b

t − πb,◦
t )τt(m̂t −m◦

t )νt

]
+ E

[
(π̂b

t − πb,◦
t )τtγ(Q̂t+1 −Q◦

t+1)νt

]
− E

[
(m̂t −m◦

t ) γ
(
Q̂t+1 −Q◦

t+1

)
νt

]
≤Bτ

2∥
(
π̂b
t − πb,◦

t

)2
∥u∥νt∥u +Bτ∥(π̂b

t − πb,◦
t )(m̂t −m◦

t )∥u∥νt∥u + γBτ∥(π̂b
t − πb,◦

t )(Q̂t+1 −Q◦
t+1)∥u∥νt∥u

+ γ∥(m̂t −m◦
t )(Q̂t+1 −Q◦

t+1)∥u∥νt∥u

Putting the bounds together, we obtain:

λ

2
∥νt∥22 ≤ ϵ(τ̂t, η̂) + ∥νt∥u∥(τ◦ − τnt )∥u

+ ∥νt∥u
(
Bτ

2∥
(
π̂b
t − πb,◦

t

)2
∥u +Bτ∥(π̂b

t − πb,◦
t )(m̂t −m◦

t )∥u + γBτ∥(π̂b
t − πb,◦

t )(Q̂t+1 −Q◦
t+1)∥u

+γ∥(m̂t −m◦
t )(Q̂t+1 −Q◦

t+1)∥u
)

(18)
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Let ρπ
e

t (η̂) denote the collected product error terms, e.g.

ρπ
e

t (η̂) = Bτ
2∥
(
π̂b
t − πb,◦

t

)2
∥u +Bτ∥(π̂b

t − πb,◦
t )(m̂t −m◦

t )∥u

+ γ(Bτ∥(π̂b
t − πb,◦

t )(Q̂t+1 −Q◦
t+1)∥u + ∥(m̂t −m◦

t )(Q̂t+1 −Q◦
t+1)∥u)

Analogously we drop the πe decoration from ρt in this proof. The AM-GM inequality implies that for x, y ≥ 0, σ > 0,
we have that xy ≤ 1

2 (
2
σx

2 + σ
2 y

2). Therefore

λ

2
∥νt∥22 −

σ

4
∥νt∥2u ≤ ϵ(τ̂t, η̂) +

1

σ
(∥(τ◦ − τnt )∥u + ρt(η̂))

2 (19)

and since (x+ y)2 ≤ 2(x2 + y2),

λ

2
∥νt∥22 −

σ

4
∥νt∥2u ≤ ϵ(τ̂t, η̂) +

2

σ

(
∥(τ◦ − τnt )∥2u + ρt(η̂)

2
)

Proof of Theorem 2. Let L̂S,t, L̂S′,t denote the empirical loss over the samples in S and S′; analogously η̂S , η̂S′ are
the nuisance functions trained on each sample split.

Define the loss function ℓt on observation O = {(St, At, Rt, St+1)}Tt=1:

ℓt(O; τt; η̂) =
(
{Rt + Q̂

πe
t+1

t+1 (St+1, At+1)− m̂t(St)} − {A− π̂b
t (1 | St)} · τt(St)

)2
and the centered loss function ∆ℓ, centered with respect to τ̂nt :

∆ℓt(O; τt; η̂) = ℓt(O; τt; η̂)− ℓt(O; τ̂nt ; η̂).

Assuming boundedness, ℓt is L−Lipschitz constant in τt:

|∆ℓt(O; τt; η̂)−∆ℓt(O; τ ′t ; η̂)| ≤ L∥τt − τt∥2.
Note that ℓ(O, τ̂nt , η̂) = 0. Define the centered average losses:

∆L̂S,t(τt, η̂) = L̂S,t(τt, η̂)− L̂S,t(τ̂
n
t , η̂) = ÊS

n/2[∆ℓt(O, τT , η̂)]

∆LS,t(τt, η̂) = LS,t(τt, η̂)− LS,t(τ̂
n
t , η̂) = E[∆ℓt(O, τT , η̂)]

Assume that δn is an upper bound on the critical radius of the centered function class {Ψn
t,i − τ̂nt,i, with δn =

Ω( r log logn
n ), and define δn,ξ = δn + c0

√
log(c1T/ξ)

n for some c0, c1.

By Lemma 7 (Lemma 14 of (Foster & Syrgkanis, 2019) on local Rademacher complexity decompositions), with high
probability 1-ξ, for all t ∈ [T ], and for c0 a universal constant ≥ 1.

|∆LS,t(τ̂t, η̂S′)−∆LD,t(τ̂t, η̂S′)| = |∆LS,t(τ̂t, η̂S′)−∆LS,t(τ̂
n
t , η̂S′)− (∆LD,t(τ̂t, η̂S′)−∆LD,t(τ̂

n
t , η̂S′))|

≤ c0

(
rmδn/2,ξ∥τ̂t − τ̂nt ∥22 + rmδ2n/2,ξ

)
Assuming realizability of τ̂t, we have that 1

2

(
∆L̂S,t(τ̂t, η̂S′) + ∆L̂S′,t(τ̂t, η̂S)

)
≤ 0. Then with high probability

≥ 1− 2ξ:
1

2
(∆LD,t(τ̂t, η̂S′) + ∆LD,t(τ̂t, η̂S))

≤1

2
|∆LD,t(τ̂t, η̂S′)−∆LS,t(τ̂t, η̂S′) + ∆LD,t(τ̂t, η̂S)−∆LS′,t(τ̂t, η̂S)|

≤1

2
|∆LD,t(τ̂t, η̂S′)−∆LS,t(τ̂t, η̂S′)|+ |∆LD,t(τ̂t, η̂S)−∆LS′,t(τ̂t, η̂S)|

≤c0

(
rmδn/2,ξ∥τ̂t − τ̂nt ∥2 + rmδ2n/2,ξ

)
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The ϵ excess risk term in Theorem 1 indeed corresponds to one of the loss differences defined here, i.e.
∆LD,t (τ̂t, η̂S) := ϵ(τ̂nt , τ̂t, ĥS). Therefore, applying Theorem 1 with u = u = 2 and σ = λ with the above bound,
and averaging the sample-split estimators, we obtain

λ

4
∥νt∥22 ≤ 1

2
(ϵ(τ̂t, η̂S) + ϵ(τ̂t, η̂S′)) +

2

λ

∥τ◦t − τ̂nt ∥
2
2 +

∑
s∈{S,S′}

ρt(η̂s)
2


We further decompose the excess risk of empirically-optimal τ̂t relative to the population minimizer to instead bound
by the error of τ̂t to the projection onto Ψ, τ̂nt , since ∥τ̂t − τ◦t ∥

2
2 ≤ ∥τ̂t − τ̂nt ∥

2
2 + ∥τ̂nt − τ◦t ∥

2
2 , we obtain

λ

4
∥τ̂t − τ◦t ∥22 ≤ c0

(
rmδn/2,ξ∥τ̂t − τ̂nt ∥2 + rmδ2n/2,ξ

)
+

8 + λ2

4λ
∥τ◦t − τnt ∥

2
2 +

2

λ

∑
s∈{S,S′}

ρt(η̂s)
2

Again using the AM-GM inequality xy ≤ 1
2

(
2
σx

2 + σ
2 y

2
)
, we bound

c0

(
rmδn/2,ξ∥τ̂t − τ̂nt ∥2 + rmδ2n/2,ξ

)
≤ c0

2
r2m2(1 +

2

ϵ
)δ2n/2,ξ +

ϵ

4
∥τ̂t − τ̂nt ∥22

≤ c0r
2m2(1 +

1

ϵ
)δ2n/2,ξ +

ϵ

4
(∥τ̂t − τ◦t ∥22 + ∥τ◦t − τ̂nt ∥22)

Therefore,

λ− ϵ

4
∥τ̂t − τ◦t ∥22 ≤ c0r

2m2(1 +
1

ϵ
)δ2n/2,ξ +

(
8 + λ2

4λ
+

ϵ

4

)
∥τ◦t − τnt ∥

2
2 +

2

λ

∑
s∈{S,S′}

ρt(η̂s)
2

Choose ϵ ≤ λ/8 so that

λ

8
∥τ̂t − τ◦t ∥22 ≤ c0r

2m2(1 +
8

λ
)δ2n/2,ξ +

(
4 + λ2

2λ

)
∥τ◦t − τnt ∥

2
2 +

2

λ

∑
s∈{S,S′}

ρt(η̂s)
2

≤
(
1 +

8

λ
+

λ

2

)
(c0r

2m2δ2n/2,ξ + ∥τ◦t − τnt ∥
2
2 +

∑
s∈{S,S′}

ρt(η̂s)
2)

and therefore

∥τ̂t − τ◦t ∥22 ≤
(
8

λ
(1 +

8

λ
) + 4

)
(c0r

2m2δ2n/2,ξ + ∥τ◦t − τnt ∥
2
2 +

∑
s∈{S,S′}

ρt(η̂s)
2)

Taking expectations:

E[∥τ̂t − τ◦t ∥22] ≤
(
8

λ
(1 +

8

λ
) + 4

)
(c0r

2m2δ2n/2 + ∥τ◦t − τnt ∥
2
2 + max

s∈{S,S′}
E[ρt(η̂s)2])

Therefore, if the product error rate terms are all of the same order as the estimation order terms:

E[∥π̂b
t − πb,◦

t ∥22] = O(δ2n/2 + ∥τ◦t − τnt ∥
2
2)

E[∥(π̂b
t − πb,◦

t )(m̂t −m◦
t )∥22] = O(δ2n/2 + ∥τ◦t − τnt ∥

2
2)

E[∥(π̂b
t − πb,◦

t )(Q̂t+1 −Q◦
t+1)∥22] = O(δ2n/2 + ∥τ◦t − τnt ∥

2
2)

E[∥(m̂t −m◦
t )(Q̂t+1 −Q◦

t+1)∥22] = O(δ2n/2 + ∥τ◦t − τnt ∥
2
2)
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Full statement of Theorem 3:

Theorem 4 (Policy optimization bound, full statement of Theorem 3). Suppose Assumptions 1 to 4. Further, suppose
that Q◦ satisfies Assumption 7 (margin) with α > 0. Suppose the product error rate conditions hold for each t for
data-optimal policies evaluated along the algorithm, i.e. for each t, for π̂t+1, each of E[∥(π̂b

t − πb,◦
t )∥22], E[∥(π̂b

t −
πb,◦
t )(m̂

π̂t+1

t −m
◦,π̂t+1

t )∥22], E[∥(π̂b
t − πb,◦

t )(Q̂
π̂t+2

t+1 −Q
◦,π̂t+2

t+1 )∥22], and E[∥(m̂t −m◦
t )(Q̂

◦,π̂t+2

t+1 −Q
◦,π̂t+2

t+1 )∥22] are of
order O(δ2n/2 + ∥τ π̂t+1,◦

t − τ
π̂t+1,n
t ∥22). Suppose that then for π̂t, Theorem 2 holds, and the critical radius δn/2 and

for time t, function class specification error ∥τ π̂t+1,◦
t − τ

π̂t+1,n
t ∥2 satisfy the root-mean-squared-error rate conditions.

That is, for rates ρ
(c)
t , ρ

(Ψ)
t , we have that δ2n/2 = K2

rn
−2ρ

(c)
t , ∥τ π̂t+1,◦

t − τ
π̂t+1,n
t ∥22 = K2

Ψn
−2ρ

(Ψ)
t . Define for a

generic t, the slowest rate after t as ρ
(·)
≥t = mint′≥t{ρ(·)t′ }. Then, for (·) ∈ {(c), (Ψ)}. Then, with high probability

≥ n−κ,∥τ̂ π̂t+1

t − τ
◦,π∗

t+1

t ∥ ≤ O(δn/2 + ∥τ◦,π̂t+1

t − τ
n,π̂t+1

t ∥2) +Kn−Rt . where

Rk = min
(
ρ
(c)
k+1 ·

2+2α
2+α , ρ

(Ψ)
k+1 ·

2+2α
2+α ,

{
mink′≥k+1(ρ

(c)
k′ , ρ

(Ψ)
k′ )

}
· 2+2αT−k′

2+α

)
.

Further suppose that for t′ ≥ t, we have that ρ(·)t ≤ ρ
(·)
t′ , for (·) ∈ {(c), (Ψ)}, i.e. the estimation error rate is

nonincreasing over time. Then,

∥τ̂ π̂t+1

t − τ
◦,π∗

t+1

t ∥2 ≤ O(δn/2 + ∥τ◦,π̂t+1

t − τ
n,π̂t+1

t ∥2), (20)

and ∣∣∣E[V π∗

1 (S1)− V π̂τ̂
1 (S1)]

∣∣∣ = O(n−min{ρ(c)
≥1

,ρ
(Ψ)
≥1

} 2+2α
2+α ).

Proof of Theorem 3. Preliminaries We introduce some additional notation. For the analysis of implications of policy
optimization, we further introduce notation that parametrizes the time-t loss function with respect to the time-(t+ 1)
policy. In analyzing the policy optimization, this will be used to decompose the policy error arising from time steps
closer to the horizon. Define

LD(τnt , τ
′
t+1, η̂) = E

[(
{Rt + γQ

πτ′
t+1

t+1 (St+1, At+1)− Vπb
t ,π

′
τt+1

(St)} − {A− πb
t (1 | St)} · τ(St)

)2]
where πτ ′

t+1
(s) ∈ argmax τ ′t+1(s). That is, the second argument parameterizes the difference-of-Q function that

generates the policy that oracle nuisance functions are evaluated at.

Then, for example, the true optimal policy satisfies that π∗
t ∈ argmax τ◦t (s). We define the oracle loss function with

nuisance functions evaluated with respect to the optimal policy π∗.

LD(τnt , τ
◦, η̂) = E

[(
{Rt + γQ

π∗
τ◦
t+1

t+1 (St+1, At+1)−m◦(St)} − γ{A− πb
t (1 | St)} · τ(St)

)2
]

In contrast, the empirical policy optimizes with respect to a next-stage estimate of the empirical best next-stage policy
π̂τ̂t+1

. That is, noting the empirical loss function:

LD(τnt , τ̂t+1, η̂) = E
[(

{Rt + γQ
π̂τ̂t+1

t+1 (St+1, At+1)−m◦(St)} − γ{A− πb
t (1 | St)} · τ(St)

)2]
Step 1: Applying advantage estimation results. At every timestep, the first substep is to estimate the Q-function
contrast, τ̂ π̂t+1

t . The assumptions on product error nuisance rates imply that for a fixed π̂t+1 that we would obtain
estimation error

E
[
∥τ̂ π̂t+1

t − τ
π̂t+1,◦
t ∥22

]
= O

(
δ2n/2 +

∥∥∥τπe,◦
t − τπ

e,n
t

∥∥∥2
2

)
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Step 2: Establishing policy consistency. Applying Lemma 2 requires a convergence rate of τ̂ π̂t+1

t to τ̂
π∗
t+1

t . The
estimation error guarantees on the contrast function, however, are for the policy π̂t+1. We obtain the required bound
via induction. At a high level, the estimation error arising from π̂t+1 vs π∗

t+1 too eventually is integrated; so when the
margin exponent α > 0, these policy error terms are higher-order and vanish at a faster rate.

Importantly, we suppose the product error rate conditions hold for each t for data-optimal policies evaluated along
the algorithm, i.e. for each t, for each t, for π̂t+1, each of E[∥(π̂b

t − πb,◦
t )∥22], E[∥(π̂b

t − πb,◦
t )(m̂

π̂t+1

t −m
◦,π̂t+1

t )∥22],
E[∥(π̂b

t − πb,◦
t )(Q̂

π̂t+2

t+1 − Q
◦,π̂t+2

t+1 )∥22], and E[∥(m̂t −m◦
t )(Q̂

◦,π̂t+2

t+1 − Q
◦,π̂t+2

t+1 )∥22] are of order O(δ2n/2 + ∥τ π̂t+1,◦
t −

τ
π̂t+1,n
t ∥22).

Step 2a: induction hypothesis.

Next we show the induction hypothesis.

First we consider the base case: When t = T , τT is independent of the forward policy so that ∥τ̂ π̂T − τ◦,π
∗

T ∥ =
∥τ̂T − τ◦T ∥. Then the base case follows by Theorem 2.

Suppose it is true that for timesteps k ≥ t+ 1, we have that

∥τ̂ π̂k+1

k − τ
◦,π∗

k+1

k ∥ = O(δn/2 + ∥τ◦,π̂k+1

k − τ
n,π̂k+1

k ∥2) +Kn−Rk , (21)

where

Rk = min

(
ρ
(c)
k+1 ·

2 + 2α

2 + α
, ρ

(Ψ)
k+1 ·

2 + 2α

2 + α
, −{ min

k′≥k+1
(ρ

(c)
k′ , ρ

(Ψ)
k′ )} · 2 + 2α

2 + α

T−k′)
. (22)

And therefore, applying Lemma 2, that∣∣∣E[V π∗

k − V π̂τ̂

k ]
∣∣∣ = O(n−min{ρ(c)

k ,ρ
(Ψ)
k } 2+2α

2+α ) + o(n−min{ρ(c)
k ,ρ

(Ψ)
k } 2+2α

2+α ). (23)

We will show that the induction hypothesis implies

∥τ̂ π̂t+1

k − τ
◦,π∗

t+1

k ∥ ≤ O(δn/2 + ∥τ◦,π̂t+1

k − τ
n,π̂t+1

t ∥2) +Kn−Rt .

and ∣∣∣E[V π∗

k − V π̂τ̂

k ]
∣∣∣ = O(n−min{ρ(c)

k ,ρ
(Ψ)
k } 2+2α

2+α ) + o(n−min{ρ(c)
k ,ρ

(Ψ)
k } 2+2α

2+α )

First decompose the desired error ∥τ̂ π̂t+1

k − τ
◦,π∗

t+1

k ∥ as:

∥τ̂ π̂t+1

k − τ
◦,π∗

t+1

k ∥ ≤ ∥τ̂ π̂t+1

k − τ
◦,π̂t+1

k ∥+ ∥τ◦,π̂t+1

k − τ
◦,π∗

t+1

k ∥ (24)

The first term is the policy evaluation estimation error, and under the product error rate assumptions , Theorems 1
and 2 give that E[∥τ̂ π̂t+1

k − τ
◦,π̂t+1

k ∥22] = O(δ2n/2 + ∥τ◦,π̂t+1

k − τ
n,π̂t+1

k ∥22). The second term of the above depends on
the convergence of the empirically optimal policy π̂; we use our analysis from Lemma 2 to bound the impact of future
estimates of difference-of-Q functions using the induction hypothesis. The following analysis will essentially reveal
that the margin assumption of Assumption 7 implies that the error due to the empirically optimal policy is higher-order,
and the first term (time−t estimation error of τ̂k) is the leading term.

As in eq. (9), we have that:

V ∗
t (s)− V πτ̂

t (s) ≤ γEπ̂t

[
V π∗

t+1 − V π̂τ̂
t+1 | st

]
+Q∗

t (s, π
∗)−Q∗

t (s, π̂τ̂ ).

Decompose:

∥τ◦,π̂t+1

t − τ
◦,π∗

t+1

t ∥ ≤
∑
a

∥Qπ∗
t+1

t (s, a)−Q
π̂t+1

t (s, a)∥
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By definition of τ and ±V
π̂t+1,π

∗
t+2

t+1 , for each a, we have that

∥Qπ∗
t+1

t (s, a)−Q
π̂t+1

t (s, a)∥

= ∥Eπa
t
[V

π∗
t+1

t+1 − V
π̂t+1

t+1 | St]∥

≤ ∥Eπa
t
[V

π∗
t+1

t+1 − V
π̂t+1,π

∗
t+2

t+1 | St]∥+ ∥Eπa
t
[V

π̂t+1,π
∗
t+2

t+1 − V
π̂t+1

t+1 | St]∥

= ∥Eπa
t
[Q

π∗
t+2

t+1 (St+1, π
∗
t+1)−Q

π∗
t+2

t+1 (St+1, π̂t+1) | St]∥+ γ∥Eπa
t
[Eπ̂t+1

[V
π∗
t+2

t+2 − V
π̂t+2

t+2 | St]]∥ (25)

≤ c

{∫
(Q

π∗
t+2

t+1 (s, π∗
t+1)−Q

π∗
t+2

t+1 (s, π̂t+1))
2ds

}1/2

+ γ∥Eπa
t
[Eπ̂t+1

[V
π∗
t+2

t+2 − V
π̂t+2

t+2 | St]]∥ (26)

where the last inequality follows by Assumption 4 and the policy-convolved transition density.

Next we bound the first term using the margin analysis of Lemma 2 and the inductive hypothesis. Supposing the
product error rates are satisfied on the nuisance functions for estimation of τ̂t+1, the induction hypothesis gives that

E[∥τ̂ π̂t+2

t+1 − τ
◦,π∗

t+2

t+1 ∥2] = O
(
δn/2 + ∥τπ

e,◦
t − τnt ∥2 + n−Rt+1

)
.

The induction hypothesis gives the integrated risk rate assumption on τ̂t+1 to apply Lemma 2,{∫
(Q

π∗
t+2

t+1 (s, π∗
t+1)−Q

π∗
t+2

t+1 (s, π̂t+1))
2ds

}1/2

≤ (1− γT−t−1)

1− γ
c(T − t− 1){O(n−κ) +Kn−min{r(c)t+1,r

(Ψ)
t+1,Rt+1}(1+α)}.

Combining with the previous analysis, we obtain:

∥τ̂ π̂t+1

t − τ
◦,π∗

t+1

t ∥22 ≤ O(δ2t,n/2 + ∥τ◦,π̂t+1

t − τ
n,π̂t+1

t ∥22) +O(n
−min

{
ρ
(c)
t+2,ρ

(Ψ)
t+2,Rt+2

}
2+2α
2+α )}

+
(1− γT−t−1)

1− γ
c(T − t− 1){O(n−κ) +Kn−min{ρ(c)

t+1,ρ
(Ψ)
t+1,Rt+1} 2+2α

2+α } (27)

from eq. (25) and appendix A.3.

Hence we obtain the inductive step and the result follows.

If we further assume that for t′ ≥ t, we have that ρ(·)t ≤ ρ
(·)
t′ , for (·) ∈ {(c), (Ψ)}, i.e. the estimation error rate is

nonincreasing over time, and that α > 0 (i.e. Assumption 7, the margin assumption, holds with exponent α > 0, then
we can see from the result that the integrated risk terms obtain faster rates, hence are higher-order, and the leading
term is the auxiliary estimation error of the Q-function contrast.

B RESULTS USED FROM OTHER WORKS

Here we collect technical lemmas from other works, stated without proof.

Lemma 6 (Lemma 18 of (Lewis & Syrgkanis, 2021)). Consider any sequence of non-negative numbers a1, . . . , am
satisfying the inequality:

at ≤ µt + ct
m

max
j=t+1

aj

with µt, ct ≥ 0. Let c := maxt∈[m] ct and µ := maxt∈[m] µt. Then it must also hold that:

at ≤ µ
cm−t+1 − 1

c− 1
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Lemma 7 (Lemma 14 of (Foster & Syrgkanis, 2019), see also results on local Rademacher complexity (Wainwright,
2019)). Consider a function class F , with supf∈F ∥f∥∞ ≤ 1, and pick any f∗ ∈ F . Let δ2n ≥ 4d log(41 log(2c2n))

c2n
be

any solution to the inequalities:

∀t ∈ {1, . . . , d} : R (star (F|t − f∗
t ) , δ) ≤ δ2.

Moreover, assume that the loss ℓ is L-Lipschitz in its first argument with respect to the ℓ2 norm. Then for some universal
constants c5, c6, with probability 1− c5 exp

(
c6nδ

2
n

)
,

|Pn (Lf − Lf∗)− P (Lf − Lf∗)| ≤ 18Ldδn {∥f − f∗∥2 + δn} , ∀f ∈ F .

Hence, the outcome f̂ of constrained ERM satisfies that with the same probability,

P
(
Lf̂ − Lf∗

)
≤ 18Ldδn

{∥∥∥f̂ − f∗
∥∥∥
2
+ δn

}
.

If the loss Lf is also linear in f , i.e. Lf+f ′ = Lf +Lf ′ and Lαf = αLf , then the lower bound on δ2n is not required.

C EXPERIMENTAL DETAILS

All experiments were ran either on a Macbook Pro M1 with 16gb RAM and 8 CPU cores or on a computer cluster
with 64 CPU cores of 8gb RAM each. Experiments were run in Python using native Python, CVXPY, and scikit-learn.
Each figure took approximately 3-10 minutes to generate.

1d validation example (Section 4). Following the specification of (Kallus & Uehara, 2019a, Sec 5.1), we consider a
small MDP of T = 30, binary actions, univariate continuous state, initial state distribution p (s0) ∼ N (0.5, 0.2),
transition probabilities Pt (st+1 | st, at) ∼ N (s + 0.3a − 0.15, 0.2). The target and behavior policies we con-
sider are πe(a | s) ∼ Bernoulli (pe) , pe = 0.2/(1 + exp(−0.1s)) + 0.2U,U ∼ Uniform[0, 1] and πb(a | s) ∼
Bernoulli (pb) , pb = 0.9/(1 + exp(−0.1s)) + 0.1U,U ∼ Uniform [0, 1]. We consider the interacted state-action
basis, i.e. fit Q on s+s∗a with an intercept. When Q is well-specified, we do nearly exactly recover the right contrast
function; although in such a small and well-specified example we do not see benefits of orthogonality.

Extending to nonlinear settings: details on MINE. Sample-based MI estimation methods with upper bounds (Cheng
et al., 2020) and lower bounds (Belghazi et al., 2018b) provide an alternative solution by shuffling the sample from the
joint distribution in the batch scope. In practice, we can use the statistics network to exploit the mutual information
neural estimator (MINE) and optimize the absolute value in case of minor estimation errors. While mutual information
is non-negative as a measure, the neural network estimates can be negative. Thus, we optimize the absolute value of the
mutual information as our objective. This treats both positive and negative values consistently, driving the objective to
zero and making the variables independent, as desired. Therefore, although we appreciate the concern that minimizing
a function using a lower bound is less clear than maximizing it, our approach provides a pragmatic solution to the
problem at hand, and our results confirm its effectiveness.
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