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Abstract. A number of Knowledge Graphs (KGs) on the Web of Data
contain contradicting statements, and therefore are logically inconsis-
tent. This makes reasoning limited and the knowledge formally useless.
Understanding how these contradictions are formed, how often they oc-
cur, and how they vary between different KGs is essential for fixing such
contradictions, or developing better tools that handle inconsistent KGs.
Methods exist to explain a single contradiction, by finding the minimal
set of axioms sufficient to produce it, a process known as justification
retrieval. In large KGs, these justifications can be frequent and might
redundantly refer to the same type of modelling mistake. Furthermore,
these justifications are –by definition– domain dependent, and hence dif-
ficult to interpret or compare. This paper uses the notion of anti-pattern
for generalising these justifications, and presents an approach for detect-
ing almost all anti-patterns from any inconsistent KG. Experiments on
KGs of over 28 billion triples show the scalability of this approach, and
the benefits of anti-patterns for analysing and comparing logical errors
between different KGs.
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1 Introduction

Through the combination of web technologies and a judicious choice of formal
expressivity (description logics which are based on decidable 2-variable frag-
ments of first order logic), it has become possible to construct and reason over
Knowledge Graphs (KGs) of sizes that were not imaginable only few years ago.
Nowadays, KGs of billions of statements are routinely deployed by researchers
from various fields and companies. Since most of the large KGs are tradition-
ally built over a longer period of time, by different collaborators, these KGs are
highly prone for containing logically contradicting statements. As a consequence,
reasoning over these KGs becomes limited and the knowledge formally useless.

Typically, once these contradicting statements in a KG are retrieved, they
are either logically explained [22] and repaired [20], or ignored via non-standard
reasoning [13]. This work falls in the first category of approaches where the
focus is to find and explain what has been stated in the KG that causes the
inconsistency. Understanding how these contradictions are formed and how often
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they might occur is essential for fixing and avoiding such contradictions. At least,
it is a necessary step for developing better tools that can handle inconsistent
KGs. For explaining contradictions, the notion of justification, which is a minimal
subset of the KG that is sufficient for the contradiction to hold, plays a key role
[12].

(a) Explanation of contradiction A

(b) Explanation of contradiction B

Fig. 1: Screenshot of the ontology editor Protégé showing the explanations of
two contradictions found in the Pizza ontology

Example 1. In the renowned Pizza ontology1 that serves as a tutorial for OWL
and the ontology editor Protégé, we can find two contradictions that were as-
serted by its developers on purpose. The first contradiction (A) demonstrates the
unsatisfiable class CheesyVegetableTopping, that has two disjoint parents Cheese-
Topping and VegetableTopping. The second contradiction (B) demonstrates a
common mistake made with setting a property’s domain, where the class Pizza
is asserted as the domain of the property hasTopping. This statement means that
the reasoner can infer that all individuals using the hasTopping property must
be of type Pizza. On the other hand, we find in the same ontology a property
restriction on the class IceCream, stating that all members of this class must
use the hasTopping property. However, since it is also specified that the classes
Pizza and IceCream are disjoint, now enforcing an unsatisfiable class to have
a member leads to an inconsistency in the ontology. As presented in Figure 1,
justifications serve to explain such contradictions, by showing the minimal set
of axioms from the ontology that causes the contradiction to hold.

Although justifications provide a good basis for debugging data quality and
modelling issues in the KG, their specificity in explaining the contradictions
increases in some cases the complexity for analysing and dealing with these

1 https://protege.stanford.edu/ontologies/pizza/pizza.owl
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detected contradictions. Particularly in large KGs, these complexities are ampli-
fied and encountered in different dimensions. Firstly, existing methods to retrieve
entailment justifications do not scale to KGs with billions of triples. Secondly,
these retrieved contradictions with their justifications can be too frequent to
manually analyse and understand the modelling mistakes made by the ontology
designer. This is especially inconvenient when a significant number of these re-
trieved justifications actually refer to the same type of mistake, but instantiated
in different parts of the KG (e.g. similar misuse of the domain and range proper-
ties in multiple cases). Thirdly, since justifications represent a subset of the KG,
they are by definition domain dependent, and requires some domain knowledge
for understanding the contradiction. This fact is obviously more limiting in com-
plex domains, such as medical KGs, as opposed to the Pizza ontology example
above. These various challenges in finding and understanding justifications in
their traditional form, poses the following research questions:

Q1: Can we define a more general explanation for contradictions, that cate-
gorises the most common mistakes in a KG, independently from its domain?

Q2: Can we retrieve these generalised explanations from any KG, independently
from its size?

Q3: How can these generalised explanations help analysing and comparing cer-
tain characteristics between the most commonly used KGs in the Web?

This paper introduces a method for extracting and generalising justifications
from any inconsistent KG. We call these generalised justifications anti-patterns,
as they can be seen as common mistakes produced either in the modelling or
population phases, or possibly stemming from erroneous data linkage. We have
developed an open-source tool that can retrieve these anti-patterns from any
(inconsistent) KG. We test the scalability and the completeness of the approach
on several KGs from the Web, including LOD-a-lot, DBpedia, YAGO, Linked
Open Vocabularies, and the Pizza ontology, with a combined size of around 30
billion triples. Despite deploying a number of heuristics to ensure scalability,
our experiments show that our method can still detect a large number of anti-
patterns in a KG, in reasonable runtime and computation capacity. Finally, we
publish these detected anti-patterns in an online catalogue encoded as SPARQL
queries, and show how these anti-patterns can be put to use for analysing and
comparing certain characteristics of these inconsistent KGs.

The rest of the paper is structured as follows. Section 2 presents related
works. Section 3 presents the preliminaries and notation. Section 4 introduces our
notion of anti-patterns and describes our approach for detecting them. Section 5
presents the evaluation of the approach. Section 6 presents inconsistency analyses
conducted on several large inconsistent KGs. Section 7 concludes the paper.

2 Related Work

Dealing with inconsistent knowledge bases is an old problem, and solutions have
been proposed as early as 1958 by Stephen Toulmin [24], where reasoning over
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consistent subbases was proposed. Explaining why a knowledge base entails a
certain logical error (or entailment in general) has taken up traction in the last
decade, leading to the most prevalent form of explanation in OWL knowledge
bases called justification: minimal subsets of the graphs preserving entailments
[15, 22]. A number of approaches, described in [3], aims at supporting users’
understanding of single justifications for single entailments. Such approaches
focus on reducing the axioms in justifications to their relevant parts and remove
superfluous information [12, 14], providing intermediate proof steps to explain
subsets of justifications [11], or attempting to improve understandability of an
explanation by abstracting from the logical formalism to natural language [17].

In this work, we focus on a complementary part of the problem, where the
goal is to facilitate the understandability of multiple justifications, of logically in-
correct entailments, that share the same structure. For this, we rely on the notion
of anti-pattern that represents a generalisation of such justifications. The term
‘anti-pattern’ appears in the work of [21], where the authors manually classify a
set of patterns that are commonly used by domain experts in their DL formali-
sations, and that normally result in inconsistencies. In addition anti-patterns are
also studied in [19], where the authors use a combination of reasoning and clus-
tering methods for extracting common patterns in the detected justifications.
However, this approach cannot be applied to any inconsistent KG, as it requires
the KG to be mapped to the foundational ontology DOLCE-Zero.

Moreover, the notion of justifications with the same structure has been pre-
viously investigated but not formalised by [16], while the more complex notion
of justification template has been introduced by [3], where several equivalence
relations over justifications has been explored. In comparison with the mentioned
works, this is the first work that relies on a simpler notion of justifications’ gen-
eralisation, for the goal of analysing common logical errors in KGs, at the scale
of the Web. Our method for detecting such anti-patterns reuses part of the work
of [18], where the authors propose the efficient algorithm for path finding that
we use in our subgraph generation. Our work can also be compared to an earlier
large scale justification retrieval approach that uses MapReduce [26] but was
mainly evaluated over synthetic data sets, and recent analyses [4, 7, 8], that aim
at studying general characteristics of large KGs in the Web.

3 Background

In this section, we give the preliminary background and introduce the notation.
We consider a vocabulary of two disjoint sets of symbols2: L for literals and

I for IRIs (Internationalised Resource Identifiers). The elements of T = L ∪ I
are called RDF terms, and those of I × I × T are called RDF triples. An RDF
knowledge graph G is a set of RDF triples.

Let V be a set of variable symbols disjoint from T , a triple pattern is a tuple
t ∈ (I ∪ V )× (I ∪ V )× (T ∪ V ), representing an RDF triple with some positions

2 We do not consider blank nodes in this work.
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replaced by variables. Any finite set of triple patterns is a basic graph pattern
(BGP) P , and forms the basis of SPARQL for answering queries (matching a
BGP to a subgraph of G by substituting variables with RDF terms).

We use var(t) and var(P ) to denote the set of variables occurring in a triple
pattern t and a BGP P , respectively3. A substitution µ is a total mapping
from V to T i.e., µ: V → T . The domain of µ, denoted by dom(µ), is the
subset of V where µ is defined. Given a triple pattern t and a mapping µ such
that dom(µ) := var(t), µ(t) is the triple obtained by replacing the variables
in t according to µ. Similarly, given a BGP P and a substitution µ such that
dom(µ) := var(P ), µ(P ) is the set of triples obtained by replacing the variables
in the triples of P with respect to µ.

Finally, we use the standard notions of entailment, satisfiability and consis-
tency for RDF(S) and OWL [2, 10]. Most importantly, an inconsistent KG is
a graph for which no model exists, i.e. a formal interpretation that satisfies all
the triples in the graph given the semantics of the used vocabularies. Let E
be some entailment relation, and e a triple such that G |= e. A subgraph J(e)
of G is called a justification for the inferred triple e, if J(e) |= e, and @J ′ s.t.
J ′ ⊂ J(e) and J ′ |= e (i.e. a justification is a minimal subset of the knowledge
graph that is responsible for the inferred triple). When e is involved in a con-
tradiction, then naturally, its justification J(e) will play a key role in explaining
the contradiction.

4 Defining and Detecting Anti-Patterns

In this section, we introduce the notion of anti-patterns, and describe our ap-
proach for retrieving anti-patterns from any inconsistent KG.

4.1 Anti-patterns

As previously defined, a justification is a minimal description of a single entail-
ment (or contradiction), which can be represented as an instantiated BGP. If G
is consistent w.r.t. some entailment relation E, one could call a BGP P a pattern
for G if there is a substitution µ(P ) such that G |= µ(P ). In other words, if there
is a variable assignment such that all instantiated graph patterns are entailed
by the knowledge graph.

Suppose now that the knowledge graph G is inconsistent w.r.t E. In that
case, trivially not every BGP would be a pattern. Therefore we define, the more
interesting syntactic notion of a BGP as an anti-pattern for G w.r.t E, as a
minimal set of triple patterns that can be instantiated into an inconsistent subset
of G. We define the notion of anti-patterns as follows.

Definition 1 (Anti-Pattern). P is an anti-pattern of a Knowledge Graph G
if there is a substitution µ(P ) s.t. µ(P ) ⊆ G, and µ(P ) is minimally inconsistent
w.r.t some entailment relation E, i.e. @P ′ s.t. P ′ ⊂ P and µ(P ′) is inconsistent.

3 Therefore, var(t) ⊆ var(P ) whenever t ∈ P .
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For an anti-pattern P , we denote by |P | the size of this anti-pattern, defined
as the number of triple patterns in P . We define also the notion of support
sup(P ) for an anti-pattern, as the number of substitutions µ(P ). Intuitively,
µ(P ) refers to a particular justification in G, and the support refers to the number
of justifications occurring in the KG for a certain anti-pattern.

In order to transform a justification into an anti-pattern, we replace the
elements in the subject and object position of the BGP with variables. In order to
prevent breaking the contradiction, elements appearing in the predicate position
of a justification are not replaced in the anti-pattern, with the exception of one
case: elements appearing in the predicate position and also appearing in the
subject or object position of the same justification.

(a) Anti-pattern of contradiction A (b) Anti-pattern of contradiction B

Fig. 2: Graphical representation of the anti-patterns of the two contradictions
found in the Pizza ontology of Example 1, with circles representing the variables
V and rectangles representing the RDF terms T .

Going back to Example 1, we presented two explanations of contradictions
found in the Pizza ontology. Contradiction A shows an inconsistency in the on-
tology in which the unsatisfiable class CheesyVegetableTopping, that is a subclass
of the two disjoint classes CheeseTopping and VegetableTopping, is instantiated.
While this example refers to a specific case of a contradiction entailed from the
description of these three classes, it also refers to a common type of modelling
or linking mistake that can be present in another (part of the) ontology. For in-
stance, using the same principle, the modeller could have also created the class
FruitVegetableTopping as subclass of the two disjoint classes FruitTopping and
VegetableTopping. This formalisation of certain types of mistakes is what we
refer to as anti-patterns. Figure 2 presents the two anti-patterns generalising
the justifications of contradictions A and B. For instance in the anti-pattern of
contradiction A, the three classes CheesyVegetableTopping, CheeseTopping and
VegetableTopping are replaced with the variables C1, C2 and C3, respectively.
In this anti-pattern, replacing the predicate owl:disjointWith with a variable p1
would break the contradiction, since p1 could potentially be matched in the KG
with another predicate such as rdfs:subClassOf. On the other hand, we can see
in the anti-pattern of contradiction B that the predicate hasTopping is replaced



Analysing Large Inconsistent Knowledge Graphs using Anti-Patterns 7

with the variable p1, since it also appears in the subject position of the triple
〈hasTopping, rdfs:domain, Pizza〉. This allows the same anti-pattern to gener-
alise other justifications in the KG, that follow the same pattern but involve a
different property than hasTopping.

4.2 Approach

This section describes our approach for finding anti-patterns from any inconsis-
tent KG. Finding anti-patterns from a KG would mainly consist of two steps:
retrieving justifications of contradictions, and then generalising these detected
justifications into anti-patterns. Such approach is expected to deal with multiple
dimensions of complexity, mainly:

Knowledge Graphs can be too large to query. Now that KGs with bil-
lions of triples have become the norm rather than the exception, such ap-
proach must have a low hardware footprint, and must not assume that every
KG will always be small enough to fit in memory or to be queried in tradi-
tional triple stores.

Justification retrieval algorithms do not scale. Finding all contradictions,
and computing their justifications is a computationally expensive process, as
it typically requires loading the full KG into memory. Therefore, when deal-
ing with KGs of billions of triples, existing justification retrieval methods
and tools do not scale [5].

Theoretically, guaranteeing the retrieval of all anti-patterns given any in-
consistent KG requires firstly finding all contradictions with their justifications,
and then generalising these justifications into anti-patterns. In practice, and as
a way to tackle the above listed challenges, our approach introduces a number
of heuristics in various steps of the approach. These heuristics emphasises the
scalability of the approach, opposed to guaranteeing its completeness regarding
the detection of all anti-patterns. Mainly, an initial step is introduced in the
pipeline that consists of splitting the original KG into smaller and overlapping
subgraphs. Depending on the splitting strategy, this step can impact the number
of retrieved justifications, which in its turn can potentially impact the number
of the retrieved anti-patterns. In the following, we describe the mains steps of
our approach consisting of (1) splitting the KG, (2) retrieving the contradictions’
justifications, and (3) generalising these justifications. Figure 3 summarises these
three steps.

1. Splitting the KGs. Due to the large size of most recent KGs, running a jus-
tification retrieval algorithm over the complete KG to retrieve all contradictions
is impractical. To speed up this process or even make it feasible for some larger
KGs, we split the KG into smaller subgraphs. Each subgraph is generated by
extending a root node as a starting point, that is retrieved by taking a distinct
RDF term that appears in the subject position of at least one triple. As a result,
the number of generated subgraphs is always equal to the number of distinct
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Fig. 3: Diagram that shows the pipeline used to extract subgraphs, find justifi-
cations in these subgraphs, and generalise these justifications to anti-patterns.

subjects in a KG. Using a breadth-first search, the graph is expanded by find-
ing all the triples that have the root node as the subject, and these triples are
added to the subgraph. Next, all the nodes in the object position are expanded,
together with the predicates, and the graph is expanded as long as possible, or
until the maximum amount of triples Gmax set by the user is reached4. In Section
5, we empirically estimate the optimal Gmax value for large general domain KGs,
based on the trade-off between scalability of the approach and its completeness
in terms of the detected anti-patterns.

2. Justification retrieval. Out of these newly formed subgraphs, we are only
interested in the ones that are inconsistent. Therefore, we firstly check for the
consistency of each of these subgraphs and discard the consistent ones. Then,
for each of the inconsistent subgraphs, we run a justification retrieval algorithm
to retrieve the detected inconsistencies with their justifications. For this, we use
the justification retrieval algorithm in the Openllet reasoner with the OWL 2 EL
profile, that walks through the graph and finds the minimal justification for each
contradiction. It continues to search for justifications until no more justification
can be found in the graph5. This step is executed for each subgraph, and all the
justifications are then pushed to the final stage of the pipeline.

3. Justification generalisation. While most justifications are different, as
each one represents a set of instantiated triple patterns, the underlying non-
instantiated BGPs do not have to be. The underlying BGP forms the basis of
the anti-patterns. To retrieve all anti-patterns from the detected justifications,
we first generalise the justification to an anti-pattern by removing the instan-
tiated subject and object on the nodes (when applicable, also the instantiated

4 Alternatively one can use a neighbourhood radius to limit the size of a subgraph
instead of Gmax

5 since justification retrieval algorithms can potentially run for a long time in the
search for additional justifications in a KG, we set a runtime limit between 10 and
20 seconds based on the considered subgraph size
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predicate is removed, such as the case described in Section 4.1). Justifications
with the same underlying pattern are grouped together. Therefore, given a justifi-
cation and its generalisation into anti-pattern, we check whether an anti-pattern
with the same structure already exists. Comparing anti-patterns with different
variable names consists in checking whether these anti-patterns are isomorphic.
For this, we implement a version of the VF2 algorithm [6], with the addition of
matching the instantiated edges of the anti-patterns (i.e. matching the predicates
that do not appear in the subject or object position of the same justification).
If the anti-pattern P of a certain justification is matched to an existing anti-
pattern, we group this justification with the other justifications generalised by
this anti-pattern, and increment sup(P ) by 1. Otherwise, a new anti-pattern is
formed as a generalisation of this justification. This algorithm continues until all
justifications have been matched to their corresponding anti-patterns.

Implementation. The source code of our approach is publicly available online6.
It is implemented in JAVA, and relies on a number of open-source libraries,
mainly jena7, hdt-java8, openllet9, and owlapi10. All experiments in the following
sections have been performed on an Ubuntu server, 8 CPU Intel 2.40 GHz, with
256 GB of memory.

5 Experiments

As a way of emphasising scalability over completeness, our approach for finding
anti-patterns from any inconsistent KG implements an initial step that consists
of splitting the KG into smaller and overlapping subgraphs.

In the first part of these experiments (Section 5.1), we empirically evaluate
the impact of the subgraph size limit Gmax on the efficiency of the approach.
Then, based on the Gmax estimated from the first experiment, we show (in
Section 5.2) the scalability of our approach on some of the largest KGs publicly
available on the Web.

5.1 Completeness Evaluation

In this section, we measure the impact of splitting the KG both on the number
of detected anti-patterns, and the runtime of the approach. The goal of this
experiment is to ultimately find the optimal subgraph size limit to consider
in the first step of the approach. For evaluating completeness, this experiment
requires datasets in which Openllet can retrieve (almost) all inconsistencies with
their justifications. For this, we rely on the three following datasets:

6 https://github.com/thomasdegroot18/kbgenerator
7 https://jena.apache.org
8 https://github.com/rdfhdt/hdt-java
9 https://github.com/Galigator/openllet

10 https://owlcs.github.io/owlapi
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– Pizza ontology: dataset of 1,944 triples serving as a tutorial for OWL. We
choose this dataset based on the fact that its contradictions and anti-patterns
are known, and therefore can represent a gold standard for our approach.

– Linked Open Vocabularies (LOV): dataset of 888,017 triples represent-
ing a high quality catalogue of reusable vocabularies for the description of
data on the Web [25]. We choose this dataset since it is small enough to re-
trieve almost all of its contradictions and their justifications using Openllet.

– YAGO: dataset of more than 158 million triples covering around 10 million
entities derived from Wikipedia, WordNet and GeoNames [23]. We choose
this dataset to observe whether the optimal size limit varies significantly
between the previous datasets and this relatively larger one.

In the following experiments, we vary the subgraph size limit Gmax, and ob-
serve the number of detected anti-patterns and the corresponding runtime for
each of the three steps of our approach. Table 1 presents the first experiment,
conducted on the only considered dataset which all of its contradictions are
known and can be computed on the whole graph. These results show that split-
ting the Pizza dataset into smaller, but overlapping, subgraphs does not impact
the coverage of the approach, as both available anti-patterns in this dataset are
detected even when small subgraph size limits are considered.

Table 1: Impact of the subgraph size limit Gmax on the number of detected anti-
patterns and the runtime of the approach (in seconds) for the Pizza dataset.

Gmax
Detected

Anti-patterns
Total

Runtime
Step 1

Runtime
Step 2

Runtime
Step 3

Runtime
Number of
Subgraphs

50 2 3 1 2 0.01 335
100 2 4.3 1.3 3 0.01 186
250 2 8 3 5 0.05 77
500 2 13 6 7 0.04 38
750 2 18 8 10 0.08 25
1K 2 23 10 13 0.08 19

No limit 2 3.2 - 3.1 0.1 -

Table 2 presents the results of the same experiment conducted on the LOV
and YAGO datasets. We adapt the considered Gmax to the size of these datasets.
These results show that in both datasets, choosing a subgraph size limit of 5,000
triples provides the optimal trade-off between the runtime of the approach and
the number of detected anti-patterns for both these KGs. Moreover, and similarly
to the previous experiment, we observe that the justification retrieval step (i.e.
Step 2) is the most time consuming step, accounting in some cases up to 94% of
the total runtime. Finally, and as it was not possible to run Openllet on graphs
larger than 100K triples, this experiment does not guarantee for both datasets
that all possible contradictions and anti-patterns can be detected when splitting
the graph. Moreover, it does not guarantee that the optimal subgraph size limit
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Table 2: Impact of the subgraph size limit Gmax on the number of detected
anti-patterns and the runtime of the approach (in seconds) for LOV and YAGO.

Gmax
Detected

Anti-patterns
Total

Runtime
Step 1

Runtime
Step 2

Runtime
Step 3

Runtime
Number of
Subgraphs

L
O
V

500 0 1,783 216 1,566 2 101,673
1K 2 3,505 429 3,073 3 50,960
5K 39 4,525 668 3,829 28 10,218
10K 39 5,106 739 4,349 18 5,109
25K 39 5,347 835 4,493 18 2,041
50K 39 5,497 858 4,615 24 1,014
100K 39 5,758 946 4,792 20 507

Y
A
G
O

500 0 3,403 649 2,753 1 18,203,648
1K 0 39,41 1,223 2,717 1 9,123,936
5K 135 14,342 2,125 12,004 214 1,829,442
10K 135 18,283 2,265 15,739 279 914,721
25K 135 19,174 2,938 16,013 223 365,422
50K 135 34,177 3,289 30,684 204 181,547
100K 135 68,264 3,976 64,081 206 90,773

for these two datasets can be generalised to other datasets. Therefore, we only
consider the 5,000 triples limit as an estimation for an optimal Gmax when
splitting large general domain KGs, for the goal of detecting anti-patterns in
any inconsistent dataset.

5.2 Scalability Evaluation

In the second part of these experiments, we evaluate the scalability of our ap-
proach on some of the largest KGs publicly available on the Web. In addition to
the YAGO dataset, we choose the two following datasets:

– LOD-a-lot: dataset of over 28 billion triples based on the graph merge of
650K datasets from the LOD Laundromat crawl in 2015 [9].

– DBpedia (English): dataset of over 1 billion triples covering 4.58 million
entities extracted from Wikipedia [1].

Based on the results of the previous experiment, we set the value of Gmax

to 5,000 triples and run our approach for each of these three datasets. Table
3 shows that finding most anti-patterns from some of the largest KGs is feasi-
ble, but computationally expensive. Specifically, detecting 135 and 13 different
anti-patterns in YAGO and DBpedia takes approximately 4 and 13 hours, re-
spectively. Moreover, detecting 222 different anti-patterns from the LOD-a-lot
takes almost a full week. This long runtime is mostly due to our naive implemen-
tation, as the most costly step of retrieving justifications could be parallelised,
instead of sequentially retrieving these justifications for each subgraph.
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Table 3: Results of detecting anti-patterns from three of the largest KGs in the
Web: LOD-a-lot, DBpedia and YAGO.

LOD-a-lot DBpedia YAGO

number of triples 28,362,198,927 1,040,358,853 158,991,568
number of distinct namespaces 9,619 20 11

number of distinct anti-patterns 222 13 135
largest anti-pattern size 19 12 16

runtime (in hours) 157.56 13.01 3.98

6 KG Inconsistency Analysis

In the previous section, we showed that it is feasible to detect anti-patterns
from some of the largest KGs in the Web, when the KG is split into overlapping
subgraphs with a maximum size of 5,000 triples. In this section, we further
analyse these retrieved anti-patterns and compare the detected logical errors
between these three KGs.

6.1 What is the most common size of anti-patterns?

We already saw from Table 3 that the largest anti-patterns in the LOD-a-lot,
DBpedia, and YAGO contain respectively 19, 12, and 16 edges. Looking at their
size distribution, Figure 4 shows that the most common size of an anti-pattern
|P | ranges between 11 and 14 triple patterns for LOD-a-lot and YAGO, and
between 6 and 11 triple patterns for DBpedia. This result, in addition to a man-
ual verification of some of these anti-patterns, shows that most inconsistencies
in DBpedia stem from direct instantiations of unsatisfiable classes, while the
ones in LOD-a-lot and YAGO require following longer transitive chains, such as
rdfs:subClassOf chains.
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Fig. 4: Size distribution of the anti-patterns in these three KGs.
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6.2 What are the most common types of anti-patterns found in
these KGs?

Anti-patterns represent a generalised notion of justifications that describe com-
mon mistakes in a KG. In our analysis of the detected anti-patterns in these
three KGs, we found that a number of the different anti-patterns refer to an
even more general type of mistakes, and can be further grouped together. This
general type of anti-patterns consists of anti-patterns with the same structure
of nodes and edges, but with different size. Based on this principle, we can
distinguish between three general types of anti-patterns found in these investi-
gated KGs: kite graphs, cycle graphs, and domain or range-based graphs. Figure
5 presents a sample of detected anti-patterns referring to these three general
types, and Table 4 presents their distribution in the three investigated KGs. It
shows that kite graphs anti-patterns are the most common in the LOD-a-lot and
YAGO, whilst cycle graph anti-patterns are the most common in DBpedia. All
detected variants of these three general type of anti-patterns can be explored
online11.

Fig. 5: Sample of three anti-patterns, referring to three general types: kite graph
(left), cycle graph (middle), and domain or range-based graph (right).

Table 4: General types of anti-patterns found in these three KGs.
Type of Anti-patterns LOD-a-lot DBpedia YAGO

Kite graphs 156 1 108
Cycle graphs 54 12 11

Domain or Range-based graphs 12 0 16

11 https://thomasdegroot18.github.io/kbgenerator/Webpages/

statisticsOverview.html
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6.3 What is the benefit in practice of generalising justifications into
anti-patterns?
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Fig. 6: Distribution of anti-pattern support.

In addition to the fact that justifications are domain-dependent and possibly
complex, understanding and analysing justifications of contradictions can also
be impractical due to their redundancy and frequency. This is particularly true
in the three large investigated KGs, as we can see in Figure 6. This plot presents
the distribution of the anti-pattern support sup(P ) in these three KGs. It shows
that the detected anti-patterns make the millions of retrieved justifications in the
LOD-a-lot, DBpedia, and YAGO more manageable, by generalising them into
222, 13, and 135 anti-patterns, respectively. Specifically, Table 5 shows that on
average each anti-pattern generalises around 5M, 7.7K, and 133K justifications
in the LOD-a-lot, DBpedia, and YAGO, respectively. It also shows that a single
anti-pattern in the LOD-a-lot generalises more than 45M retrieved justifications.
Interestingly, the LOD-a-lot –a dataset that represents the largest publicly avail-
able crawl of the LOD Cloud to date– contains over a billion justifications, while
DBpedia and YAGO –two of the most popular available RDF datasets– con-
tain around 100K and 18M justifications, respectively. Thus, indicating that the
quality of DBpedia (0.0009%), estimated by the number of detected justifications
per triple in G, is significantly higher in comparison with LOD-a-lot (3.9%) and
YAGO (11.3%).

7 Conclusion

In this work, we introduced anti-patterns as minimal sets of (possibly) unin-
stantiated basic triple patterns that match inconsistent subgraphs in a KG. We
can use anti-patterns to locate, generalise, and analyse types of contradictions.
Retrieving contradictions from a KG and finding the extent to which a KG is in-
consistent can now be formulated as a simple SPARQL query using anti-patterns



Analysing Large Inconsistent Knowledge Graphs using Anti-Patterns 15

Table 5: Impact of generalising justifications to anti-patterns
sup(P ) LOD-a-lot DBpedia YAGO

Minimum 2 1 1
Maximum 45,935,769 32,997 379,546
Average 4,988,176.9 7,796.07 133,998.31
Median 23,126 4,469 106,698
Total 1,107,375,273 101,349 18,089,773

Total per triple 3.9% 0.009% 11.3%

as BGPs. Our second contribution is a tool that can extract a large number of
anti-patterns from any inconsistent KG. For evaluating our approach, we showed
on relatively small KGs that our approach can detect in practice all anti-patterns
despite splitting the KG, and showed on KGs of billions of triples that our ap-
proach can be applied at the scale of the Web. Specifically, we showed on the
LOD-a-lot, DBpedia, and YAGO datasets that billions of justifications can be
generalised into hundreds of anti-patterns. While these findings prove the spread
of billions of logically contradicting statements in the Web of Data, this work also
shows that these contradictions can now be easily located in other KGs (e.g. us-
ing a SELECT query), and possibly repaired (e.g. using a CONSTRUCT query).
The source code, as well as the list of detected anti-patterns from these KGs are
publicly available as SPARQL queries, with their support in each dataset.

We are aiming to extend this work by (1) including additional datasets such as
Wikidata and additional commonly used domain specific datasets, (2) exploiting
the previously computed transitive closure of more than half a billion owl:sameAs
links [4], 3 billion rdf:type statements with 4 million rdfs:subClassOf in the LOD-
a-lot, for the goal of detecting additional types of anti-patterns, and (3) analysing
the origins of these anti-patterns which consists of analysing billions of detected
justifications, and in the case of the LOD-a-lot dataset also consists of obtaining
the provenance of each statement from the LOD Laundromat crawl.
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