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Exploring Sparse Spatial Relation in Graph
Inference for Text-Based VQA

Sheng Zhou , Dan Guo , Member, IEEE, Jia Li , Xun Yang , and Meng Wang , Fellow, IEEE

Abstract— Text-based visual question answering (TextVQA)
faces the significant challenge of avoiding redundant relational
inference. To be specific, a large number of detected objects
and optical character recognition (OCR) tokens result in rich
visual relationships. Existing works take all visual relationships
into account for answer prediction. However, there are three
observations: (1) a single subject in the images can be eas-
ily detected as multiple objects with distinct bounding boxes
(considered repetitive objects). The associations between these
repetitive objects are superfluous for answer reasoning; (2) two
spatially distant OCR tokens detected in the image frequently
have weak semantic dependencies for answer reasoning; and (3)
the co-existence of nearby objects and tokens may be indicative
of important visual cues for predicting answers. Rather than
utilizing all of them for answer prediction, we make an effort to
identify the most important connections or eliminate redundant
ones. We propose a sparse spatial graph network (SSGN) that
introduces a spatially aware relation pruning technique to this
task. As spatial factors for relation measurement, we employ
spatial distance, geometric dimension, overlap area, and DIoU
for spatially aware pruning. We consider three visual relation-
ships for graph learning: object-object, OCR-OCR tokens, and
object-OCR token relationships. SSGN is a progressive graph
learning architecture that verifies the pivotal relations in the
correlated object-token sparse graph, and then in the respective
object-based sparse graph and token-based sparse graph. Experi-
ment results on TextVQA and ST-VQA datasets demonstrate that
SSGN achieves promising performances. And some visualization
results further demonstrate the interpretability of our method.

Index Terms— Visual question answering, text-based visual
question answering, graph inference, spatial relation, relation
learning.

I. INTRODUCTION

SCENE text expresses rich information in human activities,
such as numeric symbols [14], advertisement slogans [46],
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traffic signs [3], and price tags in shops [3]. Text-based visual
question answering (TextVQA) becomes an emerging hot topic
in the field of vision and language. The TextVQA models
have a wide range of applications, such as visual impairment
assistance, online education, online shopping [60], driving
assistance [60], etc.

With the advancement of artificial intelligence technology,
many multimodal analysis models have been rapidly developed
with visual understanding capabilities [16], [17], [18], [53],
such as the tasks of image captioning [26], visual ground-
ing [38], and visual question answering (VQA) [19]. The most
relevant research to our work is the VQA task. General VQA
models [15] have powerful reasoning capabilities to answer
object-based visual questions regarding people, scenes, motifs,
and even plot comprehension. However, the TextVQA models
are dedicated to discovering the scene texts and utilizing them
to answer the text-based visual questions, where scene texts
may involve small, fuzzy, and illegible text fonts. To make
up this research gap, Singh et al. [46] have released a novel
TextVQA task and a new TextVQA dataset referring to both
object-related and text-related visual questions. Meanwhile,
Bitten et al. [3] have released another new dataset, ST-VQA,
which could only answer questions using the scene text in the
image. By comparison, scene text is extremely critical in the
TextVQA task, for example, all questions in the ST-VQA [3]
dataset are related to scene text.

Many efforts have been made to solve this task. Just in
time, optical character recognition (OCR) tasks [2], [12] have
made significant progress in the field of computer vision.
Under the research background, some researchers [3], [14],
[22], [30], [39], [46] apply this technique to existing VQA
models, enabling the models with the ability to read scene
text accurately. For example, LoRRA [46] is the first backbone
for TextVQA which extends the VQA model Pythia [27] with
a new OCR attention branch; the model is enabled to select
answer words from a predefined vocabulary set of objects and
an online set of OCR tokens, where the vocabulary set and
the OCR set are collected from the training set and each
image itself respectively. Besides, based on the success of
Transformer [47] and BERT [10], M4C [22] implements a
multi-modal transformer with a multi-step response which
serves as another backbone and is widely-used for existing
methods. Based on above two backbones, some graph mod-
els have been introduced into TextVQA task because of its
outstanding relation reasoning ability, e.g, MM-GNN [14],
SA-M4C [30], and CRN [39]. For a better exploration
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Fig. 1. Full (dense but redundant) relations vs. sparse relations in TextVQA
task. The OCR system and the object detector have their own characteristics.
The OCR system performs well at scene text recognition (e.g, numbers,
symbols, characters), whereas the object detector excels at identifying visual
subjects (e.g, people, animals, substances). We have to understand the scene
texts or objects queried by the question both well. We take all the detected
objects and OCR tokens in the image as visual entity nodes. Our purpose is
to build an effective sparse spatial graph on the basis of spatial-aware relation
pruning for answer prediction.

of visual relations, we adopt the graph structure in this
work.

Almost the aforementioned works share a common feature
in that the full relations among the visual entities including
objects and OCR tokens are exploited to predict answers.
Differently, we argue that excessive redundant relations exist
among these visual entities, which may mislead the prediction
of answers. As shown in Fig. 1 (c), driven by the question of
“what is the number of the player with his foot on the ball?”,
under the full relations, “samsung mobile” is predicted as the
answer due to the dense relations with the other visual entities,
while the correct answer is “10”.

This study is proposed to solve the relation redundancy
problem for the TextVQA task. To be specific, we propose
a sparse graph network inspired by three observations: (1)
multiple bounding boxes covering a same visual entity are
interpreted as different objects by the object detectors accom-
panied with redundant connections, e.g, the rightmost player
is labeled with three bounding boxes in Fig. 1 (c); (2) distant
OCR tokens often have weak or no semantic dependencies,
e.g, the two OCR tokens “samsung” and “10” in Fig. 1 (c);
(3) association between remote objects and tokens are useless,
and the visual regions detected with both object and OCR
token labels are informative for answer prediction, e.g, “10”
is detected as “number” (object label) and number “10” (OCR
token label) in Fig. 1 (c). In short, the idea originates from the
native perspective of spatial relation. As shown in Fig. 1 (e),
the spatial factors in our work refer to Distance-IoU [59],
relative distance, geometric size, and overlap area. We work
to use the spatial factors to eliminate the redundant relations
between remote object and OCR token in Fig. 1 (f), much-
overlapping objects in Fig. 1 (g), and distant OCR tokens in
Fig. 1 (h).

To achieve effective relation reasoning, we propose a Sparse
Spatial Graph Network (SSGN), which cuts off useless or
negative relations (edges in the graph) between numerous
visual entities (object and OCR token nodes) to suppress
the redundant message passing. As shown in Fig. 2, SSGN
is a hierarchical graph learning architecture by excluding

redundant relations (we deem these as noises) in three sparse
sub-graphs. (1) Object-Token Sparse Graph, OTSG first
removes redundant relations to learn object-OCR token corre-
lation verification, (2) Object-based Sparse Graph, OSG, and
(3) Token-based Sparse Graph, TSG then verify the pivotal
relations of OTSG in each visual entity space (object or OCR
token). All the above three sub-graphs are implemented under
the guidance of question. Based on this framework, SSGN
progressively updates object and OCR token features by the
graph learning of OTSG, OSG and TSG for answer prediction.
Experiments conducted on TextVQA and ST-VQA datasets
show that SSGN outperforms other comparative methods in
the TextVQA task. Extensive ablation studies and visualization
results demonstrate the validity, robustness, and interpretability
of our method.

The main contributions are summarized as follows.
• For task, we perform a sparse spatial graph learning

by introducing a spatial-aware relation pruning method
into the TextVQA task, which shields redundant relations
among numerous visual entities in complex scenes.

• About sparsity, we propose a graph preprocessing method
which utilizes spatial coordinates of visual entities to
build sparse relations (edges). In this work, we primarily
emphasize the spatial-constrained relation pruning to trim
the redundant relations. Besides, during graph learning,
the pruned relations pass messages between visual entities
under the guidance of question semantics.

• About spatiality, we consider Distance-IoU (DIoU), spa-
tial distance, geometric size, and overlap area as the
primary spatial factors in relation modeling. The moti-
vation is that spatially distant visual entities in natural
images often have less or even no relations, and geomet-
rically similar boundary boxes with large overlaps may
exist as superfluous visual entities.

• About graph Inference, we propose a hierarchical graph
learning solution with partial edges to achieve node
update. We first perform double-sided correlation verifi-
cation (object-OCR token) in the OTSG, and then further
verify the pivotal relations in respective OSG (object) and
TSG (OCR token).

The rest of the paper is organized as follows. We provide
an overview of related work in Sec. II and detail the proposed
SSGN method in Sec. III. Extensive experiments including
quantitative comparison with state-of-the-art methods, ablation
studies, and visualization analysis are presented in Sec. IV,
followed by a brief summary of this work in Sec. V.

II. RELATED WORK

A. Text-Based Visual Question Answering

With the development of visual question answering tasks,
some models [24], [29] have been proposed to improve the
reasoning ability. Recently, TextVQA task [46] has become
a new research focus aimed at answering questions about
scene text comprehension. To promote this study, there are
two benchmark datasets, TextVQA [46] and ST-VQA [3], and
two backbones, LoRRA [46] and M4C [22]. LoRRA [46]
uses an off-the-shelf OCR system [6] to detect multiple
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Fig. 2. The overall framework of Sparse Spatial Graph Network (SSGN). Given an image and a question, we prepare the features of the question (Q), OCR
tokens (T ), and objects (V). After that, we construct graphs with T and V and build edges with the condition of spatial relation. The relations in the graph
are defined as E = (EV→V , ET →T , EV→T , ET →V ). In this work, graph inference is used to update OCR token and object features under the guidance
of the question Q. We propose a novel progressive graph learning scheme with partial context update—the message (EV→T , ET →V ) updates first and then
EV→V and ET →T update in parallel. Finally, we use an answer generation module to iteratively predict answers.

OCR tokens in the image and extends a previous VQA
model [27] to select a single OCR token as the answer.
The methodological bottleneck of LoRRA is the inability to
generate multiple words in an answer. To solve this problem,
M4C [22] introduces a pointer-augmented multi-step decoder
based on a transformer architecture to generate multiple words
in the answer. Based on the above two backbones, exist-
ing methods could mainly be divided into four categories:
(1) Attention-based model. SSBaseline [60] introduces an
attention mechanism into M4C [22] to achieve feature aggre-
gation, which greatly reduces the computation and obtains a
good performance; (2) Transformer-based model. TAP [55]
introduces large-scale data and pre-training techniques in a
transformer architecture to improve performance. PAT [58]
adopts a position-augmented transformer with entity-aligned
mesh for comprehensively capturing position relations of
visual entities; (3) Graph-based model. There are some graph
networks focus on relation inference between objects and OCR
tokens, including multi-modal graph (MM-GNN) [14], spatial-
aware graph (SA-M4C) [30], role-aware graph (SMA) [13],
and cascade reasoning network (CRN) [39]; (4) Representa-
tion learning model. BOV [57] proposes a visually enhanced
scene text embedding and an object-oriented embedding to
enhance the feature representation and improve the reasoning
ability.

Previous works develop feature fusion [57], feature align-
ment [55], [58], feature attention [60], and relation learn-
ing [13], [14], [30], [39] to address the TextVQA task.
Among them, graph model in TextVQA task shows outstand-
ing advantage. Most graph models take full relations between
or within objects and OCR tokens into account. Differently,
we devote to removing redundant relations between object-
object, OCR-OCR tokens, and object-OCR token to achieve
effective answer reasoning.

B. Graph Inference Technique for Visual Reasoning

Plenty of works demonstrate that graph neural network
(GNN) has a strong ability for relation reasoning [33], [37].
Both intra-modal and inter-modal graph models are applied

for addressing the visual relation reasoning issue in various
VQA and visual dialog tasks [7], [23], [61]. In general
VQA task, Huang et al. [23] propose a novel dual-channel
graph convolutional network (DC-GCN) to capture the visual
relations between objects and the syntactic relations between
question words separately. For Fact-based VQA [61], Zhu
et al. first construct three intra-modal graphs to separately
explore visual, semantic, and knowledge clues, and then aggre-
gate them through cross-modal graph convolutions. As for
visual dialog, Chen et al. design a graph-over-graph network
named GoG [7] with three graphs for exploring co-reference
relation among dialog history, dependency relation between
question words, and spatial relation between visual objects.
These relation-aware graphs are proposed to exploit consistent
contexts from vision (image) and text (question) for visual
reasoning. Similar to previous GNN works [7], [23], [61],
we utilize the heterogeneous graph structures (intra- and inter-
modality graphs) for relation inference. Besides, these previous
GNN work [7], [23], [61] usually explores the fully-connected
graph learning. The difference of this work is it extends a
novel hierarchical graph learning scheme with sparse relations
(edges) for achieving reasonable relation reasoning.

C. Exploitation of Spatial Relation in Vision

For visual reasoning, we insist that the exploitation of spatial
relation can facilitate answer inference. We investigate the
related work and find that the exploitation of visual-spatial
relation is indeed beneficial for quite a few vision-related
tasks [8], [25], [37], [50], [56]. For example, to fully under-
stand the visual scene in the VQA task, ReGAT [37] utilizes
a graph network to model the spatial relations between
objects by measuring relative angles and overlapping areas
of two objects in the image. For the TextCaps task [45],
Wang et al. [50] strengthen the semantic correlation between
two OCR tokens from both horizontal and vertical position
dimensions to generate the captions, which is motivated by
the spatial orientation relation of OCR token pairs. For object
detection, Chen et al. [8] present a new object detector to
locate the required partially-occluded object in the image,
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which modifies the bounding box position by measuring the
spatial distance of the occluded object and its neighbors. As for
the visual relation detection task, Inayoshi et al. [25] propose
a boundary-box channel-wise fusion method, which introduces
object position and overlapping area into the image features
for better identifying the relation between objects.

There is merely single object-object relation or OCR-OCR
tokens relation discussed in the above tasks. We leverage the
spatial relations between and within the two visual entities (i.e,
object, and OCR token) for TextVQA. To explore the spatial
relation for visual reasoning, we perform a multi-view spatial
measurement by the spatial facts of DIoU, relative distance,
geometric size, and overlapping area, which are well-designed
for keeping the characteristic of the object and OCR token and
refine the message passing between object-OCR token, object-
object, and OCR-OCR tokens in the graph structure.

III. METHOD: SPARSE SPATIAL GRAPH NETWORK

In this work, we devote to addressing the relation reasoning
between the detected objects and OCR tokens for the TextVQA
task. We propose a Sparse Spatial Graph Network (named
SSGN) for relation inference. As shown in Fig. 2, the question
answering process involves three steps: (1) obtaining features
of objects, OCR tokens, and the question, and then building
a spatial-aware graph network with objects and OCR tokens
(detailed in Sec. III-A), (2) performing spatial-aware relation
pruning and implementing a hierarchical sparse spatial graph
learning, where the graph involves the object-object, OCR-
OCR tokens, and object-OCR token relations (the core part
of our method introduced in Sec. III-B), and (3) updating
the features of object and OCR token nodes in the graph
and feeding them into an iterative answer decoder for answer
prediction (detailed in Sec. III-C).

A. Preliminary

1) Feature Preparation: For an image I , we extract the
initial object features by pre-trained Faster R-CNN [43]. The
initial OCR token features are extracted by OCR systems,
such as Rosetta-en [6], SBD-Trans [40], Google-OCR1, and
Microsoft-OCR2. Besides, we obtain a initial question fea-
ture by a fine-tuned three-layer BERT-BASE [10] where the
number of hidden layer in BertEncoder is set to 3. Following
the previous work [39], we input the initial features of the
objects, OCR tokens, and the question into a transformer-based
encoder architecture and update the features to Q={qi }

K
i=1,

V={vi }
N
i=1, and T ={ti }M

i=1, vi , ti , qi ∈ Rd , where N , M , and
K is the number of objects, OCR tokens, question words,
respectively.

2) Spatial-Aware Graph: To acquire the relations of object-
object, OCR-OCR tokens, and object-OCR token, we construct
a spatial-aware graph G={N , E}, where N is a node set that
includes all the objects and OCR tokens, N = V ∪ T , and
E is a directed edge set denoted as E = (EV→V , ET→T ,

1Google-OCR API: https://cloud.google.com/products/ai/https://cloud.
google.com/products/ai/

2Microsoft-OCR API: https://azure.microsoft.com/en-us/services/
cognitive-services/computer-vision/

Fig. 3. Relation pruning based on spatial factors. We expect to establish the
relations by co-occurring nearby object and token pair in OTSG and remove
the redundancy of overlapping objects in OSG and distant tokens in TSG.

EV→T , ET→V ). Among E , EV→V and ET→T are two subsets
that describe object-object and OCR-OCR tokens relations
respectively; EV→T and ET→V are two edge subsets that
contain the object-OCR edges with different message passing
directions, i.e, from object to OCR token, and from OCR token
to object. To make full use of the spatial information in the
image, we use spatial coordinates of visual entities to model
their explicit relations (edges in the graph). To be specific,
we consider the relative distance and height-width ratio of the
boundary boxes of two visual entities in the image. Taking
Ei→ j as an example, we take node n j as the reference node
and measure the distance of node ni to it. The edge feature
vector Ei→ j ∈ Rde is encoded below, where de = 5 .

Ei→ j =

[
x tl

i −xc
j

w j
,

ytl
i −yc

j

h j
,
xbr

i −xc
j

w j
,

ybr
i −yc

j

h j
,
wi ∗hi

w j ∗h j

]
, (1)

where
[
x tl

i , ytl
i ], [xbr

i , ybr
i

]
denote the top-left and bottom-right

coordinates of the bounding box of node ni , [xc
i , yc

i ] and
[wi , hi ] denote the center coordinate, width and height of
bounding box of node ni .

B. Sparse Spatial Graph

Each image contains a plethora of visual entities including
objects and OCR tokens. The TextVQA task is characterized
by reasoning out one or a few specified scene texts or objects
in a local region of an image to answer the question. Driven
by the question, there are many unnecessary visual relations
in reasoning process that may cause interference. Motivated
by the visual spatial relations in the natural image scene,
as shown in Fig. 3, we seek to remove the redundant relations
of much-overlapping objects and distant tokens, and enhance
the relations by co-occurring nearby object and token pairs.

As shown in Fig. 2, we perform a hierarchical graph infer-
ence. The whole process is implemented under the question
guidance. About the relation pruning, Object-Token Sparse
Graph (Sec. III-B.1) first performs the correlation of nearby
objects and OCR tokens to filter out useless object-OCR
relations. Next, we conduct the Object-Based Sparse Graph
(Sec. III-B.2) and Token-Based Sparse Graph (Sec. III-B.3) in
each entity space (i.e., object or OCR token) in parallel, which
further refines the correlated relations for answer prediction.
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1) Object-Token Sparse Graph (OTSG): We observe that
an OCR token is informative for answer prediction if it
is close to one or more objects, and vice versa for an
object. This observation prompts us to judge the neces-
sity of the relations between objects and tokens through
spatial measurements. We try to cut off useless edges in
the graph to facilitate graph relation reasoning, that is,
each node in the graph only receives informative messages
from its interactive neighbor nodes within a reasonable
spatial scale. The implementation details are introduced as
follows.

a) OTSG definition: There is a sub-graph GVT =

{N , EVT } ⊂ G, where N = (V, T ), EVT = (EV→T , ET→V ),
where EV→T ∈ RN×M×de , ET→V ∈ RM×N×de . Taking an
edge Et→v from OCR token t̃ to object ṽ as an example, the
edge feature Et→v is performed by Eq. 1, and the feature of
reverse edge Ev→t is calculated by Eq. 1 too.

b) Spatial relation pruning: In this case, we deem that
the distant object and OCR token have less or even no cor-
related information. We design the sparsity function with two
spatial pruning constraints: 1⃝ Spatial distance. It constrains
the establishment of relations between objects and OCR tokens
when the relative distance ∆dtv between token t j and object
vi is greater than θ*dI mg , where dI mg is the diagonal length
of image and θ is a hyperparameter; 2⃝ DIoU (Distance-
IoU) [59] is a good way to measure the spatial distance and
geometric similarity of two boundary boxes. It is formulated
in Eq. 2. Here, we use DIoU as a pruning criterion and its
value is required to be greater than θ . In OTSG, the greater
the overlap area of the object-OCR token pair is, the closer
their relation is.

DI oU = I oU −
ρ2 (

ni , n j
)

c2 , (2)

where ρ(·) denotes the Euclidean distance and c is the smallest
diagonal length of the bounding box covering both the two
nodes ni and n j . I oU is the spatial criterion of Intersection
over Union [43].

We use the sparsity function to update the edge set ET→V
of GVT as follows.

Et j →vi =


Et j →vi , i f ∆dtv ⩽ θ ∗ dI mg or DI oU

⩾ θ;

[0, 0, 0, 0, 0], else,
(3)

where ∆dtv = ρ(t j , vi ). Following the spatial setting in
previous work [37], [54], [56], we keep the default setting
of θ = 0.5.

c) Graph inference: After relation pruning, we imple-
ment the graph learning to update all the object and token
node features of sub-graph GVT . Taking an object node in
V as an example, we perform a question-guided correlation
between object and OCR token. Specifically, we calculate the
relation matrix AT→V ∈ RN×M for message passing from
OCR tokens to objects in GVT . We encapsulate this process

as a unified M P(·) function below.

AT→V = M P(GVT , ET→V ,Q)

⇔


q =

K∑
i=1

so f tmax(Wqi qi ) · qi ;

a = tanh
(
WeET→V + Wqq

)
;

AT→V = so f tmax (Waa) ,

(4)

where Wqi , We, Wq , Wa are learnable parameters. AT→V is
a similarity matrix, where its element AT→V i j denotes the
correlation weight of two nodes vi and t j , whose value is in
the range of (0,1).

Then, we update the object node set V with the edge set
ET→V and the relation matrix AT→V . Concretely, the node
vi is updated by receiving the messages from its “connected”
token neighbors in the sparse sub-graph. Please note that the
token neighbors only exists in the edges ET→V updated by
Eq. 3 rather than all the tokens. We encapsulate the graph
inference process as a unified G I N (·) function below.

V ′
= G I N (GVT , ET→V ,V, T ,AT→V )

⇔


E ′

T→V = AT→V · WEET→V ;

MT→V = WT AT→VT ;

V ′
= WVV + WE ′E ′

T→V + WMMT→V ,

(5)

where WE , WT , WV , WE ′ , WM are learnable parameters.
We obtain a new object representation V ′

={v′

i }
N
i=1 ∈ RN×d .

In the same way, we obtain the reverse relation EV→T and
update any OCR token node in T by receiving messages from
its connected object nodes. As a result, we obtain a new OCR
token representation T ′

={t ′j }
M
j=1 ∈ RM×d .

2) Object-Based Sparse Graph (OSG): After the above
double-sided verification of object and OCR token occur-
rences, here we narrow the range of relation learning in each
visual entity space. In this part, we study the object-object
relations in the graph. The objects are always densely detected
by the pre-trained detection models (such as Faster RCNN [43]
in this work). Superfluous bounding boxes with different
sizes covering a same entity often appear, but they are taken
as different objects. By observation, these close-by objects
have similar geometric sizes and visual appearances, their
high similarities result in the strongly intensified relations
between them, which may cause imbalanced relations and
negatively affect the answer reasoning. To achieve effective
visual reasoning, we try to reduce this interference.

a) OSG definition: In this part, we focus on the object
entities. Here is a sub-graph GV = {NV , EV }, NV = V ′, EV =

EV→V ∈ RN×N×de , where the edges Evi →v j and Ev j →vi are
also calculated by Eq. 1.

b) Spatial relation pruning: To address the redundant
relations of these similar and close-by objects, we employ
DIoU [59] and spatial distance again as spatial pruning
criteria. If DIoU is greater than ϵ, it means that two close
objects exist and the connected edge between them has to be
cut off. We use the sparsity function to update the edge set
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EV→V of GV below.

Ev j →vi =

{
Ev j →vi , i f ∆dv⩽θ ∗ dI mg andDIoU⩽ϵ;

[0, 0, 0, 0, 0], else,

(6)

where ϵ is a hyperparameter. We set ∆dv = ρ(v′

i , v
′

j ) and
θ =0.5 as the same in Eq. 3.

c) Graph inference: As the same to the above sub-graph
GVT , we perform the question-guided object graph learning
on GV . The relation matrix AV ∈ RN×N of GV is calculated
below.

AV = M P(GV , EV ,Q) (7)

For the object-object relations in EV→V , we update object
features from V ′ to V ′′

={v′′

i }
N
i=1 ∈ RN×d by message passing

from its “connected” neighbor objects in the sparse sub-graph
OSG (please note that does not refer to all the objects in V ′)
as follows.

V ′′
= G I N (GV , EV ,V ′,V ′,AV ) (8)

3) Token-Based Sparse Graph (TSG): Here, we discuss the
OCR-OCR tokens relations. In the previous work [21], [28],
[50], [51], [52], scene text recognition has been proven to be
significant for TextVQA. Unlike object detection, OCR tokens
are detected in relatively small numbers and are independently
dispersed, with few or no overlapping regions in the image.
As shown in Fig. 3, a small overlap area exists between ti
“Jean-Paul” and t j “Sartre”. ti and t j are semantically relevant
as they compose the name of a famous philosopher, where the
distant tk “Boston” is a city name. The close-by tokens are
much more semantic-relevant than distant tokens. Under this
consideration, we design a pruning rule for OCR tokens as
below.

a) TSG definition: The OCR tokens sub-graph is denoted
as GT = {NT , ET }, NT = T ′, ET = ET→T ∈ RM×M×de ,
where the edges Eti →t j and Et j →ti are also calculated by Eq. 1.

b) Spatial relation pruning: Taking Et j →ti as an exam-
ple, we constrain it with the following factors: 1⃝ Spatial
distance. It requires that ∆dt ⩽ α ∗dti , where ∆dt denotes
the shortest bounding box distance between tokens t ′i and t ′j ,
dti represents the diagonal length of t ′i ’s bounding box, and α
is a hyperparameter. Opposite to the redundancy of close-by
objects, close-by tokens have a close relation. Thus, we cut
off the Et j →ti if it does not meet this condition. 2⃝ Geometric
size. We restrict the heights of close-by OCR tokens. By obser-
vation, the tokens gathering together to describe a phrase
or sentence are often in similar font sizes. Another fact is
that different font sizes reflect different semantic importance.
We attempt to find out the scene texts at the same semantic
level in the image. We set β ∗ hi ⩽ h j ⩽ γ ∗ hi , where hi
and h j denote the normalized height of t ′i and t ′j in the image,
and β, γ are hyperparameters. 3⃝ Overlap area. To make sure
the readability of the OCR tokens, various OCR systems make
efforts to output less or no overlap tokens. We follow this rule
to calculate an overlap ratio ∆A = max( Ai j

Ai
,

Ai j
A j
) of tokens

t ′i and t ′j and set it less than threshold δ, where Ai and A j
are bounding box areas of t ′i and t ′j , respectively. Ai j is the

intersection area between the bounding boxes of t ′i and t ′j .
To summarize, we use the sparsity function to update the edge
set ET→T of GT as follows.

Et j →ti =


Et j →ti , i f∆dt ⩽α∗dti , h j∈[β, γ ]∗hi ,

and ∆A ⩽δ;

[0, 0, 0, 0, 0], else,

(9)

where α, β and γ are hyperparameters. We set the threshold
δ = 0.5 following the OCR spatial setting [50].

c) Graph inference: Up to now, the sparse sub-graph GT
referring to OCR token nodes is built. The token graph learn-
ing process of GT is performed the same as GT . We first cal-
culate the relation matrix AT = M P(GT , ET ,Q) ∈ RM×M to
perform the question-guided message passing among tokens.
Any OCR token node t ′j is updated by its “connected” neigh-
bor tokens. At last, we update the token node set by the unified
graph inference function T ′′

= G I N (GT , ET , T ′, T ′,AT ) ∈

RM×d .

C. Answer Generation

1) Answer Prediction: Based on the final output node
representations V ′′ and T ′′, we adopt an available text gen-
erator [22], [39] for answer prediction, which is made up of
a transformer and two classifiers—the object classifier ψo and
the OCR token classifier ψt . We concatenate Q, V ′′, T ′′ and a
hidden state o ∈ Rd and input them into a transformer module
as follows.

[Q̌, V̌, Ť , ǒ] = Ψ ([WQQ,WV ′′V ′′,WT ′′T ′′,Woo]), (10)

where WQ,WV ′′ ,WT ′′ ,Wo are learnable parameters, Ψ (·)
is a four-layer transformer, and o is initialized by positional
embedding [22]. We perform Eq. 10 L times, thus we obtain
a generated sequence Ǒ = [ǒ1, · · · , ǒL ] ∈ Rd×L .

This part can be regarded as a multi-label classification.
At each l-th decoding time, the object classifier ψo is realized
by a simple linear layer and predicts the probability score
yo

l over a pre-set object vocabulary. Another classifier, ψt ,
is proposed to compute the token score yt

l by the dot product
of the generated ǒl and OCR tokens Ť , where Ť is a dynamic
OCR token set detected in each image. Formally, the predicted
scores yo

l and yt
l are calculated as below:{

yo
l = W o

l ǒl + bo
l ;

yt
l = (W t1

l Ť + bt1
l )

⊤(W t2
l ǒl + bt2

l ),
(11)

where W o
l , W t1

l , W t2
l are learnable parameters and bo

l , bt1
l ,

bt2
l are scalar parameters at the l-th timestamp.
At last, we implement the argmax function on yo

l and yt
l

to predict the answer word y pred
l . Thus, the answer sentence

with length L , y pred
= {y pred

l }
L
l=1 is represented as:

y pred
l = argmax([yo

l , yt
l ]), (12)
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2) Training Loss: Following the previous work [22], [39],
binary cross-entropy loss Lbce is widely used for TextVQA.
In real applications, the utterly correct answer sentence is
expected but rarely occurs, whereas the answer with seman-
tically similar words is acceptable. Following [39], a new
auxiliary policy gradient loss Lpg based on ANLS (Average
Normalized Levenshtein Similarity (stated in Eq. 15 [3])
is introduced into this task [46]. The ANLS measures the
character-level composition similarity between the predicted
and ground-truth answers as follows.{
Lbce = −ygt log(σ (y pred))−(1 − ygt ) log(1 −σ(y pred));

Lpg = − log(σ (y pred)) · ANLS(ygt , y pred),

(13)

where σ (·) is sigmiod function, ygt is the ground-truth.
By combing Lbce and Lpg , the total loss is formulated as

follows.

L = Lbce + λLpg, (14)

where λ is a trade-off hyperparameter.

IV. EXPERIMENT

A. Datasets

Experiments are conducted on two benchmark datasets of
text-based visual question answering.

1) TextVQA [46]: In this dataset, images are collected from
Open Images v3 [34]. It contains 28,408 images and 45,336
questions, which consists of a training set of 21,953 images
and 34,602 question-answer (QA) pairs, a validation set of
3,166 images and 5,000 QA pairs, and a test set of 3,289
images and 5,734 QA pairs [22]. For each image, there are
about one or two QA pairs. The average lengths of question
and answer are 7.18 and 1.70 words, respectively. Questions
in this dataset are interested in visual objects or scene texts in
the images. Up to 39% (about 18K) of answers do not contain
any OCR token.

2) ST-VQA [3]: The dataset comprises 23,038 images
and 31,791 questions, which is collected from six different
datasets of ICDAR 2013 [32], ICDAR 2015 [31], Ima-
geNet [9], VizWiz [20], IIIT Scene Text Retrieval [42], Visual
Genome [35], and COCO-Text [48]. Following the proto-
col [22], this dataset is divided into the train/val/test sets of
17,028/1,893/2,971 images and 23,446/2,628/4,070 QA pairs,
respectively. Compared with the TextVQA dataset, ST-VQA
more emphasizes scene texts as all the questions have to be
answered with scene texts. Each image contains more than
two scene texts, regardless of whether or not they can be
detected by the OCR systems. ST-VQA introduces three novel
tasks, namely the strongly contextualized task (Task 1), the
weakly contextualized task (Task 2), and the open vocabulary
task (Task 3). Specifically, Task 1 provides a dynamic can-
didate dictionary of 100 words defined for per image; Task
2 provides a fixed answer dictionary of 30, 000 words for the
whole dataset; following [22], Task 3 provides a fixed answer
dictionary of 5,000 words for the whole dataset.

TABLE I
THE STATISTICS OF OCR TOKEN OUTPUT BY DIFFERENT OCR SYS-

TEMS ON TEXTVQA AND ST-VQA DATASETS. Total REPRESENTS THE
SUM NUMBER OF OCR TOKENS. Mean, Min AND Max REPRESENT

THE AVERAGE, MINIMUM, AND MAXIMUM NUMBERS OF OCR
TOKENS PER IMAGE. Min = 0 OCCURS IN THE CASES OF THE

BLUR, PARTIALLY OCCLUDED SCENE TEXTS, OR SCENE
TEXT IN ILLEGIBLE FANCY FONTS, etc. Max =

2694 OCCURS IN CASE OF SCENE TEXT FOR
READING, SUCH AS BOOK PAGES. IN OUR

EXPERIMENTS, WE CHOOSE M = 50 OCR
TOKENS FOR EXPERIMENTS

B. Evaluation Metrics

We adopt accuracy (Acc) as a basic evaluation metric
following [22], [30], [60]. Each question in the TextVQA
dataset has ten human-annotated answers, and the final accu-
racy is the average score over these ten answers. As for
ST-VQA [3], there is a new evaluation metric ANLS which
measures the frequency of correct words in each generated
answer as defined in Eq. 15. ANLS is calculated in term of the
correct words, while Acc is calculated in term of the complete
sentence.

AN L S(y pred , ygt ) = 1 −
N L(y pred , ygt )

max(|y pred |, |ygt |)
. (15)

where NL denotes the normalized Levenshtein distance [36],
y pred and ygt denote the predicted and ground-truth answers,
respectively. As set in ST-VQA [3], the score ANLS is set to
0 if it is below 0.5.

C. Implementation Details

For feature extraction, we follow the experimental settings
of [3] and [46]. We use the Faster R-CNN [43] pre-trained
on Visual Genome dataset [35] to detect objects. Each object
has a 2048-dim appearance feature and a 4-dim boundary
box feature. They are encoded by a separate fully connected
layer and then added into a 768-dim vector and used as
an original object feature. As for OCR tokens, we conduct
experiments on four OCR systems, i.e, Rosetta-en [6], SBD-
Trans [40], Google-OCR 1, and Microsoft-OCR 2. Each OCR
token feature consists of four aspects, including 300-dim
FastText feature [5], 604-dim PHOC (pyramidal histogram
of characters) feature [1], 2048-dim appearance feature, and
4-dim bounding box feature. Following the previous work for
TextVQA [22], [39], [58], all features are encoded by a sepa-
rate fully connected layer and then added to obtain a 768-dim
vector. Table I shows the statistics of OCR tokens detected
on the TextVQA and ST-VQA datasets. In our experiments,
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we choose N = 100 objects with the best probabilities and
M = 50 OCR tokens following [22], [57], [58], [60].

About the other experiment setups, each question sen-
tence is truncated with the length K = 20 and equipped
with 768-dim word embedding. In this work, we perform a
two-layer transformer with 12 heads for feature preparation
in Sec. III-A.1 and a four-layer transformer with 12 heads for
answer decoding in Sec. III-C. The maximum length of the
output answer L = 12, and the trade-off parameter in the
total loss objective is set to λ = 1. The threshold θ is set to
0.5 following the setting of spatial exploration [56]. We set
empirical parameters with ϵ = 0.3, α = 5, β = 0.3 and γ =

2.0. We choose Adam as the optimizer, and the learning rate
is set to 1e−4. During training, we multiply the learning rate
by 0.1 at 10,000 and 21,000 iterations, respectively, for a total
of 24,000 iterations.

D. Comparison With State-of-the-Art Results

In this subsection, we compare the proposed method
with the state-of-the-art approaches—Attention-based mod-
els (LoRRA [46], SSBaseline [60]), Transformer-based
models (M4C [22], LaAP-Net [21], PAT [58], TAP [55],
LOGOS [41]), Representation learning models (BOV [57]),
and Graph-based models (MM-GNN [14], CRN [39],
SA-M4C [30], SMA [13]).

1) Results on TextVQA: As the experimental results shown
in Table II, the proposed SSGN achieves a promising perfor-
mance compared to state-of-the-art methods. Compared with
SSBaseline [46] (an attention-based model), under the same
setup of SBD-Trans features and ST-VQA [3] training data,
SSGN improves 1.43% on the val set and 0.97% on the test set.
Compared with BOV [57] (a representation learning model)
based on SBD-Trans features, SSGN (Ours) improves 0.85%
on the val set and 1% on the test set, and when taking ST-VQA
as extra training data, SSGN (Ours) further improves 1.24%
on the val set. Compared with LaAP-Net [21] (a transformer-
based model without pre-trained techniques), SSGN (Ours)
improves 1.32% on the val set and 1.06% on the test set.
By introducing pre-trained techniques such as MLM (masked
language modeling), ITM (image-text matching), RPP (relative
position prediction) or large-scale extra data such as the Visual
Genome dataset (which includes 108,000 images, 5.4 million
descriptions, 1.7 million QA pairs and 2.3 million relation
annotations) [35], TAP [55] and LOGOS [41] obtains higher
performance than ours.

The fairest comparison exists among the graph-based mod-
els. Compared with MM-GNN [14] (a total fully-connected
graph model), when using Rosetta-en features, our model
achieves 10.56% and 10.50% improvements on the val and
test sets respectively. CRN [39] constructs a fully-connected
graph that merely explores the relations between objects and
OCR tokens, namely ignoring object-object and token-token
relations. Our model improves upon CRN by 1.61% on the
val set and 0.64% on the test set. SA-M4C [30] introduces
a spatial orientation factor into the graph modeling but does
not consider the relation redundancy in the graph. Compared
with SA-M4C [30], our model achieves 0.05% and 0.82%

TABLE II
MAIN COMPARISON ON TEXTVQA DATASET. THE GREY BLOCK MARKS

THE PRE-TRAINING TECHNIQUES. * DENOTES THAT THE MODEL IS
JOINTLY TRAINED WITH EXTRA PRE-TRAINING TASKS OF MLM,

ITM, AND RPP. † DENOTES JOINTLY PRE-TRAINING WITH THE
QUESTION-VISUAL GROUNDING TASK. VG DENOTES THE

VISUAL GENOME DATASET [35]. “F” DENOTES FULL
RELATIONS, AND “S” DENOTES SPARSE RELATIONS

improvements on the val and test sets when using Google-OCR
features and ST-VQA data for training. In SMA [13], each
node adaptively selects the top-5 nearest neighbors for relation
learning. When using the SBD-Trans features and extra train-
ing data, our model achieves 2.38% and 1.12% improvements
on the val set and the test set than SMA.

2) Results on ST-VQA: The questions in the ST-VQA
dataset are answered more explicitly by utilizing the OCR
tokens in the images than in the TextVQA dataset. From
Table III, our method shows absolute superiority on the three
tasks of ST-VQA dataset. In Task 1, SSGN (Ours) obtains
48.7% on Test ANLS and surpasses MM-GNN [14] by 28.7%.
In Task 2, SSGN (Ours) reaches 49.5% on Test ANLS and
outperforms CRN [39] by 1.3%. In Task 3, when using
Microsoft-OCR, SSGN (Ours) achieves 58.9% on Val ANLS
and 48.81% on Val Acc, surpassing all other methods on
the val set. The results show that our model has competitive
performance compared with other methods in all three tasks.

E. Role of Graph Module

In this subsection, we test the role of each graph module in
our method. As shown in Table IV, w/o graph that removes
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TABLE III
MAIN COMPARISON ON THREE TASKS OF ST-VQA DATASET. “F”

DENOTES FULL RELATIONS, AND “S” DENOTES SPARSE RELATIONS

all the graph modules in our method shows the most severe
performance degradation.

1) Single Sub-Graph: We test a single sub-graph and report
the experimental results in Table IV. Single OTSG means
that we merely save the OTSG graph module and remove
the other graph modules in our method. Compared with the
full model SSGN, OTSG decreases 1.53% on the val set
and 0.93% on the test set obviously. This indicates that
using object-OCR token interaction alone is not sufficient for
answer prediction. Single OSG with object nodes achieves
the worst performance, with a drop of 2% on the val set.
The surprising case is the single TSG with OCR token nodes,
which decreases slightly by 0.79% in the val set compared to
the full model. This suggests that the OCR tokens indeed play
an important role in this task.

2) Dual Sub-Graphs: We test various combinations of two
sub-graphs. Among them, OTSG&TSG achieves the best
performance, with a slight decrease of 0.37% on the val set
compared with the full model SSGN. This result is reasonable
because OCR tokens are important in both OTSG and TSG
graphs. In contrast, OTSG&OSG has a substantial decrease
of 1.51% on the val set, and even is much worse than the
parallel learning of OSG&TSG with an accuracy reduction
of 0.73%. We speculate that the object redundancy is much
more serious than the OCR tokens. The redundant relations
between objects may interfere with the reasoning process.

3) Hierarchical Graph Structure: Further, we test the hier-
archical graph structure including the following three graph
variants: 1⃝ A parallel learning of OSG&TSG&OTSG. In this
case, we concatenate the object features output by OSG and
OTSG as V ′′ and the token features output by TSG and
OTSG as T ′′ for answer generation, 2⃝ OTSG→OSG&TSG
(Ours), and 3⃝ OSG&TSG→OTSG, a cascade graph learning

TABLE IV
THE PERFORMANCE OF GRAPH MODULES ON TEXTVQA DATASET

TABLE V
ABLATION STUDIES OF GRAPH SPARSITY ON TEXTVQA DATASET

approach in the opposite order of OTSG→OSG&TSG.
Among these structures, OSG&TSG&OTSG has the worst
performance. Compared to OTSG→OSG&TSG (Ours),
it drops 1.86% on the val set and 1.18% on the test set. The
OSG&TSG&OTSG performs even worse on any combination
of dual sub-graphs. This may be because redundant relations
are amplified in this three-sub-graph parallel learning. By com-
paring OSG&TSG→OTSG and OTSG→OSG&TSG, the
latter is clearly more effective. We insist on the validity of
OTSG→OSG&TSG, which first implements the correlation
of object-OCR token and then examines the correlated clues
in each visual space individually.

F. Ablation Studies

In this subsection, we conduct experiments with
Rosetta-en OCR features on the TextVQA dataset
to demonstrate the validity of our sparse method in
Tables V ∼ Tables VII, and X, and to illustrate the role of
heuristics in Tables VIII, IX, and Fig. 4.

1) Sparsity Test: In this part, we discuss the graph sparsity
in Tables V and VI. There are different sparsity settings. “w/
OTSG sparsity” indicates that our approach just conducts the
spatial sparsity of OTSG, while “w/o OTSG sparsity” indi-
cates that we just cancel the sparsity operation of OTSG. And
the definitions of “w/ OSG sparsity”, “w/ TSG sparsity”,
“w/o OSG sparsity”, and “w/o TSG sparsity” are similar.
For “w/o sparsity”, OTSG, OSG, and TSG are all performed
on fully-connected graphs.

As shown in Table V, under only one sub-graph sparsity,
the effect of w/ OTSG sparsity is most noticeable due to
the importance of object-OCR token correlation. If a local
region in the image is recognized by both objects and OCR
tokens, it does deserve more attention. Building these relations
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TABLE VI

STATISTICS OF SPARSITY RATIO (SR)3 ON TEXTVQA AND ST-VQA TEST
SETS UNDER DIFFERENT OCR SYSTEMS

TABLE VII
STATISTICS OF SPARSITY RATIO (SR) OF TSG ON TEXTVQA AND

ST-VQA TEST SETS UNDER DIFFERENT DATA DISTRIBUTIONS OF
OCR TOKEN

TABLE VIII
ABLATION STUDIES OF VARIOUS IOUS IN OSG ON TEXTVQA DATASET

TABLE IX
ABLATION STUDIES OF THRESHOLD θ IN OTSG AND

OSG ON TEXTVQA DATASET

with object-OCR co-occurrence are instructive for predicting
answers. Besides, the performances are very close in the
graph variants of two sub-graph sparsity, where w/o TSG
sparsity performs marginally better than others. In fact, due
to the characteristics of object detectors and OCR systems,
dense object-object relations with large overlapping regions
widely exist, while overlapping OCR tokens are much less
frequent. Anyway, SSGN with the complete sparsity setting

3Sparsity Ratio (%) = Avg( Np
NI

), where Np and NI denote the number of
pruned edges and the total number of edges per image respectively.

TABLE X

ABLATION STUDIES OF SOFT SOLUTION BASED ON GAT [49] TECHNIQUE
WITH ROSETTA-EN OCR FEATURES ON TEXTVQA DATASET

Fig. 4. Ablation studies of spatial factors in TSG.

achieves the best results. Furthermore, the sparsity ratios of
OTSG, OSG, and TSG are reported in Table VI, around
10%, 15%, and 55%, respectively. These sparsity ratios are
roughly stable, except for the case of 32.36% OTSG under
SBD-Trans features on ST-VQA. We are surprised to find
that this is actually caused by the SBD-Trans OCR system’s
mislabeling of object bounding boxes on the coco-text subset
of the ST-VQA dataset. Among these, TSG has the greatest
sparsity.

Back to the statistics of OCR tokens in Table I, various
OCR systems output different but competitive token num-
bers with each other. Here, we discuss the effect of OCR
systems on the sparsity rate in Table VII. We choose the
Mean number of tokens per image as the cut-off point to
observe the sparsity ratio of TSG, i.e, 20 for the TextVQA
dataset and 10 for the ST-VQA dataset. As shown in
Table VII, the TSG sparsity ranges from 55% to 66% for
OCR⩽20/OCR⩽10 on the TextVQA / ST-VQA, while is
about 45% for OCR>20/OCR>10, respectively. In conclusion,
the sparsity patterns of the two datasets are similar and we
consider the adaptive sparsity strategy in our approach to be
stable and acceptable.

2) Impact of various IoUs: IoU is widely used for object
detection. In this part, we discuss its effect in the OSG graph
(Eq. 6). There are many variants of IoU, including IoU [11],
GIoU [44], CIoU [59] and DIoU [59]. IoU [11] is a basic term
that considers the overlap area of two object bounding boxes.
With the basic IoU, GIoU (Generalized IoU) [44] considers
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Fig. 5. Instantiation of fully connected and sparse graphs for OTSG, OSG, and TSG. The number in each parenthesis indicates the sparsity ratio. We show
in (a) the visualization of nodes (objects and OCR tokens) overlapping in the image and in (b) the visualization of edges (relations). The node size reflects
the sum of the connected edge weights and each edge weight is output by the message transition matrices Avt , Av , and At of each graph. By comparison,
the sparse graph is more resistant to the interference of redundant relations and can generate accurate answers.

the relative direction, DIoU [59] (Distance-IoU) adds the
center measurement, and CIoU (Complete-DIoU) [59] adds the
length and width measurements of bounding box. As shown
in Table VIII, DIoU considering overlap area and center
distance performs the best at ϵ = 0.3. Using only overlap
area is not sufficient (IoU drops by 0.53%), and considering
direction and angle is not appropriate for edge modeling in the
TextVQA task (GIoU drops by 0.97 %). CIoU performs well
(down 0.34%), but the length and width measurements are not
effective to DIoU (considering center distance) in eliminating
redundant spatial relations.

3) Impact of Spatial Factor: We analyze the role of spatial
factors θ in graphs OTSG and OSG, and test {α, γ } in the
graph TSG. In OTSG, θ is used to constrain the spatial distance
or their overlap area of object-token pair, while θ is taken to
constrain the spatial distance of object-object pair in OSG.
As shown in Table IX, the greater the value of θ is, the fewer
edges are pruned. The results show that the spatial distance
is too close or too far to be suitable for relation inference. θ
= 0.5 is the optimal setup for OTSG and OSG. We further
test the spatial factors of distance and geometric size in the
graph TSG. As shown in Fig. 4, the larger α is, the fewer
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Fig. 6. Two visualization examples of our method compared with existing CRN [39] and MM-GNN [14]. The results show that through effective spatial
pruning, our method SSGN performs accurate relation inference between object-token, object-object, and token-token for answer prediction.

edges are pruned. We set α = 5 for the best performance.
We consider that there is a balance between the sparsity
ratio and distance. For the token’s geometric size [β, γ ], the
setting of [0.3, 2.0] achieves the best performance. It seems
that the broader ranges [0.1, 2.5] and [0.3, 2.0] filter out the
relations useful for answer prediction better than [0.5, 1.5] and
[0.8, 1.2].

4) Soft Relation Pruning: Here, we consider a flexible soft
relational solution referring to GAT [49] technique. We replace
the relational learning mode in the OTSG, OSG, and TSG
graphs with soft weight learning in GAT [49]. As shown
in Table X, the variants for ablation experiments are as
follows: 1) SSGN-GAT is a fully-connected graph model
that uses soft weights to combine full relations; 2) based
on it, we test three soft pruning methods, i.e, SSGN-GAT-
Soft Sparse (Hyperparameter), SSGN-GAT-Soft Sparse
(Median), and SSGN-GAT-Soft Sparse (Mean). The three
sparse graph models respectively use an empirical hyperpa-
rameter (0.01), median and mean of edge weights to adaptively
select sparse relations with different sparse criteria; 3) different
from soft sparse solution, SSGN-GAT-Spatial Sparse is a
sparse graph model that uses spatial conditions proposed in
this work. Among these sparse graph variants, the baseline
SSGN-GAT performs the worst. Compared with SSGN-GAT,
the performances of all SSGN-GAT-Soft variants are slightly
improved; for examples, SSGN-GAT-Soft Sparse (Hyper-
parameter) improves 0.15% and 0.39% on the val and test
sets, respectively. Compared with SSGN-GAT, SSGN-GAT-
Spatial Sparse with our spatial constraints increases 0.84%
and 0.76% on the val and test sets, respectively. It proves
that our spatial pruning method with sophisticated spatial
conditions is effective and conducive to answer reasoning.
Anyway, the proposed method SSGN (Ours) performs the
best.

G. Visualization Analysis

To demonstrate the interpretability of our method, we visu-
alize some examples below.

1) Graph Inference: As shown in Fig. 5 (a), we exhibit
the graph learning process in the fully-connected graph and
the sparse graph settings. The highly-responsive visual regions
are quite different in the two graph settings. For the questions
Q1∼Q3, in fully-connected graphs, the misleading answers
are “102nd”, “strawberry” and “john hour”, while in sparse
graphs the correct answers are “12:02 pm”, “ginger cilantro
lemon”, and “john lewis”. A remarkable observation is the
existence of redundant relations in fully-connected graphs.
For example in Q1, at the bottom of the image, the green
road sign is recognized as a “sign” by the object detection
model, which is covered by 11 different-sized bounding boxes
that are considered as 11 objects. These close-by objects
enhance the unnecessary visual relations between them. And
the OCR token “Search” is far from the token “12:02 pm”,
while the relations between these two OCR tokens is no
longer semantically needed. In the sparse graph, we cut off the
redundant connections and make the inference of the answer
more explicit. Fig. 5 gives an illustrative explanation of the
effectiveness of sparse graph learning in this work.

2) Spatial Sparsity Analysis: As shown in Fig. 5 (b),
in terms of the sparsity of OCR tokens, in Q3, the three
tokens “john”, “lewis” and “hours” are tightly connected in the
fully-connected TSG graph. In fact, the two tokens “john” and
“lewis” (the correct answer) are spatially close to each other
but relatively distant from the token “hours”. After relation
pruning in the graph, the semantic difference between “hours”
and “john lewis” is more explicit for the model. How about
the other sparsity? Taking Q1 “what is the time on the gaps”
as an example, it is hard to distinguish between the numeric
tokens “102nd” and “12:02 pm”. In the fully-connected graph
setting, the effect of “102nd” is enhanced by the redundant
object-object and object-OCR token relations. After spatial
pruning, “102nd” and “12:02 pm” can be evaluated fairly, and
the correct answer “12:02 pm” is thus output.

3) Graph Model Comparison: Here, we display two exam-
ples to compare our model with two existing fully-connected
graph methods CRN [39] and MM-GNN [14]. As shown
in the Fig. 6, it can be found that both CRN [39] and
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Fig. 7. Visualization of hierarchical graph structures for answer prediction.
We discuss three solutions, namely OSG&TSG&OTSG, OSG&TSG→OTSG,
and OTSG→OSG&TSG. By observing, in our method OTSG→OSG&TSG,
the implementation of OTSG can first effectively discover the critical relations
through the nearby object and OCR token co-occurrences, and then the parallel
learning of OSG and TSG examines the critical relations under each space of
objects and OCR tokens.

MM-GNN [14] are confused by the full relations and give
wrong answers, while the proposed method performs well
attributing to the sparse relation learning. As shown in Q1 (a)
and Q1 (b), the redundant relation between object “woman”
and token “shoegasm” interferes with the answer reason-
ing of CRN [39] to the wrong answer “shoegasm”, while
the dense relations between token “shoegasm”, digital token
“8149383414” and the other tokens mislead the model MM-
GNN [14], resulting the wrong answer “8149383414”. In Q1
(c), SSGN (Our) cuts off the relations between spatially
distant object-token pairs and reduces the redundant associ-
ations between repeated objects and disconnected tokens by
leveraging the customized spatial criteria. For example, in our
TSG (token-token) graph, the token “pizza” has no connection
to the tokens “shoegasm” and “8149383414”. Finally, our
model reasons out the correct answer “pizza”. In addition,
as shown in Q2 (c), a similar conclusion can be drawn
in Q2 (c). The valuable and effective semantic associations
are helpful for answer prediction rather than fully semantic
associations established in the graphs.

4) Hierarchical Graph Structure: Here, we discuss the hier-
archical graph structure for answer prediction. We visualize an
example in Fig. 7. The proposed SSGN method is carried out
with the parallel structure OSG&TSG&OTSG, as well as the
cascading structure of the order OSG&TSG→OTSG and its
reverse order OTSG→OSG&TSG, respectively. To answer
the question “what street sign is in the background?” In
OSG&TSG&OTSG, each sub-graph focuses on different
entities in each visual space, such as object nodes “tower”
and “sign” in OSG, OCR token nodes “rent me” and “call”
in TSG and object node “tower” in OTSG. Unlike the
discovery in OSG&TSG&OTSG, OSG&TSG→OTSG and
OTSG→OSG&TSG consistently focus on “sign” in the
image. But OSG&TSG→OTSG performs the graph learn-
ing in separate object and OCR token spaces in parallel

Fig. 8. Question and answer word clouds for TextVQA and ST-VQA datasets.
We visualize the generated answers with Google-OCR and Microsoft-OCR
as examples. For both questions and answers, stop words, e.g, “the”, “is”,
“which”, “what”, “at”, “on”, etc, are removed from the statistics.

first, resulting in a wrong focus on the foreground “sign”.
In contrast, our OTSG→OSG&TSG outputs the correct
answer. By first implementing the object-OCR token correla-
tion, our approach focuses directly on the background “sign”.

5) Word Cloud Analysis: Here, we use the word clouds
to visualize the high-frequency words in the questions and
answers. As shown in Fig. 8, the questions in both TextVQA
and ST-VQA datasets pay consistent attention to words
“name”, “number”, “word”, “brand”, and “written”. As for
the answers, due to the difficulty of questions, “unanswerable”
occurs with a remarkable frequency in TextVQA dataset. And
the road sign word “stop” appears most frequently in the ST-
VQA answers. It is also interesting to note that the ST-VQA
prefers to ask questions about color accompanied with the
answers “blue”, “red”, and “white”.

V. CONCLUSION

In this paper, we propose a sparse spatial graph network
(SSGN) for TextVQA, which focuses on edge pruning in graph
learning. We investigate a depth study of graph sparsity from
spatial factors, such as DIoU, distance, geometric size, and
overlap area. We strive to prune redundant or useless rela-
tions. Extensive experiments are conducted on TextVQA and
ST-VQA datasets under different OCR systems to validate the
effectiveness of SSGN and to show interpretable visualization
results.
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