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ABSTRACT

Vision-language contrastive learning based on the CLIP method has been instru-
mental in driving recent advancements in computer vision. However, high quality
CLIP models are based on very large datasets. This makes them expensive to
train and hampers the scientific analysis of these models. We show how to train
a CLIP base-size model efficiently for a broad domain on a much smaller amount
of data. We demonstrate this specifically with the automated creation of a dataset
named LivingThings with 8.9M images of animals and plants and 12.2M texts.
The dataset is obtained via focused image-search queries of three kinds: entity
queries (e.g., “eagle”), entity-attribute queries (e.g., “bushy tail of a fox”), and
type-attribute queries (e.g., “insect on a leaf”). The entities and types, as well as
some of the texts, are derived from the WordNet and Wikidata knowledge graphs,
the attributes are obtained via LLMs. We train a CLIP model from scratch on Liv-
ingThings and evaluate it on ImageNet, iNaturalist, and CUB for object classifica-
tion and OVAD and CUB for attribute classification. On the broad target domain
of animals and plants, our model achieves comparable, and sometimes even much
better performance than models that have orders of magnitude more parameters
or training data. For instance, our ViT-B-32 model improves over much larger
state-of-the-art CLIP models on the iNaturalist 21 object classification task. We
will publicly release our code and dataset.

1 INTRODUCTION

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) is a popular way to train
Vision-Language Models (VLMs) and is part of a large percentage of contemporary works in com-
puter vision. CLIP models learn high-quality visual embeddings and establish a link to the semantic
level of brief text descriptions by training on pairs of images and their corresponding text descrip-
tions collected from the web. The features and the link between images and text have been used
directly for, e.g., zero-shot classification or text-to-image retrieval, and enable dialogues with visual
input, such as in the LLaVA family of models (Liu et al., 2023). The link can also be exploited in the
opposite direction to enable text-conditional image generation, e.g., Stable Diffusion (Podell et al.,
2023).

However, pretraining such a model is very expensive, since it requires large amounts of data and
compute, with the original CLIP model already training on 400M image-text pairs, and later works
scaling the training up even more (Gadre et al., 2023; Fang et al., 2024a). Therefore, research on
VLMs that requires control over the training of the model is either left to companies or is limited to
models of significantly lower quality. Finetuning existing CLIP models can be done with moderate
compute, however, then the architecture and pretraining data is fixed. Pretraining allows us to be in
full control of all input data, choice of architecture and training algorithm.

The goal of this work is to train a VLM from scratch with much less compute while approaching
or even surpassing the quality of the largest models. Our strategy focuses on training with less but
better data, in order to maximize the performance per datapoint. Li et al. (2024) have explored CLIP
“along three dimensions: data, architecture, and training strategies” and they stress the “significance
of high-quality training data”. For LLMs, Abdin et al. (2024) have shown that data curation brings
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Figure 1: We create a dataset for vision-language pretraining: First, we extract entities from knowl-
edge graphs, then generate attributes and natural types for them. We search for different combina-
tions of entities, attributes, and types in image search engines, and collect alt texts for each image.
We train our model on the combined data.

down the training time and model size, which they achieve via “heavily filtered publicly available
web data and synthetic data”.

In this paper, we try to achieve this goal in a largely automated fashion by leveraging the very com-
pact and high-quality information found in knowledge graphs, specifically, we make use of WordNet
(Fellbaum, 1998) and the bigger and more comprehensive Wikidata (Vrandečić & Krötzsch, 2014)
to build a dataset for the domain of animals and plants. This domain is broad enough to be useful
and serve as a proof of concept, and allows us to evaluate the performance of our model in detail for
each domain and on existing benchmarks. We still obtain a foundation model in the sense that the
model — within the semantic domain of animals and plants — can be used in an open-vocabulary,
zero-shot manner. Furthermore, our dataset-building method is generic, and can be used for arbitrary
domains covered by the given knowledge graphs.

We consider the following as our main contributions:

• We demonstrate how to build an effective dataset for a rather broad domain that enables train-
ing CLIP-like models from scratch on small-scale hardware. The dataset is obtained via focused
image-search queries of three kinds: entity queries (e.g., ”eagle”), entity-attribute queries (e.g.,
”bushy tail of a fox”) and type-attribute queries (e.g, ”insect on leaf”). The entities and natural
types are obtained from the WordNet and Wikidata knowledge graphs, the attributes are obtained
via LLMs. We also use the knowledge graphs to generate additional text labels for the retrieved
images. The resulting LivingThings dataset comprises 8.9M images of animals and plants and
12.2M texts. The generation method of our dataset is largely generic and can be applied to arbi-
trary domains.

• We train a CLIP model on LivingThings from scratch, using low amounts of compute. We eval-
uate our model and a suite of other CLIP models on ImageNet, iNaturalist, Caltech-UCSD Birds
(CUB), and RareSpecies for object classification, and on OVAD and CUB for attribute classi-
fication. Specifically for CUB, we create a comprehensive evaluation setup to enable testing
zero-shot attribute classification using VLMs. On the target domain of animals and plants, our
model achieves comparable and sometimes much better performance than models with orders of
magnitude more parameters or training data.
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2 RELATED WORK

Datasets. Many recent works investigate ways of building large-scale datasets for multimodal train-
ing. Radford et al. (2021) train the original CLIP model on a closed set of 400M images, with the
model weights being released, but not the data. They build their dataset by collecting image-text
pairs, where the text includes frequent terms derived from Wikipedia or WordNet nouns, and ap-
proximately class-balancing the result. As a first approach to create a public dataset of this size,
Schuhmann et al. (2021) build a dataset with 400 million image-text pairs by filtering HTML data
from Common Crawl (LAION-400M) (Rana, 2010). Their main method of filtering is to remove
all image-text pairs that have less than 0.3 similarity estimated by the CLIP model. In a follow-up
work, Schuhmann et al. (2022) scale their approach up one order of magnitude with the multilingual
LAION-5B dataset. Xu et al. (2024) intend to replicate the original CLIP’s data curation approach.
They collect image-text pairs from CommonCrawl and filter them using Wikipedia and WordNet,
then balance the results. Gadre et al. (2023) propose DataComp, a filtering challenge with a candi-
date pool of up to 13B image-text pairs from CommonCrawl, where the goal is to filter this candidate
pool and run a fixed training pipeline on the resulting data. They propose a baseline DataComp-1B
dataset with 1.4B pairs filtered with a combination of CLIP score and clustering CLIP embeddings
to find images close to ImageNet (Deng et al., 2009) training examples. Fang et al. (2024a) train a
Data Filtering Network on an internal dataset of 357M human-verified image-text pairs and finetune
it on a set of public human annotated datasets. They filter 42B candidates into the DFN-5B dataset
and train the current top model of the OpenCLIP leaderboard (Ilharco et al., 2021).

These large datasets have mostly replaced smaller datasets like ConceptualCaptions12M (CC12M)
(Changpinyo et al., 2021), which relies on unimodal heuristics as well as Google Cloud Vision APIs
to predict the image-text similarity. Another popular small dataset is Yahoo Flickr Creative Com-
mons 15M (YFCC15M), a subset of 15M image-text pairs obtained from the YFCC100M dataset
which is based on Flickr (Thomee et al., 2016). Though many works are mostly concerned on
scaling up multimodal datasets and models as much as possible, we aim to improve research on
high-quality CLIP models also in scenarios with much less available compute.

Stevens et al. (2024) aim to create a general vision model for organismal biology and curate the
TreeOfLife-10M dataset based on Encyclopedia of Life (EOL, 2018), iNaturalist 2021 (Van Horn
et al., 2018) and BIOSCAN-1M (Gharaee et al., 2023). Their model BioCLIP is trained on a mix
of english and latin entity names. For evaluation, they curate the RareSpecies benchmark which
tests generalization to 400 species unseen during training. While Stevens et al. (2024) use biological
domain knowledge to build their dataset, we instead rely on knowledge graphs and propose a dataset
collection method for arbitrary domains.

Training algorithms. Various works are concerned with improving CLIP from the algorithmic side.
Li et al. (2023a) simply train on low resolution first, then finetune on higher resolution later. Li et al.
(2023b) additionally mask a substantial portion of the image to further reduce the amount of input
during training. Zhai et al. (2023) propose using a sigmoid loss which reduces the computional load
especially in big distributed settings. Vasu et al. (2024) enhance their training data with synthetic
captions created by an image captioning model and use an ensemble of CLIP teachers to train their
model. This way, they can increase the learning efficiency by transferring knowledge from bigger
models to their smaller models. Such algorithmic improvements are orthogonal to our research,
since they would potentially also improve training on our dataset. In this work, we focus on data
improvements and fix the algorithm and architecture choices, since this also allows to easily and
fairly compare to a big set of already trained vanilla Vision Transformer (ViT) based CLIP models.

Li et al. (2024) scale down CLIP and analyse the influence of different data, architecture, and training
strategies. They find that especially large models need larger datasets, and data quality plays an
important role. They create higher quality datasets by applying CLIP filtering to the 3.4B WebLI
dataset (Chen et al., 2023), while we aim to use a different dataset collection process.

Evaluation. Image classification is a popular way to evaluate vision encoders like CLIP-style mod-
els. While established benchmarks like ImageNet (Deng et al., 2009) or iNaturalist (Van Horn et al.,
2018) provide a solid grounding to evaluate CLIP-style models on object classification, evaluating
attribute understanding is more challenging. Attributes are more challenging to define and anno-
tate: It is quite obvious what a “dog” is, however calling an object “large” depends on the frame
of reference. The Animals with Attributes dataset (Xian et al., 2019) for example has attributes
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annotated per class, which makes it unfavorable for testing per-image attribute classification. Bravo
et al. (2023) find weaknesses in attribute definition and annotation of existing benchmarks like VAW
(Pham et al., 2021) and provide the Open Vocabulary Attribute Detection (OVAD) benchmark, which
can be used for evaluating both attribute classification and attribute detection. The CUB dataset
proposed by Wah et al. (2011) provides images of 200 bird species, with 312 attributes densely an-
notated for each image. Since we propose a dataset built on entities and attributes derived from the
world of animals and plants, the CUB dataset is an obvious choice to test our model.

3 DATASET CREATION

We describe our dataset creation process, consisting of four main steps: entity extraction, attribute
generation, query building, and image search. In this work, our starting point for this process are
entities within our target domain of animals and plants. In general, this process is applicable to all
visual domains covered by the knowledge graph.

3.1 ENTITY EXTRACTION

We build our list of entities for both animal and plants from the Wikidata knowledge
graph (Vrandečić & Krötzsch, 2014). We define an animal to be every entity that is a subclass
or child taxon of the animal entity1, either directly or via multiple intermediate entities. We exclude
human individuals, mythical creatures, and other named individuals to avoid being too specific.

We define a plant analogously, but with the plant entity2 as root entity instead. For plants, we also
include their fruits, because they are typically not directly related to the plant entity via the taxon or
subclass hierarchy. We exclude cultivars, named individuals and all plants with a coordinate location
to avoid overly specific entities.

For every animal and plant, we download its identifier, name, description, number of Wikipedia
sitelinks, aliases, taxon common names, and taxon names. See Tab. 1 for example data. We use the
number of Wikipedia sitelinks as proxy for an entity’s popularity and order our final entity lists by it,
with popular entities coming first. Our final entity lists contain 204,918 animals and 84,612 plants.

We also select all nouns from WordNet (Fellbaum, 1998) that are a subclass of the “living thing”
node, excluding humans, named entities and entities that cannot be seen with the bare eye, e.g.,
microorganisms. Finally, we only consider leaf nodes and arrive at 6,983 entities, each with a
description and a total of 16,705 synonyms.

To verify that our entity extraction procedure generalizes beyond animals and plants, we run it on a
much broader visual domain in Appendix I.

3.2 ATTRIBUTE GENERATION

We generate attributes for the top 500 Wikidata entities in both our animal and plant entity lists
using LLMs. We manually define 6 visual attribute categories for plants and 7 for animals, for
each of which we guide the LLM to predict between 1 and 10 attribute instances using constrained
decoding. We thereby obtain between 6 and 60 attributes per animal and between 7 and 70 attributes
per plant. The 6 attribute categories for plants are Color, Pattern and texture, Plant parts, Shape
and size, Habitat and environment, and Other. For animals, we switch Plant parts to Body parts and
add another category called Behavior and movement. We specifically prompt the LLMs to generate
visually observable attribute instances.

We independently generate attributes for both animals and plants using four different open source
LLMs 3 and merge their results afterwards. The LLMs generate around 18.6 attributes per animal
or 19.7 per plant on average. After merging and deduplication, we end up with 44.4 attributes per
animal and 56.7 attributes per plant. Note that for each attribute within an attribute category we also

1https://www.wikidata.org/entity/Q729
2https://www.wikidata.org/entity/Q756
3Mixtral 8x22B (Jiang et al., 2024), Mistral 7B (Jiang et al., 2023), Llama3 70B, and Llama3 8B (Meta,

2024). We use the non-instruct version for each of them, which we found to perform better than the instruct
versions, especially when prompted with examples of the task.
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Table 1: Examples of plant and animal entities and accompanying additional information as ex-
tracted from the Wikidata knowledge graph. The concrete graph queries can be found in Appendix E.
Name, description and aliases are used as text labels during training. The number of sitelinks are
considered a proxy for an entity’s popularity. The name and aliases are used during search.

Identifier Name Description Sitelinks Aliases / Common names /
Taxon names

Q5113 bird class of vertebrates
characterized by wings, a
feather-covered body and a
beak

264 avian species / birds / Aves

Q19939 tiger species of big cat 216 tigress, tigers / tiger /
Panthera tigris

Q11575 maize species of grass cultivated
as a food crop

216 maize plant, corn, corn
plant / Indian Corn,
Teosinte / Zea mays

Table 2: Examples of animal and plant attributes for different Wikidata entities and categories, gen-
erated by LLMs. Note that we also generate a search queries for all entity-attribute-combinations,
which are later used for image search and during training.

Wikidata entity Attribute category Attribute Search query

dog Pattern and texture smooth smooth dog fur
wolf Habitat and environment snow wolf in the snow
buzzard Body parts talon buzzard talons

garlic Shape and size big big garlic bulb
rose Other dry dried rose
cherry Color black black cherry

use the LLM to generate an appropriate search query containing the attribute and entity itself. This
search query can then later be directly plugged into an image search engine. See Tab. 2 for examples
of generated attributes and search queries.

3.3 QUERY BUILDING

Before building the search queries for our entities and attributes, we generate our entities’ natural
types. The natural type of an entity is the superclass that a human would most likely associate with
it, e.g., bird for eagle, or tree for oak. It is neither too general nor too specific, and can be used to
disambiguate the entity from other entities with the same name. We generate natural types for the
first 5000 animals and plants in our entity lists with an LLM, and do this by asking the LLM to select
a natural type entity from the entity’s parent hierarchy. To all other entities we assign the natural
type animal or plant. Incorporating natural types in the search queries improves the search results
by reducing ambiguities for entities with names that carry multiple meanings, and by reducing the
number of cartoons, illustrations, and other unwanted search results. For example, searching for
dove returns mostly pictures of the well known personal care brand, whereas searching for dove bird
returns pictures of the animal that we are actually interested in. We end up with 6 unique natural
types for animals: bird, mammal, insect, fish, reptilia and animal itself. We also get 6 unique natural
types for plants: tree, fruit tree, root vegetable, flowering plant, herb and plant itself.

We then generate three different types of search queries: Entity queries, entity-attribute queries and
type-attribute queries. As entity queries, we combine the name of the entity and its natural type. For
entity-attribute queries, we directly use the search queries generated by the LLMs (see Sec. 3.2).
For type-attributes queries we search for all unique combinations of an entity’s natural type with the
attributes the LLMs generated for it. For example, we search for flying bird if for at least one entity
whose natural type is bird the LLMs generated the attribute flying.
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Table 3: Details of our LivingThings dataset. We show the number of unique elements for each
column, e.g. the number of images after deduplication or all unique attributes create by LLMs after
merging. Queries are split approximately evenly between the animal and plant domain.

Query set Images Queries Entities Attributes Alt texts Example query

WordNet entity 2,331k 17k 7k - 3,676k kohlrabi

Wikidata entity 4,372k 56k 56k - 5,604k eurasian lynx
Wikidata entity + attribute 2,714k 47k 1k 5k 4,408k mature bald eagle
Wikidata type + attribute 968k 7k 12 5k 1,863k tropic plant

All 8,889k 125k 63k 5k 11,760k -

3.4 IMAGE SEARCH AND FILTERING

For all query sets, we search using both the Google Custom Search API and the Bing image search
API. The Wikidata animal and plant entity query sets are very large, so we limit them to the top 28k
entities each. For both entity-attribute queries and type-attribute queries, we use the full query sets
with 47k and 7k queries, respectively. We activate the SafeSearch filters of the search engines.

Both search APIs also return the URL for the website an image is embedded in. We use that to
download the corresponding HTML and search for the image tag matching the returned image in
it. We then extract and store texts from attributes of the image tag as alt texts to use them later for
training.

We thereby collect 4.7M / 15.6M images and 10.1M / 27.6M alt texts from the Google and Bing
API, respectively. After downloading search results and alt texts, we postprocess the images and alt
texts in the following way:

• Similar to Changpinyo et al. (2021), we use relaxed filtering heuristics. We do not use any multi-
modal filtering but instead rely on the search engines to provide image-text correspondences. We
remove text that is longer than 500 chars or formatted in JSON. We also remove images with an
aspect ratio of more than 4 or covering less than 4096 pixels.

• We deduplicate all downloaded images using the Self-Supervised Descriptor for Image Copy
Detection method (SSCD) (Pizzi et al., 2022). We keep the biggest image and collect all unique
alt texts from all duplicates.

• We detect duplicates between the images and all evaluation datasets using the same SSCD method.

Our final dataset contains around 8.9M images and 11.8M alt texts, obtained from 125k queries,
which is 71.2 images per query and 1.3 alt texts per image on average. We pay about $1,800 and
$2,500 to download our Bing and Google subsets respectively. See Tab. 3 for an overview over the
number of search queries, images and alt texts that make up our dataset and Appendix D for more
details about the number and format of the requests issued to both search APIs.

4 EXPERIMENTAL SETUP

4.1 TRAINING

We train all models with the standard CLIP loss (Radford et al., 2021), a batch size of 2048, and
random resized crop augmentation. Similar to Li et al. (2023b), we reduce the context size of the
text encoder down from 77. We choose a length of 32 as a compromise to trade off speed and loss of
data: On CC12M, 75% of captions have 32 tokens or less and are not affected. We train all models
for 18 epochs using AdamW (Loshchilov & Hutter, 2019). Training on 9M images takes ∼30 hours
on 8 RTX 2080 Ti GPUs with 11GB VRAM per GPU.

4.2 EVALUATED MODELS

On our LivingThings dataset, we train a ViT-B-32 model and randomly sample alt texts and knowl-
edge graph labels as shown in Fig. 2. To compare to a similar-sized dataset, we also train models on
CC12M. We download all available URLs, then detect and remove duplicates with the evaluation
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Figure 2: Flowchart for sampling text labels during training. 50% of the time we use an alt text,
otherwise we sample a label from the knowledge graph.

datasets with the same procedure as detailed in Sec. 3.4. Then, we randomly split off a validation and
test set with 20k images each and obtain 9.3M images. Additionally, we finetune the DataComp-1B
model on our dataset to compare between pretraining and finetuning. Our training code is based on
OpenCLIP (Ilharco et al., 2021).

In addition to the models trained on LivingThings and CC12M, we evaluate two other models with
the same ViT-B-32 architecture: the original OpenAI CLIP (Radford et al., 2021), as well as a
model pretrained on DataComp-1B (Gadre et al., 2023). To compare to models that are not only
trained on more data but also have much more parameters, we evaluate a ViT-H-14 CLIP trained
on DFN-5B (Fang et al., 2024a) and an EVA02-E-14+ model trained on LAION-2B (Fang et al.,
2024b). We additionally compare with BioCLIP (Stevens et al., 2024), a ViT-B-16 model finetuned
from OpenAI-CLIP on 10M biological image-text pairs. For more details on BioCLIP refer to
Appendix F.

4.3 OBJECT CLASSIFICATION EVALUATION

To test the VLMs on object classification we use the same procedure as CLIP (Radford et al., 2021).
Given an image I , class names C1, ..., CN , image encoder f and text encoder g, we embed the image
using the image encoder v = f(I). To acquire a text embedding for class Cc, the CLIP authors start
by directly encoding the class names as wc = g(Cc), e.g., “dog”. Alternatively, they create several
prompts P using templates, e.g., “graffiti of a dog.”, “a photo of the cool dog.”, etc., then encode each
prompt and compute the average embedding: wc =

∑
p∈P g(p)/|P |. They refer to this approach

as using “context prompts”. Finally, given the image and text embeddings, the prediction p is the
class which has the highest cosine similarity to the image. We evaluate all models on just encoding
the class name, as well as on using the average embedding of the 80 context prompts that the CLIP
author’s used for ImageNet, and report the higher top-1 accuracy.

Object datasets. We evaluate on ImageNet (Deng et al., 2009), a popular image classification
benchmark (Russakovsky et al., 2015). We use the ILSVRC2012 validation set, which contains
50,000 images from 1,000 classes. The classes include simple objects such as “broom”, but also
more fine-grained labels like 23 types of terrier dogs, e.g., “Staffordshire Bull Terrier”. We split the
classes into “living” (410 classes) and “other” (590 classes) using WordNet: Since ImageNet labels
are built on WordNet nouns, we simply select all labels that are children of the node “Living Things”
for the “living” set.

We also evaluate on two version of iNaturalist (Van Horn et al., 2018), a dataset for fine-grained
species classification. The 2019 version contains 3,030 images in the validation set, each annotated
with one of 1,010 Latin species. Similar to Parashar et al. (2023), we translate the species label to
English via a combination of Wikidata SPARQL queries and manually looking up the species, and
test models on both english and latin. The more challenging iNaturalist 2021 version contains 100k
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images in the validation set and 10k different species. This version provides both Latin and English
labels for the species.

We test on the CUB dataset, which contains 5,794 images in the original author’s test set. Each
image is annotated as one of 200 fine-grained species of birds, e.g., “grasshopper sparrow”.

Finally, we evaluate on the RareSpecies dataset (Stevens et al., 2024), which requires models to not
see the tested 400 species during training. We pretrain our model again and exclude all entities that
appear in RareSpecies. We use various english and latin prompts for the name of the species and
report the best result, for more details refer to Appendix G.

4.4 ATTRIBUTE CLASSIFICATION EVALUATION

The considered attribute benchmarks are framed as binary classification problems, as described by
Bravo et al. (2023). A fixed set of attributes A is annotated for each image as an attribute vector
of length A with value 0 if the attribute is not present, 1 if the attribute is present, and −1 for
undecidable situations (e.g., when the attribute is “red-colored wing”, but the photo only shows a
bird’s head). Models should assign high or low scores to positively or negatively labeled image-
attribute pairs, respectively. Predictions on undecidable attributes do not influence the final score.

As metric, we use the established mean Average Precision (mAP) (Everingham et al., 2010); specif-
ically, we use the implementation of Pedregosa et al. (2011). We compute AP per attribute and
then average over all attributes. We only evaluate attribute classes which have at least one positive
attribute, since otherwise AP cannot be computed for this attribute.

As in object classification, simply embedding only the attribute as text, e.g., “red”, may not be
the most efficient strategy. We consider using templates and synonyms to create a set of context
prompts per attribute Pa. Then, we either create the average embedding as described in Sec. 4.3 or
first evaluate the cosine similarities and report the prediction p as the maximum similarity over all
context prompts: p = maxpa∈Pa

cossim(f(I), g(pa)). In both attribute benchmarks, we evaluate all
models on the “average embedding” and “maximum similarity” strategy and on a variety of context
prompts depending on the dataset.

Attribute datasets. We evaluate on OVAD, which contains 80 object classes and 117 attribute
classes. We consider the “oracle box” setting, where each input is one of 14,074 cropped bounding
boxes annotated with one object class and an attribute vector of length 117. We group the dataset
into animals, food, person, and other using the object label annotations. To create the prompt, we
extend the prompts used by the original authors to include also class-specific prompts, instead of
only class-agnostic prompts, see Appendix B.3 for details.

Additionally we evaluate attribute classification on CUB. We convert the given annotations into an
image-attribute matrix with each attribute being annotated either negative, positive or unknown for
each image, see Appendix A.1 for details. Then, we create prompts similar to OVAD, e.g., “bird has
a striped pattern on its wing”., see Appendix A.4. This way, we match the setup of OVAD and can
evaluate in the same way.

5 RESULTS

Object classification. Tab. 4 shows object classification results for various CLIP models. On iNatu-
ralist 2021, we outperform models with 10-30 times more parameters and up to 100-500 times more
pre-training images, despite never having seen any of the iNaturalist training images. On the highly
contested ImageNet validation set, we match the performance of the original CLIP on our domain
of animals and plants. Our model also performs well on CUB, distinguishing 200 bird species better
than all other CLIP models of the same size. BioCLIP, trained specifically for organismal biology
on a similar-sized dataset, is outperformed by our model on all benchmarks except the iNaturalist
datasets that are included in BioCLIP’s training set. This shows that our approach on training on
a mix of entities, descriptions, attribute queries, and alt texts leads to a stronger and more general
model, than aggregating biological datasets and training on a mix of entity names. In addition, the
finetuning results show that our dataset can be used to improve existing CLIP models that were pre-
trained on much larger datasets. To summarize, both our pretrained and finetuned models are able
to do open-vocabulary recognition of fine-grained species on a variety of benchmarks.
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Table 4: Object classification results. We mark the best and second best result. Results in red are
not zero-shot, since the model has seen the training data.

Dataset Imgs Par. ImageNet iNat. 2019 iNat. 2021 CUB Rare
(M) (M) 1k Living other En Lat En Lat species

# Classes → 1,000 410 590 1,010 1,010 10k 10k 200 400

LAION-2B EVA-E2-14+ 2300.0 5045 82.0 85.2 80.9 24.5 12.4 22.3 8.0 84.9 49.2
DFN-5B ViT-H-14 5000.0 986 83.4 85.4 83.2 28.3 31.4 25.1 23.9 88.1 52.9
DataComp-1B 1400.0 151 69.2 71.2 69.1 16.7 12.6 12.6 7.6 73.8 35.8
OpenAI 400.0 151 63.4 65.5 63.1 10.9 6.5 7.4 3.4 51.8 28.2
CC12M 9.3 151 32.2 30.0 35.4 2.1 0.6 0.9 0.1 9.7 9.2
BioCLIP TreeOfLife-10M 10.4 151 18.6 44.3 2.6 49.5 68.8 52.0 66.9 78.1 38.1

Ours 8.9 151 33.3 66.4 12.2 35.5 40.1 22.6 27.1 82.6 42.5
Ours (finetuned) 8.9 151 51.7 75.3 37.7 42.1 46.9 29.8 35.5 87.3 54.8

Table 5: Results for attribute classification on OVAD and CUB, mean Average Precision (mAP).
We mark the best and second best result. Refer to Tab. 4 for dataset and model size.

Dataset OVAD CUB Part Part Part Body Body Body
animal food All Shape Color Pattern Shape Color Size

Random Baseline 28.4 31.4 11.4 17.6 9.6 19.8 7.14 11.9 20.0

LAION-2B EVA-E2-14+ 47.4 45.2 25.5 21.2 25.4 25.8 26.7 19.5 38.6
DFN-5B ViT-H-14 47.1 48.1 24.9 21.7 24.5 25.8 28.0 20.0 38.4
DataComp-1B 45.1 45.1 25.4 20.4 25.6 25.8 22.8 18.3 37.6
OpenAI 46.0 43.7 23.5 20.1 23.3 23.6 26.8 17.9 35.1
CC12M 36.6 42.2 21.5 19.9 21.2 22.8 22.2 15.0 32.5
BioCLIP TreeOfLife-10M 33.0 36.5 17.3 20.8 16.2 21.8 20.3 10.6 23.9

Ours 40.9 41.5 24.1 21.3 23.8 24.2 28.0 18.5 35.0
Ours (finetuned) 40.2 41.5 24.2 21.4 23.9 24.2 26.3 19.2 36.2

Attribute classification. For this task, we show the results in Tab. 5. On CUB, we significantly
improve over the same size CLIP model trained on CC12M and slightly outperform the original
CLIP. Our model performs slightly below CLIP models that are trained on billions of images. We
suspect that at this scale, models can transfer attribute knowledge between objects even better and
therefore the general domain on which they are trained helps them improve over our animals and
plants domain. For the categories “Part Shape” (e.g., “bird has a curved bill”) and “Part Pattern”
(e.g., “bird has a striped tail”), none of the models performs much better than the random baseline.
This suggests that these tasks are extremely difficult to solve in a zero-shot manner. On other tasks,
where either the attribute concerns the entire bird, or the question is about the color of a part, all
models perform much better than the random baseline.

On OVAD, our model performs on par with or better than CC12M, but worse than the large CLIP
models. Regarding the “food” category, our dataset covers plant species but not dishes, which make
up 50% of the test set classes. Interestingly, the LAION model performs significantly better on
the “animal” category than on the “food” category, while for the OpenAI model it is the other way
round. We conduct a detailed error analysis, and find that many of the OVAD images have very low
resolution, with not enough detail showing to decide many of the attributes. Our model performs
significantly worse on these low-resolution images; see Appendix B.1 for details. We also find
a significant number of wrong or doubtful ground-truth labels (e.g., a group of zebras labeled as
“single”, or a gray horse labeled as both “black“ and “white” but not “gray”), which distort the
evaluation results.

Ablation studies. In Tab. 6 we evaluate the mixture of alt text and knowledge graph labels we
use during training. Notably, both training only on alt texts or only on knowledge graph labels
consistently performs worse than our 50-50 mix. Removing all alt texts especially degrades the
performance on the attribute benchmarks. This leads us to believe that much of the learned attribute
knowledge comes from the alt texts. Next, we evaluate our choice of search queries and remove
groups of queries to observe their contribution to the model quality. Both removing the WordNet
queries and not using any of our LLM-generated attribute queries diminishes the model results.
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Table 6: Ablation for our design choices. “Ours” refers to our default model with 50% alt texts and
50% labels obtained from the knowledge graphs, with a ViT-B-32 architecture trained on the full
dataset. “No Attrs.” means that we do not use any of the images found by using entity-attribute or
type-attribute queries.

Description Imgs ImgNet INat21 INat21 CUB CUB OVAD OVAD
(M) Living Eng. Lat. Obj. Attr. Animals Food

Random Baseline 0.2 0.0 0.0 0.5 11.4 28.4 31.4

Ours 0% alt texts 8.9 62.6 21.4 25.6 81.0 20.1 38.5 37.5
Ours 100% alt texts 8.9 62.8 17.1 22.4 78.4 22.8 38.7 40.3

Ours No Wordnet 7.4 57.6 19.5 23.9 81.2 23.4 39.6 41.6
Ours No Attrs. 6.0 61.6 21.5 25.9 82.3 22.6 40.0 39.2

Ours Google Only 2.6 46.8 9.2 10.9 53.8 22.7 40.5 42.5
Ours Bing Only 6.9 64.1 20.8 24.6 81.3 23.8 38.5 42.0

Ours 8.9 66.4 22.6 27.1 82.6 24.1 40.9 41.5

Table 7: We compare various combinations of architecture and patch size.

Description Flops Par. ImgNet INat21 INat21 CUB CUB OVAD OVAD
(G) (M) Living Eng. Lat. Obj. Attr. Animals Food

Random Baseline 0.2 0.0 0.0 0.5 11.4 28.4 31.4

Ours B-32 15 151 66.4 22.6 27.1 82.6 24.1 40.9 41.5
Ours S-32 4 45 62.2 19.0 23.1 77.9 24.0 41.8 42.2
Ours Ti-32 1 15 51.6 11.9 15.1 67.2 23.9 38.4 41.7

Ours B-16 40 150 72.0 28.5 33.9 86.8 23.1 39.6 41.6
Ours S-16 10 44 68.7 24.4 29.7 85.0 22.8 42.0 42.1
Ours Ti-16 3 14 58.4 16.3 20.5 76.2 23.9 40.7 42.8

Regarding the search engines, upon manual inspection we find that the search results of the Google
API are significantly worse than the results of the Bing API. This is consistent with the performance
differences between training only on Bing results and only on Google results.

In Tab. 7 we compare different architecture choices with the three different sizes base, small and
tiny, as well as two different patch sizes 32x32px and 16x16px. Note that smaller patch sizes are
significantly more expensive to traindue to a quadratically higher token count. For object classifica-
tion, the biggest model with the smallest patch size is best. For attribute classification, the picture
is again less clear with the best performing model changing between benchmarks. Nonetheless, we
find that it might be worth trading off a smaller model against a smaller patch size.

6 CONCLUSIONS

We have developed a compact high-quality dataset LivingThings consisting of 8.9M images from
the domain of animals and plants, paired with 12.2M texts. Our method is generic, leveraging
knowledge graphs (WordNet and Wikidata) and image search engines, and can be applied to any
domain covered by the given knowledge graphs. We have demonstrated that we can train a CLIP
model on our dataset with little compute, yet with a performance that is comparable to or even better
than that of much more expensive-to-train models. By adapting the CUB benchmark to VLM-style
evaluation, we also enable more comprehensive assessment in the field of open-vocabulary attribute
understanding.

While previous studies have shown that alt texts offer better supervision than the search queries used
to find images, in our work, we demonstrate that combining alt texts with search queries can indeed
improve performance compared to using alt texts alone. This approach opens up new possibilities
for supervision in VLM training. Ultimately, we hope to provide researchers with a useful tool for
building custom datasets and facilitating affordable VLM pretraining experiments.
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A DETAILS AND ADDITIONAL RESULTS FOR CUB

A.1 CONVERTING WORKER ANNOTATIONS TO ATTRIBUTE LABELS

Wah et al. (2011) design a vocabulary of 28 attribute groupings and 312 binary attributes, e.g., “wing
color” with 15 color choices. They create the attribute labels via crowd sourced workers such that
for each image-attribute combination, there is exactly one worker annotation with a binary label
whether the attribute is present, and a certainty score with values (1, not visible), (2, guessing), (3,
probably), (4, definitely). We now convert these ratings into image-attribute labels with values 0, 1
and -1 meaning attribute is not present, attribute is present, and attribute is unknown, respectively,
same as in the OVAD dataset. The average certainty is 3.3. We consider all ratings with certainty (1,
not visible) and (2, guessing) as unknown and otherwise use the annotated label.

A.2 RESULTS

In Supp. Tab. 8 we provide additional results for CUB attribute classification. Specifically, we show
the model and ablation results for various attribute groups.

Table 8: CUB attribute classification, mean Average Precision (mAP). We select the best prompt
and evaluation setup per model. “Ours” refers to our default model with 50% alt texts and 50%
labels obtained from the knowledge graphs, with a ViT-B-32 architecture trained on the full dataset.
We mark the best and second best result. Refer to Supp. Tab. 9 for model GFlops.

Dataset Imgs Par. Part Part Part Body Body Body
(K) (M) All Shape Color Pattern Shape Color Size

Num. attributes → 312 23 224 31 14 15 5
Num. pos. labels (K) → 169K 17K 104K 29K 5K 10K 5K
Num. neg. labels (K) → 1,336K 83K 975K 119K 67K 72K 20K

Random Baseline 11.4 17.6 9.6 19.8 7.14 11.9 20.0

Ours 0% alt texts 8.9 151 20.1 21.9 19.0 22.5 23.2 16.4 30.6
Ours 100% alt texts 8.9 151 22.8 21.6 22.2 23.1 28.1 18.3 35.2

Ours No Wordnet 7.4 151 23.4 21.6 22.8 23.6 28.5 20.0 35.8
Ours No Attrs. 6.0 151 22.6 20.8 22.0 24.6 28.6 17.8 32.1
Ours No Attr.-Noun 6.8 151 23.4 21.3 23.1 24.0 26.6 17.8 34.1

Ours Google Only 2.6 151 22.7 22.0 22.2 23.1 25.6 18.5 34.4
Ours Bing Only 6.9 151 23.8 21.6 23.5 23.4 28.8 18.6 35.2

Ours S-32 8.9 45 24.0 21.9 23.8 23.9 25.7 18.7 36.1
Ours Ti-32 8.9 15 23.9 21.9 23.7 24.1 27.5 18.4 34.4

Ours B-16 8.9 150 23.1 21.3 22.5 24.4 26.6 18.1 35.6
Ours S-16 8.9 44 22.8 21.3 22.0 24.5 28.2 18.6 35.2
Ours Ti-16 8.9 14 23.9 21.1 23.7 24.5 27.0 18.2 35.5

LAION-2B EVA-E2-14+ 2300.0 5045 25.5 21.2 25.4 25.8 26.7 19.5 38.6
DFN-5B ViT-H-14 5000.0 986 24.9 21.7 24.5 25.8 28.0 20.0 38.4
DataComp-1B 1400.0 151 25.4 20.4 25.6 25.8 22.8 18.3 37.6
OpenAI 400.0 151 23.5 20.1 23.3 23.6 26.8 17.9 35.1
CC12M B-32 9.3 151 21.5 19.9 21.2 22.8 22.2 15.0 32.5
BioCLIP TreeOfLife-10M 10.4 150 17.3 20.8 16.2 21.8 20.3 10.6 23.9

Ours 8.9 151 24.1 21.3 23.8 24.2 28.0 18.5 35.0
Ours (finetuned) 8.9 151 24.2 21.4 23.9 24.2 26.3 19.2 36.2

A.3 ATTRIBUTE GROUPS

We sort the CUB attribute groups into categories. Statistics about these groups can be found in the
header of Supp. Tab. 8. part shape: bill shape, tail shape, bill length, wing shape, part color: wing
color, upperparts color, underparts color, back color, upper tail color, breast color, throat color, eye
color, forehead color, under tail color, nape color, belly color, leg color, bill color, crown color, part
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Figure 3: OVAD image size distribution. The red line indicates an image area of 642px.

pattern: breast pattern, head pattern, back pattern, tail pattern, belly pattern, wing pattern, primary:
size, shape, primary color

A.4 PROMPTS

In order to evaluate the CUB attribute labels, we need reliable prompts for each attribute. We create
separate templates for each of the categories defined in Appendix A.3. Then, to cover a large area
of possible prompts, we consider the original prompting strategies by Bravo et al. (2023) to vary
the articles, prepositions and nouns. For nouns, we choose “bird”, “animal” and the empty string.
We end up with a diverse set of 37 prompt settings, each with a median of 24 prompts per attribute.
Example prompts: “bird has a purple-colored nape”, “the animal with its wing in a long shape”,
or “red-colored under tail“. To create a single model prediction from several prompts prompts, we
evaluate both the “average embedding” (Sec. 4.3) and “maximum similarity” (Sec. 4.4) strategies to
create model the prediction.

B DETAILS AND ADDITIONAL RESULTS FOR OVAD

B.1 INPUT RESOLUTION ANALYSIS

We find that the cropped boxes in the OVAD oracle box task are quite small and show the image
size distribution in Supp. Fig. 3. To analyze if this influences model behaviour, we then filter OVAD
and only keep boxes with an area of at least 64x64 pixels. This discards roughly half the boxes.
We compare behaviour of models on the original boxes in Supp. Tab. 9 and the filtered boxes in
Supp. Tab. 10. Most models slightly increase their performance, though, the biggest models increase
less than our model. They may have seen more blurry or low-resolution images and can understand
them better.

B.2 DATASET GROUPING

We sort the OVAD boxes into the following groups:

food: banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake. animal: bird,
cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe. person: person. other: bicycle, car,
motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter,
bench, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball
bat, baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon,
bowl, chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, keyboard, cell
phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier,
toothbrush
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Table 9: Results for OVAD attribute classification, mean Average Precision (mAP). For each model
and group, we select the best prompt and embedding strategy. Gray: Our model is out of distribution.
We mark the best and second best result.

Dataset Imgs Flops Par. OVAD
(M) (G) (M) all animal food person other

Num. instances → 14,074 1,239 1,349 4,116 7,370
Num. attributes → 116 44 30 53 65

Num. pos. labels (K) → 122 11 10 32 69
Num. neg. labels (K) → 1,248 26 23 107 255

Random Baseline 8.7 28.4 31.4 21.9 22.3

Ours 0% alt texts 8.9 15 151 12.7 38.5 37.5 23.7 25.2
Ours 100% alt texts 8.9 15 151 13.1 38.7 40.3 26.5 26.8

Ours No Wordnet 7.4 15 151 12.8 39.6 41.6 25.9 26.6
Ours No Attrs. 6.0 15 151 12.7 40.0 39.2 25.5 26.2
Ours No Attr.-Noun 6.8 15 151 12.8 40.3 41.6 25.5 26.1

Ours Google Only 2.6 15 151 12.9 40.5 42.5 25.9 26.3
Ours Bing Only 6.9 15 151 12.8 38.5 42.0 25.5 26.2

LAION-2B EVA-E2-14+ 2300.0 2331 5045 18.1 47.4 45.2 34.3 30.7
DFN-5B ViT-H-14 5000.0 370 986 22.3 47.1 48.1 36.6 34.4
DataComp-1B 1400.0 15 151 17.7 45.1 45.1 32.6 31.0
OpenAI 400.0 15 151 16.4 46.0 43.7 32.0 30.5
CC12M 9.3 15 151 13.3 36.6 42.2 28.0 27.0
BioCLIP TreeOfLife-10M 10.4 40 150 10.3 33.0 36.5 23.0 23.5

Ours 8.9 15 151 13.1 40.9 41.5 25.6 27.3
Ours (finetuned) 8.9 15 151 15.0 40.2 41.5 27.8 27.8

B.3 OVAD PROMPTS

When evaluating different prompts for attribute classification, we start with the original prompting
strategies by Bravo et al. (2023). We create all permutations of the following choices. To create a
single model prediction from several prompts, we evaluate both the “average embedding” (Sec. 4.3)
and “maximum similarity” (Sec. 4.4) strategies to create model the prediction. To write the prompt,
we use either “a”, “the”, or no article in the prompt and the word “object” or an empty string as the
noun. Additionally, we use the entity name directly (“a small sheep”) or the natural type (“a small
animal”). In total, we evaluate 48 prompt settings per model and report the best result. Models
are quite sensitive to the exact prompt setting. We show this in Supp. Fig. 4 and Supp. Fig. 5 by
plotting the distribution of the 48 different results for our model as well as two models trained on
DataComp-1B and CC12M, respectively.

C QUALITATIVE EXAMPLES OF OUR DATASET

We show randomly sampled images and corresponding textual information of our dataset in
Supp. Fig. 6 and Supp. Fig. 7

D IMAGE SEARCH APIS

Google The Google Image Search API is available via the Google Cloud Platform, and requires an
existing programmable search engine to function. It returns up to 10 images per request and page
(e.g. page 1 corresponds to images 1 to 10, page 2 to images 11 to 20, and so on). However, one
can only get results for the first 10 pages, or the top 100 images, and only issue 10,000 API calls
per day. It costs 5$ per 1,000 API calls, resulting in costs of about 500$ to download 1M images.
We found the search results from the Google API to be quite different, and arguably worse, from
the ones returned when using the regular Google image search. For all our API requests we set the
parameter imgColorType to color, imgType to photo, lr to lang en, and excludeTerms to drawing
clipart illustration cartoon vector painting. This way we get mostly real-world images in our search
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Table 10: Results for OVAD attribute classification, mean Average Precision (mAP). In this table,
we remove all box instances that have an area smaller than 642px. For each model and group, we
select the best prompt and embedding strategy. Gray: Our model is out of distribution. We mark
the best and second best result.

Dataset

Imgs Flops Par. OVAD
(M) (G) (M) all animal food person other

Num. instances → 6,933 615 680 2,011 3,627
Num. attribute classes → 115 41 30 52 65

Num. pos. labels → 60K 6K 5K 15K 34K
Num. neg. labels → 609K 12K 12K 51K 126K

Random Baseline 8.8 30.5 31.4 22.3 22.3

Ours 0% alt texts 8.9 15 151 13.1 41.3 38.9 24.6 25.4
Ours 100% alt texts 8.9 15 151 13.4 40.8 41.2 28.2 27.1

Ours No Wordnet 7.4 15 151 13.0 43.1 41.8 27.1 26.7
Ours No Attrs. 6.0 15 151 13.1 40.2 40.2 26.6 26.7
Ours No Attr.-Noun 6.8 15 151 13.3 45.6 42.1 26.5 26.4

Ours Google Only 2.6 15 151 13.2 38.4 43.4 26.8 26.7
Ours Bing Only 6.9 15 151 13.0 42.4 42.3 26.6 26.6

LAION-2B EVA-E2-14+ 2300.0 2331 5045 18.5 47.0 46.7 35.1 31.3
DFN-5B ViT-H-14 5000.0 370 986 23.0 47.9 48.8 38.1 35.1
DataComp-1B 1400.0 15 151 18.2 44.7 46.9 33.4 31.6
OpenAI 400.0 15 151 16.9 45.1 42.9 33.5 31.0
CC12M 9.3 15 151 13.9 37.4 42.9 29.1 27.4
BioCLIP TreeOfLife-10M 10.4 40 150 10.5 38.1 36.8 23.7 23.7

Ours 8.9 15 151 13.5 43.7 43.2 26.2 27.7
Ours (finetuned) 8.9 15 151 15.5 44.3 41.9 28.7 28.3

Figure 4: Model performance on OVAD when using different prompts.

results. We additionally add all aliases, taxon common names, taxon names, and the natural type of
the sought entity to the orTerms parameter for entity and entity-attribute queries. Because the Google
API returns only up to 10 images per request and page, we search for the following number of pages
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Figure 5: Model performance on OVAD when using different prompts. Here, we remove all box
instances that have an area smaller than 642px.

for each query in the respective query sets: 10 pages each for all 17k WordNet entity queries, 2
pages each for the top 28k Wikidata entity queries for both animals and plants, 4 pages each for all
Wikidata entity-attribute queries, and 10 pages each for all Wikidata type-attribute queries. In total,
this amounts about 500k API requests, costing us around 2,500$.

Bing The Bing Image Search API is available via Microsoft Azure. It returns up to 150 images per
request and has no restrictions on the number of accessible pages. It limits the number of requests
to 100 per second and costs 18$ per 1,000 API calls, resulting in costs of about 120$ to download
1M images. In our experience, the returned images closely match the ones from the regular Bing
image search. For all our API requests we set the parameter imageType to Photo and color to
ColorOnly. Unlike the Google API, Bing does not have a way to specify orTerms via a separate
request parameter, so we just add the natural type of the sought entity to the search query directly, in
the case of entity queries (“tomato plant”) and entity-attribute queries (“sitting orangutan animal”).
Because the Bing API returns 150 images per request, we make only one request for each of the
following queries: all WordNet entity queries, the top 20k Wikidata entity queries for both animals
and plants, all Wikidata entity-attribute queries, and all Wikidata type-attribute queries. In total, this
amounts to about 100k API requests, costing us around 1,800$. Considering that we end up with
6.9M images from Bing and 2.3M images from Google, we find the Bing Search API to have a much
better value for money ratio.

E WIKIDATA SPARQL QUERIES USED TO BUILD THE DATASET

To query the Wikidata knowledge graph, we use the QLever SPARQL engine (Bast & Buchhold,
2017). We get our list of animals with the SPARQL query shown in Supp. Fig. 8. The important part
is the UNION expression at the beginning of the query, defining an animal to be either a subclass of
the animal entity or a child taxon of it. In SPARQL this can be expressed via

?ent (wdt:P31/wdt:P279*)wdt:P279+ wd:Q729

for the subclass relation, and via

?ent wdt:P171+ wd:Q729
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Wikidata entity + attribute
running polecat
Bing

A wonderful polecat in its woodland
surroundings / Polecats Unveiled: Sleek
Predators in the Countryside (Mustela Putorius) -
Glenlivet Wildlife / Polecats Unveiled: Sleek
Predators in the Countryside (Mustela Putorius) /
Black Polecat Photos and Premium High Res
Pictures - Getty Images / Do Cats Eat Ferrets –
What You Should Know! – FAQcats.com / Do
Cats Eat Ferrets – What You Should Know!

Wikidata entity + attribute
summer Canada goose
Bing

Canada Geese Goose Branta - Free photo on
Pixabay - Pixabay / Canada Geese Goose Branta
· Free photo on Pixabay / Facts about geese /
Canada Geese Goose Branta Free Photo On
Pixabay Pixabay, 45% OFF

Wikidata entity + attribute
wild tortoise
Google

Greek Tortoise Testudo Graeca Hiding Shell
Stock Photo 1425661328 — Shutterstock /
Elongated Tortoise Indotestudo Elongata Yellow
Tortoise Stock Photo 1463951543 —
Shutterstock

Wikidata entity
Orbea decaisneana
Google

Orbea decaisneana subs. hesperidum f. cristata

Wikidata entity + attribute
old walrus
Bing

What Is A Walrus? / What is a Walrus - Walrus
Habitat and Behavior - Wild Focus Expeditions /
Portrait of an old bull walrus resting on his teeth,
tooth walker

Figure 6: Randomly sampled images from our dataset together with the corresponding query set,
search query, search API, and alt texts (separated by /).
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Wikidata entity
Junı́n red squirrel
Bing

Curious Eurasian Red Squirrel, Sciurus Vulgaris,
Running and Jumping . . .

WordNet entity
chile pine
Google

Araucaria araucana - Wikipedia / Araucaria
araucana - Wikipedia, la enciclopedia libre /
Araucaria araucana - Wikipedia — Trees to plant,
Denver botanic gardens ... / a tall tree in the
middle of a forest / Araucaria araucana -
Wikipedia — Denver botanic gardens, Outdoor
plants ... / Monkey Puzzle Plant main / Monkey
Puzzle Plant Care & Growing Basics: Water,
Light, Soil, Propagation etc.

Wikidata entity
Cedronella canariensis
Bing

Cedronella canariensis

Wikidata entity
Barbuda Warbler
Google

In the face of elite tourism projects, the Barbuda
Warbler isn’t the only one that might lose its
home / Barbuda Warbler - Setophaga subita -
Birds of the World / - Barbuda Warbler

Wikidata type + attribute
long neck animal
Google

The Strange Elegance of the Giraffe-Necked
Antelope — The Ark In Space

Figure 7: Randomly sampled images from our dataset together with the corresponding query set,
search query, search API, and alt texts (separated by /).
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PREFIX schema: <http://schema.org/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT
?ent
?label
?desc
?links
(GROUP_CONCAT(DISTINCT ?alias; SEPARATOR=";") AS ?aliases)
(GROUP_CONCAT(DISTINCT ?common_name; SEPARATOR=";") AS ?common_names)
(GROUP_CONCAT(DISTINCT ?taxon_name; SEPARATOR=";") AS ?taxon_names)
(GROUP_CONCAT(DISTINCT ?image; SEPARATOR=";") AS ?images)
WHERE {

# subclass of animal
{ ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q729 . }
UNION
# child taxon of animal
{ ?ent wdt:P171+ wd:Q729 . }
# filter out humans
MINUS { ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q5 . }
# filter out mythical creatures
MINUS { ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q24334299 }
# filter out individuals, e.g. named animals like Krake Paul
MINUS { ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q795052 }
?ent @en@rdfs:label ?label .
OPTIONAL { ?ent ^schema:about/wikibase:sitelinks ?links }
OPTIONAL { ?ent @en@schema:description ?desc }
OPTIONAL { ?ent @en@skos:altLabel ?alias }
OPTIONAL { ?ent @en@wdt:P1843 ?common_name }
OPTIONAL { ?ent wdt:P225 ?taxon_name }
?ent wdt:P18 ?image

}
GROUP BY ?ent ?label ?desc ?links
ORDER BY DESC(?links)

Figure 8: Our SPARQL query for extracting animals from Wikidata

for the child taxon relation. Here, ?ent is the entity we want to retrieve, wdt:P31 means instance
of, wdt:P279 means subclass of, wdt:P171 means parent taxon, and wd:Q729 is the animal entity.
We use the modifiers * and + to also allow relational paths of length zero or more or one or more
from an entity to the animal entity.

Similarly, Supp. Fig. 9 shows the query we use to extract plants and fruits. We include a second
UNION expression to explicitly take fruits into account. Other than that, this query follows the
same structure as the animal query.
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PREFIX schema: <http://schema.org/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT
?ent
?label
?desc
?links
(GROUP_CONCAT(DISTINCT ?alias; SEPARATOR=";") AS ?aliases)
(GROUP_CONCAT(DISTINCT ?common_name; SEPARATOR=";") AS ?common_names)
(GROUP_CONCAT(DISTINCT ?taxon_name; SEPARATOR=";") AS ?taxon_names)
(GROUP_CONCAT(DISTINCT ?image; SEPARATOR=";") AS ?images)
WHERE {

# subclass of plant
{ ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q756 . }
UNION
# child taxon of plant
{ ?ent wdt:P171+ wd:Q756 . }
# fruits
UNION
{

{ ?taxon (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q756 . }
UNION
{ ?taxon wdt:P171+ wd:Q756 . }
{ ?ent wdt:P1582 ?taxon . }
UNION
{ ?taxon wdt:P1672 ?ent . }
?ent wdt:P31|wdt:P279 ?fruit .
VALUES ?fruit { wd:Q3314483 wd:Q1364 }

}
# filter out cultivars
MINUS { ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q4886 }
# filter out individuals, e.g. memorable trees
MINUS { ?ent (wdt:P31/wdt:P279*)|wdt:P279+ wd:Q795052 }
# filter out all plants that have a coordinate location
MINUS { ?ent wdt:P625 ?coord }
?ent @en@rdfs:label ?label .
OPTIONAL { ?ent ^schema:about/wikibase:sitelinks ?links }
OPTIONAL { ?ent @en@schema:description ?desc }
OPTIONAL { ?ent @en@skos:altLabel ?alias }
OPTIONAL { ?ent @en@wdt:P1843 ?common_name }
OPTIONAL { ?ent wdt:P225 ?taxon_name }
?ent wdt:P18 ?image

}
GROUP BY ?ent ?label ?desc ?links
ORDER BY DESC(?links)

Figure 9: Our SPARQL query for extracting plants and fruits from Wikidata

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 11: Evaluation on the Rare Species dataset. Models in red have potentially seen the rare
species during training. We evaluate different types of class name texts.

Dataset Imgs Par. Common Scientific Scientific + Taxonomic Taxonomic +
(M) (M) common common

LAION-2B EVA-E2-14+ 2300.0 5045 49.2 14.4 45.8 18.3 48.3
DFN-5B ViT-H-14 5000.0 986 51.6 32.4 52.9 33.8 51.4
DataComp-1B 1400.0 151 35.8 13.3 35.1 13.3 35.0
OpenAI 400.0 151 28.2 9.3 27.6 9.9 26.7
CC12M 9.3 151 9.2 0.9 6.6 1.4 3.7
Ours 8.9 151 46.0 46.0 48.3 37.3 41.5

BioCLIP TreeOfLife-10M 10.4 150 31.8 30.2 37.1 34.1 38.1
Ours (no rare species seen) 8.9 151 38.8 36.1 42.5 32.3 36.7

F BIOCLIP DETAILS

Stevens et al. (2024) aim to create a general vision model for organismal biology and curate the
TreeOfLife-10M dataset, which is based on the sources outlined below. Encyclopedia of Life (EOL,
2018) is a project aimed to aggregate biological knowledge in an online encyclopedia. Stevens et al.
(2024) download 6.6M images of 440K species from EOL. They also incorporate iNaturalist 2021
(Van Horn et al., 2018) described in Sec. 4.3 and add the 2.7M images of 10K species from the
training set. Finally, they add BIOSCAN-1M (Gharaee et al., 2023) which contains 1M lab images
from 494 different insect families. Their model BioCLIP is trained on a mix of common names (e.g.,
“Rufous-crowned Sparrow”), scientific names (e.g., “Aimophila ruficeps”), as well as taxonomic
names (the full taxonomy from kingdom to species, e.g., “Animalia Chordata Aves Passeriformes
Passerellidae Aimophila ruficeps”). They finetune the OpenAI ViT-B-16 model for 100 epochs on
16 A100 80GB GPUs.

G DETAILED RESULTS FOR RARE SPECIES

The “Rare Species” benchmark proposed by Stevens et al. (2024) consists of 400 species with 30
images each and is used to test generalization to unseen taxa. The species are deliberately removed
from TreeOfLife-10M, such that BioCLIP has not seen them during training. We replicate this
process and find 290 of the 400 species as entities in our dataset using substring matching. We then
remove these 290 entities from our LivingThings dataset and train our baseline model again.

As class names we evaluate all text types proposed by Stevens et al. (2024), i.e, various combinations
of the latin taxonomy and the english common name. Same as in Sec. 4.3 we evaluate on both the
CLIP ImageNet prompt and no prompt, and report the better of both accuracies.

Our model significantly outperforms BioCLIP in classifying unseen rare species as shown in
Supp. Table 11. It has the highest accuracy when given mixed scientific and common class names,
which is to be expected, since it has seen those types of text during training, but has not seen full tax-
onomic class names. BioCLIP performs best on a mix of taxonomic and common names, however
it does not match the performance of our model.

H SCALING STUDY

In Supp. Fig. 10 and Supp. Tab. 12 we train a separate model for various scales of our dataset. Each
time the dataset size is doubled, we get a significantly better model, and there is no saturation at the
biggest scale.

We also observe unexpected performance changes in both OVAD categories. Upon inspection we
find that these are artifacts coming from the small size of the food and animal category with around
1k datapoints each. E.g., the food category has only 15 positive attributes for the attribute “gray”.
The 1.6% and 6.2% size models learn quickly to predict these simple attributes well, which gives
them a huge boost in mean Average Precision. But, there are actually not enough labels per attribute
to draw meaningful conclusions. In the bigger CUB attribute benchmark, these effects vanish.
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Figure 10: Visualization of model performance when scaling the dataset size.

Table 12: Model performance when scaling the dataset size.

Description Imgs ImgNet INat21 INat21 CUB CUB OVAD OVAD
(M) Living Eng. Lat. Obj. Attr. Animals Food

Random Baseline 0.2 0.0 0.0 0.5 11.4 28.4 31.4

Ours (1.6%) 0.1 3.8 0.2 0.2 4.9 17.8 34.3 43.0
Ours (3.1%) 0.3 8.7 0.6 0.7 9.7 19.7 37.8 43.1
Ours (6.2%) 0.6 20.4 2.0 2.2 24.2 21.7 36.9 43.9
Ours (12.5%) 1.1 34.7 5.0 6.2 45.2 22.8 37.6 42.0
Ours (25.0%) 2.2 47.9 10.4 12.4 64.1 23.1 39.7 41.6
Ours (50.0%) 4.4 58.7 16.6 19.7 76.0 23.4 39.9 41.0

Ours (100.0%) 8.9 66.4 22.6 27.1 82.6 24.1 40.9 41.5

I EXTENSION TO ARBITRARY VISUAL DOMAINS COVERED BY KNOWLEDGE
GRAPHS

One current limitation of this work is its domain restriction to the domain of animals and plants.
To demonstrate that our approach is applicable more generally, we describe our current efforts of
building a dataset covering the relevant aspects of the entire visual world.

Recall that the LivingThings dataset is built on Wikidata entities related to the root entities “animal”
and “plant” as well as the WordNet entities related to the “living thing” node. To build our world
dataset, we analyze which entities exist in Wikidata that are not animals or plants (e.g., coffee milk).
Then, we find a fitting root entity (e.g., food) and add it to our list of root entities. Next, we find
entities that are not animals, plants, or food, and repeat the process. This way, we define 45 root
entities. We consider 21 of them as relevant to the visual world and harvest all their related entities,
the result of which can be seen in Supp. Tab. 13. Additionally, we show examples of the resulting
entities in Supp. Tab. 14 and the skipped root entities in Supp. Tab. 15. Note that entities can be
related to multiple root entities, and we keep an entity as long as it is related to at least one of the 21
visual root entities.
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We also consider the WordNet knowledge graph and select all “physical objects” that are not a
“living thing”. However, these entities are mainly professions (e.g., radiobiologist), other terms that
characterize humans in some way (e.g., german) or specific people (e.g., Nelson Mandela). We
therefore decide to not use WordNet for building our world dataset.

In total, we find around 91k entities with 236k unique terms. Assuming that we obtain around 71
unique images per search (8.9M unique images resulting from 125k search queries as described in
Tab. 3) and search for each term, this extends our dataset by around 17M unique images. Addi-
tionally, we will generate attributes as described in Sec. 3.2 and download another 17M images for
entity-attribute queries. Together with the existing 9M images of animals and plants, this would
set our final dataset size at 43M images. This is still considerably smaller than billion-scale CLIP
datasets, but with significantly higher quality, allowing for efficient training of world models.

I.1 QUERYING GENERIC ENTITIES WITH SPARQL

The SPARQL query used to harvest all entities for a root entity is displayed in Appendix I.1. It
returns a list of entities from a specified target domain as defined by a root entity. This root entity can
be determined manually by searching for appropriate entities on the Wikidata website. For example,
if we want to build a model specifically for cars, we set the root entity to motor car (Q1420), as done
in Tab. 16.

This query uses the fact that entities within Wikidata are consistently modeled as ”instances” and
”classes/types”. Instances are specific entities of some type or class, e.g., ”Barack Obama” is an
instance of a ”human”. On the other hand, classes or types are used to represent sets of entities
having something in common and can have sub- or superclasses themselves. For example, the class
”human” is a subclass of ”mammal”, which is a subclass of ”animal”. With SPARQL we can extract
all subclasses and instances under one or more specified root entities, even across multiple hierarchy
levels.
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PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT DISTINCT
?ent
?label
?desc
?links
(GROUP_CONCAT(DISTINCT ?alias; SEPARATOR=";;;") AS ?aliases)

WHERE {
VALUES ?typ { wd:Q1420 }
?ent wdt:P279* ?typ .
?ent rdfs:label ?label .
FILTER(LANG(?label) = "en")
?ent ^schema:about/wikibase:sitelinks ?links .
FILTER(?links >= 5)
OPTIONAL {
?ent schema:description ?desc .
FILTER(LANG(?desc) = "en")

}
OPTIONAL {
?ent skos:altLabel ?alias .
FILTER(LANG(?alias) = "en")

}
}
GROUP BY ?ent ?label ?desc ?links
ORDER BY DESC(?links)

Figure 11: Generic SPARQL query for extracting entities from Wikidata that are related to a given
set of root entities. The root entities should be manually set within the VALUES ?typ { ... } clause,
here it is just the motor car entity wd:Q1420. A minimum number of sitelinks can also be specified
to filter out unpopular entities, here it is set to 5.
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Table 13: The root entities for building a dataset to describe the visual world. The “aliases” column
refers to the set of all synonyms collected from the Wikidata entities.

Root entity Description Examples Entities Aliases

product Anything that can be offered to a market banh mi, navigation system,
PlayStation 2

63,676 144,715

substance Any composed matter whose origin is ei-
ther biological, chemical, or mineral

solid lubricant, Chinese tea,
eye cups

34,259 111,383

physical
tool

Physical item that can be used to achieve a
goal

Patient lift, police transport,
instant camera

32,727 71,227

animal Kingdom of multicellular eukaryotic or-
ganisms

saw-scaled viper, Spo-
rathraupis cyanocephala,
Rufous mouse-eared bat

28,000 76,408

plant Living thing in the kingdom of photosyn-
thetic eukaryotes

Whitebark Pine, Eucalyptus
coccifera, wig knapweed

28,000 55,925

material Substance that can occur in different
amounts, all with some similar [mixture of
some] characteristics, and with which ob-
jects can be made

dietary proteins, stone slab
tomb, safflower oil

18,021 40,822

vehicle Mobile machine used for transport,
whether it has an engine or not, including
wheeled and tracked vehicles, air-, water-,
and space-craft

shipwrecks (objects), Ev-
ergreen A-class container
ship, VTOL aircraft

17,015 37,849

geographical
feature

Components of planets that can be geo-
graphically located

hydrothermal Vents,
grooves, street lamp

8,683 19,030

food Any substance consumed to provide nutri-
tional support for the body

coffee milk, tikka, Friesian
Clove

8,464 15,332

architectural
structure

Human-designed and -made structure rock temples, summerhouse,
house of worship

4,507 10,354

anatomical
structure

Entity with a single connected inherent 3d
shape that’s created by coordinated expres-
sion of the organism’s own dna

bronchi, maxillary wisdom
tooth, turtle shell

4,394 9,999

facility Place, equipment, or service to support a
specific function

public toilet, automobile ser-
vicing shop, industrial park

2,767 6,740

physical
activity

Human physical activity consisting of vol-
untary bodily movement by skeletal mus-
cles

American rules football,
archery, water-skiing

2,228 4,422

clothing Covering worn on the body blucher shoe, G-suit, one-
piece swimsuit

1,929 4,313

building Structure, typically with a roof and walls,
standing more or less permanently in one
place

shoestore, family restaurant,
factory outlet

1,655 3,964

musical in-
strument

Device created or adapted to make musical
sounds

electroencephalophone,
Chinese flutes, oboe

1,450 3,493

organ Collection of tissues with similar functions nasal bone, cranial nerves,
ulnar collateral ligament of
elbow

1,155 2,450

furniture Movable objects used to equip households,
offices, or shops for purposes such as stor-
age, seating, sleeping

faldstool, airline seat, bicy-
cle parking rack

388 933

body of
water

Any significant accumulation of water,
generally on a planet’s surface

dammed lake, deep-sea hy-
drothermal vent, marshland

379 792

weather State of the atmosphere cold snap, tropical cyclone,
sea of fog

151 304

precipitation Liquid or solid water that falls to the
ground

hail, thunderstorm, snowfall 43 72

Total Before deduplication 259,891 620,527
Total After deduplication 146,985 368,062
New After deduplication, without animals and plants 90,985 235,795
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Table 14: Examples of world entities and accompanying additional information as extracted from
the Wikidata knowledge graph. The concrete graph query can be found in Appendix I.1. Name,
description and aliases are used as text labels during training. The number of sitelinks are considered
a proxy for an entity’s popularity. Name and aliases are used as search queries during search.

Ident. Name Description Sitelinks Aliases

Q3966 computer
hardware

physical components
of a computer

124 computer component /
hardware / computer
accessory / PC part / device
/ computer part / PC
component / PC accessory /
PC hardware

Q81881 fork utensil to spear food 109 forks

Q47616 incandescent
light bulb

electric light using a
wire filament heated
by a current passing
through it, until it
glows

102 Incandescent Light Bulbs /
incandescent light globe /
electric lamp / incandescent
lamp / incandescent light /
light bulb

Q5830 Airbus A380 wide-body,
double-deck,
four-engine aircraft,
currently the largest
passenger aircraft in
the world

100 Airbus Jumbo Jet / A380
Jumbo Jet / A380
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Table 15: We consider these root entities either non-visual, irrelevant, or too specific and do not
select related entities when building our visual world dataset.

Root entity Description

abstract entity entity that does not have a physical existence, including abstract ob-
jects and properties

astronomical object physical body of astronomically-significant size, mass, or role, natu-
rally occurring in a universe

city large human settlement
concept semantic unit understood in different ways, e.g. as mental representa-

tion, ability or abstract object (philosophy)
continent large landmass identified by convention
country distinct territorial body or political entity
historical event particular incident in history that brings about a historical change
history past events and their tracks or records
imaginary character character known only from narrations (fictional or in a factual manner)

without a proof of existence; includes fictional, mythical, legendary or
religious characters and similar

language particular system of communication, often named for the region or
peoples that use it

language structured system of communication
medical procedure process of medicine done to heal; course of action intended to achieve

a result in the delivery of healthcare
organization social entity established to meet needs or pursue goals
planet celestial body directly orbiting a star or stellar remnant
religion social-cultural system
representation entity or process that portrays something else, usually in a simplified

or approximated manner
role social role with a set of powers and responsibilities within an organi-

zation
science systematic endeavor that builds and organizes knowledge, and the set

of knowledge produced by this system
social system patterned series of interrelationships existing between individuals,

groups, and institutions
speciality field limited to a specific area of knowledge; specialization in an oc-

cupation or branch of learning; a specific use
star astronomical object consisting of a luminous spheroid of plasma held

together by its own gravity
temporal entity thing that can be contained within a period of time, or change in state

(e.g. events, periods, acts)
work of art aesthetic item or artistic creation; object whose value is its beauty only,

not practical usefulness
written work any work expressed in writing, such as inscriptions, manuscripts, doc-

uments or maps
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Table 16: Car entities and accompanying additional information as extracted from the Wikidata
knowledge graph. Showing the first 10 out of 3,549 entities.

Identifier Name Description Sitelinks Aliases

Q1420 motor car motorized road
vehicle designed to
carry one to eight
people rather than
primarily goods

237 car / automobile / autocar /
auto / automobiles / motor
vehicle / motor cars / cars /
motorcar

Q39495 tractor engineering vehicle
specifically designed
to deliver a high
tractive effort

118 Tractors

Q193692 electric car automobile propelled
by an electric motor
using energy stored
in rechargeable
batteries

83 all-electric car /
battery-electric car / electric
automobile /
electrically-powered
automobile

Q30113 Jeep brand of American
cars

65

Q172610 Bugatti
Veryon

hypersonic car 63 Bugatti Veyron EB 16.4 /
Bugatti Veyron 16.4

Q182323 Ford Model T American car
(1908-1927)

61 T-Model Ford / Tin Lizzie /
Model T Ford / T

Q152946 Volkswagen
Beetle

Volkswagen compact
car selling over 20
million during its
production run from
1936 to 2013

59 Volkswagen Bug /
Volkswagen Type 1 / VW
Beetle / VW Bug

Q243543 Toyota
Corolla

automobile model
produced by Toyota

57

Q55989 cabriolet two-seater or 2 + 2
automobile with a
removable roof

57 drophead coupé

Q188475 limousine luxury sedan or
saloon car generally
driven by a chauffeur

56 limo
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