
LiteByte: Efficient and Fast-Adapting MLPs for Online Byte-Level Prediction

Yu Mao 1 Yuyan Lin 2 3 Xue Liu 2 3 Chun Jason Xue 1

Abstract
Transformer-based architectures have become the de facto standard for sequence modeling, largely due to their
scalability and ability to capture long-range dependencies. However, their high computational cost, reliance
on long contexts, and limited adaptability under online updates make them less suitable for small-scale or
streaming scenarios. In this paper, we revisit MLP-based models for byte-level next-token prediction under
fully online training. We propose a simple yet effective architecture, LiteByte, which is composed of alternating
feedforward layers and soft-shared expert projections, without attention or recurrence. Each sample is dynamically
routed through a learned mixture of compact shared MLPs, enabling adaptive token-wise transformations with
minimal overhead. Despite its simplicity, our model achieves significantly faster convergence and lower perplexity
than Transformer, RNN, and vanilla MLP baselines on Enwik8, Text8, and a curated Dickens corpus. It also
demonstrates superior runtime efficiency in terms of inference latency and throughput. We further argue that the
soft expert mechanism introduces a reusable and modular structure that may serve as a lightweight adapter or
differentiable controller in broader applications such as LoRA-style fine-tuning or modular agents.

1. Introduction
Transformer-based models have become the dominant paradigm for sequence modeling, with widespread adoption in
language (Vaswani et al., 2017; Brown et al., 2020; Touvron et al., 2023), code (Chen et al., 2021), and multi-modal
systems (Radford et al., 2021). Their success is driven by self-attention’s ability to model long-range dependencies and by
the scalability of their architecture on large datasets. However, this dominance has led to a strong implicit assumption: that
attention is essential for all sequence modeling tasks, and that scale is necessary for success.

This assumption is increasingly being questioned in practical low-resource and small-scale learning settings. In many
real-world scenarios, such as online log processing, local adaptation on edge devices, or streaming user data, models must
be trained or fine-tuned with limited memory, low latency, and no access to large offline corpora. Under such constraints, the
suitability of attention-heavy architectures becomes unclear. These models often require long context windows, incur high
memory overhead, and remain difficult to update incrementally (Tay et al., 2022).

In this work, we revisit sequence modeling in the small-scale setting, where the focus is not on achieving state-of-the-art
accuracy, but on understanding what minimal architectural elements are truly necessary for adaptation and prediction under
limited resources. We propose a simple yet effective alternative to Transformers: a fully MLP-based model for byte-level
next-token prediction, which is named as LiteByte. LiteByte consists of a stack of feedforward layers without recurrence or
attention. Each token is processed independently, and the model parameters are continuously updated as new data arrives.

Despite its simplicity, LiteByte exhibits two key properties desirable in small-scale settings. First, it converges rapidly to
the current distribution, with significantly faster training loss reduction compared to parameter-matched Transformer and
MLP baselines. Second, it achieves competitive perplexity and accuracy on byte-level benchmarks such as enwik8 and
OpenWebText subsets, despite lacking long-range modeling capacity.

These results support the hypothesis that attention is not a universal requirement for effective sequence modeling. In
byte-level tasks, where local dependencies dominate and the prediction horizon is short, a lightweight MLP with local

*Equal contribution 1Department of Computer Science, McGill University 2Department of Computer Science, MBZUAI 3Mila.
Correspondence to: Chun Jason Xue <jason.xue@mbzuai.ac.ae>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

1



Submission and Formatting Instructions for MOSS@ICML2025

inductive bias can be both sufficient and preferable. Furthermore, the modularity of our design, based on a soft routing
mechanism over shared MLP experts, offers a path toward broader applicability. The expert module can act as a lightweight
adapter, similar in spirit to LoRA (Hu et al., 2021), or as a differentiable routing layer in modular agents (Andreas et al.,
2017; Hu et al., 2023), while retaining low compute and parameter costs. Our goal is not to propose a universal architecture,
but to highlight that under small-scale and online constraints, revisiting simpler alternatives can uncover models that are
more adaptive, more efficient, and in some cases, more effective than their overparameterized counterparts.

2. Related Work
MLP-based models have recently re-emerged as efficient alternatives to attention for sequence and vision tasks (Tolstikhin
et al., 2021; Liu et al., 2021; Tay et al., 2021). In the byte-level setting, where local dependencies dominate, prior work has
shown that simpler architectures can perform competitively (Press et al., 2022; Xue et al., 2022; Henighan et al., 2020). Our
work follows this line, focusing on online learning under compute-constrained conditions. Unlike transformers (Vaswani
et al., 2017; Tay et al., 2022), our architecture eliminates attention entirely while retaining adaptability through a soft
routing mechanism over shared MLP experts. This structure is related to mixture-of-experts models (Shazeer et al., 2017;
Lepikhin et al., 2021; Fedus et al., 2022) and parameter-efficient adaptation techniques such as LoRA (Hu et al., 2021) and
prefix-tuning (Li & Liang, 2021), but uses a fully differentiable, continuous gating function to blend shared experts. The
resulting modularity also resembles recent designs for learnable neural agents (Andreas et al., 2017; Hu et al., 2023). Our
motivation builds on prior work in scalable, efficient sequence modeling (Mao et al., 2022b;a), extending this line toward
lightweight, attention-free architectures that can operate in fully online, streaming environments.

3. Method
We propose a lightweight, fully attention-free neural architecture for byte-level next-token prediction under online training.
The model, LiteByte, is composed of a stack of alternating feedforward layers, each designed to efficiently extract and
propagate local patterns through dynamic and hierarchical transformations. Unlike Transformer-based models, our approach
relies solely on MLP structures and avoids any form of positional encoding, attention, or recurrence.

3.1. Input Embedding and Reshaping

Byte-level Embedding and Patch Reshaping. Let x = {x1, x2, . . . , xT } ∈ {0, . . . , 255}T be a stream of raw bytes,
processed in mini-batches of size B. Each byte is first mapped to a dense vector through a learnable lookup table
Embed : {0, . . . , 255} → Rdvocab . To prevent extreme activations and to interpret each channel as a “soft one-hot” code, an
element-wise sigmoid is applied:

et = σ
(
Embed(xt)

)
∈ (0, 1)dvocab , t = 1, . . . , T.

Local patch construction. Define an integer scaling factor

scale =
dhidden
dvocab

∈ N≥1,

which specifies how many consecutive embeddings are concatenated. For every non-overlapping window of length scale we
stack the corresponding vectors and flatten them, producing a single feature of dimension dhidden:

hi =
[
e(i−1)scale+1; . . . ; eiscale

]
∈ Rdhidden , i = 1, . . . , L, L =

T

scale
.

Collecting all patches across the batch yields the hidden tensor

H0 ∈ RB×L×dhidden ,

where the second axis now indexes contiguous byte windows rather than individual bytes. This reshaping reduces the
effective sequence length by a factor of scale, cutting the arithmetic cost of subsequent routers and feed-forward layers
while preserving fine-grained locality within each patch. Setting dhidden to a power of two (e.g. 512 or 1024) aligns memory
accesses with common hardware vector widths, further accelerating the batched matrix multiplications that follow.

2



Submission and Formatting Instructions for MOSS@ICML2025

3.2. Hierarchical Local-Global Feedforward Architecture

Soft Shared MLP Experts. To project each local patch into a richer feature space the model employs a soft mixture of
shared MLP experts. Instead of allocating one weight matrix per sample, which would scale the parameter count with the
mini-batch, we maintain a fixed bank of K expert matrices {Wk ∈ Rdin×dout }Kk=1 and biases { bk ∈ Rdout }Kk=1.

Gating. For the i-th patch the model first forms a compact summary xsummary
i = 1

N

∑N
j=1 H0[i, j] ∈ Rdin by mean-

pooling across the N token rows of H0[i] ∈ RN×din . A lightweight gating network g : Rdin → RK maps the summary to
unnormalised logits that are converted to a simplex via softmax:

αi = softmax
(
g(xsummary

i )
)
∈ [0, 1]K ,

K∑
k=1

αi,k = 1.

Expert projection. Each expert independently transforms the entire patch:

Zi,k = H0[i]Wk + bk ∈ RN×dout , k = 1, . . . ,K.

Soft aggregation. The outputs are fused by a convex combination driven by αi:

Hi =

K∑
k=1

αi,k Zi,k ∈ RN×dout .

This design preserves sample-specific adaptability while keeping the total parameter count independent of the batch size.
Because the same expert bank serves all patches, the effective model capacity scales with K din dout rather than B Ldin dout.

Global Feature Integration with Feedforward Layer. Following the expert block the tensor is collapsed along the token
axis, yielding a vector vi = reshape(Hi) ∈ RNdout . A conventional two-layer feedforward network with intermediate
GELU, LayerNorm preactivation, and residual averaging then provides globally conditioned processing:

ṽi = vi +
1

2

(
GELU

(
viW1 + b1

)
W2 + b2

)
,

where W1 ∈ RNdout×dff and W2 ∈ Rdff×Ndout . The LayerNorm that precedes the linear stack ensures scale stability, while
the residual average (rather than sum) prevents the magnitude explosion often observed in deep online learners.

The juxtaposition of local perception (soft experts) and global integration (feedforward) allows the model to learn frequent
byte-level transitions and long-range semantic dependencies within the same fully feedforward architecture.

Output Projection. For step-wise generation the current hidden state Ht ∈ RB×1×dhidden is passed through a linear
classifier that shares no parameters with the embedding table:

ŷt = Ht Wout + bout ∈ RB×1×256.

The logits ŷt feed a standard cross-entropy loss with respect to the ground-truth byte at position t. Because no masking or
attention is used the entire pipeline supports strictly online inference with latency governed only by matrix multiplications.

3.3. Architecture Illustration

Figure 1 shows the individual–block and mix–block as a cascade of two conceptually identical stages, each composed of
(i) a soft expert router and (ii) a shared feed-forward network (FFN1→FFN2). Given a hidden vector h ∈ Rdhidden , the router
compares h with K learned expert keys, assigns a probability simplex α = softmax(g(h)) ∈ [0, 1]K , and produces an
aggregated expert output z =

∑K
k=1 αk Expertk(h). This soft selection (annotated by Selected Expert in the figure) lets

the network specialise locally while sharing parameters globally, striking a balance between capacity and efficiency. The
aggregated vector is then refined by a two-layer GELU→Linear module (FFN1→FFN2), with per-patch LayerNorm and
residual averaging instead of summation to keep activation scales depth-invariant.

3



Submission and Formatting Instructions for MOSS@ICML2025

Selected Expert

Selected Expert

Feedforward Layer

FF
N

1

FF
N

2

Feedforward Layer

FF
N

1

FF
N

2

Figure 1. An illustration of our MLP-based online prediction pipeline. It’s a two-layer architecture where each stage routes features
through soft-selected experts, followed by a shared feedforward transformation. The output is a token-level distribution for next-token
prediction.

Because stage 1 operates on byte-level patches of length scale = dhidden/dvocab, it focuses on short-range regularities,
character n-grams, punctuation patterns, UTF-8 fragments, that dominate raw byte streams. Stage 2, fed by the already
transformed representation, sees a lower-resolution view and therefore captures broader semantic context. Together they
form an implicit hierarchy: rapid, patch-wise adaptation in the lower tier; gradual abstraction of long-range structure in
the upper tier. Unlike subword LLMs, byte-level models cannot rely on pre-segmented tokens. The proposed hierarchy
compensates by allowing the first stage to emulate a data-driven tokeniser (through dynamic patch transforms) while the
second stage plays the role of a conventional encoder. Attention-based models often diverge when trained with continual
streaming updates; they accumulate scale drift because residual sums grow with depth (Raffel et al., 2020). By replacing
summation with averaging and performing LayerNorm within each patch, our blocks bound the variance of the hidden
state irrespective of the number of updates, enabling months-long online training without manual learning-rate resets or
gradient clipping. After the second FFN the hidden state ht ∈ Rdhidden is linearly projected onto the 256-way byte vocabulary,
yielding logits ŷt. Common continuations such as “hot” or “cold” emerge with high likelihood because the expert bank
allocates specialists to frequently recurring local patterns, while the shared FFNs ensure global consistency across positions.

4. Experiments
We evaluate LiteByte on byte-level next-token prediction across three representative datasets: Enwik8 (Hutter, 2006),
Text8 (Mahoney), and a subset of Charles Dickens’ collected works from Project Gutenberg (Gutenberg). All models are
trained under the same configuration with a sequence length of 64, batch size of 512, and online autoregressive training.
Evaluation perplexity is reported on a held-out 20% test split.

4.1. Comparison with Baselines

We first compare LiteByte with three commonly used sequence models: a Transformer encoder (8 layers, 4 heads), a
8-layer GRU-based RNN, and a standard 8-layer MLP. All models are matched in parameter count and trained with the
same optimizer and learning rate. Figure ?? shows the training loss curves on the three datasets. LiteByte achieves faster
convergence than all baselines, especially in the early stage of training. Notably, Transformer training is slower and less
stable under the same online setting, likely due to its dependency on attention mechanisms and positional encodings.

4.2. Ablation Study: Soft Expert Routing

To evaluate the contribution of soft expert routing, we compare the full LiteByte model with an ablated variant where the
dynamic expert mixture is removed and replaced by a single shared projection. Figure 2 shows the result. The absence of
soft expert routing leads to consistently higher loss and slower convergence, indicating that dynamic routing plays a critical
role in LiteByte’s adaptability, especially in the early phases of online training.

4



Submission and Formatting Instructions for MOSS@ICML2025

Figure 2. Training loss across three datasets (Dickens, Enwik8, and Text8). The top row compares LiteByte to baseline models including
Transformer, RNN, and MLP, showing that LiteByte converges faster and achieves lower loss in all cases. The bottom row presents
an ablation study, comparing the full model with a variant that removes soft expert routing. The expert mechanism leads to improved
convergence speed and final performance.

4.3. Efficiency Analysis

To assess the runtime efficiency of LiteByte, we benchmark its inference latency and throughput against three baseline
models: TinyMLP, TinyRNN, and TinyTransformer. All models are evaluated on the same hardware (NVIDIA 4090 GPU).
As shown in Table 1, LiteByte achieves the lowest latency (0.0073s per input) and the highest throughput (137.5 items/sec),
outperforming all baselines by a significant margin. These improvements stem from its fully feedforward design and
batch-aware expert routing, which enable both fast computation and efficient GPU utilization.

Model Throughput (tokens/sec) GPU Usage (GB)

TinyMLP 7127.04 10.97
TinyRNN 43694.08 2.7
TinyTransformer 3921.92 13.3
LiteByte (ours) 140800 0.97

Table 1. Inference latency, throughput, and peak GPU memory usage for all models under identical evaluation conditions. LiteByte
achieves the best runtime performance.

5. Conclusion
We introduced a lightweight, attention-free architecture for byte-level next-token prediction, composed entirely of multilayer
perceptrons with alternating structure and soft expert routing. Despite its simplicity, our model achieves competitive or
superior performance compared to Transformer, RNN, and MLP baselines, while offering significant improvements in
memory efficiency and training speed. Our design is particularly well-suited for low-resource and online settings: it avoids
tokenization, operates at byte granularity, and adapts quickly through online updates. Importantly, the model runs efficiently
on resource-constrained environments such as Colab Free Tier GPUs, making it highly deployable in edge or streaming
scenarios. We hope this work encourages further exploration of non-attentional architectures in small-scale and adaptive
learning regimes, where traditional Transformers may be unnecessarily complex.

5



Submission and Formatting Instructions for MOSS@ICML2025

References
Andreas, J., Klein, D., and Levine, S. Modular multitask reinforcement learning with policy sketches. In ICML, 2017.

Brown, T. B., Mann, B., Ryder, N., and et al. Language models are few-shot learners. NeurIPS, 2020.

Chen, M., Tworek, J., Jun, H., and et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter models with simple and efficient
sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

Gutenberg, P. The Works of Charles Dickens (plain text). https://www.gutenberg.org/. Curated subset used in
this work; Accessed: 2025-05-25.

Henighan, T., Kaplan, J., and et al. Scaling laws for autoregressive generative modeling. arXiv preprint arXiv:2010.14701,
2020.

Hu, E. J., Shen, Y., Wallis, P., and et al. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hu, E. J., Lee, K., Chowdhery, A., Lester, B., Narasimhan, K., Dean, J., Roberts, A., and Raffel, C. Transformer agents:
Interactive decision-making with language models. arXiv preprint arXiv:2305.01680, 2023.

Hutter, M. The Human Knowledge Compression Contest (enwik8). http://prize.hutter1.net/, 2006. Accessed:
2025-05-25.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Johnson, M., Macherey, W., Krikun, M., Chen, N., Zhou, Y., et al. Gshard:
Scaling giant models with conditional computation and automatic sharding. In ICLR, 2021.

Li, X. and Liang, P. Prefix-tuning: Optimizing continuous prompts for generation. ACL, 2021.

Liu, H., Dai, Z., So, D. R., and Le, Q. V. Pay attention to mlps. NeurIPS, 34:9204–9215, 2021.

Mahoney, M. Text8: A compressed corpus for NLP. http://mattmahoney.net/dc/textdata. Accessed:
2025-05-25.

Mao, Y., Cui, Y., Kuo, T.-W., and Xue, C.-J. Accelerating general-purpose lossless compression via simple and scalable
parameterization. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 3205–3213, 2022a.

Mao, Y., Cui, Y., Kuo, T.-W., and Xue, C.-J. Trace: A fast transformer-based general-purpose lossless compressor. In
Proceedings of the ACM Web Conference 2022, pp. 1829–1838, 2022b.

Press, O., Smith, N. A., and Levy, O. Train short, test long: Attention with linear biases enables input length extrapolation.
arXiv preprint arXiv:2202.07765, 2022.

Radford, A., Kim, J. W., Hallacy, L., and et al. Learning transferable visual models from natural language supervision.
ICML, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In ICLR, 2017.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. A simple and effective architecture for modeling long-range dependencies.
arXiv preprint arXiv:2005.10862, 2021.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient transformers: A survey. ACM Computing Surveys, 2022.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J., Lucic,
M., et al. Mlp-mixer: An all-mlp architecture for vision. NeurIPS, 34:24261–24272, 2021.

6

https://www.gutenberg.org/
http://prize.hutter1.net/
http://mattmahoney.net/dc/textdata


Submission and Formatting Instructions for MOSS@ICML2025

Touvron, H., Lavril, T., Izacard, G., and et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., and et al. Attention is all you need. In NeurIPS, 2017.

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barham, P., and Raffel, C. Byt5: Towards a
token-free future with pre-trained byte-to-byte models. In Proceedings of ACL, 2022.

7


