
Imbalance-Regularized LoRA: A Plug-and-Play
Method for Improving Fine-Tuning of Foundation

Models

Zhenyu Zhu†, Yongtao Wu†, Quanquan Gu§∗, Volkan Cevher†∗
† École Polytechnique Fédérale de Lausanne (EPFL)

§ University of California, Los Angeles (UCLA)
{zhenyu.zhu, yongtao.wu, volkan.cevher}@epfl.ch qgu@cs.ucla.edu

Abstract

Low-Rank Adaptation (LoRA) is an effective fine-tuning algorithm for large mod-
els, enabling efficient adaptation with fewer trainable parameters. Despite its
success, there remains significant potential for improving LoRA’s performance. In
this paper, we introduce iLoRA (Imbalance-Regularized LoRA), which enhances
LoRA by incorporating a regularization term to capture the imbalance in forward
propagation. This regularization maintains an imbalance between matrices A and
B, ensuring stable activation variance independent of dimension. Specifically,
we first analyze forward dynamics, observe this imbalance in stable training, and
introduce imbalanced regularization. Further, by combining this with precondition-
ing techniques [Zhang and Pilanci, 2024], we propose πLoRA (Preconditioned
iLoRA), which improves the backpropagation process. Our method is a plug-and-
play algorithm that requires only minor modifications to the existing code and
incurs negligible additional computational overhead. Finally, experiments on large
language models and text-to-image models demonstrate that iLoRA and πLoRA
significantly outperform existing LoRA and preconditioned LoRA methods.

1 Introduction
As neural network models in both vision and language domains continue to grow, training a neural
network from scratch to match the performance of existing large models has become increasingly
difficult [Brown et al., 2020, Fedus et al., 2022, Zhai et al., 2022, Dubey et al., 2024]. Consequently,
fine-tuning has emerged as a popular approach for downstream tasks [Devlin, 2018, Liu, 2019].
Traditional full-parameter fine-tuning requires extensive storage, making it impractical for many
applications [Raffel et al., 2020]. In contrast, recent advances in Parameter-Efficient Fine-Tuning
(PEFT) methods offer a more efficient solution while maintaining strong performance in downstream
tasks [Houlsby et al., 2019, Lester et al., 2021, Hu et al., 2022, Zhang et al., 2023, Hayou et al., 2024,
Zhang and Pilanci, 2024, Tian et al., 2024, Zhu et al., 2024, Dettmers et al., 2024].

One widely used PEFT method is Low-Rank Adaptation (LoRA) [Hu et al., 2022], which introduces
low-rank matrices to existing model weights and only trains these additive components. Specifically,
for a pre-trained weight W(0) ∈ Rm×n, LoRA assumes that the fine-tuned weight W∗ satisfies:

W⋆ = W(0) +∆W = W(0) +BA,

where A ∈ Rr×n and B ∈ Rm×r, with r ≪ {m,n} representing the rank of the adaptation
matrices. During fine-tuning, only A and B are updated, while the original pre-trained weights
W(0) remain frozen. This low-rank factorization significantly reduces memory and computational
overhead [Sainath et al., 2013]. Additionally, the multiplication of two small matrices is more efficient

∗Equal mentorship

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

and easier to implement in practice compared to the unstructured sparse matrices used in methods like
Diff-pruning [Fang et al., 2023a,b], making LoRA a practical and scalable solution for fine-tuning
large models.

LoRA+ [Hayou et al., 2024] further examined the optimization paradigm of LoRA, revealing that for
stable feature learning, the learning rate of the parameter B should be set larger than that of A, leading
to a joint hyperparameter search problem. Riemannian Preconditioned LoRA [Zhang and Pilanci,
2024] introduced a r × r preconditioner in each gradient step to stabilize feature learning without
requiring different learning rates. However, both approaches have notable limitations. The heuristic
learning rate ratio in LoRA+ (ηB/ηA = 24) does not fully align with their theoretical analysis and
overlooks the dimension of matrices A and B, particularly in models with large dimensions. While
Preconditioned LoRA stabilizes feature learning, it does not capture the inherent asymmetry between
A and B, which can result in suboptimal forward and backward propagation.

In this paper, we introduce Imbalance-Regularized LoRA (iLoRA), a novel method to capture
the inherent asymmetry between matrices A and B. We propose a specialized regularization
term:

∥∥AA⊤ − r
mB⊤B

∥∥2
F

, the factor r
m compensates for the inherent asymmetry between A and

B. By enforcing this imbalance regularization, we ensure that the norms of these components are
properly imbalanced during fine-tuning, leading to improved stability in the forward pass. We further
observe that the relationship between A and B during the backward pass in standard gradient descent
(GD) does not align with the imbalance observed in the forward pass. To resolve this, we apply the
preconditioning method [Zhang and Pilanci, 2024], proving that under this approach, the backward
pass maintains the same imbalance relationship as the forward pass, ensuring consistency throughout
the optimization process.

We conduct extensive experiments with iLoRA, including fine-tuning GPT-2 on the E2E Natural
Language Generation challenge [Novikova et al., 2017], Mistral 7B [Jiang et al., 2023] on the GLUE
benchmark [Pilanci and Ergen, 2020], and diffusion models for image generation. Empirically,
iLoRA demonstrates substantial performance improvements over traditional LoRA, with minimal
additional computational cost. Furthermore, combining iLoRA with Riemannian Preconditioned
LoRA, referred to as πLoRA, delivers significant performance gains across multiple tasks.

2 Analysis of Dynamics and Imbalanced Relationship in LoRA
Maintaining stable activations and gradients across layers is crucial to prevent issues such as vanishing
or exploding gradients when training deep learning models [Glorot and Bengio, 2010]. A key strategy
to address this is ensuring that activation variances remain constant throughout the network [He
et al., 2015]. In this section, we present key results for achieving this stability for both forward and
backward propagation. For a more detailed analysis and proofs, please refer to Appendix B.

We now focus on a single matrix fine-tuning module, which serves as a crucial building block in the
broader framework discussed earlier. Previously, we highlighted the importance of maintaining stable
activations and gradients across multiple layers. Here, we extend these concepts to the LoRA-based
architecture. Specifically, let W(0) ∈ Rm×n represent the pre-trained weight matrix of a neural
network layer, and let A ∈ Rr×n and B ∈ Rm×r be the low-rank matrices introduced during fine-
tuning. Let x ∈ Rn be an input vector. The forward propagation of the network can be expressed as:

f = (W(0) +BA)x . (1)

The optimization objective is to minimize the loss:

L =
1

2
∥f(x)− y∥2 , (2)

where y ∈ Rm is the target output vector. First, we start with the stability of forward propagation.

2.1 Variance Preservation in Forward Propagation
Define the intermediate activations as: f1 = Ax, f2 = Bf1 = BAx. To ensure stable forward
propagation in the network, it is crucial that the variances of the elements in f1 and f2 remain constant
order and do not depend on the dimensions n, m, and r.
Theorem 1 (Variance Preservation in Forward Propagation). Let x ∈ Rn be an input vector with
i.i.d. elements of mean zero and variance σ2

x. Under the assumptions that the elements of A and B
have zero mean and variances σ2

A and σ2
B respectively, to maintain constant variances of f1 and f2,

the parameter variances should satisfy: σ2
A = O

(
1
n

)
, σ2

B = O
(
1
r

)
.

2

Remark 1: Theorem 1 establishes the necessary conditions for parameter variance to ensure that the
variances of activations f1 and f2 remain constant during forward propagation. This provides a clear
objective for our regularization strategy, guiding us to maintain the stability of forward propagation
by controlling the variances of the parameter matrices.

To control the imbalance between matrices A and B, we propose modifying the commonly used
balancing regularization term ||AA⊤−B⊤B||2F from the low-rank matrix factorization literature [Zhu
et al., 2021]. Specifically, within the framework of Theorem 1, we introduce a scaling coefficient
µ1 to control the balance between the matrices A and B. We derive the condition under which the
relationship AA⊤ = µ1B

⊤B holds in Corollary 1.

Corollary 1 (Scaling of µ1 with Matrix Dimensions). Under the conditions of Theorem 1 and the
assumption that AA⊤ = µ1B

⊤B, the proportionality constant µ1 satisfies: µ1 = O
(

r
m

)
.

Remark 2: Corollary 1 highlights that the proportionality constant µ1 scales with the ratio r
m ,

where r is the rank of the matrix A and m is the number of rows in B. To compensate for this
ratio, an imbalanced regularization term:

∥∥AA⊤ − r
mB⊤B

∥∥2
F

, is necessary to maintain stable
parameter updates. This regularization ensures that the scaling of A and B is aligned according to
their respective dimensions, preventing one matrix from dominating the update process and causing
instability. By incorporating this term, we effectively manage the imbalance between A and B.

2.2 Limitations of Standard Gradient Descent
While the forward propagation ensures that activations have constant variance, it is equally important
to maintain a stable update of the parameters during backpropagation. Specifically, we desire
the changes in the parameter matrices to satisfy a similar proportional relationship: d(AA⊤) =
µ2 d(B

⊤B), where d(·) denotes the infinitesimal change or differential in the matrix values during
backpropagation. Our goal is to verify that µ1 (from forward propagation) and µ2 are of the same
order, ensuring consistency between forward and backward propagation.

To explore this relationship further, we analyze how standard gradient descent affects the proportion-
ality constant µ2 during backpropagation in Theorem 2.

Theorem 2 (Proportional Inconsistency in Standard Gradient Descent). Under the conditions of The-
orem 1, for model Eq. (1), applying standard gradient descent to minimize loss Eq. (2) with a small
learning rate η, the proportionality constant µ2 between d(AA⊤) and d(B⊤B) satisfies: µ2 ≈ 1,
indicating an inherent balance in parameter updates due to the differing dimensions of A and B.

Remark 3: Theorem 2 demonstrates that, µ1 and µ2 cannot be of the same order for gradient descent.
This inconsistency suggests that standard gradient descent is insufficient for maintaining the desired
proportional relationship between the updates of A and B. To resolve this, we must scale gradient
descent to ensure that the updates to A and B remain consistent with the proportionality introduced
during forward propagation.

2.3 Scaled Gradient Descent
To address the imbalance between parameters and updates identified in Theorem 2, we introduce
a preconditioned gradient update method ScaledGD as proposed in Zhang and Pilanci [2024] which
is also inspired by the previously discussed imbalanced relationship between A and B. The scaled
gradients are defined as:

∇̃A = (B⊤B)−1 ∂L

∂A
, ∇̃B =

∂L

∂B
(AA⊤)−1. (3)

Then we aim to verify whether the modified updates satisfy the relationship d(AA⊤) = µ2 d(B
⊤B),

and whether the proportionality constants µ1 from forward propagation and µ2 from backpropagation
are of the same order. This verification is crucial for ensuring that the scaled gradient descent method
maintains the proportional consistency necessary for stable parameter updates.

Theorem 3 (Proportional Consistency in Scaled Gradient Descent). Under the conditions of The-
orem 1, for model Eq. (1), applying scaled gradient descent Eq. (3) to minimize loss Eq. (2) with
a small learning rate η, the proportionality constant µ2 between d(AA⊤) and d(B⊤B) satisfies:
µ2 ≈ µ1 = O

(
r
m

)
, ensuring that µ1 and µ2 are of the same order and thus maintaining consistency

between forward and backward propagation.

3

Remark 4: Theorem 3 confirms that the scaled gradient descent method effectively aligns the
proportionality constants µ2, ensuring consistency in the proportion of parameters and updates
between A and B. This alignment addresses the inconsistency identified in standard gradient descent,
promoting stable training by maintaining consistent proportional relationships during both forward
and backward propagation.

3 Imbalance-Regularized LoRA
In this section, we discuss how to incorporate the imbalanced regularization term derived in Section 2
into LoRA training by AdamW, forming the core of our iLoRA algorithm. Similar to the strategy of
introducing weight decay in AdamW, the imbalanced regularization term we introduce only takes
effect at the end of each iteration and does not interfere with the iteration of gradients and momentum.

Specifically, consider the following regularization term: R(A,B) = λ

∥∥∥∥AA⊤ − r
mB⊤B

∥∥∥∥2
F

, where

λ is regularization hyperparameter. After performing standard AdamW updates, we apply parameter
update steps Eqs. (4) and (5) similar to weight decay. These gradients adjust the updates for A and
B to ensure that the influence of imbalanced regularization is reflected in the parameter dynamics.
The core steps of the algorithm are shown in Algorithm 1, while the complete procedure is provided
in Algorithm 2 (We use θA and θB to represent A and B, respectively in the algorithm).

Algorithm 1 iLoRA: Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), λ (regularization factor), θ0 (initial fine-tuning parameters), r (rank), m
(pretrain matrix output dimension), T (number of iterations).

2: for each iteration t = 1, 2, . . . , T do
3: Perform standard AdamW updates for θt−1: yielding θ⋆t
4: # Or perform Scaled AdamW updates for θt−1: yielding θ⋆t in πLoRA
5: Apply imbalanced regularization to θA⋆

t and θB⋆
t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t (4)

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

(r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
(5)

6: end for
7: Output: Optimized parameters θT

Our iLoRA algorithm ensures stability in forward propagation, but the inconsistency in backward
propagation requires scaling the gradients to maintain proportionality. As shown in Section 2.3, by
combining iLoRA with preconditioning methods, we introduce πLoRA, which leverages gradient
scaling to ensure consistent parameter updates during both forward and backward propagation.
Specifically, in πLoRA, we only need to replace line 3 in Algorithm 1 with preconditioning methods
such as Scaled GD or Scaled AdamW in Zhang and Pilanci [2024](see detail in Algorithm 3). This
simple adjustment allows us to effectively combine the strengths of both iLoRA and preconditioning
methods without altering their core structures, achieving the dual benefit of ensuring stability in
forward propagation while resolving gradient inconsistencies in backward propagation. For other
LoRA variants, incorporating the updates from Eqs. (4) and (5) after each iteration allows for a
seamless combination of iLoRA with these variants, achieving a plug-and-play improvement in the
algorithms.

4 Experiments
4.1 GPT-2

In this section, we conducted fine-tuning experiments on the GPT-2 model using iLoRA and πLoRA.
We followed the exact same experimental setup as Zhang and Pilanci [2024], ensuring consistency
and comparability with previous methods. Detailed experimental settings and hyperparameters
can be found in Appendix D.3.1. The results of fine-tuning GPT-2 with a LoRA rank of 4 on the
E2E [Novikova et al., 2017] natural language generation challenge are summarized in Table 1. The
table compares the performance of different methods, including the original LoRA, Preconditioned
LoRA, and our proposed iLoRA and πLoRA methods, across five evaluation metrics: BLEU, NIST,

4

Table 1: Results for LoRA fine-tuning of GPT-2 Model on the E2E Natural Language Generation
Challenge with Different Methods. iLoRA and πLoRA outperform the original LoRA and Precondi-
tioned LoRA across all evaluation metrics.

Method Rank E2E
BLEU NIST MET ROUGE-L CIDEr

LoRA 4 68.9 8.69 46.5 71.4 2.51
iLoRA 4 70.1 8.83 46.8 71.7 2.52

Preconditioned LoRA 4 69.6 8.77 46.6 71.8 2.52
πLoRA 4 70.8 8.89 46.8 72.1 2.54

Table 2: Scores for LoRA fine-tuning of Mistral 7B Model on GLUE Benchmark with different meth-
ods. iLoRA and πLoRA show significant improvements respectively over LoRA and Preconditioned
LoRA across all evaluation metrics.

Method Rank GLUE
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI Avg.

LoRA 16 89.86 96.79 88.48 71.05 94.42 91.24 90.61 90.42 81.69 88.28
iLoRA 16 91.59 97.13 89.71 71.90 95.20 91.43 90.98 92.25 87.32 89.72

Preconditioned LoRA 16 90.68 97.25 89.46 71.30 94.67 92.22 91.34 91.10 83.10 89.01
πLoRA 16 91.61 97.25 90.44 71.97 95.37 91.44 91.70 92.35 88.73 91.10

METEOR (MET), ROUGE-L, and CIDEr. The results of LoRA and Preconditioned LoRA are
referenced from Zhang and Pilanci [2024]. From the table, we can see that iLoRA consistently
improves over the original LoRA, demonstrating the effectiveness of our imbalanced regularization
strategy. Moreover, πLoRA achieves the best performance across all evaluation metrics, surpass-
ing both iLoRA and Preconditioned LoRA, demonstrating the benefits of combining imbalanced
regularization with preconditioning. For additional experimental results and analyses, please refer
to Appendix D.3.2.

4.2 Mistral 7B

In this section, we conducted fine-tuning experiments on the Mistral 7B model [Jiang et al., 2023]
using iLoRA and πLoRA. Mistral 7B, released by the Mistral AI team, has demonstrated superior
performance compared to Llama 2-13B on most benchmarks and has even surpassed Llama 1-34B
on many tasks. As a result, it is considered one of the most powerful language models of its size to
date. We followed the experimental setting from Zhang and Pilanci [2024] and applied our iLoRA
and πLoRA methods to the General Language Understanding Evaluation (GLUE) benchmark [Wang,
2018]. Detailed experimental settings and hyperparameters are provided in Appendix D.4.1.

The final results of fine-tuning Mistral 7B with a LoRA rank of 16 on the GLUE benchmark are shown
in Table 2, with LoRA and Preconditioned LoRA results referenced from Zhang and Pilanci [2024].
Our iLoRA method consistently outperforms the original LoRA across all tasks, with an average
improvement of 1.44 and 0.71 over LoRA and Preconditioned LoRA, respectively. πLoRA delivers
the best performance on nearly all tasks, achieving an average improvement of 2.82 over LoRA and
2.09 over Preconditioned LoRA. For further experimental results, please refer to Appendix D.4.

5 Conclusion
In this paper, we proposed a plug-and-play fine-tuning method iLoRA(Imbalance-Regularized LoRA),
which introduces an imbalanced regularization term to address the variance disparity between the fine-
tuning matrices A and B in LoRA-based fine-tuning. This approach ensures that AA⊤ and B⊤B
maintain a proportional relationship, thereby enhancing stability in forward propagation. To address
inconsistencies in backward propagation, we integrate iLoRA with preconditioning techniques to
form πLoRA, utilizing gradient scaling to ensure consistent parameter updates in both forward and
backward passes. Extensive experiments across various large-scale models and tasks demonstrate
that iLoRA and πLoRA significantly improve training stability and model performance.

5

References
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing Systems, 2020.

Y. Chen, S. Wang, Z. Lin, Z. Qin, Y. Zhang, T. Ding, and R. Sun. Mofo: Momentum-filtered optimizer
for mitigating forgetting in llm fine-tuning, 2024.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized
llms. Advances in Neural Information Processing Systems, 36, 2024.

J. Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang. Depgraph: Towards any structural pruning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16091–16101, 2023a.

G. Fang, X. Ma, and X. Wang. Structural pruning for diffusion models. In Advances in Neural
Information Processing Systems, 2023b.

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

Y. Gu, X. Wang, J. Z. Wu, Y. Shi, Y. Chen, Z. Fan, W. XIAO, R. Zhao, S. Chang, W. Wu, Y. Ge,
Y. Shan, and M. Z. Shou. Mix-of-show: Decentralized low-rank adaptation for multi-concept
customization of diffusion models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=NnIaEaBfXD.

Y. Hao, Y. Cao, and L. Mou. Flora: Low-rank adapters are secretly gradient compressors, 2024. URL
https://arxiv.org/abs/2402.03293.

S. Hayou, N. Ghosh, and B. Yu. Lora+: Efficient low rank adaptation of large models, 2024.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan,
and S. Gelly. Parameter-efficient transfer learning for nlp. In International conference on machine
learning, pages 2790–2799. PMLR, 2019.

E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Repre-
sentations, 2022.

X. Jia, H. Wang, J. Peng, X. Feng, and D. Meng. Preconditioning matters: Fast global convergence
of non-convex matrix factorization via scaled gradient descent. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
rLpLjCBW4J.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.
06825.

6

https://openreview.net/forum?id=NnIaEaBfXD
https://arxiv.org/abs/2402.03293
https://openreview.net/forum?id=rLpLjCBW4J
https://openreview.net/forum?id=rLpLjCBW4J
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix sensing and
neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47.
PMLR, 2018.

V. Lialin, S. Muckatira, N. Shivagunde, and A. Rumshisky. ReloRA: High-rank training through
low-rank updates. In The Twelfth International Conference on Learning Representations, 2024.

Y. Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances in Neural Information Processing
Systems, 35:5775–5787, 2022.

B. Mishra and R. Sepulchre. Scaled stochastic gradient descent for low-rank matrix completion. In
2016 IEEE 55th Conference on Decision and Control (CDC), pages 2820–2825. IEEE, 2016.

B. Mishra, K. A. Apuroop, and R. Sepulchre. A riemannian geometry for low-rank matrix completion.
arXiv preprint arXiv:1211.1550, 2012.

J. Novikova, O. Dušek, and V. Rieser. The e2e dataset: New challenges for end-to-end generation.
arXiv preprint arXiv:1706.09254, 2017.

M. Pilanci and T. Ergen. Neural networks are convex regularizers: Exact polynomial-time convex
optimization formulations for two-layer networks, 2020. URL https://arxiv.org/abs/2002.
10553.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020.

P. Ren, C. Shi, S. Wu, M. Zhang, Z. Ren, M. de Rijke, Z. Chen, and J. Pei. Melora: Mini-ensemble
low-rank adapters for parameter-efficient fine-tuning, 2024. URL https://arxiv.org/abs/
2402.17263.

T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE
international conference on acoustics, speech and signal processing, pages 6655–6659. IEEE,
2013.

C. Tian, Z. Shi, Z. Guo, L. Li, and C. Xu. Hydralora: An asymmetric lora architecture for efficient
fine-tuning. arXiv preprint arXiv:2404.19245, 2024.

T. Tong, C. Ma, and Y. Chi. Accelerating ill-conditioned low-rank matrix estimation via scaled
gradient descent. Journal of Machine Learning Research, 22(150):1–63, 2021a. URL http:
//jmlr.org/papers/v22/20-1067.html.

T. Tong, C. Ma, and Y. Chi. Low-rank matrix recovery with scaled subgradient methods: Fast and
robust convergence without the condition number. IEEE Transactions on Signal Processing, 69:
2396–2409, 2021b.

A. Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

S. Wang, L. Yu, and J. Li. Lora-ga: Low-rank adaptation with gradient approximation, 2024.

W. Xia, C. Qin, and E. Hazan. Chain of lora: Efficient fine-tuning of language models via residual
learning, 2024.

7

https://arxiv.org/abs/2002.10553
https://arxiv.org/abs/2002.10553
https://arxiv.org/abs/2402.17263
https://arxiv.org/abs/2402.17263
http://jmlr.org/papers/v22/20-1067.html
http://jmlr.org/papers/v22/20-1067.html

X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling vision transformers. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 12104–12113, 2022.

F. Zhang and M. Pilanci. Riemannian preconditioned lora for fine-tuning foundation models. In
International Conference on Machine Learning (ICML), 2024.

G. Zhang, H.-M. Chiu, and R. Y. Zhang. Fast and accurate estimation of low-rank matrices from noisy
measurements via preconditioned non-convex gradient descent, 2024. URL https://arxiv.
org/abs/2305.17224.

J. Zhang, S. Fattahi, and R. Y. Zhang. Preconditioned gradient descent for over-parameterized
nonconvex matrix factorization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
5985–5996. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/2f2cd5c753d3cee48e47dbb5bbaed331-Paper.pdf.

Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. In The Eleventh International Conference on Learning
Representations, 2023.

J. Zhu, K. Greenewald, K. Nadjahi, H. S. d. O. Borde, R. B. Gabrielsson, L. Choshen, M. Ghassemi,
M. Yurochkin, and J. Solomon. Asymmetry in low-rank adapters of foundation models. arXiv
preprint arXiv:2402.16842, 2024.

Z. Zhu, Q. Li, G. Tang, and M. B. Wakin. The global optimization geometry of low-rank matrix
optimization. IEEE Transactions on Information Theory, 2021.

B. Zi, X. Qi, L. Wang, J. Wang, K.-F. Wong, and L. Zhang. Delta-loRA: Fine-tuning high-rank
parameters with the delta of low-rank matrices, 2024. URL https://openreview.net/forum?
id=FAO4VS9QRV.

8

https://arxiv.org/abs/2305.17224
https://arxiv.org/abs/2305.17224
https://proceedings.neurips.cc/paper_files/paper/2021/file/2f2cd5c753d3cee48e47dbb5bbaed331-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/2f2cd5c753d3cee48e47dbb5bbaed331-Paper.pdf
https://openreview.net/forum?id=FAO4VS9QRV
https://openreview.net/forum?id=FAO4VS9QRV

Acknowledgement

This work was supported by Hasler Foundation Program: Hasler Responsible AI (project number
21043). This work was supported by the Swiss National Science Foundation (SNSF) under grant num-
ber 200021_205011. Research was sponsored by the Army Research Office and was accomplished
under Grant Number W911NF-24-1-0048.

A Related work

Low-Rank Adaptation: In recent years, the rapid advancement of parameter-efficient fine-tuning
(PEFT) techniques, particularly LoRA, has brought about numerous improvements. LoRA [Hu et al.,
2022] is built on the principle that the updates required for fine-tuning large models can be represented
as low-rank matrices, significantly reducing the number of trainable parameters. This foundational
idea has sparked further innovations aimed at enhancing both the efficiency and effectiveness of LoRA-
based methods. Several works [Hayou et al., 2024, Tian et al., 2024, Zhu et al., 2024] have focused
on introducing asymmetry or refining rank allocation strategies to improve fine-tuning performance
and efficiency. Moreover, preconditioning has been explored in works [Zhang and Pilanci, 2024]
showing significant improvements in convergence and optimization. The gradient approximation
technique [Wang et al., 2024] further enhances computational efficiency. Meanwhile, momentum
filtering techniques [Chen et al., 2024] help mitigate catastrophic forgetting in large models.

In addition, various works have contributed novel architectures and optimizations, such as introducing
multiple regeneration of fine-tuning matrices [Lialin et al., 2024, Xia et al., 2024, Zi et al., 2024],
increasing parameter efficiency [Ren et al., 2024, Hao et al., 2024]. These advancements solidify
LoRA as a powerful and flexible tool for fine-tuning large-scale models.

Preconditioning for Matrix Factorization: Accelerating convergence via preconditioning has
become a key approach in low-rank matrix factorization. The idea to precondition the gradient
with (AA⊤)−1 and (B⊤B)−1 was first suggested by Mishra et al. [2012], and later extended to
Stochastic Gradient Descent (SGD) by Mishra and Sepulchre [2016]. The convergence properties
in the noiseless setting were studied by Li et al. [2018], leading to the development of the method
now known as Scaled Gradient Descent (ScaledGD) for Matrix Factorization [Tong et al., 2021a]. In
subsequent work, Tong et al. [2021b] extended ScaledGD to subgradient methods, while Jia et al.
[2023], Zhang et al. [2024, 2021] improved ScaledGD by using alternating optimization of A and B,
iterative hyperparameter updates and introduces time-varying preconditioning. These preconditioning
methods, by addressing overparameterization and ill-conditioning, have become essential tools for
improving the efficiency and accuracy of low-rank matrix estimation.

B Proofs and Detailed Analysis

B.1 Proof of Theorem 1

Proof. Starting with the intermediate variable f1 = Ax, under the assumption that x has i.i.d.
elements with mean zero and variance σ2

x, and that the elements Akj of matrix A are i.i.d. with mean
zero and variance σ2

A, the variance of each element f1k of f1 is computed as follows:

f1k =

n∑
j=1

Akjxj .

Since Akj and xj are independent and both have zero mean, the variance of f1k is:

Var(f1k) =

n∑
j=1

Var(Akjxj) =

n∑
j=1

Var(Akj) ·Var(xj) = nσ2
Aσ

2
x.

To maintain a constant variance for f1k that is independent of the dimension n, it is necessary that:

σ2
A = O

(
1

n

)
.

9

Next, consider the intermediate variable f2 = Bf1, where the elements Bik of matrix B are i.i.d. with
mean zero and variance σ2

B . The variance of each element f2i of f2 is:

f2i =

r∑
k=1

Bikf1k.

Since Bik and f1k are independent, and Var(f1k) = nσ2
Aσ

2
x, the variance of f2i is:

Var(f2i) =

r∑
k=1

Var(Bikf1k) =

r∑
k=1

Var(Bik) ·Var(f1k) = rσ2
Bnσ

2
Aσ

2
x.

Substituting σ2
A = O

(
1
n

)
into the equation:

Var(f2i) = rσ2
Bn

(
O

(
1

n

))
σ2
x = rσ2

Bσ
2
x.

To maintain a constant variance for f2i that is independent of the dimension r, it is necessary that:

σ2
B = O

(
1

r

)
.

This completes the proof of Theorem 1.

B.2 Proof of Corollary 1

Proof. Under the conditions of Theorem 1, we have established that:

σ2
A = O

(
1

n

)
, σ2

B = O

(
1

r

)
.

Given the assumption that AA⊤ = µ1B
⊤B, we aim to determine the scaling relationship of the

proportionality constant µ1 with respect to the matrix dimensions r and m.

First, compute the expected values of AA⊤ and B⊤B:

E[AA⊤] = nσ2
AIr = O(1)Ir,

E[B⊤B] = mσ2
BIr = O

(m
r

)
Ir,

where Ir is the r × r identity matrix.

Substituting these into the proportionality assumption:

E[AA⊤] = µ1E[B⊤B].

This gives:
O(1)Ir = µ1 ·O

(m
r

)
Ir.

Solving for µ1:
µ1 = O

(r

m

)
.

Therefore, the proportionality constant µ1 scales as O
(

r
m

)
, reflecting the relationship between the

dimensions of matrices A and B.

B.3 Proof of Theorem 2

Proof. First, we use e = f(x)− y to denote the error vector and rewrite the mean squared loss as
the following:

L =
1

2
∥f(x)− y∥2 =

1

2
e⊤e,

Next, we compute the gradients with respect to A and B:

∂L

∂A
= B⊤ex⊤ ,

∂L

∂B
= e(Ax)⊤. (6)

10

By standard gradient descent with learning rate η:

Anew = A− η
∂L

∂A
, Bnew = B− η

∂L

∂B
.

Next, we compute the change in AA⊤:

d(AA⊤) = AnewA
⊤
new −AA⊤

= (A− η
∂L

∂A
)(A− η

∂L

∂A
)⊤ −AA⊤

≈ −η

(
A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤

)
,

where we neglect the η2 term as η is small. Similarly, compute the change in B⊤B and we get:

d(B⊤B) ≈ −η

(
B⊤

(
∂L

∂B

)
+

(
∂L

∂B

)⊤

B

)
.

Therefore, to satisfy the desired relationship d(AA⊤) = µ2 d(B
⊤B), we need:

A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤ = µ2

(
B⊤

(
∂L

∂B

)
+

(
∂L

∂B

)⊤

B

)
. (7)

Substituting the expressions for the gradients from Eq. (6) to the left-hand side of Eq. (7), we get:

A

(
∂L

∂A

)⊤

+

(
∂L

∂A

)
A⊤ = A

(
B⊤ex⊤)⊤ +

(
B⊤ex⊤)A⊤

= A
(
xe⊤B

)
+B⊤ex⊤A⊤

= Axe⊤B+B⊤ex⊤A⊤.

Similarly, the right-hand side of Eq. (7) becomes:

µ2

(
B⊤ ∂L

∂B
+

(
∂L

∂B

)⊤

B

)
= µ2

(
B⊤e(Ax)⊤ +

(
e(Ax)⊤

)⊤
B
)

= µ2

(
B⊤ex⊤A⊤ +Axe⊤B

)
.

Therefore, Eq. (7) becomes:

Axe⊤B+B⊤ex⊤A⊤ ≈ µ2

(
B⊤ex⊤A⊤ +Axe⊤B

)
.

By rearranging the term, we have:

(1− µ2)
(
Axe⊤B+B⊤ex⊤A⊤) ≈ 0.

Therefore, unless µ2 ≈ 1, this equality does not generally hold with standard gradient descent.

B.4 Proof of Theorem 3

Proof. We aim to verify that the scaled gradient updates satisfy d(AA⊤) = µ2 d(B
⊤B), and that

µ1 and µ2 are of the same order.

The scaled gradients are:

∇̃A = (B⊤B)−1 ∂L

∂A
, ∇̃B =

∂L

∂B
(AA⊤)−1.

The parameter updates are:

Anew = A− η∇̃A, Bnew = B− η∇̃B.

11

Then, we compute the change in AA⊤:

d(AA⊤) = AnewA
⊤
new −AA⊤

= (A− η∇̃A)(A− η∇̃A)⊤ −AA⊤

≈ −η
(
A∇̃⊤

A + ∇̃AA⊤
)
, (neglecting η2 terms)

= −η

(
A

(
∂L

∂A

)⊤

(B⊤B)−1 + (B⊤B)−1 ∂L

∂A
A⊤

)
.

Similarly, compute the change in B⊤B:

d(B⊤B) = B⊤
newBnew −B⊤B

= (B− η∇̃B)
⊤(B− η∇̃B)−B⊤B

≈ −η
(
B⊤∇̃B + ∇̃⊤

BB
)
, (neglecting η2 terms)

= −η

(
B⊤ ∂L

∂B
(AA⊤)−1 + (AA⊤)−1

(
∂L

∂B

)⊤

B

)
.

By substituting the partial derivatives in Eq. (6) into d(AA⊤), we get:

d(AA⊤) = −η

(
A

(
∂L

∂A

)⊤

(B⊤B)−1 + (B⊤B)−1 ∂L

∂A
A⊤

)
= −η

(
A
(
B⊤ex⊤)⊤ (B⊤B)−1 + (B⊤B)−1B⊤ex⊤A⊤

)
= −η

(
Axe⊤B(B⊤B)−1 + (B⊤B)−1B⊤ex⊤A⊤) .

Similarly, substituting into d(B⊤B):

d(B⊤B) = −η
(
B⊤ (e(Ax)⊤

)
(AA⊤)−1 + (AA⊤)−1

(
e(Ax)⊤

)⊤
B
)

= −η
(
B⊤ex⊤A⊤(AA⊤)−1 + (AA⊤)−1Axe⊤B

)
.

Next, we perform Singular Value Decomposition (SVD) on matrices A and B, (the dimension of ΣA

and ΣB are r × r, the elements are arranged from large to small, and it is assumed that there is no
multiplicity):

A = UAΣAV
⊤
A , B = UBΣBV

⊤
B .

Given the matrix relationship AA⊤ = µ1B
⊤B, we compute AA⊤ and B⊤B as follows:

AA⊤ = (UAΣAV
⊤
A)(VAΣ

⊤
AU

⊤
A) = UAΣAΣ

⊤
AU

⊤
A ,

B⊤B = (VBΣ
⊤
BU

⊤
B)(UBΣBV

⊤
B) = VBΣ

⊤
BΣBV

⊤
B .

Substitute into the matrix relationship:

UAΣAΣ
⊤
AU

⊤
A = µ1VBΣ

⊤
BΣBV

⊤
B

Multiply both sides on the left by U⊤
A and on the right by UA:

U⊤
A(UAΣAΣ

⊤
AU

⊤
A)UA = µ1U

⊤
A(VBΣ

⊤
BΣBV

⊤
B)UA

ΣAΣ
⊤
A = µ1(U

⊤
AVB)Σ

⊤
BΣB(V

⊤
BUA)

Since U⊤
AUA = I, we have U⊤

AVB = Q, where Q is an orthogonal matrix. Because ΣAΣ
⊤
A and

Σ⊤
BΣB are diagonal, we require that:

ΣAΣ
⊤
A = µ1QΣ⊤

BΣBQ
⊤ .

12

For the equality of diagonal matrices, we must have Q± I. Without loss of generality, we consider
Q = I, which implies UA = VB .

Thus, we have the alignment of singular vectors:

UA = VB .

Also, the proportionality of singular values:

ΣAΣ
⊤
A = µ1Σ

⊤
BΣB

(ΣAΣ
⊤
A)ii = µ1(Σ

⊤
BΣB)ii

σ2
A,i = µ1σ

2
B,i

σA,i =
√
µ1 σB,i

Therefore, the singular values satisfy:

ΣA =
√
µ1 ΣB .

Substituting the SVD Decomposition of A and B into (AA⊤)−1 and (B⊤B)−1:

(AA⊤)−1 = UA(ΣAΣ
⊤
A)

−1U⊤
A,

(B⊤B)−1 = VB(Σ
⊤
BΣB)

−1V⊤
B .

We have that both ΣA and ΣB are diagonal and full-rank. And U⊤
AUA = I and V⊤

BVB = I, this
allows us to further simplify the expressions for d(AA⊤) and d(B⊤B).

Starting with d(AA⊤):

d(AA⊤) =− η(UAΣAV
⊤
Axe

⊤UBΣBV
⊤
BVB(Σ

⊤
BΣB)

−1V⊤
B

+VB(Σ
⊤
BΣB)

−1V⊤
BVBΣ

⊤
BU

⊤
Bex

⊤VAΣ
⊤
AU

⊤
A)

=− η
(
UAΣAV

⊤
Axe

⊤UBΣ
−1
B V⊤

B +VBΣ
−1
B U⊤

Bex
⊤VAΣ

⊤
AU

⊤
A

)
.

Similarly, for d(B⊤B):

d(B⊤B) =− η(VBΣBU
⊤
Bex

⊤VAΣAU
⊤
AUA(ΣAΣ

⊤
A)

−1U⊤
A

+UA(ΣAΣ
⊤
A)

−1U⊤
AUAΣAV

⊤
Axe

⊤UBΣBV
⊤
B)

=− η
(
VBΣBU

⊤
Bex

⊤VAΣ
−1
A U⊤

A +UAΣ
−1
A V⊤

Axe
⊤UBΣBV

⊤
B

)
Combining the previous results:

UA = VB ,

ΣA =
√
µ1 ΣB ,

and substituting into d(AA⊤), we obtain

d(AA⊤) ≈ µ1 d(B
⊤B).

Thus, we have established that the proportionality constants satisfy:

µ1 ≈ µ2.

This result ensures that the scaled gradient descent method maintains balanced updates between A
and B, promoting stable training dynamics.

C Full Version of The Algorithm

D Experimental Details and Additional Experiments

D.1 Runtime Comparison

13

Algorithm 2 iLoRA: Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), β1, β2 ∈ [0, 1) (exponential decay rates for moment estimates), λ
(regularization factor), λ⋆ (weight decay factor), ϵ (small constant for numerical stability), θ0
(initial fine-tuning parameters), L(θ) (objective function), r (rank), m (pretrain matrix output
dimension), T (number of iterations).

2: Initialize: m0 ← 0 (initial first moment), v0 ← 0 (initial second moment), t ← 0 (initial
timestep)

3: for each iteration t = 1, 2, . . . , T do
4: Compute gradient: gt ← ∇θL(θt−1)
5: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)gt
6: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)g

2
t

7: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

8: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

9: Perform AdamW update: θ⋆t ← θt−1 − η
(

m̂t√
v̂t+ϵ

+ λ⋆θt−1

)
10: Apply imbalanced regularization to θA⋆

t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t

11: Apply imbalanced regularization to θB⋆
t :

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

(r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
12: end for
13: Output: Optimized parameters θT

Algorithm 3 πLoRA: Preconditioned Imbalance-Regularized Low-Rank Adaptation

1: Input: η (learning rate), β1, β2 ∈ [0, 1) (exponential decay rates for moment estimates), λ
(regularization factor), λ⋆ (weight decay factor), ϵ (small constant for numerical stability), θ0
(initial fine-tuning parameters), L(θ) (objective function), r (rank), m (pretrain matrix output
dimension), T (number of iterations).

2: Initialize: m0 ← 0 (initial first moment), v0 ← 0 (initial second moment), t ← 0 (initial
timestep)

3: for each iteration t = 1, 2, . . . , T do
4: Compute gradient: gt ← ∇θL(θt−1)
5: Scale the gradient:

g̃At ← (θB⊤
t−1θ

B
t−1)

−1gAt

g̃Bt ← gBt (θAt−1θ
A⊤
t−1)

−1

6: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)g̃t
7: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)g̃

2
t

8: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

9: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

10: Perform AdamW update: θ⋆t ← θt−1 − η
(

m̂t√
v̂t+ϵ

+ λ⋆θt−1

)
11: Apply imbalanced regularization to θA⋆

t :

θAt ← θA⋆
t − η · λ

(
θA⋆
t θA⋆⊤

t − r

m
θB⋆⊤
t θB⋆

t

)
θA⋆
t

12: Apply imbalanced regularization to θB⋆
t :

θBt ← θB⋆
t − η · λ r

m
θB⋆
t

(r

m
θB⋆⊤
t θB⋆

t − θA⋆
t θA⋆⊤

t

)
13: end for
14: Output: Optimized parameters θT

14

0.1 0.5 1.0 1.5 2.0
Scaling factor c in c r

m

70.0

70.5

71.0

71.5

72.0

M
at

th
ew

s C
or

re
la

tio
n

0.0 0.5 1.0 1.5 2.0
Scaling factor c in (r

m)c

68.5

69.5

70.5

71.5

72.5

M
at

th
ew

s C
or

re
la

tio
n

Figure 2: Ablation studies on the effects of multiplicative scaling factors and exponents applied to
the ratio r/m in LoRA. The left subplot shows the performance impact of different multiplicative
scaling factors, while the right subplot illustrates the sensitivity of performance to varying exponents.

0 5 10 15 20 25
Training Step (×103)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ru
n

Ti
m

e
(s

) (
×1

03)

LoRA
iLoRA
Preconditioned LoRA
LoRA

Figure 1: Runtime comparison of fine-tuning GPT-
2 on E2E NLG challenge.

In this section, we investigate the impact of the
additional computational cost introduced by im-
balanced regularization in iLoRA and πLoRA
algorithms. We perform fine-tuning of the GPT-
2 model (r = 4) on the E2E NLG challenge and
present a comparison of the training time be-
tween iLoRA, πLoRA, standard LoRA, and Pre-
conditioned LoRA. Fig. 1 shows the runtime of
the fine-tuning tasks using different algorithms
on 1 * NVIDIA A100 GPU. As can be seen, the
runtime differences among the four methods are
minimal. This indicates that the regularization
operations we introduced do not significantly
increase the computational overhead, confirm-
ing the efficiency of our methods. Moreover,
it is worth mentioning that the additional com-
putational cost introduced by our regularization is smaller than the overhead introduced by the
preconditioners in Zhang and Pilanci [2024].

D.2 Ablation Studies on Imbalanced Coefficients

To empirically verify the optimality of the imbalanced ratio r/m in the iLoRA algorithm, we selected
the CoLA task from the GLUE benchmark and conducted three ablation studies using the Mistral
7B model (a detailed introduction of the Mistral 7B model and GLUE benchmark are provide
in Section 4.2). These studies evaluated the impact of different coefficients in the imbalanced
regularization term and confirmed that the r/m ratio in the iLoRA algorithm is indeed the most
effective choice in practice.

In the first ablation study, we experimented with different multiplicative scaling factors c applied
to the ratio r/m, aiming to determine whether scaling this ratio could further enhance LoRA’s
performance. The results, shown in the left subplot of Fig. 2, highlight the impact of various scaling
factors on the model’s performance. In the second ablation study, we varied the exponent c applied
to the ratio r/m to investigate the sensitivity of performance to the exponentiation of the ratio. The
outcomes of this experiment are displayed in the right subplot of Fig. 2.

The results from both ablation studies confirm that the ratio r/m is empirically optimal. In the
first study, performance peaks around c = 0.9 to c = 1.0, closely aligning with the ratio used in
iLoRA. Similarly, in the second study, the exponent c = 1 achieves the highest performance, further
validating that r/m is the most effective ratio for imbalanced regularization in LoRA. These findings
emphasize the significance of our theoretical analysis, demonstrating that the r/m ratio not only has
theoretical justification but also leads to superior empirical performance.

15

In the third ablation study, we investigated whether treating the imbalanced ratio coefficient ζ = r
m as

a trainable parameter leads to better performance. Our findings reveal that the final learned value ζT is
closely related to and slightly larger than the initial value ζ0. This is primarily due to the initialization
of B = 0, which causes an imbalance in the regularization term early in training, leading to an
increase in ζ at the beginning of the training progress. However, treating ζ as a trainable parameter
produced slightly worse results compared to iLoRA. On the WNLI task, the performance for trainable
ζ was 85.92, compared to 81.69 for LoRA and 87.32 for iLoRA. This result suggests that, while
treating ζ as a trainable parameter relaxes certain constraints, it does not improve performance overall
and is less effective than iLoRA.

D.3 Experimental Details and Additional Experiments of GPT2 Fine-Tuning

In this section, we provide a detailed description of the experimental settings and additional experi-
ments conducted for the fine-tuning of the GPT-2 model. First, in Appendix D.3.1, we present the
experimental details of GPT2 fine-tuning, outlining the methodologies, datasets, and hyperparameters
used to fine-tune GPT-2. Then, in Appendix D.3.2, we compare the performance of our proposed
method πLoRA with LoRA+. The results demonstrate that πLoRA consistently outperforms LoRA+
across various evaluation metrics, highlighting the superior effectiveness of our approach.

D.3.1 Experimental Details of GPT2 Fine-Tuning

In this section, we introduce the experimental settings for GPT-2. We strictly follow the same settings
from the original LoRA [Hu et al., 2022] and Preconditioned LoRA [Zhang and Pilanci, 2024]. We
use the medium-size GPT-2 model [Radford et al., 2019], with hyperparameters listed in Table 3.
The learning rates for iLoRA and πLoRA are individually tuned via grid search over the range
1 × 10−4, 2 × 10−4, . . . , 9 × 10−4, 1 × 10−3, while the settings for LoRA and Preconditioned
LoRA follow the default values from Zhang and Pilanci [2024]. We train for 5 epochs using a linear
learning rate schedule. It is worth noting that the AdamW hyperparameters β1 and β2 also follow the
default values from Zhang and Pilanci [2024].

Table 3: Hyperparameters for GPT-2 fine-tuning on E2E

Method iLoRA πLoRA

Training
Weight Decay 0.01 0.01

Dropout Probability 0.1 0.1
Batch Size 8 8
Epochs 5 5

Warmup Steps 500 500
LR Scheduler Linear Linear

Label Smoothing 0.1 0.1
Learning Rate (×10−4) 6 7

λ 10 1
AdamW β1 0.9 0.7
AdamW β2 0.999 0.8

LoRA α 32 32

Inference
Beam Size 10 10

Length Penalty 0.8 0.8
No Repeat N-gram Size 4 4

D.3.2 Additional Experiments of GPT2 Fine-Tuning for Lora+

In this section, we compare the performance of LoRA, LoRA+, and πLoRA on the E2E task using the
GPT-2 model. Table 4 presents the experimental results across five evaluation metrics. We observed
that πLoRA consistently outperforms both LoRA and LoRA+ across all metrics. While LoRA+
shows slight improvements over LoRA, πLoRA demonstrates the most significant gains, particularly
in BLEU and NIST, solidifying its effectiveness in fine-tuning GPT-2 for the E2E task.

16

Table 4: Performance comparison of GPT-2 fine-tuning on E2E task: LoRA, LoRA+, and πLoRA.

Method Rank E2E
BLEU NIST MET ROUGE-L CIDEr

LoRA 4 68.9 8.69 46.5 71.4 2.51
Lora + 4 70.3 8.84 46.7 71.9 2.54
πLoRA 4 70.8 8.89 46.8 72.1 2.54

D.4 Experimental Details and Additional Experiments of Mistral 7B Fine-Tuning

In this section, we provide a comprehensive overview of the experimental settings and additional
experiments conducted for the fine-tuning of the Mistral 7B model. First, in Appendix D.4.1, we
describe the experimental details of Mistral 7B fine-tuning, outlining the methodologies, datasets,
and hyperparameters used throughout the experiments. Next, in Appendix D.4.2, we compare the
performance of our method, πLoRA, against LoRA+, demonstrating that πLoRA outperforms LoRA+
across various tasks. We also include additional experiments of Mistral 7B fine-tuning for 4-bit
quantization in Appendix D.4.3, where we assess the effects of quantizing the model on performance
and efficiency. Finally, in Appendix D.4.4, we compare the outcomes of experiments where the
learning rate is not tuned (fixed learning rate) to those where the learning rate is tuned, demonstrating
the robustness of our method to the learning rate.

D.4.1 Experimental Details of Mistral 7B Fine-Tuning

In this section, we introduce the experimental settings for Mistral 7B. We follow the setting as
in Zhang and Pilanci [2024], where LoRA factors are injected into each linear layer with a rank of
r = 16. We trained for a total of 5 epochs with a batch size of 8. Apart from batch size, training
epochs, and optimizer-related settings, the learning rate scheduler, warmup steps, warmup ratios,
and maximum gradient norm remained at their default settings in the HuggingFace trainer class.
The weight decay value was set to 0.01. For the five smaller tasks, MRPC, CoLA, RTE, STS-B,
and WNLI, we used 1 * NVIDIA A100 GPU for training. For the other four larger tasks, we
used 4 * NVIDIA A100 GPUs for training. For all tasks, we tuned the learning rate through grid
search, specifically, for the six tasks (SST-2, MRPC, CoLA, RTE, STS-B, and WNLI), the range
was 1 × 10−5, 2 × 10−5, . . . , 9 × 10−5, 1 × 10−4, and for the other three tasks, the range was
1 × 10−6, 2 × 10−6, . . . , 9 × 10−6, 1 × 10−5. We also performed grid search tuning for the
regularization hyperparameter λ over the range 1 × 10−3, 1 × 10−2, . . . , 1 × 101, 1 × 102 and
scaled regularization hyperparameter λ over the range 1× 10−4, 1× 10−3, . . . , 1× 102, 1× 103.
In the experiments detailed in Appendix D.4.4, we verified that not tuning the learning rate or
regularization hyperparameters resulted in only a minor performance drop in our method, which does
not fundamentally affect the conclusions. The learning rate and regularization hyperparameters for
each task are shown in Table 5, and other hyperparameters are listed in Table 6.

Table 5: Learning rate and regularization hyperparameter for Mistral 7B fine-tuning on GLUE. Scaled
Reg is a hyperparameter introduced by Zhang and Pilanci [2024].

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI

iLoRA LR 4.00E-06 1.00E-04 5.00E-05 5.00E-05 5.00E-06 8.00E-06 7.00E-05 1.00E-04 5.00E-05
iLoRA λ 1 1 10 0.1 100 0.01 0.01 0.01 100

πLoRA LR 4.00E-06 6.00E-05 7.00E-05 8.00E-05 4.00E-06 8.00E-06 7.00E-05 8.00E-05 3.00E-05
πLoRA λ 0.01 0.001 0.01 10 100 10 10 1 100

πLoRA Scaled Reg 0.001 0.01 1000 0.01 0.0001 0.001 10 0.1 1

17

Table 6: Other Hyperparameters for Mistral 7B Fine-Tuning on GLUE.

Method iLoRA& πLoRA

Train batch size 8
Seed (default) 42

AdamW (β1, β2) (0.9, 0.999)
AdamW ϵ 1e−6

LR Scheduler linear
Num Epochs 5

Warmup steps & Warmup ratios 0
Weight decay 0.01

Max grad norm 1
LoRA rank 16

LoRA α 16
LoRA dropout 0.05

D.4.2 Additional Experiments of Mistral 7B Fine-Tuning for Lora+

In this section, we compare the performance of πLoRA and LoRA+ on the GLUE benchmark
tasks. Table 7 presents the experimental results. We find that πLoRA achieved the best overall
performance across all tasks, particularly excelling in MRPC and RTE with improvements of 1.96%
and 1.45% respectively. While LoRA+ shows a slight advantage on the STS-B task, πLoRA
demonstrates more consistent gains across different tasks. On average, πLoRA improves performance
by 1.90% compared to LoRA+, confirming its effectiveness in a variety of scenarios.

Table 7: Performance Comparison between πLoRA and LoRA+ on GLUE Benchmark.

Method Rank GLUE Avg.
SST-2 MRPC CoLA QNLI RTE STS-B WNLI

LoRA 16 96.79 88.48 71.05 94.42 90.61 90.42 81.69 87.64
LoRA+ 16 96.90 88.48 70.90 95.22 90.25 92.50 80.28 87.79
πLoRA 16 97.25 90.44 71.97 95.37 91.70 92.35 88.73 89.69

D.4.3 Additional Experiments of Mistral 7B Fine-Tuning for 4bit Quantization

In the main body of the paper, we present results without applying 4-bit quantization to Mistral 7B
while in Zhang and Pilanci [2024] quantization is applied. Here, we experimentally verified that
4-bit quantization had little effect on the experimental results and the proposed methods can still
outperform the baselines. In this section, we compare the impact of using 4-bit quantization versus
not using it on iLoRA in the GLUE benchmark tasks. Table 8 presents the experimental results. We
found that 4-bit quantization has minimal impact on model performance. For iLoRA, the 4-bit version
slightly outperforms the non-quantized version in most tasks, but the differences are marginal. This
indicates that 4-bit quantization can improve memory and computational efficiency while maintaining
comparable model performance.

Table 8: Comparison of 4-bit Quantization Impact on iLoRA on GLUE Benchmark.

Method 4bit Rank GLUE Avg.
MRPC CoLA RTE STS-B WNLI

LoRA Y 16 88.48 71.05 90.61 90.42 81.69 84.45
Preconditioned LoRA Y 16 89.46 71.30 91.34 91.10 83.10 85.26

iLoRA N 16 89.71 71.90 90.98 92.25 87.32 86.43
iLoRA Y 16 90.93 72.51 92.06 92.24 85.92 86.73

18

D.4.4 Additional Experiments of Mistral 7B Fine-Tuning for Fixed Learning Rate

In this section, we provide a comprehensive comparison of LoRA, iLoRA, and variations of iLoRA
with fixed learning rate and fixed regularization hyperparameter on the GLUE benchmark tasks using
the Mistral 7B model. Table 9 presents the results of experiments comparing LoRA, iLoRA, and
iLoRA with a fixed learning rate. For the five smaller tasks (WNLI, STS-B, RTE, MRPC, and CoLA),
the learning rate was fixed at 5e−5, while for the other four tasks, it was fixed at 1e−5. We found
that the performance loss of the fixed learning rate version of iLoRA is minimal and remains highly
competitive. Additionally, Table 10 highlights the performance comparison between LoRA, iLoRA,
and iLoRA with a fixed regularization hyperparameter (λ = 0.1) across five smaller tasks (WNLI,
STS-B, RTE, MRPC, and CoLA). Here, iLoRA consistently achieves the highest scores, while
the fixed regularization version also performs strongly. These results emphasize the flexibility and
effectiveness of iLoRA in various experimental settings, confirming its robustness in both learning
rate and regularization parameter configurations.

Table 9: Comparison of LoRA, iLoRA, and iLoRA with fixed learning rate on GLUE benchmark for
Mistral 7B.

Method Rank GLUE Avg.
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B WNLI

LoRA 16 89.86 96.79 88.48 71.05 94.42 91.24 90.61 90.42 81.69 88.28
iLoRA 16 91.59 97.13 89.71 71.90 95.20 91.43 90.98 92.25 87.32 89.72

iLoRA(Fixed LR) 16 91.17 97.02 89.71 71.90 94.86 91.37 89.89 91.84 87.32 89.45

Table 10: Comparison of LoRA, iLoRA, and iLoRA with fixed regularization Hyperparameter on
GLUE benchmark (five small tasks).

Method Rank GLUE Avg.
MRPC CoLA RTE STS-B WNLI

LoRA 16 88.48 71.05 90.61 90.42 81.69 84.45
iLoRA 16 89.71 71.90 90.98 92.25 87.32 86.43

iLoRA(Fixed λ) 16 88.97 71.90 90.61 92.04 85.92 85.89

D.5 Diffusion Model Fine-tuning

Diffusion models are now widely applied in various image generation tasks, and LoRA has also
been extensively used to fine-tune these models. In this section, we conduct fine-tuning experiments
on diffusion models to demonstrate the applicability of our methods (iLoRA and πLoRA) beyond
large language models. Specifically, we experiment with the Mix-of-Show model [Gu et al., 2023],
originally designed for multi-concept LoRA and proven to generate high-quality face images. To
better visualize the differences between various LoRA optimization methods, we follow the settings
from Zhang and Pilanci [2024] and disable embedding fine-tuning, focusing only on tuning the text
encoders and U-Nets where LoRA factors are injected. We used Chilloutmix2 as the pre-trained
model, and the rank of LoRA was set to 4. For sampling, we chose DMP-Solver [Lu et al., 2022]. We
utilize 14 images of Potter from the original project repository, replacing the character name in the
training images with “⟨Vpotter⟩”. For more details on the experimental setup, please refer to [Gu et al.,
2023]. Fig. 3 presents the generation results for the prompt “a ⟨Vpotter⟩ in front of eiffel tower” across
different learning rates. Our methods (iLoRA and πLoRA) produce images that more accurately
depict the prompt, and consistently perform well across different learning rates, demonstrating their
effectiveness in generating higher-quality images and their robustness to changes in learning rates.

Then, we conduct experiments to test the LoRA and iLoRA under different fusion coefficients. The
experimental setup is the same as Fig. 3, with learning rates chosen as (5e− 4, 5e− 4). Fig. 4 shows
the experimental results. The first row has a LoRA parameter fusion coefficient of 0.7, and the second

2https://civitai.com/models/6424/chilloutmix

19

https://civitai.com/models/6424/chilloutmix

row is 1. The first two columns are results generated by LoRA, and the last two columns are results
generated by iLoRA. It can be seen that iLoRA produces higher quality images, and in some images,
LoRA ignores the keyword “eiffel tower”.

Next, we tested the results of LoRA, iLoRA, and πLoRA on a new prompt: “a pencil sketch of
⟨Vpotter⟩”. We used the same experimental settings as in Fig. 3, only changing the prompt. The results
are shown in Fig. 5. It can be seen that iLoRA and πLoRA generate images that are significantly
better than those generated by LoRA.

LoRA iLoRA πLoRA
Learning Rate Image 1 Image 2 Image 1 Image 2 Image 1 Image 2

(5e-4, 5e-4)

(1e-4, 1e-4)

(5e-5, 5e-5)

Figure 3: Comparison of images generated with LoRA, iLoRA, and πLoRA across different learning
rates for the Mix-of-Show model. The three rows correspond to three different sets of learning rates
for (text encoders, U-Nets): (5e-4, 5e-4), (1e-4, 1e-4) and (5e-5, 5e-5). The first and second columns
show results from LoRA, the third and fourth columns show results from iLoRA, and the fifth and
sixth columns show results from πLoRA. This layout demonstrates the robustness of each method
under these learning rate settings.

LoRA iLoRA
Fusion

Coefficient
Image 1 Image 2 Image 1 Image 2

0.7

1

Figure 4: Comparison of images generated with LoRA and iLoRA across different fusion coefficient.
The two rows correspond to different fusion coefficients: 0.7 in the first row and 1 in the second row.
The first two columns show results from LoRA, and the last two columns show results from iLoRA.

20

LoRA iLoRA πLoRA
Learning Rates Image 1 Image 2 Image 1 Image 2 Image 1 Image 2

(5e-4, 5e-4)

(1e-5, 1e-4)

(5e-6, 5e-5)

Figure 5: Comparison of images generated with LoRA, iLoRA, and πLoRA across different learning
rates for the Mix-of-Show model. The three rows correspond to three different sets of learning rates
for (text encoders, U-Nets): (5e-4, 5e-4), (1e-5, 1e-4), and (5e-6, 5e-5). The first and second columns
show results from LoRA, the third and fourth columns show results from iLoRA, and the fifth and
sixth columns show results from πLoRA.

21

	Introduction
	Analysis of Dynamics and Imbalanced Relationship in LoRA
	Variance Preservation in Forward Propagation
	Limitations of Standard Gradient Descent
	Scaled Gradient Descent

	Imbalance-Regularized LoRA
	Experiments
	GPT-2
	Mistral 7B

	Conclusion
	Related work
	Proofs and Detailed Analysis
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3

	Full Version of The Algorithm
	Experimental Details and Additional Experiments
	Runtime Comparison
	Ablation Studies on Imbalanced Coefficients
	Experimental Details and Additional Experiments of GPT2 Fine-Tuning
	Experimental Details of GPT2 Fine-Tuning
	Additional Experiments of GPT2 Fine-Tuning for Lora+

	Experimental Details and Additional Experiments of Mistral 7B Fine-Tuning
	Experimental Details of Mistral 7B Fine-Tuning
	Additional Experiments of Mistral 7B Fine-Tuning for Lora+
	Additional Experiments of Mistral 7B Fine-Tuning for 4bit Quantization
	Additional Experiments of Mistral 7B Fine-Tuning for Fixed Learning Rate

	Diffusion Model Fine-tuning

