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Abstract

The power of digital platforms is at the center of major ongoing policy and regula-
tory efforts. To advance existing debates, we designed and executed an experiment
to measure the performative power of online search providers. Instantiated in
our setting, performative power quantifies the ability of a search engine to steer
web traffic by rearranging results. To operationalize this definition we developed
a browser extension that performs unassuming randomized experiments in the
background. These randomized experiments emulate updates to the search algo-
rithm and identify the causal effect of different content arrangements on clicks.
Analyzing tens of thousands of clicks, we discuss what our robust quantitative
findings say about the power of online search engines, using the Google Shopping
antitrust investigation as a case study. More broadly, we envision our work to serve
as a blueprint for how the recent definition of performative power can help integrate
quantitative insights from online experiments with future investigations into the
economic power of digital platforms.

1 Introduction

At the heart of one of Europe’s most prominent antitrust case is a seemingly mundane question:
How much can a search engine redirect traffic through content positioning? In 2017, the European
Commission alleged that Google favored its own comparison shopping service by steering clicks away
from search results towards Google’s own product comparison service. The technical centerpiece
of the case was an ad-hoc data analysis about the position and display biases of Google search
results. Google appealed the European Commission’s charges, pointing to, among other arguments,
methodological errors.1

The case is emblematic of a broader problem. Although urgently needed, there is currently no
accepted technical framework for answering basic questions about the economic power of digital
platforms. Lawyers, economists, and policy makers agree that traditional antitrust tools struggle with
multi-sided platforms [1, 2]. Against this backdrop, a recently developed concept from the machine
learning literature, called performative power [3], suggests a way to augment existing antitrust
enforcement tools and mitigate some of their limitations. Performative power measures how much
a platform can causally influence platform users through its algorithmic actions. By directly relating
power to a causal effect, it sidesteps the complexities underlying conventional market definitions
and offers a promising framework to integrate data and experimental methods with digital market
investigations. Although the definition of performative power enjoys appealing theoretical properties,
a proof of its practical applicability was still missing.

1Case C-48/22 P, Google and Alphabet v Commission (Google Shopping), ECLI:EU:C:2024:14.
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Figure 1: The ability to influence web traffic through content arrangement. Blue bars show average click
probability observed for generic search results in position 1 to 6 on Google search under different counterfactual
arrangements; default arrangement (left), swapping results 1 and 2 (middle), swapping results 1 and 3 (right).
We provide a detailed discussion in Section 5 where we also explore arrangement changes beyond reranking.

Our contributions. We present a first proof of concept showing how to use performative power as
an investigative tool in practice. The instantiation of performative power we consider is motivated by
the recent Google Shopping antitrust investigation ran by the European Commission against Alphabet
Inc. It concerns the ability of a search engine to impact web traffic through decisions of how to
arrange content.

Our core contribution is to design and implement an online experiment to establish a lower bound
on performative power for the two most widely used search engines, Google Search and Bing, by
providing quantitative insights into the causal effect of algorithmic updates on clicks. Our experiment
is based on a browser extension, called Powermeter, that emulates updates to the platform’s algorithm
by modifying how search results are displayed to users. The arrangement to which a user is exposed
is chosen at random every time they perform a search. We implement different counterfactual
arrangements to inspect the effect of re-ranking and favored positioning (e.g., Ads or Shopping boxes)
on clicks, both in isolation and jointly. We discuss several technical steps we implemented to take
care of the internal validity of our experimental design.

Using Powermeter we collected data of about 57,000 search queries from more than 80 different
subjects, over the period of 5 months. Our experiment is designed to measure the causal effects of
arrangement under natural interactions of users with the platform and the queries for any given user
follow the distribution of queries under their every-day use of online search. Figure 1 provides a
first glimpse into the observed effects. In summary, we find that consistently down-ranking the first
element by one position causes an average reduction in clicks of 42% for the respective element
on Google search. Down-ranking the same element by two positions yields a reduction of more
than 50%. For Bing we find an even larger effect of ranking, although with less tight confidence
intervals due to the small number of Bing queries performed by our participants. When combining
down-ranking with the addition of Ads or Shopping boxes, the effect of arrangement is even more
pronounced, showing a distortion in clicks for the first result of 66% averaged across queries where
such elements are naturally present on Google search. Inspecting different subsets of queries we find
that the effect of position is larger for queries with a high number of candidate search results. To the
best of our knowledge, we are the first to offer independent quantitative experimental insights into
display effects on Google search and Bing.

Finally, we outline how to formally relate our quantitative piece of evidence to questions about self-
preferencing relevant in the context of the Google Shopping case. Together, we hope our empirical
and theoretical results can serve as a first blueprint for what future antitrust investigations of digital
platforms’ market power based on performative power might look like.

2 Preliminaries and related work

The market power of digital platforms is the subject of a robust debate in policy, legal, and technical
circles. See, for example, Newman [4], Crémer et al. [2], Stigler Committee [1], Furman [5], Cabral
et al. [6]. Conventional antitrust enforcement tools have been put into question [7] and new concepts
of market power have been proposed to deal with the complexities of digital markets [8]. These
account for the multi-sided nature of the markets as well as the role of behavioral weaknesses
of consumers—albeit with limited success. We refer to a comprehensive literature survey about
behavioral aspects in online market by the UK Competition and Market Authority [9].
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Performative power. The concept of performative power is inspired by recent developments in
performative prediction [10] from the computer science literature. We refer the reader to Hardt and
Mendler-Dünner [11] for a recent survey on the topic. A robust insight from performative prediction
is that beyond learning patterns in data, the ability to steer the data-generating distribution similarly
factors into a predictive system’s performance. Performative power [3] recognizes that the ability
to steer depends on power—in terms of reach and scale—of the platform making the predictions.
Thus, the core idea behind the new notion of power is to measure the degree to which predictions are
performative to obtain an estimate of the power of a platform. Formally, performative power relates the
ability of a platform to steer the population of participants, to the causal effect of algorithmic actions.
Definition 1 (Performative power [3]). Given the algorithmic action a0 and a set of alternative
conducts A, a population Q and an outcome variable z. Performative power is defined as

PP := sup
a∈A

1

|Q|
∑
q∈Q

E ∥za0
(q)− za(q)∥1 , (1)

where za0
(q) denotes the outcome for unit q ∈ Q under a0 and za(q) denotes the counterfactual

outcome, would the platform implement a ∈ A instead. Expectations are taken with respect to the
randomness in the potential outcome.

Performative power is a measure of influence that predictive systems can have over their participants.
It offers a family of definitions that can be instantiated flexibly in a given context. The specific meaning
is determined by each instantiation. Performative power can be applied forward-looking to understand
whether a platform has the ability to plausibly cause a specific change, as well as in retrospect to
measure the effect of an observed conduct. In this work we use performative power to quantify the
effect of an algorithmic update a∗ central to a recent antitrust investigation against Alphabet Inc. ran
by the European Commission.2 In practical terms, we instantiate A with a set of conservative and
implementable counterfactuals such as to provide a plausible lower bound on the effect of a∗.

The Google Shopping case. In 2017 the European Commission imposed a fine of 2.42 billion EUR
on Alphabet Inc. for “abusing its dominance as a search engine by favouring its comparison shopping
service.”.2 The General Court dismissed Google’s action against the decision in 2021 and the Court
of Justice of the European Union upheld the Court’s ruling in 2024. It represents a landmark in
EU competition law. The conduct under investigation concerned a specific update to the Google
search algorithm. The update a) demoted rival comparison shopping services among the general
search results, often by multiple positions, and, at the same time, b) systematically gave prominent
placement to Google’s own comparison shopping service by triggering visually appealing boxes for
shopping queries, reserved for Google’s own service. The goal of this work is to provide quantitative
insights into the effect of this conduct on web traffic by means of online experiments.

Display effects. Consumer choices on digital platforms are critically mediated by how plat-
forms present content to users. Choice architecture designs [12], presentation bias [13], position
bias [14, 15], and trust bias [16] are known to play an important role. There is a rich literature in
machine learning aiming to mechanistically understand such biases for debiasing click data [17–24],
building better ranking models and auctions [25, 26], and interpreting user feedback in recommender
systems [14], to name a few. Unfortunately behavioral aspects often resist a clean mathematical speci-
fication. By focusing on measuring a directly observable statistic, performative power circumvents the
challenges of modeling behavioral biases for monitoring, auditing and measuring digital economies.

Measuring the effect of algorithmic updates. Several works have been interested in measuring the
effects of potential arrangement changes of online platforms. For example, Ursu [27] rely on public
data collected under randomized result ordering to investigate the role of positioning on Expedia.
Narayanan and Kalyanam [28] investigated position bias in search advertising using a regression
discontinuity design. Also focusing on online advertising, Agarwal et al. [29] investigate position
bias by experimentally randomizing bids to indirectly influence the ranking. Similarly in information
retrieval researchers have studied active interventions in the form of order randomization [30], or
relied on harvesting click data collected under multiple historical rankings [31]. In our work we
collect experimental data ourselves. We use a browser extension to emulate the algorithmic updates
of interest without requiring control over the platform’s algorithm.

2European Commission, AT.39740, Google Search (Shopping), 27.06.2017.
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Browser extensions have previously been used as a tool for automatically collecting data to audit
systems. Robertson et al. [32] audit Google search for polarization on politically-related searches.
Gleason et al. [33] collect data via an extension to directly investigate the effect of search result
components on clicks. Also the ongoing National Internet Observatory [34] relies on a browser
extension to collect web traffic data. While prior works focus on collecting observational data for
monitoring systems, we use the extension to conduct online experiments.

3 Performativity in online search

We start by formalizing the causal question under investigation. We model an online search platform
as a distribution over events. An event is a triplet of a user query Q, content arrangement A and
click outcome C. A user query corresponds to a person visiting the search page and entering a
search query in the search bar. The query is processed by the platform and results in an arrangement
of content on the website. The mapping is typically defined by a proprietary pipeline involving
a ranking algorithm that determines the order in which search results are ranked and displayed,
including the positioning of components such as Ads or featured elements. Then, mediated by the
arrangement, the user query leads to a click outcome C. The categorical random variable C indexes
the element clicked over by the user. It is a function of the user query and the arrangement.

3.1 From the causal effect of arrangement to performative power

Assume the platforms were to change their algorithm that determines the content arrangement. We
seek to answer the following causal questions: How much does a change to the arrangement impact
clicks of a content element on the search page?

If clicks were solely determined by stable preferences, then we would see no effect. Performativity is
the reason why we see an effect. Display baises, the limited ability to process large amounts of data,
and trust in the platform can be a source for performativity. The more performative the arrangement
is, the stronger the effect. We use a0 to refer to the reference arrangement of results on Google search.
For a given user query q we define the potential outcome of a click event under the arrangement
a as Cq(a). The variable C takes on categorical values, indexing the elements on the page. Let
{c1, ...cK} denote the top K general search results indexed in the order they appear under a0.
Definition 2 (Performativity gap). Given a counterfactual arrangement a′, we define the performativ-
ity gap at position i with respect to a population of queries Q as

δi(a′) = E
[
1{Cq(a

′) = ci}
]
− E

[
1{Cq(a0) = ci}

]
,

where expectations are taken over queries q ∈ Q and the randomness in the potential outcome.

The performativity gap quantifies how much the click through rate of search item ci changed, in
expectation across queries Q, had the platform deployed arrangement a′ instead of arrangement
a0. The following result generalizes Theorem 8 in Hardt et al. [3]:
Theorem 1 (Lowerbound on performative power). Let PP be the performative power of a search
platform defined with respect to a set of arrangements A, a population of search queries Q performed
on the platform, and the outcome variable za(q) = 1{Cq(a) = c1}. Then, performative power is
lower bounded by the performativity gap as PP ≥ supa∈A δ1(a).

Note that the instantiation of performative power in Theorem 1 to which we relate the performativity
gap measures a platform’s ability to steer outgoing traffic from its online search website. We will
discuss how to relate this notion to a broader discussion of the power of online search in vertically
integrated markets in Section 6.

Algorithmic distortion. Often it can be useful to express the performativity gap relative to the base
click rate. Thus, we define the algorithmic distortion factor as the smallest factor β > 0 such that

δi(a′) ≤ β E
[
1{Cq(a0) = ci}

]
. (2)

This quantity serves as a way to denote the fraction of clicks taken away from content item ci as a
result of the update a0 → a′. Also, as we will see, it helps to express performative power relative to a
base click through rate which offers a more interpretable quantity for investigators.
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3.2 Estimating the performativity gap using an RCT

To estimate the performativity gap for the different arrangements, we rely on a randomized controlled
trial (RCT), the gold standard methodology to estimate causal effects [35–37]. As we can not observe
a search query simultaneously exposed to different arrangements, the idea of an RCT is to randomly
select, for each query q ∈ Q, the arrangement they are exposed to. We write Qa ⊂ Q for the subset
of queries that are exposed to treatment A = a. We also refer to these subsets as treatment groups.
Comparing the click events across groups allows us to obtain an estimate of the performativity gap as

δ̄i(a′) = CTRi(a′)− CTRi(a0) with CTRi(a) =
1

|Qa|
∑
q∈Qa

1{Cq(a) = ci}.

For δ̄i(a′) to provide an unbiased estimate of δi(a′), we rely on an application of the stable unit
treatment value assumption (SUTVA) [38], referred to as isolation assumption by Bottou et al. [39]:
Assumption 1 (Independence across queries). User behavior in response to query q is not affected
by the treatment status of other queries, i.e., for all q ∈ Q we have Cq(Aq) ⊥⊥ Aq′ ∀q′ ̸= q where
Aq denotes the random variable assigning query q to a treatment group.

This assumption justifies why we can interleave the measurement of different interventions. It requires
that the intervention performed on one query does not change individuals’ browsing behavior in
response to subsequent queries. Crucially, this can only be satisfied, if individual interventions under
investigation do not impede user experience in a lasting manner. In the following section we discuss
steps we take in our experimental design towards justifying Assumption 1.

More broadly, the key advantage of using an experimental approach to measure the performativity
gap is that, while the mechanism mapping user queries to clicks can be arbitrarily complex, this
complexity does not affect the experiment. Aspects such as users’ preference for clicking links on
the left side of the screen [40], the effect of visually appealing elements [41], users’ trust in the
platform [16], or the relevance gap between search results will naturally enter our measurement.

4 Powermeter: Experiment in the wild

We designed an online experiment to measure the performative power of two popular online search
platforms operated by Google and Bing. The experiment is built around a Chrome browser extension
that modifies the arrangement of search result pages and records user click statistics in a privacy-
preserving fashion. The extension allows us to observe an organic set of user queries and click
outcomes under different arrangements without having control over the platforms’ algorithm.

4.1 Browser extension

Browser extensions can add functionalities to the web-browser and change how a website is displayed
to the user. Powermeter makes use of these functionalities to emulate algorithmic updates by
implementing different counterfactual arrangements on Google search and Bing search. We emphasize
that Powermeter only hides or reorders, but never modifies or adds any content on the search page.

Technical details. Once activated, the extension triggers the experiment whenever the user enters a
search query on either Google search or Bing search. This can be identified by monitoring the url
string of the current tab. Before search results are loaded the extension immediately hides the content
of the website, inspects the html document, randomly assigns the user to one of the experimental
groups and then implements the respective changes to the website before making the page visible.
The implementation of the counterfactuals is done by identifying the relevant items to hide or swap by
their html class names or ids. We also add custom tags and event listeners to the identified elements
that we can fall back on at a later stage. The entire setup of the experiment usually takes around 40
milliseconds. This delay is far below what was found to be noticeable to users [42, 43]. Hiding the
html body of the website with the first possible Chrome event is crucial to avoid glitches in case of
bad internet connection and make sure the control arrangement is not revealed to the participant. To
ensure internal validity of our experiment, we also have to ensure a participant is never reassigned to
a new experimental group when reloading a page, navigating between tabs or repeatedly entering
the same search query. This is done by storing a hash of user ID and search query together with the
assigned experimental group in the browser cache.
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Figure 2: Illustration of different elements on the Google search website.

Table 1: Counterfactual content arrangements implemented by Powermeter as part of the RCT.

Arrangement Description
a0 control Search results are displayed without any modification.
a1 swap 1-2 The position of the first and the second generic search result are swapped.
a2 swap 1-3 The position of the first and the third generic search result are swapped.
a3 swap 2-3 The position of the second and the third generic search result are swapped.
a4 hide Ads/Box Top Ads and Shopping boxes are hidden.
a5 hide + swap Combines the latter modification (a4) with swap 1-2 (a1).
a6 hide Box The shopping boxes are hidden.

Backend and data collection. Every participant is assigned a unique random number that serves
as anonymous user ID upon installation of the extension. This user ID persists throughout the
experiment. Every time a click event on an element on the search page is registered, the click data
is aggregated into a json object and sent to a database server hosted locally at out institution via a
post request using the encrypted https protocol. This concerns information about the index of the
clicked search result, the click element type, the page index, and the experimental group. In addition,
statistics about the website such as the number of search results, the presence of ads and boxes, the
number of candidate results, and the position of specialized search results are extracted from the
website are recorded. The database server is built using the Microsoft .Net core framework and
deployed within a docker container. The database access is rate limited and the Get endpoint of the
database is key protected. We use a SQlite database that is mapped to persistent memory.

Privacy considerations. The information that is stored with every click does not contain any
personally identifiable information. While we record the position of the clicked element on the search
page, we never store search queries or any information about the websites visited by the user. This
is an intentional choice to preserve user privacy, and to demonstrate that valuable insights can be
gathered without privacy invasive data collection. The experiment went through an internal approval
procedure and the privacy policy can be found on our website.3

4.2 Experimental groups

We implement six different counterfactual arrangements, summarized in Table 1, each defining a
treatment group. We refer to Figure 2 for the terminology used to refer to individual elements on the
general search page. It equivalently applies to both, Google search and Bing. Arrangements a1 − a6
are designed to emulate conservative variants of the conduct a∗ of interest, to inform a plausible
lower bound on performative power. The first three arrangements a1–a3 concern the reordering
of organic search results, leaving the other elements on the website untouched. The arrangements

3The project website can be found at: https://powermeter.is.tue.mpg.de/
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a4 and a6 perform modifications not directly concerning organic search results: Arrangement a6
hides a specific element, called the Shopping box, appearing either in the right side panel or on
top of the search results page. Arrangement a4 hides the box together with all the Ads. Finally,
Arrangement a5 combines the latter change with a change in search result order. For Bing we only
implemented the counterfactual a1 to ensure statistical power despite data scarcity. A practical reason
not to implement larger modifications is also users’ sensitivity to the resulting deterioration of quality
towards ensuring Assumption 1. The Bing experiment of the European Commission’s investigation
had to be discontinued after one week for that exact reason.4 We made sure to avoid a similar failure
point. Based on user feedback collected during an initial test round there was no indication that the
modifications were even noticeable to users.

4.3 Onboarding

Participants were provided the link to the project website as an entry point. The website contains
information about the experiment, the purpose of the study, an onboarding video, as well as the
privacy policy of the extension. The extension itself is distributed through the official Chrome
webstore and there is a button directly navigating the user to the item in the store. We did not list the
extension publicly to ensure participants are informed about the purpose of the study, and protect the
integrity of our data. The installation follows the standard procedure of adding a browser extension
to Chrome. The user has to give consent to access Google and Bing websites, as well as to use
the storage API. The extension remains active until participants remove it from their web-browser,
or until the experiment is stopped. The study participants are trusted individuals of different age
groups and backgrounds, recruited by reaching out personally or via email. We provide demographic
statistics over our pool of participants in Figure 9 in the appendix.

Data preprocessing. For each participant we ignored the clicks collected during the first four days
after onboarding, as suggested by Keusch et al. [44] in order to avoid potential confounding due to
participation awareness. We also removed clicks where the search elements could not be identified
reliably for implementing the RCT to avoid selection bias towards the control group.

5 Empirical results

Using our Powermeter browser extension we collected click data from 85 participants over the course
of 5 months, from September 2023 until January 2024. This resulted in 56, 971 click events, and a
total of 45, 625 clicks after preprocessing. Out of the clicks 98.9% were registered on Google, and
1.1% on Bing. Figure 8 in the appendix visualizes some aggregate statistics over the clicks collected.
We will consider several subsets of these events for which we measure the performativity gap and
algorithmic distortion. In the following we discuss the main insights from the collected data. For all
plots, we provide bootstrap confidence bounds over 200 resamples.

5.1 Reordering search results

We first inspect the three counterfactual arrangements a1, a2, a3 concerning reranking. Recall that ci
indexes search results in the order in which they appears under a0. In Figure 3 we visualize the event
probabilities C = ci for each search result i = 1, 2, ..., 6 under the control group (blue bars) and
compare it to the respective probabilities under the three counterfactuals (orange bars). The figures
on the left show the results across Google search queries. Here the counterfactuals correspond to
swapping the position of the first two results (left), the first and the third (middle) and the second
and the third (right). The right figure shows the results evaluated on Bing search queries when the
first two results are swapped. The lower figure visualizes the corresponding performativity gap δi(a),
corresponding to the change in clicks to item i caused by the respective arrangement change.

We observe a consistently large effect of arrangement on clicks. Being down ranked by one position
on Google search decreases average click through rate of c1 from 43% to 24%, resulting in δ1(a1) =
−0.19 and an algorithmic distortion of β = 0.44. Being down-ranked by 2 positions results in
δ1(a2) = −0.27 and an average loss of more than 50% of traffic. Note that a similar effect size has
been reported in the case decision for the UK market for a two position shift [45, para 460], indicating

4See Case T-612/17, supra 2, para 399
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Figure 3: Click through rate and performativity gap for general search results c1 to c6 under the counterfactual
arrangements a1, a2, a3 for Google and the counterfactual arrangement a1 for Bing, compared to the control
arrangement a0 (in blue).

that the estimate is robust across different user populations. Finally, by down-ranking the second
content element by one position we still observe a significant traffic reduction, corresponding to an
algorithmic distortion of β = 0.39.

An interesting observation is also that for every counterfactual arrangement, the element shown first
ends up getting most clicks on average. Implying that all the rankings are close to performatively
stable [10] with respect to the non-personalized reranking strategies considered. However, there are
several indications of Google’s ranking a0 reflecting relevance of search results better then the other
arrangements. Namely, c1 gets more clicks when displayed first, compared to other results displayed
in the same position (c2 corresponds to first result under a2 or and c3 to the first result under a3). A
second indicator is that c2 benefits from arrangement a3; under the hypothesis that users consider
search results in order this indicates that content item c3 absorbs less clicks than c1.

For Bing the position effect seems to be even more pronounced, although confidence intervals are
significantly larger in this case. We conjecture that this could be due to the average number of
specialized search results and Ads present on the search page being larger on Bing. This results in a
larger spacial separation of search results and potentially larger display effects. Statistics about the
type of elements present on the the search pages are reported in Figure 8 in the Appendix.

5.2 Indirect effect of visually appealing elements

Next, we consider the counterfactuals a4 and a6 that leave generic search results untouched and
hide certain elements on the website. We first inspect the number of clicks these elements absorb if
present on the page. We focus on Google search. In Figure 4 we compare the fraction of clicks going
to generic search results, Ads, and Boxes for a0, a4, a6. We plot the statistics across the aggregate
queries (left panel), the subset of queries where Ads are present on the page under a0 (middle panel)
and the subset of queries where the box is present on the page under a0 (right panel). We find the
addition of boxes absorbs 22.4% of the clicks on average across queries where it is present under a0
and these clicks are mostly taken away form the generic search results. Similarly, Ads absorb close to
30% of the clicks on average for queries where they are present. However, considering the overall
number of clicks the effect is smaller since a large fraction of queries contains neither Ads nor Boxes.

Combined conduct. We now consider the combined conduct of adding the box and down-ranking
an element. We constrain our focus on queries where the Shopping box is present under a0, either in
the center column or in the right sidebar. These are 3.2% of all the events. We show the corresponding
click probabilities for the three first search results in Figure 5. In both figures the blue bars correspond
to the control group a0, and the red bars correspond to a1. For these groups boxes are present on the
page. In the left figure we investigate the effect of hiding boxes only and the orange bars correspond
to arrangement a4. In the right figure we investigate the effect of also hiding Ads, here the orange
bars correspond to a6. We find that when adding Boxes, all three content items loose a significant
fraction of clicks, whereas Ads mostly take away from c1. In the right figure we additionally show a5
using the hatched bars (i.e., down-ranking the first element by one position if box is hidden). For c1
the combined effect of adding Ads and Boxes on the click through rate is almost as large as the effect
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Ads, boxes), visualized for three different subsets of Google queries.
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are evaluated for the subset of queries for which box is naturally present. The hashed bar shows the click
probability under a5 when top content is hidden and the first two elements are swapped. The right table reports
the empirical measure of algorithmic distortion for different conducts, extracted form the results in the left figure.

of down ranking the same item by one position. What we can see consistently is that combining the
conduct of adding visually appealing elements on top of the page, and down-ranking a content item,
has a combined effect that is larger than the effect of the two individual modifications alone. For
element c1 the measured distortion is reported in the table. The combined effect leads to a reduction
of 25% in clicks and an algorithmic distortion of 66% when considering the effect of Ads/Boxes,
and 53% when only considering Boxes (comparing orange and red bar). We believe this to be the
first time that quantitative insights into this combined conduct are made public.

5.3 Factors that impact performative power

We perform additional investigations into what factors have a reinforcing effect on the performativity
of ranking. To this end, we inspect different subsets of Google queries and measure the performativity
gap as well as algorithmic distortion for c1 under the counterfactual a1. First, we split the data across
two different axes depending on whether Ads or boxes are present, and whether Specialized Search
results (SSR) are present in between the first two generic search results. The respective comparisons
are visualized in the left and middle panel of Figure 6. We observe that the performativity gap in the
presence of Ads and boxes is smaller, and about the same whether special search results are present
in between search results. However, if we plot distortion we get a different picture, since the base
click probability of content item c1 across different splits is different for the three cases. We find that
while Ads and Boxes have little effect on distortion, the presence of a specialized search result in
between the swapped results tends to increase the effect of down-ranking c1.

For the second investigation we group the queries by the number of candidate search results available
on Google. This number was extracted from the website where it appeared as a string on top of the
page in the form ‘About 323’000’000 results (0.65 second)’. The right panel of Figure 6
shows algorithmic distortion for each percentile of the data. We see a clear trend that the performativity
gap increases with the number of candidate results. We suspect this to be connected to the smaller
relevance gap across results for queries with more potential results, leading to a higher influence of
the arrangement on clicks. However, note that findings in this subsection are no causal claims.
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Figure 6: Performativity gap and algorithmic distortion for content item c1 under the counterfactual arrangement
a1 measure across different subsets of Google search queries.

6 Discussion

We presented a flexible experimental design, based on a browser extension, to investigate the effect of
search algorithms on user clicks. The browser extension performs interventions at the level of display
to emulate algorithmic updates, without access to the platform algorithm. We implement different
counterfactuals relevant for the Google Shopping antitrust investigation, and provide quantitative in-
sights into the causal effect on clicks. Theorem 1 formally relates our quantitative findings to an instan-
tiation of performative power, measuring the platform’s ability to steer outgoing traffic from search.

In a final step, we describe how our findings could fit with a broader anti-trust investigation potentially
concerning effects spanning different markets. Take the Google Shopping case as an example. It is
concerned with the ability of Google search to distort incoming traffic to a business operating in the
market of comparison shopping services by changing where it appears on Google search relative
to its competitors. Establishing the causal link between arrangements on search and their effect on
incoming traffic to a third party website composes into two steps: a) establish Google’s ability to
steer outgoing traffic, b) quantify how much of the incoming traffic is mediated by Google search.
The first step is a notion of power that experiments like ours operationalize, the second is a number
that can readily be obtained from web traffic data. The overall performative power will be the product
of the two factors. For putting this together, let’s work though the following thought experiment:

Suppose, 80% of the referrals to the competitor’s website come from Google
Search.5 Further, assume that 70% of the referrals from Google happen while
the service is ranked among the top two generic search results. Our estimates
suggest that distortion of traffic at the first position can be as large as 66% for
small arrangement changes. Assuming for the second position the effect is 20%
smaller, giving a conservative average effect size of β = 0.8 · 0.66. Multiplying the
effect size by the fraction of incoming clicks it concerns, we get 0.8 · 0.7 · β ≈ 30%.
This is the fraction of traffic to the site Google can redirect.

Turning this number into a conservative lower bound on performative power, it offers an interpretable
measure of power for an investigator to judge whether the algorithmic lever of self-preferencing
through arrangement changes should be a concern for competition in the down-stream market or not.
We can use the same logic to compare search engines, and assess the effectiveness of remedies.

More broadly, we hope our work can serve as a blue print for how performative power can be used to
integrate experiments with future digital market investigations, and how tools from computer science,
causality, and performative prediction can inform ongoing legal debates related to the power of digital
platforms. Our work is situated within a growing scholarship [c.f., 46–48] that takes advantage of
the accessibility of digital markets for monitoring and regulating digital platforms. Beyond data, we
demonstrate how experimental methods can offer an additional tool for power assessments.

From the perspective of computer science our work offers measurements of performativity in the
context of online search, contributing quantitative and empirical support to the study of performativity
on digital platforms. As its name suggests a search engine is performative, it acts as an engine
steering consumption through its ranking algorithm, rather than a camera merely picturing candidate
results—we borrow this analogy from MacKenzie [49].

5In 2022 up to 82% of incoming traffic to comparison shopping services in the European Economic Area
was mediated by Google search, as reported in the Google Shopping case decision (Section 7.2.4.1, Table 24).
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A Limitations and Broader Impact

We develop a flexible methodology, to provide insights into the power of digital platforms. We hope
our framework can support future digital market investigations, complement and address some of the
limitations of current antitrust tools. This could help make firms accountable for steering behavior
on digital platforms, and support cases of anti-trust, consumer protection and abuse of dominance
in digital markets. Compared to traditional tools, our approach offers a more straights forward way
to integrate experimental insights with regulatory questions and requires fewer assumptions on the
market dynamics. Furthermore, by providing a quantitative measurement, the methodology also
allows to compare platforms and assess the effectiveness of potential remedies. That being said,
instantiating the definition in the right way is still at the discretion of the investigator and requires
substantial domain knowledge. Further, fitting the approach within existing legal frameworks is an
open question, we hope to further make this concrete in future work.

On a technical side, our design ensures that for any given users, the observed clicks follow a natural
distribution. However, our participants form a convenience sample of online search users. Depending
on the target of the investigation this might not be sufficient to argue for external validity of the
quantitative insights. We provide statistics about the users to support such a judgement in Figure 9.
Further, we propose to link this data with collected clicks which can potentially help to adjust
estimates using propensity score reweighting Stuart et al. [50]. More rigorously arguing about the
external validity of our results in specific contexts is left for future work. However, we expect the
qualitative take-aways of our work to generalize beyond our study, and hope they can inform future
modeling and problem statements around performativity in online search.

Lastly, we want to reiterate that our results for Bing should be taken with caution. While we designed
our experiment to take most out of the available data, it is still a small sample of ∼ 600 search queries.
Nevertheless, we decided to share the results with the reader.

B Additional technical results

B.1 Causal model

To support the arguments about composability of performative power in the discussion, consider
the simplified diagram of how a user navigates to a website illustrated in Figure 7. The random
variable U denotes a user request and T indicates which website is being visited in response. The user
either navigates to the website via Google search (gray box), or they navigate to the website on some
alternative way. This can be by entering the url directly, or using a different search service. Naturally,
the arrangement A only impacts the outcome T if the user uses Google search, otherwise A does not
have any influence on the outcome. For a search query, the user query leads to an arrangement of
content shown on the website, and the arrangement mediates the click.

Google Search

U

User Request

C

Click

Q

Query
A

Arrangement

T

Traffic

Figure 7: Causal graph of online search users. A web request leads to the visit of a website, partially mediated
by Google search.
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B.2 Proof of Theorem 1

We instantiate performative power with respect to a set of action A, a population of search queries Q,
and the outcome variable za(q) = 1[Cq(a) = ci]. Since the outcome is a scalar the L1 norm reduces
to an absolute value and we get

PP = sup
a∈A

1

|Q|
∑
q∈Q

E |za0
(q)− za(q)| (3)

Using the definition of the performativity gap and the definition of the L1 norm the proof is a direct
consequence of

PP = sup
a∈A

1

|Q|
∑
q∈Q

E |1[Cq(a0) = ci]− 1[Cq(a) = ci]| (4)

≥ sup
a∈A

1

|Q|
∑
q∈Q

|Pr[Cq(a0) = ci]− Pr[Cq(a) = ci]| (5)

≥ sup
a∈A

∣∣∣ 1

|Q|
∑
q∈Q

Pr[Cq(a0) = ci]−
1

|Q|
∑
q∈Q

Pr[Cq(a) = ci]
∣∣∣ (6)

= sup
a∈A

δi(a) (7)

where the performativity gap is defined with respect to the set of queries Q. In words, Theorem 1
formalizes the idea that the average effect of an arrangement change on an individual query q ∈ Q
can be bounded by the average aggregate statistics across queries.

C Additional details on the study

C.1 Aggregate click statistics

In Figure 8 we show aggregate statistics over the clicks collected. In Figure 9 we provide aggregate
statistics over the user base. The latter information was collected through the onboarding form.

Figure 8: Aggregate statistics over clicks and search result pages collected during our experiment. The blue bars
show the statistics for Google and the orange bars show the statistics for Bing. Numbers are aggregated based on
original search pages, before any modifications are performed.

Figure 9: Aggregate user statistics collected from the 85 participants with the onboarding form. Age distirbution
(left) and language in which they consume online search (right). That’s all the data we have about the demo-
graphics of our participants.
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C.2 Project website

The project website provides the entry point to the experiment. Users where provided with details
about the experiment, instructions for how to participate, and information about data usage. See
Figure 10 for a screenshot.

Figure 10: Project website. URL and institution names are removed for the sake of anonymity.

C.3 Onboarding form

Upon installation of the extension the user is navigated to the onboarding form, as illustrated in
Figure 11. Providing the information is not mandatory and answers are binned to only provide coarse
grained information and no personally identifiable information. The main purpose of the information
serves debugging different languages and website versions.

Figure 11: Onboarding form.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not report results on model training
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars in all figures, using bootstrapped sampling, as described.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Experimental results concern data evaluation, no compute-intensive model
training of inference is performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To clarify the question on privacy. The project is purposefully designed not to
collect personal data. The privacy policy of our extension went through internal legal review.
It is linked on our website.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section A for a broader impact statement.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release and model or dataset.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide a screenshot of the website that provides the entry point to the
experiment. It contains information about the experiment and participation instructions. In
addition, the extension policy describes the experiment in full detail, see project website.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB approval was waved for this type of study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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