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Abstract

This paper’s primary objective is to develop a robust generalist perception model
capable of addressing multiple tasks under constraints of computational resources
and limited training data. We leverage text-to-image diffusion models pre-trained
on billions of images and successfully introduce our DICEPTION, a visual gen-
eralist model. Exhaustive evaluations demonstrate that DICEPTION effectively
tackles diverse perception tasks, even achieving performance comparable to SOTA
single-task specialist models. Specifically, we achieve results on par with SAM-
vit-h using only 0.06% of their data (e.g., 600K vs. 1B pixel-level annotated
images). We designed comprehensive experiments on architectures and input
paradigms, demonstrating that the key to successfully re-purposing a single diffu-
sion model for multiple perception tasks lies in maximizing the preservation of the
pre-trained model’s prior knowledge. Consequently, DICEPTION can be trained
with substantially lower computational costs than conventional models requiring
training from scratch. Furthermore, adapting DICEPTION to novel tasks is highly
efficient, necessitating fine-tuning on as few as 50 images and approximately 1%
of its parameters. Finally, we demonstrate that a subtle application of classifier-free
guidance can improve the model’s performance on depth and normal estimation.
We also show that pixel-aligned training, as is characteristic of perception tasks,
significantly enhances the model’s ability to preserve fine details. DICEPTION
offers valuable insights and presents a promising direction for the development of
advanced diffusion-based visual generalist models.

1 Introduction

Foundation models [51, 90, 125, 126, 123, 11, 7, 86, 78, 94, 6, 40], typically requiring extensive
training on billions of data samples, play a pivotal role in their respective domains. In natural
language processing (NLP), current foundation models [9, 105, 106, 27] have already demonstrated
the potential to serve as versatile solutions, solving diverse fundamental tasks and with minimal
fine-tuning needed for new tasks. This success can be attributed to the relatively small representa-
tional differences among various language tasks. However, in the domain of computer vision, task
representations can differ substantially, and up to date, we still lack an effective approach to unify
these distinct tasks. Consequently, existing vision foundation models usually excel at one single
specific task, such as image segmentation [51, 90] or monocular depth estimation [125, 126, 123],
because they are trained on data tailored exclusively to that task. Owing to the pronounced disparity
in visual representations across tasks, coupled with the single-task specialization that characterizes
current vision foundation models, fine-tuning these models for new tasks remains a formidable
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Figure 1: With one single model, DICEPTION solves 6 perception tasks without relying on any task-
specific modules. The red dots in the figure indicate the input points used for interactive segmentation.
DICEPTION can quickly adapt to new tasks by fine-tuning less than 1% of its parameters on as few
as 50 images. For additional visualizations, please refer to Figures S8, S11, S10, S15, S16, S17,
S18, S19, S20, S21, S22 in the Appendix. We select Person as the instance segmentation example
for consistent visualization. Our method is limited to only human instances.

challenge. Despite efforts [12, 78, 40, 91] to learn universal visual representations, these models still
falls noticeably short compared to specialized models in specific tasks.

Recent studies [115, 71, 70, 75, 2, 119] on visual generalist models are predominantly trained from
scratch, often requiring substantial computational resources and large datasets to achieve good
results. Unfortunately, the price of collecting a sufficiently large and high-quality multi-task dataset
is substantial. Here, inspired by the success of diffusion models, we propose the hypothesis that
leveraging their powerful priors can help mitigate the significant computational and data overhead
for training powerful generalist models. While some existing works [49, 120, 39, 129, 96] have
demonstrated that this is feasible in single-task scenarios, the potential of diffusion model priors in
multi-task settings remains largely under-explored.

In this paper, we successfully leverage the priors of diffusion models to achieve results on par with the
state-of-the-art models on various tasks with only minimal training data. We name our powerful visual
generalist model DICEPTION. For each task, we require substantially less data than specialized
foundation models. For instance, compared to SAM segmentation trained on 1 billion pixel-level
annotated samples, DICEPTION achieves comparable performance using a significantly smaller
dataset of 600K samples, without any training data cherry-picking.

More significantly, DICEPTION highlights that the generative image priors lead to surprisingly
more efficient and effective pathways to generalist image understanding models. We analyze a
series of design choices for transferring one single modern diffusion model to multiple perception
tasks, and identify that the key to successful transfer lies in preserving as much of the pretrained
prior as possible, eliminating the need to design any complex module or training recipe. Even
more notably, DICEPTION is capable of quickly adapting to new tasks using as few as 50 training
images and fine-tuning less than 1% of its parameters. We also demonstrate that pixel-level aligned
training for perception tasks significantly enhances the model’s ability to preserve fine details and
mitigates generated artifacts, which is of high significance for downstream applications. We believe
DICEPTION provides valuable insights for the design of strong diffusion-based generalist models.

In summary, our main contributions are as follows.
* We introduce DICEPTION, to the best of our knowledge, the first unified multi-task percep-

tion model with fully shared parameters that achieves quantitative performance comparable
to specialized models while requiring significantly less data. E.g., we achieve competitive



results with SAM-vit-h with only 0.06% of its data. We are capable of addressing six visual
perception tasks within one single model.

* This work offers a comprehensive experimental analysis elucidating the critical designs for
effectively re-purposing diffusion models towards perception tasks, including architecture,
input injection strategies and sampling timestep selection. Our findings establish that the
preservation of the pretrained generative prior is paramount for achieving rapid adaptation
and robust multi-task performance. Notably, DiT architectures are shown to be particularly
conducive to this objective.

* The proposed unified multi-task paradigm yields compelling advantages. For instance, DICE-
PTION rapidly adapts to novel tasks in few-shot settings, demonstrating strong performance
with as few as 50 training images and fine-tuning only 1% of parameters. Training on
pixel alignment tasks significantly mitigates the artifacts often observed in other generative
models for low-level image processing tasks such as image highlighting. Furthermore, the
unified prediction space enables interactive segmentation to achieve matting-level accuracy.

2 Related Work

2.1 Vision Foundation Models

Vision foundation models are models that are trained on large-scale datasets and demonstrate excellent
performance within their trained domains. Vision foundation models now exist for a broad range
of vision tasks, including monocular depth estimation [125, 126, 123, 7], object detection [11],
segmentation [51, 90], multimodal tasks [86, 66], image and video generation [94, 29, 6], and more
recently, emerging 3D models [111, 73]. While many works [117, 50, 60, 87, 140, 143] have sought
to leverage the prior knowledge embedded in these models to tackle other tasks, such efforts often
require complex network designs and intricate training strategies, typically transferring only to a
limited number of tasks. Some foundation models [91, 40, 78, 12] emphasize representation learning,
aiming to solve diverse downstream tasks by relying on generalized features. However, the results of
these methods often fall short when compared with specialized foundation models. In contrast, our
approach ensures consistent accuracy across multiple tasks while also enabling swift adaptation to
new downstream tasks.

2.2 Diffusion Models

Diffusion models [29, 94, 6, 104, 103] have achieved remarkable success in image and video
generation in recent years. The idea is to gradually add noise to the data and train a model to reverse
this process, denoising step by step to generate the result. Recent diffusion models [29] utilize
flow matching [65, 1, 68] and the DiT architecture [80], making them more scalable and efficient.
Diffusion models have enabled a wide range of notable applications, including conditional image
generation [137, 63, 130, 76, 85], image editing [8, 48, 122], story generation [113, 142], video
generation [42, 36, 139, 128, 6, 52, 112], and video editing [13, 67, 14]. These successes underscore
the substantial prior knowledge embedded in diffusion models.

Building on this insight, many studies [120, 39, 129, 49, 143] leverage diffusion models for down-
stream image understanding tasks. However, these approaches typically require separate fine-tuning
for each individual task. Recently, we find several concurrent works [118, 55] also use diffusion
models for multitask learning. Yet, these methods often involve complex network architectures
and training procedures, and their evaluations tend to focus only on a very limited subset of image
understanding results. In contrast, our DICEPTION offers a simpler solution. We not only conduct
detailed evaluations of our method across a variety of tasks but also demonstrate that the simplicity,
paired with the inherent strengths of diffusion models, can be sufficient to deliver strong results
without relying on overly complicated setups.

2.3 Multi-task Generalist Models

Recently, there has been a surge of interest in exploring visual multitask learning. Some ap-
proaches [115, 116] draw inspiration from in-context learning in NLP, adapting it for the visual
domain. Others [71, 70, 75, 2] have advocated for sequence modeling methods, utilizing a transformer
encoder-decoder architecture. In these approaches, different encoders map various tasks into a shared



representation space, and distinct decoders are employed to transform tokens into the outputs specific
to each task. However, these methods face notable limitations: they need to train a separate encoder
and decoder for every individual task and they usually rely on substantial amounts of data to attain
optimal performance.

The recent success of high-quality Vision Language Models (VLMs) [66] has also encouraged
researchers to leverage them for building multitask models. Yet, these VLM-based methods [4, 110,
17, 69, 92, 61] typically focus on multimodal understanding tasks, such as image captioning, rather
than general visual perception tasks. Meanwhile, some approaches [101, 139, 79] combine diffusion
models with autoregressive models, focusing primarily on instruction-following image generation or
editing tasks, rather than addressing image perception tasks. Although certain studies [54, 47, 18, 35]
have tried to apply VLMs to more advanced semantic perception tasks, they struggle to establish a
unified generalist visual model.

2.4 Compared with One Diffusion

The concurrent work, One Diffusion [55], addresses multi-task image generation, whereas our
approach focuses on multi-task image understanding. We excel at performing a broader range of
image understanding tasks with higher quality. While One Diffusion’s strategy of treating different
images as different views benefits generation tasks, their failure to distinguish between conditions
and images introduces harmful degrees of freedom for perception tasks, as illustrated in the red-
highlighted regions of Figure S14. Specifically, when performing perception tasks, One Diffusion
tends to generate an image similar to the original input, rather than the desired perceptual results.

Although One Diffusion suggests that more detailed text prompts can lead to better results, we argue
that performance in perception tasks should not overly depend on the quality of text prompts.
In contrast, our method uses only simple task prompts to distinguish between different tasks, rather
than allowing the text prompts to dominate the results.

Crucially, while One Diffusion requires a massive amount of data (75 million samples) and com-
putational resources for from-scratch training, we leverage the priors of pretrained models and
demonstrate that, with significantly less data (1.8 million samples), we achieve performance on
par with state-of-the-art results. In the image understanding tasks shared by both approaches, we
consistently produce more stable and higher-quality results than One Diffusion.

3 Method

3.1 Overview

Our methodology builds upon pre-trained text-to-image diffusion models [29], steering perception
tasks using text prompts. As shown in Figure 2, we concatenate the input image tokens, the noisy
tokens, task prompt embeddings, and point embeddings for interactive segmentation along the token
dimension. Training employs a flow matching loss [29], exclusively computed on the noisy tokens. In
inference, each denoising step refines only these noisy tokens, leaving all other conditioning tokens
unchanged throughout the iterative denoising process.

3.2 Unifying Task Representation into RGB Space

The decision to unify representations of diverse tasks in RGB space was motivated by two key
factors: (1) It maximally leverages the priors in text-to-image models, which have been extensively
trained within the RGB domain. (2) RGB serves as a foundational representation in computer vision,
providing a common visual framework through which a wide variety of tasks can be coherently and
intuitively visualized.

We focus on several of the most fundamental tasks in computer vision: monocular depth estimation,
normal estimation, human keypoint estimation and segmentation. Segmentation, in particular, en-
compasses interactive segmentation, entity segmentation, and instance segmentation. Our instance
segmentation segments target instances with category name as input. All these tasks can be unified
within an RGB space, with the difference being the number of channels. For single-channel repre-
sentations, such as depth maps and segmentation masks, we align them with RGB by repeating the
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Figure 2: We propose a generalist diffusion model solving multiple perception tasks, DICEPTION.
We select Person as the instance segmentation example for the purpose of consistent visualization,
which does not mean our method is limited to only human instances. At each denoising step, the
point embedding, input image latent, and task embedding remain fixed, while only the noise latent is
updated.

channel three times. For inherently three-channel representations, such as normal maps, we treat
them directly as RGB images.

Entity segmentation is to segment every instance in an image but with no category. We assign each
mask within an image a random color and merge them into a three-channel RGB mask. Painter [115]
found that assigning color randomly makes the model hard to optimize. However, we find this
approach has no adverse impact on the training and enables the model to effectively learn to distinguish
different instances by painting them with different colors. Each instance’s mask can be extracted from
the RGB mask using clustering algorithms during post-processing without significant performance
degradation. We also apply the random color assignment in instance segmentation. Our method is
capable of segmenting instances of the same semantic category. By default, we use KMeans for mask
extraction.

Let x,. denote the pre-unified raw representation for each task, and x represents the unified RGB-like
output representation. We formalize this process as: x = ¥(x,.).

3.3 DICEPTION: A Unified Framework

Architecture. Our model adopts the same architecture as SD3 [29]. We aim to keep the architecture
as unchanged as possible, fully leveraging the pre-trained prior knowledge. To do so, we concatenate
the input image tokens, noisy tokens, task embeddings, and point embeddings along the token
dimension as input to the model. During training, the loss is computed only on the noisy tokens.
Similarly, during inference, at each timestep, only the noisy tokens are updated, while the other
tokens remain unchanged. We use simple task prompts to direct the model to perform various tasks,
such as "image to depth", "image to normal”, and "image to segmentation". An additional category
name is provided in instance segmentation, such as "image to instance - cat".

Introduction of Point Embeddings For point-prompted interactive segmentation, a naive approach
is directly painting points on the image. But this strategy is highly sensitive to the size of the points.
If the painted points are too large, they can obscure small regions, causing segmentation to fail.
Conversely, if the painted points are too small, the model may lose relevant point information after
VAE downsampling and patchification. To address this, we introduce a minimal straightforward
two-layer MLP ®(-) that enables the model to understand the point prompt.

Inspired by SAM [51], we apply sin-cos positional encoding to the point coordinates p, then pass
them into the MLP ®(-) to produce point embeddings that match the dimension of the input hidden
states. We use two learnable embeddings to indicate whether the embedding is valid or not: &, for



valid point embeddings and &, for invalid point embeddings. The processed point embedding is
summed with &,. For other tasks, we simply use &), as the point embedding. During training, we
randomly select 1-5 points to guide the segmentation. When the number of selected points is fewer
than 5, we pad the point embeddings to a length of 5 with &,,,,. When performing tasks that do not
require point input, the point embedding is simply a length-5 sequence, where each element is &,,),.
By denoting the final point embedding as &, this process is formulated as:

- Concat(®(PE(p)) + &, &np)  if interactive segmentation
B Enp else

ey
Input Formulation and Loss. DICEPTION introduces two additional inputs based on SD3: the
input image x’ and point embedding £. For the input image, we first apply VAE to down-sample
it by a factor of 8, after which it is 2 x 2 patchified into sequences. We denote this pre-processing
as 7. Subsequently, the task prompt token e, point embedding £, noisy token z;, and input image
token z’ are concatenated along the token dimension to form the complete input. We follow the flow
matching [65, 1, 68] loss in training SD3 [29], which minimizes the discrepancy between the model’s
predicted velocity v and the ground-truth velocity u. During training, the loss is applied solely to the
noisy tokens:
z0 = 7(x),2' = 7(x')

@)

Loss = By, ¢+||ve(zs,2,t,€,&) — u(z)]|3.

3.4 Adapting to New Tasks

Practical applications often require models to adapt quickly to new tasks with limited training data.
Traditional foundation models, however, are often domain-specific and require extensive data and
architectural modifications for adaptation. Powerful diffusion models also struggle with efficient
adaptation to downstream tasks via few-parameter fine-tuning on limited data.

DICEPTION effectively addresses this limitation. We conducted experiments on lung segmentation,
tumor segmentation, and image highlighting, which represent tasks with varying degrees of overlap
with the model’s original domain. We train fewer than 1% of the model’s parameters using LoRA [44]
without any complex architectural modifications. Notably, despite the limited availability of training
samples (50 per task), DICEPTION consistently delivered successful and high-quality performance
across all target tasks. These results provide compelling evidence for the potential of DICEPTION as
a unified foundation model.

4 Experiments

4.1 Implementation Details

Data. We randomly select 500k images from the Openlmages [53] dataset and use DepthPro [7]
and StableNormal [129] to generate depth and normal annotations. For interactive segmentation, we
randomly select 400k images from the SA-1B [51] dataset, as well as 200k images with fine-grained
hair masks synthesized from the AM2k [58], AIM500 [59], and P3M-10k [57]. Entity segmentation
data is from Entity V2 [84], while instance segmentation data comes from the COCO-Rem [97], and
human pose data is sourced from COCO [64]. For few-shot fine-tuning, we select 50 samples from
the Chest X-Ray dataset [114], LOL-v2 [127], and Kaggle’s Brain Tumor dataset as training samples.
More details can be found in Appendix A.

Training. Our training lasts for 24 days using 4 NVIDIA H800 GPUs. We employ the AdamW
optimizer with a constant learning rate of 2e—5 and a batch size of 28 per GPU. We found that
the training process is highly stable. However, the convergence speed for segmentation tasks was
slower compared to depth and normal tasks. Therefore, we increased the proportion of segmentation
data in each batch. Specifically, in each batch, depth and normal each account for 15%, interactive
segmentation, entity segmentation, and instance segmentation each account for 20%, and pose
estimation accounts for 20%. We observe that, by the end of training, despite the loss no longer
significantly decreasing, the model’s performance on segmentation tasks continues to improve.

During few-shot fine-tuning, we apply a rank-128 LoRA to all attention (), K, and V' layers in the
network, which accounts for less than 1% of the total network parameters. The task prompts for
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different tasks are “‘image-to-segmentation lung," “image-to-segmentation tumor," and “image-to-
highlight." LoRA training is conducted on a single NVIDIA H100 GPU, with a constant learning
rate of 2e—>5 and a batch size of 8. Please refer to Appendix D for more few-shot fine-tuning
visualizations.

Inference. We perform 28 steps of denoising during inference which follows the settings of the
pre-trained model SD3 [29]. The inference can be run on a GPU of 24GB memory with a batch size
of 4. The classifier-free-guidance value is by default set to 2, more analysis in Appendix B.

4.2 Comparisons with Existing Methods

Table 1: Quantitative comparison of depth estimation with both specialized models and multi-task
models on zero-shot datasets. Our visual generalist model can perform on par with SOTA models.
We use the same evaluation protocol (1) as Genpercept [120].

Method Training KITTI [33] NYUv2 [77] ScanNet [24] DIODE [108] ETH3D [95]
Samples | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T
MiDaS [89] 2M 0.236 0.630 | 0.111 0.885 | 0.121 0.846 | 0.332 0.715 | 0.184 0.752

Omnidata [28] | 122M | 0.149 0.835 | 0.074 0.945 | 0.075 0.936 | 0.339 0.742 | 0.166 0.778
DPT-large [88] 1.4M 0.100 0.901 | 0.098 0.903 | 0.082 0.934 | 0.182 0.758 | 0.078 0.946
DepthAnything® [125] | 63.5M | 0.080 0.946 | 0.043 0.980 | 0.043 0.981 | 0.261 0.759 | 0.058 0.984
DepthAnything v2f [126] | 62.6M | 0.080 0.943 | 0.043 0.979 | 0.042 0.979 | 0.321 0.758 | 0.066 0.983
Depth Prof [7] - 0.055 0.974 | 0.042 0.977 | 0.041 0.978 | 0.217 0.764 | 0.043 0.974
Metric3D v21 [45] 16M 0.052 0.979 | 0.039 0.979 | 0.023 0.989 | 0.147 0.892 | 0.040 0.983
DiverseDepth [131] 320K | 0.190 0.704 | 0.117 0.875 | 0.109 0.882 | 0.376 0.631 | 0.228 0.694
LeReS [132] 354K | 0.149 0.784 | 0.090 0.916 | 0.091 0917 | 0.271 0.766 | 0.171 0.777

HDN [134] 300K | 0.115 0.867 | 0.069 0.948 | 0.080 0.939 | 0.246 0.780 | 0.121 0.833
GeoWizard [32] 280K | 0.097 0.921 | 0.052 0.966 | 0.061 0.953 | 0.297 0.792 | 0.064 0.961
DepthFM [34] 63K 0.083 0.934 | 0.065 0.956 | - -1 0.225 0.800 | - -
Marigold' [49] 74K 0.099 0.916 | 0.055 0.964 | 0.064 0.951 | 0.308 0.773 | 0.065 0.960
DMP Official® [56] - 0.240 0.622 | 0.109 0.891 | 0.146 0.814 | 0.361 0.706 | 0.128 0.857
GeoWizard' [32] 280K | 0.129 0.851 | 0.059 0.959 | 0.066 0.953 | 0.328 0.753 | 0.077 0.940
DepthFMT [34] 63K 0.174 0.718 | 0.082 0.932 | 0.095 0.903 | 0.334 0.729 | 0.101 0.902
Genpercept! [120] 90K 0.094 0.923 | 0.091 0.932 | 0.056 0.965 | 0.302 0.767 | 0.066 0.957
Painter’ [115] 24K 0.324 0.393 | 0.046 0.979 | 0.083 0.927 | 0.342 0.534 | 0.203 0.644
Unified-107 [71] 48K 0.188 0.699 | 0.059 0.970 | 0.063 0.965 | 0.369 0.708 | 0.103 0.906
4AM-XLT[75] | 759M | 0.105 0.896 | 0.068 0.951 | 0.065 0.955 | 0.331 0.734 | 0.070 0.953
OneDiffusionf [55] 500K | 0.101 0.908 | 0.087 0.924 | 0.094 0.906 | 0.399 0.661 | 0.072 0.949
Ours-singlef 500K 0.064 0.952 | 0.066 0.953 | 0.077 0.942 | 0.283 0.717 | 0.052 0.971

Ours' 500K | 0.069 0.949 | 0.061 0.960 | 0.072 0.944 | 0.289 0.722 | 0.050 0.975
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Figure 3: Comparisons of mloU with SAM-vit-h. We achieve results on par with SAM using
only 0.06% of their data (600K vs. 1B). The performance of SAM is clearly better only on some
datasets that are out-of-distribution for us, such as the Woodscape [133] Fisheye dataset.



Table 2: Quantitative comparison of surface normal estimation with both specialized models and
multi-task models. All methods are evaluated with the same method of StableNormal [129].

Method Training NYUv2 [77] ScanNet [24] DIODE-indoor [108]
Samples|mean] med] [11.25°T 22.5°T 30°T [mean] med] [11.25°T 22.5°T 30°T |[mean] med] [11.25°T 22.5°T 30°T
DINSE [3]| 160K [18.572 10.845|54.732 74.146 80.256[18.610 9.885 |56.132 76.944 82.606(18.453 13.871|36.274 77.527 86.976
Geowizard [32]| 280K |20.363 11.898|46.954 73.787 80.804|19.748 9.702 |58.427 77.616 81.575|19.371 15.408|30.551 75.426 86.357
GenPercept [120]| 90K |20.896 11.516|50.712 73.037 79.216|18.600 8.293 | 64.697 79.329 82.978|18.348 13.367|39.178 79.819 88.551
Marigold [49]| 90K |20.864 11.134|50.457 73.003 79.332|18.463 8.442 | 64.727 79.559 83.199|16.671 12.084|45.776 82.076 89.879
StableNormal [129]| 250K |19.707 10.527| 53.042 75.889 81.723|17.248 8.057 | 66.655 81.134 84.632(13.701 9.460 | 63.447 86.309 92.107
Unified-10 [70]| 210K [28.547 14.637(39.907 63.912 71.240(17.955 10.269|54.120 77.617 83.728(31.576 16.615|27.855 64.973 73.445
4M-XL [75]| 759M |37.278 13.661|44.660 60.553 65.327|30.700 11.614|48.743 68.867 73.623|18.189 12.979|36.622 81.844 87.050
Ours-single| 500K [18.292 10.145]|52.693 76.966 83.041(18.807 10.327|52.919 75.152 82.968|16.229 11.012|50.137 83.573 88.972
Ours| 500K |18.338 10.106| 52.850 77.079 82.903|18.842 10.266|53.610 74.895 82.864|16.297 11.117|50.548 83.325 88.774

We compare the performance of specialized ) . o
models, existing multi-task models, and our DI- Table 3: Evaluation of human keypoints estimation

CEPTION across various tasks. Specifically, we ©n MS COCO.
evaluate depth using the same protocol as Gen- | HRNet[100] HRFormer[135] ViTPose[121] | Painter{115] Ours
percept [120], normal estimation using the same ~ APT| 763 772 83 | 75 518

method as StableNormal [129], interactive seg-

mentation using the same approach as SAM [90], and human keypoints using the same method as
Painter [115]. We also assess instance segmentation and entity segmentation on the MS COCO
dataset. For entity segmentation, we assigned all predicted categories to the same label.

As in Tables 1 and 2, our DICEPTION outper-

forms existing multi-task models and achieves ) ]

performance on par with state-of-the-art special- Table 4: Evaluation of text-based instance segmen-
ized models or demonstrates only an acceptable ~tation on the MS COCO.

performance decrease. Although some multi- Method | SparK [102] OneFormer [46] Mask2Former [19] Ours
task methods achieve marginally better perfor- ~— AP} | 451 492 50.1 332
mance on certain datasets, such as Painter [115]

and Unified-10 [70], they exhibit considerably

poorer results on others such as outdoor settings (KITTI) and NYUv2 normal map benchmark. This
further underscores the robust generalization capabilities of our approach. We contend that focusing
on a model’s performance across diverse datasets is more meaningful, as it better reflects the model’s
generalization ability and real-world applicability.

For interactive segmentation, as shown in Figure 3, we achieve results on par with SAM-vit-h
using only 0.06% of their data. SAM shows a clear advantage only on certain out-of-distribution
datasets that are outside the scope of our model’s training, such as WoodScape fisheye dataset.
Notably, while most specialized models require extensive data or complex data pipelines, our method
achieves excellent results with significantly less data and no training data cherry-picking. Evaluation
across diverse datasets highlights the strong in-the-wild generalization capability of our model,
demonstrating that it does not overfit to the biases inherent in specific datasets.

We observe that, although our model generates high-quality visualizations for human pose and
instance segmentation, the corresponding evaluation metrics remain relatively low. This is also
observed on the evaluation of small objects in entity segmentation. We found that this is due to the
errors introduced by the post-processing rather than our model’s performance. In Appendix C, we
provide a comprehensive explanation of the post-processing procedure and analyze the underlying
causes of metrics degradation.

4.3 Ablations and Analysis

Model designs, classifier-free guidance and pixel-aligned training. Our crucial analyses covering
the elucidation of critical designs for effectively re-purposing diffusion models for perception tasks, as
well as significant findings and insights, are detailed in the Appendix due to space limit. Specifically,
the analysis of different architectures and input paradigms is presented in Appendix B.1, B.2 and B.3.
The effectiveness of modest classifier-free guidance in improving results is discussed in Appendix B.4.
The inherent few-step capability of flow-matching on perception tasks is analyzed in Appendix B.5.
The benefits of pixel-aligned training are detailed in Appendix B.6 and B.7.



Table 5: Average recall (AR) of entity segmentation on the MS COCO validation set.

Method | AR-smallt | AR-medium? | AR-larget
EntityV2 [84] 0.313 0.551 0.683
Ours-single 0.123 0.424 0.648
Ours 0.121 0.439 0.637

Comparisons with Our Single-task Models. For the training of single-task models, we ensure that
the network architecture remains the same and the total amount of training data seen for each specific
task is the same as that for the multi-task model. For example, if the multi-task model is trained for
100 iterations with 4 depth data samples per batch, the single-task model will also be trained for
100 iterations with 4 data samples per batch. In our current data setting (approximately 1.8 million
samples), we have not observed a significant gap between the multi-task and single-task models, nor
have we seen a trend of mutual promotion between different tasks, as shown by “Ours-single” in
Tables 1, 2, 5 and Figure 3. We believe that it is more appropriate to explore with larger datasets in
order to draw more solid conclusions. We leave this as future work.

Multi-point Prompted Segmentation. Ambiguity is a significant issue in interactive segmentation.
For example, if a point is placed on a person’s clothing, the model may segment the clothing, but
the desired result is the person. Therefore, more points are needed to resolve this ambiguity. As
illustrated in Table 6, additional points help the model better segment the desired results.

One-step Training and One-step Inference. Genper- Taple 6: Comparisons between 1-point
cept [120] demonstrates that diffusion model trained with  and 5-point as input. 5 points are se-
one-step denoising significantly enhances both the speed  jected randomly.

and accuracy of perceptual tasks. However, our experi-

mental results reveal a notable increase of failure cases Method ‘ 1-point S-point

when applying one-step diffusion in a multi-task setting, mloU?T | 47.1 57.2

as illustrated in Figure 4. We believe that this is due to
the potential overlap of denoising trajectories for different
tasks. These overlapping trajectories can interfere with each other, resulting in failure cases with
one-step inference. In contrast, in a single-task setting, since the denoising trajectories pertain to
a single task, one-step is more effective and stable. However, we observe that our model, trained
with multi-step denoising, can be applied directly to few-step inference with minimal degradation in
performance. We provide results and more detailed analysis in Appendix B.5.

5 Conclusion

We have introduced DICEPTION, a multi-task
visual generalist model based on the diffusion
model. Our approach unifies different tasks
in the RGB space, leveraging the prior knowl-
edge of pre-trained image generation model
to achieve results that are on par with special-
ized foundation models. We achieve good per-
formance without carefully cherry-picking ex-
tremely high-quality data or by using an excep-
tionally large amount of data. In few-shot fine-
tuning, we are able to achieve high-quality re-
sults with minimal data and minimal trainable
parameters.

Figure 4: The model trained with 1-step denoising
tends to produce more failure cases in multi-task
scenarios.

Furthermore, we provide in-depth experimental

analyses of strategies for transferring diffusion models to perception tasks. We also discuss the
contributions of classifier-free guidance in enhancing model performance, demonstrate that there is
no performance gap between our single-task and multi-task model, and highlight the improved detail
preservation achieved through pixel-aligned perception training. We believe that DICEPTION sheds
light on how to effectively use priors of diffusion models to build a strong visual generalist model.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction do accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix E.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We don’t have theoretical assumptions.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed exposition of the sources for all training data and the
specific configurations of our training parameters. We believe our work is fully reproducible.
See Section 4 and Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We intend to further refine our model before releasing it as open source.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All data sources, training settings and testing settings are explicitly stated
within this paper. See Section 4 and Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although we do not report error bars, we believe the extensive evaluation
conducted provides compelling evidence for the efficacy of our method. We performed
testing on over 30 validation sets and present comprehensive visualizations that further
substantiate the strong performance of our approach.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.1. We also explicitly state that all experiments were conducted
under identical settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All original papers that produced the models and data we use are cited.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Dataset

We summarize the datasets used in our work in Table S1. The depth and normal data samples are
obtained by randomly selecting SO0K images from Openlmages [53] and labeling them using Depth
Pro [7] and StableNormal [129], respectively. The 400K point segmentation data samples are obtained
by randomly selecting images from the SA-1B dataset [51]. For the synthesis of point segmentation
data, we extract the foreground from P3M-10K [57], AIM500 [59] and AM2K [58], randomly
applying transformations such as rotation, resizing, and flipping. These transformed foregrounds are
then pasted onto different background images, resulting in 200K synthetic images with fine-grained
hair segmentation.

Table S1: Dataset detail.

Training
Task Data Samples Dataset
Depth 500K Openlmages [53] + Depth Pro [7]
Normal 500K Openlmages [53] + StableNormal [129]
Point Segmentation 400K SA-1B [51]
Point Segmentation 200K P3M-10K [57], AIM500 [59] and AM2K [58]
Human Pose 42K MS COCO 2017 [64]
Semantic Segmentation 120K COCO-Rem [97]
Entity Segmentation 32K EntityV2 [84]
Validation
Task Dataset
Depth NYUv2 [77], KITTI [33], ScanNet [24], DIODE [108], ETH3D [95]
Normal NYUv2 [77], ScanNet [24], DIODE [108]

PPDLS [74], DOORS [82], TimberSeg [31], NDD20 [107]
STREETS [98], iShape [124], ADE20K [141], OVIS [83]
Plittersdorf [38], EgoHOS [136], IBD [15], WoodScape [133]
TrashCan [43], GTEA [30, 62], NDISPark [21, 20], VISOR [25, 26]
LVIS [37], Hypersim [93], Cityscapes [23], DRAM [22]
BBBCO038v1 [10], ZeroWaste [5], PIDRay [109]

MS COCO 2017 [64]

MS COCO 2017 [64]

MS COCO 2017 [64]

Point Segmentation

Entity Segmentation
Semantic Segmentation
Human Keypoints

For the validation set, we evaluate depth using the same evaluation protocol as Genpercept [120],
conducting tests on the NYUv2 [77], KITTI [33], ScanNet [24], DIODE [108], ETH3D [95]. Simi-
larly, for normal estimation, we follow the evaluation protocol of StableNormal [129] and perform
evaluations on the NYUv2 [77], ScanNet [24], DIODE [108]. For interactive segmentation, we con-
duct extensive comparisons across 23 datasets. The remaining tasks, including Entity Segmentation,
Instance Segmentation, and Human Keypoints, are evaluated on the MS COCO 2017 dataset [64].
We believe the comprehensive experiments on over 30 datasets in total provide solid evidence of the
remarkable performance of our method.

B Additional Analysis

B.1 Token-wise Concat and Channel-wise Concat

We investigated two distinct methodologies for integrating an auxiliary input image into a Diffusion
Transformer (DiT) architecture. The first approach involved concatenating the input image tokens
with the noisy image tokens along the token dimension, subsequently feeding this combined sequence
directly into the DiT model. The second strategy employed channel-wise concatenation of these inputs,
followed by a shallow, two-layer Multi-Layer Perceptron (MLP) to align the channel dimensions
with the DiT’s input.
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Constrained by available computational re-
sources, our analysis is conducted within 2

tasks: depth and surface normal estimation. The | — Chanpelise Conct
datasets utilized for depth and surface normal
prediction in this ablation are identical to those
specified in Table S1. All training hyperparam-
eters remain consistent across both approaches,
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Our findings indicate that the token-wise con- Training Step

catenation strategy is markedly more compu-
tationally efficient than its channel-wise coun-
terpart. Specifically, the token-wise approach
demonstrates substantially faster convergence
speed, as illustrated by the training loss trajecto-
ries presented in Figure S1. Furthermore, as demonstrated in Figure S2, channel-wise concatenation is
more prone to yielding suboptimal results. We believe that this enhanced efficiency and effectiveness
stem from the token-wise concatenation method’s circumvention of additional network parameters.
By avoiding the introduction of new trainable components, this strategy appears to more effectively
leverage the inherent priors learned by the pre-trained diffusion model. Furthermore, for token-wise
concatenation, we independently applied Rotary Position Embeddings (RoPE) [99] to both the input
image tokens and the noisy tokens. This strategy ensures that corresponding tokens from these
two sources share identical positional embeddings, facilitating the model’s rapid learning of their
interrelations.

Figure S1: Loss curve of token-wise concatena-
tion and channel-wise concatenation.

Input Channel-wise Concat Token-wise Concat U-Net

Figure S2: Depth and normal estimation multi-task visualizations comparing channel-wise con-
catenation, token-wise concatenation, and U-Net are shown. While channel-wise concatenation
often leads to suboptimal performance and U-Net struggles with multi-task learning, DICEPTION
effectively generates high-quality outputs for multiple tasks.

B.2 Architecture of the Diffusion Model

Before the advent of DiT [80], the UNet architecture was predominantly used in diffusion models.
We also conduct multi-task experiments based on a UNet pre-trained model SDXL [81]. Specifically,
we follow Marigold [49] by expanding the first convolution layer’s input channels from 4 to 8 to
accommodate image inputs, and similarly use task prompts to guide the model in solving different
tasks. However, as shown in Figures S2 and S3 , we find that this approach failed, even for a minimal
multi-task scenario involving only depth and normal estimation.

Beyond the established UNet architecture, our research also encompasses an exploration of alternative
DiT frameworks, notably PixArt-alpha [16], to ascertain the generalizability and efficacy of our
proposed methodology when applied to different DiT models. We train DICEPTION-PixArt based on
the PixArt-alpha-600M model using the same data for training DICEPTION and conduct a quantitative
evaluation on depth and surface normal prediction, as illustrated in Tables S2, S3 and S4.

It is pertinent to note that, with a parameter count of approximately 600M, the DICEPTION-PixArt
variant, while not achieving the same performance benchmarks as our counterpart model trained on
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Table S2: Quantitative comparison of depth estimation between ours and Ours-PixArt.

Method ‘ Training KITTI [33] NYUV2 [77] ScanNet [24] DIODE [108] ETH3D [95]
Samples | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] ot
Ours | 500K | 0.069 0.949 | 0.061 0.960 | 0.072 0.944 | 0.289 0.722 | 0.050 0.975
Ours-PixArt 500K 0.093 0.905 | 0.096 0.905 | 0.101 0.901 | 0.282 0.709 | 0.071 0.944

the more extensive SD3 architecture, still exhibits a strong capacity for multi-task problem-solving.
This multi-tasking proficiency is substantially superior to that of traditional UNet-based models. This
result substantiates the versatility of our method and its compatibility with modern transformer-based
diffusion models, even with smaller models.

Table S3: Quantitative comparison of surface normal estimation between ours and ours-PixArt.

Training NYUv2 [77] ScanNet [24] DIODE-indoor [108]

Samples|mean] med]| [11.25°T 22.5°T 30°T |[mean] med] [11.25°T 22.5°T 30°T [mean] med] [11.25°T 22.5°T 30°T
500K [18.338 10.106] 52.850 77.079 82.903[18.842 10.266]53.610 74.895 82.864]16.297 11.117]50.548 83.325 88.774
500K |20.487 12.393|48.663 72.342 80.244|21.663 14.419|37.043 70.781 79.786|17.986 11.190|50.276 79.316 85.248

Method

Ours
Ours-PixArt

Regarding the challenges encountered with UNet-based ar-  Taple S4: Comparisons of 1-point inter-
chitectures in multi-task learning paradigms, we posit that  active segmentation between ours and
their limitations are fundamentally due to two key factors. ours-PixArt.

Firstly, the approach of expanding the input convolution
layer introduces additional parameters, thereby potentially ~Method | Ours-PixArt Ours SAM-vit-h

disrupting the original model’s inherent prior knowledge. =~ mloUT | 4093 47.10 4890
Secondly, the downsampling operations within the U-Net
architecture result in a significant loss of information.

Figure S3: The UNet-based model fails to perform multi-task.

B.3 ControlNet

ControlNet [137] has emerged as a popular approach for integrating novel image conditioning into
diffusion models. However, our experiment shows that while ControlNet can learn the general output
patterns associated with target tasks, its precision remains notably low, exhibiting limited performance
even on single perception task. We train a ControlNet on top of a pre-trained SD3 model for human
keypoint estimation. Following the setup of traditional setting [137], we introduce ControlNet into the
first half of the SD3’s transformer blocks. As depicted in Figure S4, although the model successfully
captures the overall visual style of human keypoint predictions, the accuracy of its estimations is
significantly deficient.
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Input ControlNet Ours Input ControlNet Ours

Figure S4: While ControlNet demonstrates the ability to learn the output modalities of perception
tasks, its accuracy remains significantly low. Conversely, our proposed approach yields substantially
improved accuracy.

B.4 Classifier-free Guidance

Classifier-free guidance (CFG) [41] is a technique used in conditional diffusion models to improve the
quality of generated samples without additional training. It has become a cornerstone in existing text-
to-image models. During inference, it extrapolates from the model’s conditional and unconditional
outputs to enhance the influence of the conditioning signal. Specifically, during denoising, the noise
at each timestep is a fusion of conditional and unconditional noise:

Nt = Nt uncond + CFG '(nt,cond - nt,uncond)- (Sl)

Typically, conditional noise 14 ¢onq is the output predicted by the model when conditioned on the
prompt embedding, while unconditional noise 7; ynconad 18 the output predicted by the model when
conditioned on the negative prompt embedding.

We evaluate the impact of varying CFG values on our multi-task performance. Specifically, our
conditional noise n¢ conq 1 the prediction of the model conditioned on the task prompt correspond-
ing to each specific task, while the unconditional noise 1 yncond 1S the model’s prediction when
conditioned on an empty string as the prompt. Our ablation study reveals that a modest application
of CFG enhances the quality of depth and normal estimation, yielding perceptibly sharper results.
However, this strategy basically has no influence on other tasks such as human keypoints estimation
and segmentation, as shown in Figure S5..

Table S5: Interactive Segmentation mloU of DICEPTION across different CFG. CFG has little
influence on segmentation.

\ CFG=1 CFG=2 CFG=3 CFG=4 CFG=5
mloU of 23 Validation Datasets \ 47.10 47.12 47.08 46.91 46.57

We hypothesize that this is because tasks such as depth and normal estimation inherently demand high
precision in the output pixel values to accurately represent continuous geometric surfaces, while other
tasks such as human keypoints estimation and segmentation are less sensitive to subtle variations in
pixel-level intensities. Additionally, it is also observed that a high CFG scale significantly degrades
performance on depth and normal prediction, especially normal prediction. This degradation typically
manifests as oversaturated results or the emergence of coarse, granular artifacts, as shown in Figure S5.
To further validate our hypothesis, we evaluate the performance of our model across varying CFG
values, as presented in the Table S6, S7 and S5. The results confirm that a mild CFG scale enhances
prediction quality of depth and normal, whereas larger values adversely affect performance.

28



Table S6: Quantitative comparison of depth estimation with different CFG value.

Method | Training KITTI [33] NYUV2 [77] ScanNet [24] DIODE [108] ETH3D [95]
Samples | AbsRel] 01T | AbsRel] 61T | AbsRel] 01T | AbsRel] 01T | AbsRel] ot
Ours-CFG=1 500K 0.075 0.945 | 0.072 0.939 | 0.075 0.938 | 0.243 0.741 | 0.053 0.967
Ours-CFG=2 | 500K | 0.069 0.949 | 0.061 0.960 | 0.072 0.944 | 0.289 0.722 | 0.050 0.975
Ours-CFG=3 500K 0.092 0.910 | 0.076 0.938 | 0.093 0.910 | 0.343 0.679 | 0.059 0.966
Ours-CFG=4 500K 0.105 0.876 | 0.087 0.915 | 0.104 0.884 | 0.362 0.654 | 0.066 0.956
Ours-CFG=5 500K 0.124 0.831 | 0.097 0.893 | 0.115 0.863 | 0.383 0.609 | 0.072 0.947

Table S7: Quantitative comparison of surface normal estimation with different CFG value.

Method Training NYUv2 [77] ScanNet [24] DIODE-indoor [108]
Samples|mean] med] [11.25°T 22.5°T 30°T |mean] med] [11.25°T 22.5°T 30°T |[mean] med] [11.25°T 22.5°T 30°T
Ours-CFG=1| 500K |18.302 10.538|52.533 75.977 82.573]19.348 12.129|46.410 74.805 82.176|17.946 8.686 | 62.641 81.152 85.398
Ours-CFG=2| 500K |18.338 10.106|52.850 77.079 82.903|18.842 10.266| 53.610 74.895 82.864|16.297 11.117|50.548 83.325 88.774
Ours-CFG=3| 500K |19.817 10.989|51.312 72.509 79.497|22.287 11.849|49.110 70.075 77.376|18.546 12.475|46.627 76.532 85.398
Ours-CFG=4| 500K |21.433 12.012|47.543 69.175 77.003|24.117 13.029|41.334 65.865 73.278|22.886 14.784|41.271 65.661 74.098
Ours-CFG=5| 500K |23.352 13.259|43.016 65.727 73.443|26.972 14.364|35.419 57.822 68.776|27.046 19.286|33.349 56.885 66.728

CFG=1 2 CFG=2 CFG=3 CFG=4 CFG=5

Figure S5: Results on different guidance scale. Depth and normal predictions are highly sensitive to
the CFG value, whereas other tasks are barely affected. Based on both the visualization results and
the evaluation metrics in Tables S6, S7 and S5, we set the CFG value to 2 by default.
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B.5 Flow-matching Inherently Support Few-step Inference In Perception

We conduct experiments and observe that our model inherently supports few-step inference for
perception tasks without any additional techniques, including classifier free guidance, and shows
very little performance degradation. The effectiveness of few-step acceleration varies across different
tasks. For tasks such as depth and surface normal estimation, the number of inference steps can
be reduced to as few as one with acceptable slight performance degradation. For more complex
tasks such as interactive segmentation, the model is still able to achieve comparable results using
significantly fewer steps while maintaining competitive performance, as demonstrated in Tables S8,
S9, and S10. To the best of our knowledge, this is the first time such a capability is demonstrated in
diffusion model for multi-task perception. It strongly supports the advantage of flow-matching-based
diffusion models in solving perception tasks.

Table S8: Quantitative comparison of our few-step depth estimation results.

Method Training KITTTI [33] NYUV2 [77] ScanNet [24] DIODE [108] ETH3D [95]
Samples | AbsRel] 01T | AbsRell] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T
28-step | 500K | 0.069 0.949 | 0.061 0.960 | 0.072 0.944 | 0.289 0.722 | 0.050 0.975
14-step | 500K | 0.077 0.942 | 0.063 0.958 | 0.074 0.943 | 0.272 0.718 | 0.048 0.978
7-step | 500K | 0.081 0.939 | 0.065 0.953 | 0.078 0.943 | 0.286 0.714 | 0.052 0.971
3-step | 500K | 0.083 0.938 | 0.069 0.953 | 0.077 0.940 | 0.294 0.707 | 0.063 0.967
I-step | 500K | 0.086 0.936 | 0.072 0.945 | 0.076 0.937 | 0.305 0.702 | 0.065 0.967

Table S9: Quantitative comparison of our few-step normal map results.

Training NYUv2 [77] ScanNet [24] DIODE-indoor [108]
Samples|mean| med] [11.25°7 22.5°T 30°7 [mean] med] [11.25°T 22.5°1 30°T |mean] med]| [11.25°71 22.5°T 30°T
28-step| 500K [18.338 10.106]52.850 77.079 82.903[18.842 10.266|53.610 74.895 82.864|16.297 11.117]50.548 83.325 88.774
14-step| 500K [18.631 10.463|52.837 75.288 81.682|18.337 10.579|53.223 75.533 82.631|16.131 11.463|50.849 83.391 88.829
7-step| 500K [18.335 10.492|52.771 75.443 81.936|19.008 10.363|52.628 74.886 82.055|16.835 11.330|50.039 82.443 88.218
3-step| 500K [18.067 10.417|53.046 76.500 81.673|19.337 10.329|52.223 75.731 82.081|17.205 12.047|50.046 83.010 87.531
1-step| 500K [18.094 10.382|51.839 76.575 81.371|19.386 10.395|52.139 75.492 81.879|17.004 11.849|49.808 82.972 87.582

Method

Table S10: Interactive Segmentation mloU of DICEPTION across different inference steps.

| 28-step 14-step 7-step 3-step 1-step
mloU of 23 Validation Datasets | 47.10 47.01 46.89 45.18 42.53

We believe that this is because flow matching explicitly imposes linear constraints at each intermediate
denoising step—specifically, each noisy latent is constructed as a linear interpolation between the pure
noise and the target signal. This process effectively straightens the denoising trajectory, allowing the
model to follow an approximately linear path even when using only a few inference steps. In contrast,
if the model is trained solely with one-step denoising, the intermediate steps are not constrained
and lacks this linear constraint across the trajectory, thus producing poor results as we show in
Section 4.3. In contrast, traditional ODE-based diffusion models do not impose such linear trajectory
constraints, and therefore cannot support inference with few denoising steps (such as 4 steps) after
being trained with multi-step denoising (such as 50 steps). Our additional experiment proves this. We
further experiment with PixArt-alpha [16], which uses a DiT-style architecture but adopts a standard
ODE-based scheduler. Its results significantly deteriorate when the number of inference steps is
reduced, as shown in Table S11, further supporting our analysis.

In image generation tasks, simply reducing inference steps in a flow-matching-based text-to-image
model also leads to noticeable quality degradation. This is due to the high complexity and variability
introduced by diverse text prompts. In contrast, our perception tasks eliminate the influence of textual
prompts, which we believe explains why prior works like One Diffusion [55] require 50 100 inference
steps for denoising while ours works well with just a few steps. For comparisons on inference
efficiency, we select One Diffusion as baseline and conduct a comparative study on our shared task,
depth estimation, under varying numbers of inference steps, as demonstrated in Table S12. Unlike
One Diffusion, which suffers from significant performance degradation during few-step inference
and fails to produce reasonable results in the 1-step setting, our method is capable of generating
high-quality outputs even with just a single inference step. The results demonstrate that our method
significantly outperforms One Diffusion in both efficiency and output quality.
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Table S11: Quantitative comparison of few-step depth estimation results using Pixart-alpha.

Method ‘ Training KITTI [33] NYUV2 [77] ScanNet [24] DIODE [108] ETH3D [95]
Samples | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T

20-step 500K 0.093 0.905 | 0.096 0.905 | 0.101 0.901 | 0.282 0.709 | 0.071 0.944

10-step ‘ 500K 0.146 0.872 | 0.153 0.861 | 0.159 0.844 | 0.347 0.658 | 0.119 0.895

Table S12: Quantitative comparison of One Diffusion and DICEPTION in few-step depth estimation.
We compared three experimental settings based on the number of steps: the default configuration, a
quarter of the default steps, and one single step.

KITTI [33] NYUv2 [77] ScanNet [24] DIODE [108] ETH3D [95]
AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 01T | AbsRel] 6D

Ours-28-step | 0.069 0.949 | 0.061 0.960 | 0.072 0.944 | 0.289 0.722 | 0.050 0.975
Ours-7-step | 0.081 0.939 | 0.065 0.953 | 0.078 0.943 | 0.286 0.714 | 0.052 0.971
Ours-1-step | 0.086 0.936 | 0.072 0.945 | 0.076 0.937 | 0.305 0.702 | 0.065 0.967

OD-50-step | 0.101 0.908 | 0.087 0.924 | 0.094 0.906 | 0.399 0.661 | 0.072 0.949
OD-12-step | 0.142 0.867 | 0.114 0.871 | 0.128 0.853 | 0.411 0.659 | 0.092 0.910
OD-1-step | FAIL FAIL | FAIL FAIL | FAIL FAIL | FAIL FAIL | FAIL FAIL

Method

B.6 Few-shot Finetuning Comparisons on SD3 and Ours

We conduct a comparative evaluation of few-shot tuning performance between SD3 and our DI-
CEPTION. All training data and settings are kept identical for both approaches to ensure a fair
comparison. Our findings reveal that DICEPTION not only adapts to new tasks more rapidly but
also achieves better performance post-convergence when compared to SD3. Specifically, Figure S6
(a) illustrates that after convergence, our method yields higher-quality results than SD3 on image
highlighting. Furthermore, as depicted in Figure S6 (b), DICEPTION demonstrates faster convergence
speed. These results collectively underscore the substantial potential of our model for efficient and
effective adaptation to novel tasks.

Input Ours SD3 Input Ours SD3

(a) Better Results (b) Faster Convergence

Figure S6: Image highlighting few-shot finetuning comparisons on SD3 and Ours. (a) Our DICEPTI-
ON achieves better performance. Pixel-level aligned training mitigates generated artifacts. (b) Results
of Ours and SD3 in the same training iteration. Our DICEPTION is able to adapt to new tasks faster
than SD3.

B.7 Pixel-Level Alignment Training Enhances Detail Preservation

We find that training on pixel-level aligned perception tasks endows the model with a strong ability
to preserve fine-grained details. We argue that this capability holds significant practical value. For
instance, while existing state-of-the-art method IC-Light [138] for image relighting can generate
visually impressive results, it often suffers from noticeable detail loss such as inconsistency of
the individuals’ appearance. In contrast, our approach demonstrates superior fidelity in preserving
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fine-grained details, including nuances that may not be readily perceptible to the human eye. This is
demonstrated in our qualitative comparisons in Figure S7.

It is important to emphasize that our goal is not to compare the lighting quality between methods, but
rather to highlight our model’s ability to significantly reduce generative artifacts and retain structural
details. We attribute this strength to the model’s exposure to pixel-level aligned tasks during training.
Additional comparisons with SD3 [29] in Figure S6 further support this observation. We consider this
finding highly promising and believe it holds substantial implications for detail-preserving generative
modeling and downstream applications.

Input Ours IC-Light

T

i
Wﬁ !

Figure S7: Comparisons of detail preservation, rather than lighting quality. Pixel-level aligned
training leads to improved preservation of fine-grained details. Better viewed with zoom-in. Input
images are generated and from the public BAID dataset [72].
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C Post-processing

Figure S8: Segmentation results on furry objects. Our interactive segmentation achieves matting-
level accuracy.

Algorithm 1 Keypoints Post-processing

Input: human pose RGB x, GT keypoints K4, RGB tolerance o, distance threshold £
Output extracted keypoints K,,,.cq

1: x' = ExtractRedRegions(x, (255,0,0), o)
2: X, = GetConnectedComponents( )

3: C = GetCircular(x.)

4: Kpreq = 9

5: forc € Cdo

6: k'’ = ComputeCenterCoordinates(c)

7: dmzn =0

8: fork € Ky do

9: d = ComputeEuclideanDistance(k’, k)
10: if d < d,,;n, then
11: dmin =d
12: t = GetKeypoint Type(k)
13: end if
14:  end for
15:  if dpin < € then
16: continue
17:  endif
18: Kp'red = Kp'r‘ed U {(k/, t)}
19: end for

20: return K, .4

C.1 Post-processing for Keypoints

For keypoints, since all keypoints were labeled in red during training, our first step in post-processing
is to extract all red regions from the RGB output. Next, we identify all connected components
within the extracted red regions. For each connected component, we further extract sub-regions
that approximate a circular shape. This step is crucial because, in some cases, multiple predicted
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Algorithm 2 Segmentation Post-processing

Input: RGB segmentation mask m, RGB tolerance o, area threshold &, kernel size k, connected
components number threshold 7, duplicate mask threshold

Output: extracted masks M,,.cq

1: Get the number of peaks p of the histogram of m
2: Get the number of clusters n = Mean(p)

3: Get the clustered colors by C = KMeans(m, n)
4: Mypeq = &

5: for c € Cdo

6:  if IsCloseToBlack(c, o) then

7: continue

8: endif

9:  m’ = GetMaskByRGB(m, ¢, o)

10:  m’ = BinaryFillHoles(m’)

11:  m’ = RefineWithMorphology (m’', k)

122 a = GetArea(m’)

13:  if a < ¢ then

14: continue

15:  end if

16:  y = GetConnectedComponentsNumber(m’)
17:  if y > n then

18: continue

19:  end if

20: Mp’red = Mp’red U {1’1’1/}
21: end for

22: Mjeq = RemoveDuplicateMasks(M,yeq, 8)
23: return M, cq

keypoints may overlap, requiring us to separate them as much as possible. For example, when a
person clasps his hands together, the keypoints for both hands may overlap.

Once the circular regions are identified, we compute their center points as the predicted keypoint
coordinates. Since our model does not explicitly predict the type of each keypoint (e.g., hand,
foot), we assign keypoint types by measuring the distance between the extracted keypoints and the
ground-truth (GT) keypoints. Each predicted keypoint is assigned the type of its nearest GT keypoint.
To ensure robustness, we apply a distance threshold, considering only those predicted keypoints that
are sufficiently close to a GT keypoint. Finally, all extracted keypoints that are successfully matched
to a GT keypoint form our final predicted keypoint coordinates after post-processing. The algorithm
is shown in Algorithm 1.

C.2 Post-processing for RGB Masks

For entity segmentation and instance segmentation RGB  Typle S13: When post-processing RGB
masks, we employ clustering algorithms to extract the magks, small regions and excessive num-
object masks. Specifically, we first compute the histogram  pers of objects significantly lead to per-
peaks for each of the three RGB channels and estimate the  formance degradation.

number of clusters by averaging the peak counts across

the three channels. We then use KMeans clustering to %%
group the colors and identify the clustered regions in the car :

. . . Dog | 68.9
RGB mask. For each identified cluster, we extract regions Cat 717
with RGB values close to the cluster’s centroid. This Person | 18.6
step is followed by morphological operations to refine Bird | 104
the extracted masks, such as filling holes and removing Book |10.8

small, fragmented regions. We further filter the masks by
computing their area, excluding any regions that are too
small to be meaningful.
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Additionally, we also consider the number of connected components within the extracted masks,
discarding overly fragmented results that have too many connected components. Finally, we refine
the extracted masks by calculating the Intersection over Union (IoU) between them, removing any
duplicate or overlapping masks. The algorithm is shown in Algorithm 2.

C.3 Performance Degradation of Keypoints

For human keypoints, the Performance degradation is primarily due to two factors: Firstly, we utilize
skeletal-form RGB images rather than heatmaps. While the former produces visually appealing
results, the extraction of keypoints during post-processing introduces considerable errors. Secondly,
our evaluation follows the 192x256 top-down human keypoints protocol. The original 192x256
images are resized to 768 x768 before being input into the model, resulting in extremely blurred
inputs that likely contribute to the diminished performance.

C.4 Performance Degradation of RGB Masks

We observe that while the quality of our instance segmentation visualizations is high, the average
precision (AP) for certain categories remains unsatisfactory. For example, for the Person category,
we conducted exhaustive experiments and achieved good visualization results (highlighted by the
green rectangle in Figure S9), but AP is low (as in Table S13).

We trace the root cause of metrics degradation during post-processing and find that this is particularly
due to small objects and an excessive number of objects. Specifically, during mask processing, we
filter out small noise regions. The genesis of these artifacts is predominantly attributed to subtle
colorimetric fluctuations or minor inconsistencies in pixel values within areas of a mask intended
to be uniformly colored. However, this operation also removes some positive samples, such as the
crowd and the bird highlighted in red in rows 3 to 5 in Figure S9. These samples are susceptible
to being misidentified as noise due to their diminutive size. Despite this limitation, the filtering of
these noise regions is maintained because their persistence would otherwise exert a more detrimental
impact on the quality of the final results. In our setting, filtering noise regions results in better metrics
compared to not filtering them. Additionally, when an image contains an excessive number of objects
of the same category (as in row 6 of Figure S9), post-processing may erroneously group similarly
colored but distinct objects into a single class, leading to lower metrics. Furthermore, as in Table S13,
we examine categories with fewer small objects and instances of those categories, such as bear, dog,
and cat, and observe higher AP scores. However, for categories with opposite characteristics, their
AP scores tend to be lower. This phenomenon is also observed in entity segmentation, which further
elucidates why our entity segmentation results exhibit lower scores on small objects.

Although we can optimize post-processing by adjusting hyperparameters for each image to achieve
the best results, this approach becomes impractical for large-scale evaluation, as it requires significant
manual effort. Consequently, the dependency on post-processing remains a limitation of our approach.

D Additional Results

D.1 Additional Visualizations

We present additional visualization results of our method across various tasks, as can be seen in
Figures S8, S11, S10, S15, S16, S17, S18, S19, S20, S21, S22. For interactive segmentation, we
compare our approach with SAM. These results strongly demonstrate the potential of DICEPTION.
DICEPTION is capable of achieving high-quality results, even in challenging scenarios. Furthermore,
the few-shot fine-tuning of DICEPTION, which requires minimal data and trainable parameters,
strongly demonstrates the remarkable transferability of DICEPTION to tackle new tasks. Our DICEP-
TION is capable of further refining the segmentation of fine details, such as intricate hair structures,
achieving matting-level performance.

D.2 Comparative Experiments with One Diffusion

Qualitative visual comparisons between our method and One Diffusion in Figure S14 highlight key
distinctions. In segmentation, our approach excels by simultaneously segmenting objects by semantic
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Figure S9: When post-processing RGB masks, small regions and excessive numbers of objects lead
to significant metric degradation.
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Figure S10: Additional few-shot fine-tuning results on lung segmentation and tumor segmentation.

Figure S11: Additional few-shot fine-tuning results on image highlighting.
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class and differentiating individual instances—a capability lacking in One Diffusion. Moreover, the
segmentation quality of our method is superior to that of One Diffusion, especially in object-dense
regions where the latter exhibits noticeable performance degradation.

A critical limitation of One Diffusion is its apparent inability to distinguish input images from
conditioning signals, leading to a conflation of image understanding tasks with image generation. For
example, when performing human keypoint estimation, One Diffusion may erroneously generate an
image depicting a similar pose rather than predicting the actual keypoints. Conversely, our model,
being fundamentally oriented towards image perception, not only consistently yields high-quality,
accurate results without confusion, but also performs challenging perception tasks inaccessible to
One Diffusion, such as interactive segmentation.

E Discussions and Limitations

Discussions Our method highlights the following key findings:

* The inherent prior knowledge of diffusion models is highly effective for perception tasks.
By leveraging this prior effectively, our approach enables a single model to address multiple
tasks. Notably, it achieves performance comparable to existing single-task specialized
models, even on challenging tasks such as interactive segmentation, and does so with limited
data.

* Our comprehensive experimental evaluation demonstrates that token-wise concatenation is
the most efficient and effective strategy for leveraging the prior knowledge of transformer-
based diffusion models. Furthermore, we provide evidence that the DiT architecture works
better compared to U-Net. This is attributed to the fact that transferring U-Net to multiple
perception tasks not only introduces additional parameters that can potentially disrupt the
pre-trained model’s prior but also suffers from significant information loss due to its inherent
downsampling operations.

* A modest CFG value can yield performance improvements for pixel-sensitive tasks such as
depth and normal estimation.

* We find that flow-matching models, when trained in a multi-step denoising setting, naturally
support few-step inference for perception tasks.

* Our DICEPTION exhibits a faster and more effective adaptation capability to new down-
stream tasks.

* The efficacy of our approach is demonstrated on a different DiT architecture and smaller
model, indicating its robustness.

* The model demonstrates strong capability of detail preservation after pixel-aligned training
on perception tasks.

To the best of our knowledge, we are the first to successfully leverage diffusion priors to address mul-
tiple perception tasks with a single model without exceptionally large or cherry-picking high-quality
data, achieving performance on par with specialized models, even on the challenging interactive
segmentation compared with SAM. In our view, the capabilities of our method are far from
being fully realized, and further training with larger, higher-quality datasets has the potential to
yield even more compelling results. For instance, in high-level tasks such as referring segmentation
shown in Figure S12, our model achieves results with finer details than the ground truth. This not
only demonstrates the model’s ability to benefit from related tasks but also showcases its strong
semantic understanding. Furthermore, we observe early signs of task composition in our model,
albeit with a low success rate. For instance, the model can predict the depth or normal map of an
object indicated by point inputs while generating a black mask for other regions, as illustrated in
Figure S13, though the success rate is very low. In conclusion, we believe that our work not only
presents a generalist model with a vast capacity for improvement, but also provides comprehensive
experiments and analyses that can serve as a valuable foundation for future research.

Limitations Although our DICEPTION achieves great results across multiple tasks, our model,
as a diffusion model, leads to relatively longer inference times. On one H800, it takes an average
of 0.8 seconds to process a single image. On one 4090-GPU card, inference for one image takes
approximately 2 seconds. We believe that this issue can be addressed through few-step diffusion
techniques, which we leave for future works.
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Figure S12: DICEPTION achieves finer results on referring segmentation, showing the potential of
mutual improvement between related tasks.

Figure S13: Example of task composition. Our model can isolate a point-specified object to generate
its corresponding depth map, while correctly suppressing predictions for all other regions. Although
the success rate is very low, this result still reveals a promising capability.

Furthermore, our evaluation on certain tasks such as human keypoints estimation and text-based
instance segmentation necessitates post-processing, which can introduce substantial errors. However,
unlike some contemporary diffusion-based works [55, 118] that often omit quantitative evaluation on
the task such as human keypoints estimation, we take a step further by providing evaluation metrics.
Our analysis demonstrates that lower scores on these tasks are not due to model performance but are
significantly influenced by the post-processing step. Consequently, the dependence on post-processing
for quantitative evaluation on certain tasks remains a limitation of our method. Despite the limitations,
we believe that DICEPTION is a valuable exploration for diffusion-based generalist visual perception
foundation models.
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Figure S14: Our segmentation not only separates semantically identical objects but also distinguishes
different instances of the same category, achieving higher segmentation quality. Moreover, One
Diffusion tends to generate an image similar to the input when performing image understanding tasks,
as red-highlighted in the figure.
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Figure S15: Additional depth estimation visualizations.
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Figure S16: Additional normal visualizations.
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Figure S17: Additional entity segmentation visualizations.
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Figure S18: Additional interactive segmentation visualizations.
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Figure S19: Comparison of the segmentation results between DICEPTION and SAM-vit-h with
1-point input.
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Figure S20: Comparison of the segmentation results between DICEPTION and SAM-vit-h with
5-point input.
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Figure S21: Additional pose estimation visualizations.
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Figure S22: Additional text-based instance segmentation visualizations.
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