
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STATISTICAL GUARANTEES FOR OFFLINE DOMAIN
RANDOMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement-learning (RL) agents often struggle when deployed from simulation
to the real-world. A dominant strategy for reducing the sim-to-real gap is domain
randomization (DR) which trains the policy across many simulators produced
by sampling dynamics parameters, but standard DR ignores offline data already
available from the real system. We study offline domain randomization (ODR),
which first fits a distribution over simulator parameters to an offline dataset. While
a growing body of empirical work reports substantial gains with algorithms such as
DROPO (Tiboni et al., 2023), the theoretical foundations of ODR remain largely
unexplored. In this work, we cast ODR as a maximum-likelihood estimation over a
parametric simulator family and provide statistical guarantees: under mild regular-
ity and identifiability conditions, the estimator is weakly consistent (it converges in
probability to the true dynamics as data grows), and it becomes strongly consistent
(i.e., it converges almost surely to the true dynamics) when an additional uniform
Lipschitz continuity assumption holds. We examine the practicality of these as-
sumptions and outline relaxations that justify ODR’s applicability across a broader
range of settings. Taken together, our results place ODR on a principled footing
and clarify when offline data can soundly guide the choice of a randomization
distribution for downstream offline RL.

1 INTRODUCTION

In recent years, RL has achieved many empirical successes, attaining human-level performance
in tasks such as games (Mnih et al., 2013; Silver et al., 2016), robotics (Kalashnikov et al., 2018;
Schulman et al., 2015), and recommender systems (Afsar et al., 2021; Chen et al., 2021). Yet, RL
algorithms often require vast amounts of training data to learn effective policies, which severely
limits their applicability in real world settings where data collection is expensive, time-consuming, or
unsafe (Levine et al., 2020; Kiran et al., 2020).

Sim-to-real transfer tackles this problem by learning in simulation and transferring the resulting
policy to the real world (Sadeghi & Levine, 2016; Tan et al., 2018; Zhao et al., 2020). However,
although simulation provides fast and safe data collection, inevitable discrepancies between the
simulated dynamics and the real world, commonly termed the sim-to-real gap, typically induce a
drop in performance upon deployment.

One of the most widely-used approaches to bridge this gap is domain randomization (DR). Rather
than training on a single fixed simulator, DR defines a family of simulators parameterized by physical
factors (e.g., masses, friction coefficients, sensor noise) and at the start of each episode randomly
samples one instance from this family for training. DR has enabled zero-shot transfer in robotic
control (Tobin et al., 2017; Sadeghi & Levine, 2016), dexterous manipulation (OpenAI et al., 2018)
and agile locomotion (Peng et al., 2017).

Despite this empirical track record, the choice of how to randomize is a fundamental challenge. In
the original form of DR (Tobin et al., 2017; Sadeghi & Levine, 2016), broad uniform ranges that look
reasonable for every parameter are chosen. While recent theoretical work (Chen et al., 2022) shows
that such uniform DR (UDR) can indeed bound the sim-to-real gap, the bound unfavorably scales in
O
(
N3 log(N)

)
with respect to the number of candidate simulators, in part because UDR ignores

any data already available from the target system.
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In contrast, Offline Domain Randomization exploits a static dataset from the real environment before
policy training to fit a sampling distribution that concentrates on plausible dynamics while remaining
stochastic. Empirically, ODR variants such as DROID (Tsai et al., 2021) or DROPO (Tiboni et al.,
2023) recover parameter distributions that explain the data and yield stronger zero-shot transfer than
hand-tuned UDR. Yet, to the best of our knowledge, ODR lacks a principled foundation: we do not
know (i) whether the fitted distribution converges to the real dynamics as data grows, nor (ii) how
much it actually reduces the sim-to-real gap compared with UDR.

Our Contributions:

• Weak consistency (Section 4). We formalize ODR as maximum-likelihood estimation
over a parametric simulator family and prove weak consistency: under mild regularity,
positivity, and identifiability assumptions, empirical maximizers converge in probability to
the population maximizers.

• Strong consistency (Section 5). Adding a single uniform Lipschitz continuity assumption on
the likelihood, we upgrade convergence to strong consistency: the ODR estimator converges
almost surely to the true parameter when it is uniquely identified.

• Assumptions in practice: discussion and relaxations (Section 6). We analyze when
the assumptions hold and provide drop-in relaxations and diagnostics: replacing i.i.d. by
strict stationarity and ergodicity for the, weakening mixture positivity via a logarithmic
tail condition, and giving simple sufficient conditions that imply the uniform Lipschitz
requirement.

2 RELATED WORKS

Sim-to-real transfer The sim-to-real gap has led to extensive research in sim-to-real transfer. Early
works exploited system identification or progressive networks to adapt controllers online (Floreano
et al., 2008; Kober et al., 2013), while more recent efforts have focused on purely offline training in
high-fidelity simulators. Although zero-shot transfer has been demonstrated for specific settings such
as legged locomotion (Peng et al., 2017), dexterous manipulation (Chebotar et al., 2018; OpenAI
et al., 2018) and visuomotor control (Rusu et al., 2016) a noticeable performance gap persists in
unstructured environments. Similar ideas have been explored in autonomous driving (Pouyanfar et al.,
2019; Niu et al., 2021).

Domain randomization Domain randomization (DR) varies environment parameters at every
training episode with the goal of producing policies that generalize across the induced simulator
family. Vision-based DR first showed zero-shot transfer for quadrotor flight from purely synthetic
images (Sadeghi & Levine, 2016), and dynamics randomization extended this success to legged robots
and manipulation (OpenAI et al., 2018). To avoid manual tuning of randomization ranges, online
methods adapt the DR distribution using real-world feedback. Ensemble-based robust optimization
and Bayesian optimization techniques refine parameters via real rollouts (Rajeswaran et al., 2016;
Muratore et al., 2020), while meta RL further accelerates adaptation (Clavera et al., 2018; Arndt
et al., 2019). However, these require repeated—and potentially unsafe—hardware interactions during
training.

Offline domain randomization A growing line of work aims to find the best strategy to perform
domain randomization from a fixed offline dataset, obviating any further real-world trials. DROID
(Tsai et al., 2021) tunes simulator parameters using CMA-ES (Hansen & Ostermeier, 2001; Hansen,
2006) with the L2 distance between a single human demonstration and its simulated counterpart as
objective function. BayesSim (Ramos et al., 2019) trains a conditional density estimator to predict a
posterior over simulator parameters given offline off-policy rollouts. Most recently, DROPO (Tiboni
et al., 2023) introduces a likelihood-based framework that fits both the mean and covariance of a
Gaussian parameter distribution by maximizing the log-likelihood of the offline data under a mixture
simulator. This approach recovers rich uncertainty estimates, handles non-differentiable black-box
simulators via gradient-free optimizers, and outperforms DROID, BayesSim and uniform DR in
zero-shot transfer on standard benchmarks without any on-policy real-world interaction.
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Theoretical analyses LetM be the number of candidate simulators andH the horizon length. Chen
et al. (2022) modeled uniform DR as a latent MDP and proved that the performance gap between
the optimal policy in the true system and the policy trained with DR scales as O(M3 log(MH))1

in the case where the simulator class is finite and separated and O(
√
M3H log(MH)) in the finite

non-separated simulator class case. Other works have studied the information-theoretical limit of
sim-to-real transfer (Jiang, 2018), PAC-style guarantees via approximate simulators (Feng et al.,
2019) and generalization in rich-observation MDPs (Zhong et al., 2019; Krishnamurthy et al., 2016).
But none address the statistical benefits of offline DR. Our work bridges this gap by providing the first
consistency proofs and finite-sample gap bounds for offline DR, thereby unifying empirical successes
and theoretical understanding in a single framework.

3 PROBLEM SETUP AND ODR FORMULATION

Episodic MDPs We consider the episodic RL setting where each MDP corresponds to M =
(S,A, PM, R,H, s1). S is the set of states, A is the set of actions, PM : S × A −→ ∆(A) is the
transition probability matrix, R : S ×A −→ [0, 1] is the reward function, H is the number of steps of
each episode, and s1 is the initial state at step h = 1; we assume w.l.o.g. that the agent starts from the
same state in each episode.

At step h ∈ [H], the agent observes the current state sh ∈ S, takes action ah ∈ A, receives reward
R(sh, ah), and moves to state sh+1 with probability PM(sh+1 | sh, ah). The episode ends when
state sH+1 is reached.

A policy π is a sequence {πh}Hh=1 where each πh maps histories trajh = {(s1, a1, . . . , sh)} to
action distributions. Denote by Π the set of all such history-dependent policies. We denote
by V πM,h : S −→ R the value function at step h under policy π on MDP M, i.e., V πM,h(s) :=

EM,π

[∑H
t=hR(st, at)

∣∣∣ sh = s
]

2. We use π⋆M to denote the optimal policy for the MDP M, and
V ⋆M,h to denote the optimal value under the optimal policy at step h.

We fix a simulator class U = {Mξ : ξ ∈ Ξ ⊂ Rd} of candidate MDPs that share (S,A, R,H, s1)
but can differ in PM via the physical parameter vector ξ. The unknown real-world environment is
M⋆ = Mξ⋆ ∈ U . We assume full observability and that the learner can interact freely with any
M ∈ U in simulation, but never observes ξ⋆ directly.

Sim-to-real Transfer Problem Given access to the simulators in U , the goal is to output a policy π
that attains high return when executed in the real-world MDP M⋆. We quantify performance via the
sim-to-real gap which is defined as the difference between the value of the learned policy π during
the simulation phase (or training phase), and the value of an optimal policy for the real world, i.e.

Gap(π) := V ⋆M⋆,1(s1)− V πM⋆,1(s1).

Domain Randomization Domain randomization specifies a prior distribution ν over parameters Ξ
and thus over U . Sampling ξ ∼ ν at the start of every episode induces a latent MDP (LMDP) whose
optimal Bayes policy is

π⋆DR := argmax
π∈Π

Eξ∼ν
[
V πMξ,1

(s1)
]
.

In practice we approximate π⋆DR with any RL algorithm that trains in the simulator while resampling
ξ∼ν each episode.

Offline Domain Randomization ODR assumes an offline data set D = {(si, ai, s′i)}Ni=1 of i.i.d.
transitions collected in the real system M⋆ under some unknown behavior policy. The aim is to
estimate a distribution p⋆ over Ξ that explains the data and can later be used for policy training. We
restrict pϕ(ξ) = N (µ,Σ) and learn ϕ by maximum likelihood:

1The original paper derived a looser bound, see Section A.1 for a tighter derivation.
2Since the policy π is allowed to be non Markovian, this quantity can be defined using the history Hh =

{s1, . . . , sh} as follows: EM,π

[∑H
t=hR(st, at)

∣∣∣ sh = s
]
= EHh|sh=sEM,π

[∑H
t=hR(st, at)

∣∣∣Hh

]
.
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p⋆(ξ) = argmax
pϕ(ξ)

∏
(st,at,st+1)∈D

Eξ∼pϕ(ξ) [Pξ(st+1 | st, at)] (1)

= argmax
pϕ(ξ)

∑
(st,at,st+1)∈D

log
[
Eξ∼pϕ(ξ) [Pξ(st+1 | st, at)]

]
. (2)

We justify that this formulation is well-motivated in wSection A.2.

Finally, we train a policy with the learned distribution:

π⋆ODR := argmax
π∈Π

Eξ∼p⋆
[
V πMξ,1

(s1)
]
,

expecting π⋆ODR to transfer with lower gap thanks to the data-informed parameter distribution.

4 WEAK CONSISTENCY OF THE ODR ESTIMATOR

4.1 TECHNICAL ASSUMPTIONS

Before stating the theoretical guarantees for ODR, we introduce some mild assumptions of regularity
and identifiability that will be useful for our proofs.

The following assumption assures that Pξ is regular in the following sense.

Assumption 1 (Simulator Regularity). There exists a σ-finite measure λ on S and a constantK <∞
such that for all ξ ∈ Ξ and (s, a, s′)

Pξ(ds
′ | s, a) = pξ(s

′ | s, a)λ(ds′), 0 ≤ pξ(s
′ | s, a) ≤ K, (3)

and ξ 7→ pξ(s
′ | s, a) is continuous.

Notice that when S is finite, and λ is the counting measure on S, then the first assumption clearly
holds with K = 1 because pξ(s′ | s, a) = Pξ({s′} | s, a) ≤ 1. In this case, it suffices for
the mass probability to depend continuously on ξ in order to verify Assumption 1. Another case
where this continuity holds is the Gaussian case pξ(s′|s, a) = N (s′;A(ξ)s+B(ξ)a,C(ξ)), where
A(ξ), B(ξ), C(ξ) are matrices that vary continuously in ξ.

Assumption 2 (Parameter-Space Compactness). We fit ϕ = (µ,Σ) in Φ = {µ ∈ Ξ̃ : 0 ⪯ Σ ⪯
σmaxI} where Ξ̃ is compact, hence Φ is compact in the product topology.

This is a natural assumption, since in practice one always has prior bounds on each physical parameter,
yielding a known compact search region.

Furthermore, we assume that all the transitions that appear in our dataset correspond to positive
mixture probability. More formally,

Assumption 3 (Mixture Positivity). There exists some constant c > 0 such that the induced kernel

qϕ(s
′ | s, a) := Eξ∼Pϕ(ξ) [pξ(s

′ | s, a)] =
∫
pξ(s

′ | s, a)Pϕ(dξ), (4)

satisfies qϕ(s′ | s, a) ≥ c > 0 for every (s, a, s′) ∈ D and every ϕ ∈ Φ.

This guarantees that every transition in the dataset lies within the support of the simulator under the
learned domain randomization distribution, so the log-likelihood is always well defined.

Furthermore, we assume that the only mixture distribution which exactly recovers the true transition
kernel is the degenerate distribution concentrated at the true parameters ξ⋆.

Assumption 4 (Identifiability). Let µ be the dataset’s distribution. If for µ-almost every (s, a)
qϕ(· | s, a) = pξ⋆(· | s, a), then ϕ = (ξ⋆, 0).

4
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4.2 NOTATION FOR ODR

Throughout this work, we use a capital letter, P , to denote a probability distribution, and the
corresponding lowercase letter, p, to denote its probability density (or mass) function.

We define the empirical and population log-likelihoods by

LN (ϕ) :=
1

N

N∑
i=1

a
(
Xi, ϕ

)
, L(ϕ) := EX∼Pξ⋆

[
a(X,ϕ)

]
, (5)

where Xi = (si, ai, s
′
i) is the i-th transition in D, and X = (s, a, s′) is a generic transition. The

function a is defined by

a(x, ϕ) := log qϕ(s
′ | s, a) = log

∫
ξ

pξ(s
′ | s, a)pϕ(ξ)dξ. (6)

4.3 MAIN THEOREM

The first lemma proves the uniqueness of the maximizer of the population log-likelihood L. A
detailed proof of this lemma can be found in Section B.
Lemma 1 (Uniqueness of the Population Maximizer). Under assumptions 1, 3 and 4, the population
log-likelihood

L(ϕ) = E(s,a,s′)∼Pξ⋆

[
log qϕ(s

′ | s, a)
]

where qϕ(s′ | s, a) =
∫
Pξ(s

′ | s, a)Pϕ(dξ), has the unique maximizer ϕ⋆ = (µ⋆,Σ⋆) =
(
ξ⋆, 0

)
.

We now state our first consistency result for ODR.
Theorem 1 (Weak Consistency of ODR). Under Assumptions 1, 2, 3 and 4, any measurable
maximizer ϕ̂N ∈ argmax

ϕ∈Φ
LN (ϕ) satisfies ϕ̂N

P−−−−→
N−→∞

ϕ⋆.

Theorem 1 guarantees that with a sufficiently large offline dataset, ODR recovers a distribution
arbitrarily close to the true parameter ξ⋆.

The following lemma is particularly strong: it establishes uniform convergence in probability of LN .
Lemma 2. The function ϕ 7→ L(ϕ) is uniformly continuous on Φ, and furthermore

sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| P−−−−→
N→∞

0. (7)

The proof of this lemma relies on a uniform law of large numbers (ULLN) -in particular the ULLN for
Glivenko-Cantelli classes from Newey & McFadden (1994)- and is deferred to Section B. In contrast,
the ordinary law of large numbers only guarantees that for each fixed ϕ one has LN (ϕ) → L(ϕ)
in probability, i.e., |LN (ϕ)− L(ϕ)| → 0 for that particular ϕ. This pointwise convergence does
not imply that supϕ∈Φ |LN (ϕ)− L(ϕ)| → 0 , which is exactly what the ULLN provides. Uniform
convergence over all ϕ ∈ Φ is crucial to control the behavior of the empirical maximizers and hence
to establish the consistency of our estimator.

The following lemma formalizes a uniform separation property: any parameter ϕ lying outside an
ϵ-neighborhood of the true maximizer ϕ⋆ must have its population log-likelihood at least η > 0 below
L(ϕ⋆).
Lemma 3. Let ϕ⋆ be the unique maximizer of L. We have

∀ϵ > 0,∃η(ϵ) > 0,∀ϕ ∈ Φ, ∥ϕ⋆ − ϕ∥ ≥ ϵ =⇒ L(ϕ⋆)− L(ϕ) ≥ η(ϵ) > 0. (8)

The proof of Lemma 3 is deferred to Section B.

Proof of Theorem 1. We consider a sequence of measurable maximizers ϕ̂N ∈ argmaxϕ∈Φ LN (ϕ).
Let ϵ > 0 be a fixed positive real number. Our goal is to prove that

P
(∥∥∥ϕ̂N − ϕ⋆

∥∥∥ ≥ ϵ
)
−−−−→
N→∞

0. (9)

5
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Using Lemma 3, we conclude that there exists some η > 0 such that ∀ϕ ∈ Φ if ∥ϕ⋆ − ϕ∥ ≥ ϵ then
L(ϕ⋆)− L(ϕ) ≥ η > 0. Now, let Eη be the event

Eη = {sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| < η/3} (10)

then under Eη , if ∥ϕ⋆ − ϕ∥ ≥ ϵ we have

LN (ϕ⋆) = LN (ϕ⋆)− L(ϕ⋆) + L(ϕ⋆) ≥ − |LN (ϕ⋆)− L(ϕ⋆)|+ L(ϕ⋆) ≥ −η/3 + L(ϕ⋆), (11)

since under Eη , − |LN (ϕ)− L(ϕ)| ≥ −η/3, similarly

L(ϕ⋆) ≥ L(ϕ) + η = L(ϕ)− LN (ϕ) + LN (ϕ) + η ≥ − |LN (ϕ)− L(ϕ)|+ LN (ϕ) + η. (12)

and combining these two inequalities gives LN (ϕ⋆) ≥ LN (ϕ) + η/3. This proves that, under Eη,
ϕ̂N ∈ B(ϕ⋆, ϵ) := {ϕ ∈ Φ : ∥ϕ− ϕ⋆∥ < ϵ} thus {∥ϕ̂N − ϕ⋆∥ ≥ ϵ} ⊂ Ecη, which yields

P (∥ϕ̂N − ϕ⋆∥ ≥ ϵ) ≤ P
(
sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| ≥ η/3
)

By Lemma 2−−−−−−→
n→∞

0. (13)

The result is a weak consistency statement (ϕ̂N → ϕ⋆ in probability). In Section 5 we strengthen this
to almost-sure convergence by adding a Lipschitz regularity assumption.

5 STRONG CONSISTENCY UNDER UNIFORM LIPSCHITZ CONDITIONS

While Theorem 1 guarantees that the ODR estimate converges in probability to the true parameter
distribution, in many practical settings one desires a stronger, almost sure guarantee. Intuitively, strong
consistency asserts that, with probability one, the estimated distribution will converge exactly to the
true one as more offline data is observed. In this section we show that, under an additional Lipschitz
continuity assumption on the log-likelihood function, ODR enjoys this almost-sure convergence
property.

5.1 ADDIOTIONAL ASSUMPTION

The key extra ingredient is a uniform control over how rapidly the single step log-likelihood a
(
x, ϕ

)
can change as we vary the distributional parameter ϕ = (µ,Σ). Formally:
Assumption 5 (Uniform Lipschitz Continuity). There exists a constant L <∞ such that for every
transition x = (s, a, s′) and all ϕ, ψ ∈ Φ, we have

∣∣a(x, ϕ)− a(x, ψ)
∣∣ ≤ L

∥∥ϕ− ψ
∥∥
2
.

This condition ensures that the family {a(·, ϕ) : ϕ ∈ Φ} is equi-Lipschitz, which -together with
compactness of Φ- yields a uniform strong law of large numbers. In turn, this uniform convergence
of the empirical log-likelihood to its population counterpart underpins the almost sure convergence of
the maximizers.

5.2 MAIN RESULT

We can now state our strong consistency result:

Theorem 2 (Strong Consistency of ODR). Under Assumptions 1 to 5, let ϕ̂N ∈ argmaxϕ∈Φ LN (ϕ)
be any measurable maximizer of the empirical log-likelihood, then

ϕ̂N
a.s.−−−−→

N→∞
ϕ⋆ = (ξ⋆, 0), (14)

i.e., almost surely the estimated distribution collapses exactly onto the true simulator parameters.

The distinction between convergence in probability and almost surely is subtle but meaningful:
almost-sure consistency implies that, except on a set of histories of measure zero, as soon as enough
data is collected the optimizer will never stray from the true maximum again. In contrast, convergence
in probability only assures that large deviations become increasingly unlikely.

The heart of the proof is the following uniform strong law, which follows from empirical process
arguments once we have the Lipschitz control:

6
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Lemma 4 (Uniform Strong Law). Under Assumptions 1 to 5, the empirical and population log-
likelihoods satisfy supϕ∈Φ

∣∣LN (ϕ)− L(ϕ)
∣∣ a.s.−−−−→

N→∞
0.

Lemma 4 tells us that with probability one the worst-case difference between the finite-sample
objective and its ideal limit vanishes. Once this uniform convergence is in hand, classical arguments
on continuity and compactness show that the maximizers converge almost surely.

Proof (Sketch). We first show supϕ∈Φ |LN (ϕ) − L(ϕ)| a.s.−−−−→
N→∞

0 by verifying for each ϵ > 0

that
∑
N P (supϕ∈Φ |LN (ϕ) − L(ϕ)| > 2ϵ) < ∞. By compactness of Φ there is a finite ϵ/L-net

{ϕ1, . . . , ϕK} so that Lipschitz continuity gives |LN (ϕ)−LN (ϕi)|+ |L(ϕ)−L(ϕi)| ≤ ϵ whenever
∥ϕ− ϕi∥ ≤ ϵ/L. Hence{

sup
ϕ

|LN (ϕ)− L(ϕ)| > 2ϵ
}
⊂

K⋃
i=1

{|LN (ϕi)− L(ϕi)| > ϵ} , (15)

and Hoeffding’s inequality yields

P (|LN (ϕi)− L(ϕi)| > ϵ) ≤ 2 exp

(
− Nϵ2

2M̃2

)
, (16)

where M̃ := max {|logK| , |log c|}. So P (supϕ |LN (ϕ)−L(ϕ)| > 2ϵ) ≤ 2K exp(−cNϵ2), which
is summable in N . Borel-Cantelli lemma then gives uniform almost sure convergence. Finally, on the
event of uniform convergence one repeats the identification neighborhood argument of Theorem 1 to
conclude ϕ̂N → ϕ⋆ almost surely.

Full details of the proof are deferred to Section C, but the key takeaway is that the Lipschitz assumption
upgrades our earlier in probability consistency to the far stronger almost sure statement, giving robust
guarantees for ODR even in worst case data realizations.

5.3 A NOTION OF α-INFORMATIVENESS

The strong consistency yields the following.

Lemma 5. Let ϵ > 0. If ϕ̂N = (µN ,ΣN )
a.s.−−→ (ξ⋆, 0) then almost surely there is N0 so that for all

N ≥ N0, Pϕ̂N

(
B(ξ⋆, ϵ)

)
> 1

2 .

Proof of Lemma 5. Fix ϵ > 0 and let ZN ∼ N (µN ,ΣN ). Then P
(
∥ZN − ξ⋆∥ ≥ ϵ

)
≤ P

(
∥ZN −

µN∥ ≥ ϵ
2

)
+P

(
∥µN−ξ⋆∥ ≥ ϵ

2

)
. By Chebyshev’s inequality, P

(
∥ZN−µN∥ ≥ ϵ

2

)
≤ E∥ZN−µN∥2

(ϵ/2)2 =
tr(ΣN )
(ϵ/2)2 . Hence Pϕ̂N

(
B(ξ⋆, ϵ)

)
= 1− P

(
∥ZN − ξ⋆∥ ≥ ϵ

)
≥ 1− 4 tr(ΣN )

ϵ2 − P (∥µN − ξ⋆∥ ≥ ϵ/2).

As (µN ,ΣN ) → (ξ⋆, 0) a.s., we have ∥µN − ξ⋆∥ → 0 and tr(ΣN ) → 0, so the right hand side tends
to 1 almost surely. Hence Pϕ̂N

(
B(ξ⋆, ϵ)

)
→ 1 almost surely.

The lemma states that when the estimator (µN ,ΣN ) converges almost surely to the true mean with
vanishing covariance, the Gaussian distribution fitted by ODR eventually assigns more than half
of its probability mass to any fixed ϵ–ball around ξ⋆. In other words, ODR is so informative that
the learned randomization concentrates near the real world. This observation motivates a general,
model-agnostic notion of “informativeness” for ODR, applicable beyond the Gaussian setting.

Definition 1 (α, ϵ-Informativeness of an ODR Algorithm A). Let α ∈ (0, 1) and ϵ > 0, an algorithm
A is α, ϵ-informative if there exists almost surely N0 ≥ 1 such that for all N ≥ N0, running A on
any collection D = {(si, ai, s′i)}Ni=1 of i.i.d. transitions (from the real system) produces an ODR
distribution ϕ̂N such that

Pϕ̂N

(
B(ξ⋆, ϵ)

)
≥ α.

We say algorithm A is α-informative if A is α, ϵ-informative for any ϵ > 0.
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Under this language, Lemma 5 states that the Gaussian ODR procedure from Section 3 is α-
informative for every α < 1. When the simulator class Ξ is finite, α-informativeness is equivalent to
the almost-sure existence of an index N0 such that, for all N ≥ N0, the fitted distribution assigns at
least α mass to the singleton {ξ⋆}, that is, Pϕ̂N

(ξ⋆) ≥ α.

6 ASSUMPTIONS: PRACTICALITY, VIOLATIONS, AND RELAXATIONS

6.1 THE I.I.D. ASSUMPTION

The i.i.d. assumption on the offline dataset D holds whenever the offline dataset is collected using
a fixed, stationary behavior policy π(· | s). This assumption is stronger than needed for our weak
consistency result: we invoke it only to apply a uniform law of large numbers at the end of the proof
of Lemma 2. As noted after Lemma 2.4 in Newey & McFadden (1994), the same conclusion holds
(even for dependent data) for ergodic and strictly stationary sequences {Xi = (si, ai, s

′
i)} which

means that the joint distribution of the vector (Xi, . . . , Xi+m) does not depend on i for any m. This
is much weaker than the i.i.d. assumption and is satisfied whenever the offline dataset is collected by
a fixed behavior policy (not necessarily a stationary policy). In practice, weak consistency should
therefore hold broadly.

6.2 THE MIXTURE POSITIVITY ASSUMPTION

Assumption 3 is a strong requirement: it holds if and only if infx infϕ qϕ(x) > 0, i.e., the density is
uniformly bounded away from zero over both x and ϕ. This excludes common light-tailed families
(e.g., Gaussian-like), for which infx qϕ(x) = 0. For weak consistency, however, Assumption 3 can
be relaxed:
Lemma 6 (Relaxation of Assumption 3). Weak consistency of ODR still holds if Assumption 3 is
replaced by the following tail condition: there exists epsilon0 > 0 such that for all epsilon ∈ (0, ϵ0],

P

(
inf
ϕ
qϕ(X) ≤ ϵ

)
≤ 1

log(1/ϵ)2
. (17)

This assumption is strictly weaker than uniform positivity. The key point is that, to apply the uniform
law of large numbers from Newey & McFadden (1994) in the weak-consistency proof, it suffices
to have an integrable envelope d(x) with a(x, ϕ) ≤ d(x) for all ϕ, rather than a uniform bound in
(x, ϕ), the above tail control yields such an envelope. The proof is deferred to Section D.1.

6.3 THE UNIFORM LIPSCHITZ CONTINUITY

Assumption Assumption 5 is not immediately interpretable. We give a simple sufficient condition
under which it holds:
Lemma 7 (Sufficient Condition for the Uniform Lipschitz Continuity Assumption). Suppose the
following holds for every x = (s, a, s′)

1. The function ξ 7→ pξ(s
′ | s, a) is twice continuously differentiable (of class C2),

2. There exists two constants G1 > 0 and G2 > 0 such that |∇ξpξ(s
′ | s, a)| ≤ G1 and

|∇2
ξpξ(s

′ | s, a)| ≤ G2 ,

then Assumption 5 holds with L =
G1 +G2/2

c
.

A complete proof appears in Section D.2. This sufficient condition is easy to interpret because it
depends only on the simulator’s transition kernel pξ . In practice, it is satisfied whenever the simulators
are governed by smooth physics.

6.4 THE IDENTIFIABILITY ASSUMPTION

Assumption 3 is a coverage condition on the dataset: it requires that any mixing Gaussian distribution
that reproduces the transition kernel on the state–action pairs observed in D must equal the degenerate

8
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Dirac mass at the true parameter. Intuitively, the dataset must visit state–action pairs that are
informative about ξ. This is information-theoretically minimal: no method can distinguish parameters
that are observationally identical on supp(µ).

In the case of partial coverage, we naturally define the identified set under coverage µ as follows:

Q⋆
µ := {ϕ ∈ Φ : qϕ(· | s, a) = pξ⋆(· | s, a) for µ− a.e. (s, a)} . (18)

It follows from this definition and the proof of Lemma 1 that:
Lemma 8. The following holds:

Q⋆
µ = argmax

ϕ
L(ϕ). (19)

Using this notion of identified set, we can generalize Theorem 1 when we relax Assumption 4 as
follows:
Theorem 3. Under Assumptions 1, 2 and 3, the following holds, Any measurable maximizer
ϕ̂N ∈ argmax

ϕ∈Φ
LN (ϕ) satisfies dist(ϕ̂N ,Q⋆

µ)
P−−−−→

N−→∞
ϕ⋆ 3.

This theorem states that under partial coverage, our estimator does not select a single parameter
but converges to an identified set of parameters that are observationally indistinguishable on the
state–action pairs visited by the data. The proof is deferred to Section D.3.

Without any additional assumptions, the only structural result that we can derive on the identified set
is:
Lemma 9 (Upper Hemicontinuity of Q⋆

µ). Under Assumptions 1, 2 and 3 The identified set Q⋆
µ is

non-empty and compact and and the correspondence µ 7→ Q⋆
µ is upper hemicontinuous4 with respect

to total variation.

The proof of this lemma uses Berge’s Maximum Theorem and is deferred to Section D.3.

In short, this lemma says if we perturb the dataset’s coverage only slightly (in total-variation distance),
the set of maximizers cannot “jump” to a faraway region: any limit of maximizers for the perturbed
coverages remains a maximizer at the limit coverage (upper hemicontinuity). Intuitively, modestly
adding or reweighting offline data will not create spurious, distant optima, it keeps the solution set
nearby, and, as coverage includes more informative state–action pairs, typically makes it tighter.

The main limitation is that, without additional assumptions, we cannot provide a quantitative radius
for this set or a Lipschitz-type bound on how much it can move when coverage changes.

7 CONCLUSION

In this paper, we present a rigorous framework for ODR, bridging the gap between empirical success
and theoretical understanding in sim-to-real transfer. By casting ODR as maximum likelihood es-
timation over a parametric family of simulator distributions, we proved that, under mild regularity
conditions, the learned distribution is weakly consistent, concentrating on the true dynamics as the
offline dataset grows. With the addition of a uniform Lipschitz continuity assumption, we further
established strong consistency. Beyond these core results, we scrutinized the practicality of the
assumptions and provided diagnostics and relaxations—replacing i.i.d. with stationarity/ergodicity
for the ULLN, weakening mixture positivity via a logarithmic tail condition, and giving checkable
smoothness criteria that imply the uniform Lipschitz requirement—thereby justifying ODR’s applica-
bility across a broader range of settings. By demonstrating that offline logs are not merely passive
datasets but a powerful tool for principled domain randomization, we hope our formulation and
analysis can provide insight that paves the way for safer, more data-efficient sim-to-real pipelines in
robotics, autonomous vehicles, and beyond.

3where dist is the distance to a set defined by dist(ϕ,Q) := infψ∈Q ∥ϕ− ψ∥.
4A set-valued map F is upper hemicontinuous at x0 if, whenever xn→ x0 and yn ∈ F (xn) with yn → y,

then y ∈ F (x0). Equivalently: for every open U with F (x0) ⊆ U , there exists a neighborhood V of x0 such
that F (x) ⊆ U for all x ∈ V .

9
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A ADDITIONAL PRELIMINARIES

A.1 REFINED ANALYSIS OF THE UNIFORM DR SIM-TO-REAL GAP

In this section, we tighten the worst-case sim-to-real gap bound in the finite, δ-separable setting
originally proved by Chen et al. (2022).

In the proof of Lemma 5 of the paper, Inequality (47) yields with probability at least 1− δ0,

∑
s′∈H

ln

(
PM⋆(s′ | s0, a0)
PM1

(s′ | s0, a0)

)
≥ n0δ

2

2
− log(1/α)

√
2n0 log (2/δ0)−

√
n0 log (2/δ0) /c− 2αSn0.

(20)

The objective is to find a setting of parameters that guarantee with probability at least 1− 1
MH ,

∑
s′∈H

ln

(
PM⋆(s′ | s0, a0)
PM1

(s′ | s0, a0)

)
> 0.

It is sufficient to have the right term positive in Equation (20), i.e.,

n0δ
2

2
− log(1/α)

√
2n0 log (2/δ0)−

√
n0 log (2/δ0) /c− 2αSn0 > 0. (21)
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Setting α = δ2

8S , δ0 = 1
MH (the same values as in the paper), this term becomes

n0δ
2

2
− log(1/α)

√
2n0 log (2/δ0)−

√
n0 log (2/δ0) /c− 2αSn0 (22)

=
n0δ

2

2
− log(

8S

δ2
)
√

2n0 log (2MH)−
√
n0 log (2MH) /c− δ2

4
n0 (23)

=
n0δ

2

4
− log(

8S

δ2
)
√

2n0 log (2MH)−
√
n0 log (2MH) /c (24)

=
√
n0
δ2

4

[
√
n0 −

4

δ2

(
log(

8S

δ2
)
√
2 log (2MH)−

√
log (2MH) /c

)]
(25)

hence the condition 21 becomes equivalent to

√
n0 >

4

δ2

√
log(2MH)

(√
2 log

(
8S

δ2

)
+

1√
c

)
, (26)

or, equivalently,

n0 >
16

δ4
log (2MH)

(√
2 log

(
8S

δ2

)
+

1√
c

)2

. (27)

Thus, there exists a valid setting that satisfies condition 21 which can be expressed as

α =
δ2

8S
, δ0 =

1

MH
, n0 =

c0 log(MH) log2(S/δ2)

δ4
, (28)

for some constant c0 > 0 sufficiently large.

With this new setting, the result of the Lemma 7 of the paper becomes

E[h0] ≤ O

(
DM2 log(MH) log2(S/δ2)

δ4

)
. (29)

The proof of Theorem 5 of the paper is not affected by the new expression of n0 and gives

V ⋆M⋆,1(s1)− V π̂M⋆,1(s1) ≤ O(E[h0] +D) = O

(
DM2 log(MH) log2(S/δ2)

δ4

)
. (30)

Combining this result with Lemma 1 of the paper leads to

Gap(π⋆DR,U) = O

(
DM3 log(MH) log2(S/δ2)

δ4

)
. (31)

This shows that in the regime where H and M are relatively large, the O(M3 log3(MH)) bound of
Chen et al. (2022) can be tightened to O(M3 log(MH)).

A.2 INSIGHTS INTO THE ODR OBJECTIVE

In this section, we explain why the formal ODR problem in Equation 2 corresponds exactly to fitting
the simulator parameter distribution that maximizes the likelihood of our offline dataset.

We seek the parameter ϕ of the distribution Pϕ(ξ) that maximizes the probability of observing the
triples (si, ai, s′i) of our dataset, i.e., to solve

ϕ⋆ = argmax
ϕ

P
(
{(si, ai, s′i)}

N
i=1 | ϕ

)
, (32)

This probability corresponds to P
(
∩Ni=1 {(si, ai, s′i)} | ϕ

)
and since the data is i.i.d., ϕ⋆ can be

rewritten as follows

ϕ⋆ = argmax
ϕ

N∏
i=1

P ({(si, ai, s′i)} | ϕ). (33)
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Now, we can approximate P ({(si, ai, s′i)} | ϕ) by the expected transition probability over all
ξ ∼ Pϕ(ξ), i.e.,

ϕ⋆ ≈ argmax
ϕ

N∏
i=1

Eξ∼Pϕ(ξ) [Pξ(s
′
i | si, ai)] . (34)

Since the logarithm is increasing, this is equivalent to

ϕ⋆ ≈ argmax
ϕ

N∑
i=1

logEξ∼Pϕ(ξ) [Pξ(s
′
i | si, ai)] , (35)

which recovers exactly the empirical log-likelihood objective stated in Equation 2.

B OMITTED PROOFS IN SECTION 4

Proof of Lemma 1. We have

L(ϕ) = E(s,a)Es′∼pξ⋆ (.|s,a)
[
logEξ∼pϕ(ξ)[pξ(s

′ | s, a)]
]
. (36)

We rewrite the inner expectation as follows

Es′∼pξ⋆ (.|s,a)
[
log qϕ(s

′ | s, a)
]
= Es′∼pξ⋆ (.|s,a)

[
log

qϕ(s
′ | s, a)

pξ⋆(s′ | s, a)
+ log pξ⋆(s

′ | s, a)
]
. (37)

Notice that ∫
s′∈S

qϕ(s
′ | s, a)λ(ds′) =

∫
s′∈S

∫
ξ∈Ξ

pξ(s
′ | s, a)pϕ(dξ)λ(ds′), (38)

and using Fubini-Tonelli’s theorem, it follows,∫
s′∈S

∫
ξ∈Ξ

pξ(s
′ | s, a)pϕ(dξ)λ(ds′) =

∫
ξ∈Ξ

pϕ(dξ)

∫
s′∈S

pξ(s
′ | s, a)λ(ds′). (39)

Since pξ(· | s, a) and pϕ are probability densities, their total mass is 1, which yields∫
s′∈S

qϕ(s
′ | s, a)λ(ds′) =

∫
ξ∈Ξ

pϕ(dξ) = 1. (40)

Hence qϕ(. | s, a) is a probability density, and one can rewrite L(ϕ) using Kullback-Leibler (KL)
divergence (defined in Kullback & Leibler (1951)) as follows

L(ϕ) = E(s,a)

[
−DKL (pξ⋆(. | s, a)∥qϕ(. | s, a)) + Es′∼pξ⋆ (.|s,a) [log pξ⋆(s

′ | s, a)]
]

(41)

= E(s,a) [−DKL (pξ⋆(. | s, a)∥qϕ(. | s, a))] +H(ξ⋆), (42)

where H(ξ⋆) = E(s,a)Es′∼pξ⋆ (.|s,a) [log pξ⋆(s
′ | s, a)] is independent of ϕ, and for a fixed (s, a),

DKL (pξ⋆(. | s, a)∥qϕ(. | s, a)) ≥ 0 with equality if and only if pξ⋆(. | s, a) = qϕ(. | s, a).
Hence, for all ϕ ∈ Φ, L(ϕ) ≤ H(ξ⋆), and

L(ϕ) = H(ξ⋆) ⇐⇒ E(s,a) [−DKL (pξ⋆(. | s, a)∥qϕ(. | s, a))] = 0 (43)

⇐⇒ For almost every (s, a), DKL (pξ⋆(. | s, a)∥qϕ(. | s, a)) = 0 (44)
⇐⇒ For almost every (s, a), pξ⋆(. | s, a) = qϕ(. | s, a) (45)
⇐⇒ ϕ = (ξ⋆, 0), (46)

where the last equivalence follows from Assumption 4. This concludes the proof.
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Proof of Lemma 2. We begin by stating and proving a few intermediate lemmas that will simplify
the proof.

The following lemma states that convergence of ϕ implies convergence in distribution of Pϕ.

Lemma 10. Let {ϕn} := {(µn,Σn)} ∈ ΦN a sequence that converges to ϕ := (µ,Σ) (i.e.
∥µn − µ∥ −→ 0 and ∥Σn − Σ∥op −→ 0). Then Pϕn

converges weakly to Pϕ (Pϕn
=⇒ Pϕ).

Proof of Lemma 10. We denote

Gn = N (µn,Σn), G = N (µ,Σ). (47)

The characteristic function of Gn is

φGn
(t) = exp

(
it⊤µn − 1

2
t⊤Σnt

)
, t ∈ Rd. (48)

For every fixed t ∈ Rd, we have

φGn(t) −−−−→
n−→∞

exp

(
it⊤µ− 1

2
t⊤Σt

)
= φG(t). (49)

By Lévy’s continuity theorem (see Williams (1991)), we have Pϕn
=⇒ Pϕ.

Notice that the result holds also in the case where Σ = 0. In that case, φG(t) = exp
(
it⊤µ

)
which is

the characteristic function of the degenerate distribution δµ = N (µ, 0).

This result will be used to derive the continuity of the function ϕ 7→ a(x, ϕ) in the following lemma.

Lemma 11. For some fixed x = (s, a, s′) and ϕ ∈ Φ, the function

ϕ 7→ a(x, ϕ) := log

∫
ξ

pξ(s
′ | s, a)pϕ(ξ)dξ

is continuous on Φ.

Proof of Lemma 11. For ξ ∈ Ξ, we denote hx(ξ) := pξ(s
′ | s, a).

hx is continuous on Ξ (by Assumption 1) and bounded on Ξ, because

∀ξ ∈ Ξ, |hx(ξ)| = |pξ(s′ | s, a)| ≤M (again by Assumption 1).

Let {ϕn} := {(µn,Σn)} ∈ ΦN a sequence that converges to ϕ := (µ,Σ). Notice that∫
ξ

pξ(s
′ | s, a)pϕn

(ξ)dξ = EPϕn
[hx] , (50)

and since Pϕn
=⇒ Pϕ (from Lemma 10), then EPϕn

[hx] −−−−→
n−→∞

EPϕ
[hx].

We then compose by the logarithm function which is continuous on (0,∞). This yields
logEPϕn

[hx] −−−−→
n−→∞

logEPϕ
[hx]. Equivalently,

a(x, ϕn) −−−−→
n−→∞

a(x, ϕ). (51)

This concludes the proof by the sequential characterization of continuity.

Now we prove Lemma 2:

We have LN (ϕ) =
1

N

∑N
i=1 a(Xi, ϕ), where Xi = (si, ai, s

′
i)

iid∼ Pξ⋆ .
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Φ is compact (by Assumption 2), and by Lemma 11, for each x, ϕ 7→ a(x, ϕ) is continuous on Φ .

Additionally, the following holds for any ϕ ∈ Φ,

|a(x, ϕ)| =
∣∣∣∣log ∫

ξ

pξ(s
′ | s, a)pϕ(ξ)dξ

∣∣∣∣ (52)

By Assumptions 1 and 4, we have c ≤
∫
ξ
pξ(s

′ | s, a)pϕ(ξ)dξ ≤ K. Hence

|a(x, ϕ)| ≤ M̃ := max {|log c| , |logK|} . (53)

Since L(ϕ) = EX∼Pξ⋆
[a(X,ϕ)], this implies (by Lemma 2.4 from Newey & McFadden (1994)

which is implied by Lemma 1 from Tauchen (1985)) that L is continuous on Φ and thus uniformly
continuous since Φ is compact by Heine-Cantor theorem. Furthermore,

sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| P−−−−→
N→∞

0. (54)

Proof of Lemma 3. Let ϵ > 0. We consider the set defined as follows

Cϕ⋆,ϵ := {ϕ ∈ Φ | ∥ϕ− ϕ⋆∥ ≥ ϵ} . (55)

Cϕ⋆,ϵ is compact because it can be written as the intersection of a compact set

Cϕ⋆,ϵ = Φ ∩ f−1
ϕ⋆

(
[ϵ,∞)

)
, (56)

where we denote fϕ⋆ : ϕ 7→ ∥ϕ− ϕ⋆∥. Indeed, Φ is compact (by Assumption 2) and f−1
ϕ⋆ ([ϵ,∞)) is

closed as the inverse image of the closed set [ϵ,∞) by the continuous function fϕ⋆ .

The function g : ϕ 7→ L(ϕ⋆)−L(ϕ) is continuous (by Lemma 2) on the compact set Cϕ⋆,ϵ, hence by
the extreme value theorem, g attains its minimum on Cϕ⋆,ϵ in some ϕ̃ ∈ Φ.

Thus
∀ϕ ∈ Cϕ⋆,ϵ, L(ϕ

⋆)− L(ϕ) ≥ g(ϕ̃). (57)

By Lemma 1, g ≥ 0 on Φ and
g(ϕ) = 0 ⇐⇒ ϕ = ϕ⋆. (58)

Since ϕ̃ ̸= ϕ⋆ (because ϕ̃ ∈ Cϕ⋆,ϵ), we have g(ϕ̃) > 0. Thus, the lemma holds with the choice of
η(ϵ) = g(ϕ̃) > 0.

C OMITTED PROOFS IN SECTION 5

Before proving Lemma 4, we state and prove a few preliminary lemmas.

Notation for Strong Consistency We define the diameter of Φ by

Diam(Φ) := sup
ϕ,ψ∈Φ

∥ϕ− ψ∥. (59)

We begin with the following technical lemma, which gives an upper bound on the number of closed
balls of radius r = ϵ/L needed to cover Φ.
Lemma 12. Let 0 < ϵ < 2 Diam(Φ)L, and let Nϵ be the minimum number of closed balls of radius
r = ϵ

L required to cover Φ. Then

Nϵ ≤ 4d
(Diam(Φ)L

ϵ

)d
. (60)
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Proof of Lemma 12. We construct a sequence ϕ1, ϕ2, . . . in Φ satisfying

∀i ̸= j, ∥ϕi − ϕj∥ > r. (61)

This process must terminate after finitely many steps; denote the final index by K. Indeed, if it
were infinite, then compactness of Φ would yield a convergent subsequence of {ϕn}, contradicting
equation 61.

By construction,

Φ ⊂
K⋃
k=1

B(ϕk, r), (62)

for otherwise we could pick some ϕ /∈
⋃K
k=1 B(ϕk, r) to continue the process, contradicting the

definition of K. Hence Nϵ ≤ K.

Next, observe that the closed balls B(ϕk, r/2), k = 1, . . . ,K, are pairwise disjoint: if there were
ϕ ∈ B(ϕi, r/2) ∩ B(ϕj , r/2) with i ̸= j, then

∥ϕi − ϕj∥ ≤ ∥ϕi − ϕ∥+ ∥ϕ− ϕj∥ ≤ r/2 + r/2 = r, (63)

contradicting equation 61.

Moreover, for each k,
B(ϕk, r/2) ⊂ B

(
ϕ1,Diam(Φ) + r/2

)
, (64)

since if ∥ϕ− ϕk∥ ≤ r/2 then ∥ϕ− ϕ1∥ ≤ ∥ϕ− ϕk∥+ ∥ϕk − ϕ1∥ ≤ r/2 + Diam(Φ).

Thus
K⋃
k=1

B(ϕk, r/2) ⊂ B
(
ϕ1,Diam(Φ) + r/2

)
, (65)

and by comparing volumes of disjoint balls in Rd we get

K
(r/2)dπd/2

Γ(d2 + 1)
≤ (Diam(Φ) + r/2)dπd/2

Γ(d2 + 1)
. (66)

Hence

Nϵ ≤ K ≤
(
1 + 2 Diam(Φ)

r

)d
≤
(

4 Diam(Φ)
r

)d
, (67)

where the final inequality uses ϵ < 2 Diam(Φ)L.

In the following two lemmas establish a sufficient condition for the almost sure convergence.

Lemma 13. Let (Aℓ)ℓ≥1 be a sequence of events. We have

P

⋃
ℓ≥1

Aℓ

 = 0 ⇐⇒ ∀ℓ ≥ 1, P (Aℓ) = 0. (68)

Proof of Lemma 13. If P
(⋃

ℓ≥1Aℓ

)
= 1, then for all ℓ ≥ 1, we have clearly P (Aℓ) ≤

P
(⋃

ℓ≥1Aℓ

)
= 0 and so P (Aℓ) = 0.

If P (Aℓ) = 0 for every ℓ ≥ 0, then we have by Boole’s inequality,

P

⋃
ℓ≥1

Aℓ

 ≤
∑
ℓ≥0

P (Aℓ) = 0. (69)
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Lemma 14. Let {Zn}n be a sequence of random variables. We have

∀ϵ > 0,
∑
n≥1

P (|Zn| ≥ ϵ) <∞ =⇒ Zn
a.s.−−−−→
n→∞

0. (70)

Proof of Lemma 14. We have by definition of the almost sure convergence, Zn
a.s.−−−−→
n→∞

0 if and only

if P
(

lim
n−→∞

Zn = 0
)
= 1. Equivalently,

P (∀ϵ > 0, ∃n ≥ 1, ∀m ≥ n, |Zn| < ϵ) = 1, (71)

and since we can replace ϵ by any sequence of positive real numbers that converges to 0, the previous
condition is equivalent to

P

⋂
ℓ≥1

⋃
n≥1

⋂
m≥n

{
|Zn| <

1

ℓ

} = 1. (72)

Considering the complementary event, this is equivalent to

P

⋃
ℓ≥1

⋂
n≥1

⋃
m≥n

{
|Zn| ≥

1

ℓ

} = 0. (73)

Using Lemma 13, in order to have the almost sure convergence of Zn to 0, it is sufficient to prove that

∀ℓ ≥ 1, P

⋂
n≥1

⋃
m≥n

{
|Zn| ≥

1

ℓ

} = 0. (74)

Now suppose that for all ϵ > 0,
∑
n≥1 P (|Zn| ≥ ϵ) <∞. This implies that for all ℓ ≥ 1, we have

∑
n≥1

P

(
|Zn| ≥

1

ℓ

)
<∞. (75)

Using Borel-Cantelli lemma, this implies that

∀ℓ ≥ 1, P

⋂
n≥1

⋃
m≥n

{
|Zn| ≥

1

ℓ

} = 0. (76)

This concludes the proof.

Lemma 15. For any fixed ϕ ∈ Φ, and ϵ > 0, we have

P (|LN (ϕ)− L(ϕ)| ≥ ϵ) ≤ 2 exp

(
− Nϵ2

2M̃2

)
. (77)

Proof of Lemma 15. We have

LN (ϕ) =
1

N

N∑
i=1

a(Xi, ϕ), L(ϕ) = EX∼P⋆ [a(X,ϕ)] , (78)

where X,X1, . . . , XN
iid∼ Pξ⋆ .
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We already establish that |a(x, ϕ)| ≤ M̃ (see 53), hence

P (|LN (ϕ)− L(ϕ)| ≥ ϵ) = P

(∣∣∣∣∣
N∑
i=1

(a(Xi, ϕ)− EX∼P⋆ [a(X,ϕ)])

∣∣∣∣∣ ≥ Nϵ

)
(79)

≤ 2 exp

(
− 2(Nϵ)2∑N

i=1(2M̃)2

)
(80)

≤ 2 exp

(
− Nϵ2

2M̃2

)
, (81)

where Inequality 80 results from Hoeffding’s inequality.

Proof of Lemma 4. Let 0 < ϵ < 2DL. We cover Φ by Nϵ closed balls of radius r = ϵ/L, i.e.,

Φ ⊂
Nϵ⋃
k=1

B(ϕk, r),

for some ϕ1, . . . , ϕNϵ
∈ Φ, where Nϵ ≤ 4d

(
DL

ϵ

)d
by Lemma 12.

For all ϕ ∈ Φ, there exists an integer 1 ≤ k(ϕ) ≤ Nϵ such that
∥∥ϕ− ϕk(ϕ)

∥∥ ≤ r, hence it follows
from Assumption 5 that

∀x,
∥∥a(x, ϕ)− a(x, ϕk(ϕ))

∥∥ ≤ L
∥∥ϕ− ϕk(ϕ)

∥∥ ≤ Lr = ϵ. (82)

We have

|LN (ϕ)− L(ϕ)| ≤
∣∣LN (ϕ)− LN (ϕk(ϕ))

∣∣+ ∣∣LN (ϕk(ϕ))− L(ϕk(ϕ))
∣∣+ ∣∣L(ϕk(ϕ))− L(ϕ)

∣∣ .
The first term can be bounded using Inequality 82 as follows,∣∣LN (ϕ)− LN (ϕk(ϕ))

∣∣ ≤ 1

N

N∑
i=1

∣∣a(Xi, ϕ)− a(Xi, ϕk(ϕ))
∣∣ ≤ ϵ. (83)

Similarly, the third term satisfies∣∣L(ϕk(ϕ))− L(ϕ)
∣∣ = ∣∣EXa(X,ϕk(ϕ))− EXa(X,ϕ)

∣∣ ≤ EX
∣∣a(X,ϕk(ϕ))− a(X,ϕ)

∣∣ ≤ ϵ,

where the first equality holds from Jensen’s inequality.

Putting these inequalities together yields

sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| ≤ max
i=1,...,Nϵ

|LN (ϕi)− L(ϕi)|+ 2ϵ. (84)

This implies that

P

(
sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| ≥ 3ϵ

)
≤ P

(
max

i=1,...,Nϵ

|LN (ϕi)− L(ϕi)| ≥ ϵ

)
(85)

≤
Nϵ∑
i=1

P (|LN (ϕi)− L(ϕi)| ≥ ϵ) (86)

≤
Nϵ∑
i=1

2 exp

(
− Nϵ2

2M2

)
(87)

= 2Nϵ exp

(
− Nϵ2

2M2

)
(88)

≤ 2 · 4d
(
DL

ϵ

)d
exp

(
− Nϵ2

2M2

)
(89)
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where Equation (86) uses union bound, Equation (87) follows from Lemma 15 and the last inequality
follows from Lemma 12.

This yields when N → ∞

P

(
sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| ≥ 3ϵ

)
= o

(
1

N2

)
. (90)

This assures that
∑
N≥1 P

(
supϕ∈Φ |LN (ϕ)− L(ϕ)| ≥ 3ϵ

)
<∞, which gives by Lemma 14:

sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| a.s.−−−−→
N→∞

0. (91)

Proof of Theorem 2. By the preceding lemma we have the event

P

(
Ω0 :=

{
ω : sup

ϕ∈Φ
|LN (ϕ, ω)− L(ϕ)| −−−−→

N→∞
0
})

= 1. (92)

Fix ω ∈ Ω0 and, let ϵ > 0. From Lemma 3, there exists η > 0 such that

∀ϕ ∈ Φ, ∥ϕ⋆ − ϕ∥ ≥ ϵ =⇒ L(ϕ⋆)− L(ϕ) ≥ η > 0. (93)

Since ω ∈ Ω0, there exists a random index N0(ω, η) with

sup
ϕ∈Φ

|LN (ϕ)− L(ϕ)| < η/3 ∀N ≥ N0(ω, η). (94)

Take N ≥ N0(ω, η) and suppose, towards a contradiction, that ∥ϕ̂N (ω) − ϕ⋆∥ ≥ ϵ. Then, using
equation 93–equation 94,

LN (ϕ̂N (ω)) ≤ L(ϕ̂N (ω))+η/3 ≤ L(ϕ⋆)−η+η/3 = L(ϕ⋆)−2η/3 ≤ LN (ϕ⋆)−η/3 < LN (ϕ⋆),
(95)

which contradicts the maximality of ϕ̂N (ω). Hence, for all N ≥ N0(ω, η),

∥ϕ̂N (ω)− ϕ⋆∥ < ϵ. (96)

This implies that Ω0 ⊂
{
ω : ϕ̂N (ω) −−−−→

N→∞
ϕ⋆
}

. Since P (Ω0) = 1, we conclude

ϕ̂N
a.s.−−−−→

N→∞
ϕ⋆. (97)

D OMITTED PROOFS IN SECTION 6

D.1 RELAXATION OF THE MIXTURE POSITIVITY ASSUMPTION

Lemma 6. The weak consistency of ODR still holds if we replace Assumption 3 with the following
(weaker) assumption:

P

(
inf
ϕ
qϕ(x) ≤ ϵ

)
≤ 1

(log(ϵ))2
for ϵ sufficiently small. (98)

Proof of Lemma 6. We start by proving these two elementary lemmas.

Lemma 16. For any almost surely non-negative random variable Z, i.e., P (Z ≥ 0) = 1, we have

E[Z] =
∫ ∞

0

P (Z ≥ α) dα. (99)
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Proof of Lemma 16. We have∫ ∞

0

P (Z ≥ α) dα =

∫ ∞

0

E[1Z≥α] dα (100)

=

∫ ∞

α=0

∫ ∞

z=0

1z≥α dP (z) dα (101)

=

∫ ∞

z=0

[∫ ∞

α=0

1z≥α dα

]
dP (z) (102)

=

∫ ∞

z=0

[∫ z

α=0

1 dα

]
dP (z) (103)

=

∫ ∞

z=0

z dP (z) (104)

= E[Z], (105)

where Equality equation 102 follows from Fubini-Tonelli’s theorem, and Equality equation 105
follows from the non-negativity of the random variable Z.

Lemma 17. For any positive function f : I → (0,∞) defined on some interval I ⊂ R, we have

sup
x

log f(x) = log sup
x
f(x). (106)

Proof of Lemma 17. For any x ∈ I we have by monotonicity of the logarithm function

log f(x) ≤ log sup
x
f(x), (107)

hence, supx log f(x) ≤ log supx f(x). Furthermore,

f(x) = elog f(x) ≤ esupx log f(x), (108)

and taking the supremum over x ∈ I yields supx f(x) ≤ esupx log f(x), thus

log sup
x
f(x) ≤ supx log f(x), (109)

which concludes the proof.

Note that the only passage of the proof of Theorem 1 in which we use Assumption 3 is when we
derive a uniform bound on the function a in Inequality 53. More precisely, we proved that

∀x, ∀ϕ ∈ Φ, |a(x, ϕ)| ≤ M̃ := max {| log(c)|, | log(M)|} . (110)

While this is sufficient to apply Lemma 2.4 from Newey & McFadden (1994), this lemma only require
to bound a(x, ϕ) by some quantity d(x) that is independent of ϕ and integrable in x.

We have

|a(x, ϕ)| = | log qϕ(x)| (111)

= (log qϕ(x))
+
+ (log qϕ(x))

− (112)

where z+ and z− denote respectively the positive and negative parts of z.

We have

(log qϕ(x))
+
= max(0, log qϕ(x)) (113)

= max

(
0, log

∫
ξ

pξ(s
′ | s, a)pϕ(ξ) dξ

)
, (114)

and by Assumption 1, pξ(s′ | s, a) ≤ M , hence (log qϕ(x))
+ ≤ | log(M)|. Thus, the first term of

equation 112 is bounded by | log(M)| which is independent of ϕ and integrable in x.
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Furthermore,

(log qϕ(x))
−
= max(0,− log qϕ(x)) (115)

= max

(
0, log

1

qϕ(x)

)
(116)

≤ max

(
0, sup

ϕ
log

1

qϕ(x)

)
(117)

= max

(
0, log sup

ϕ

1

qϕ(x)

)
(118)

= max

(
0, log

1

infϕ qϕ(x)

)
, (119)

where Equality equation 118 follows from Lemma 17. The last quantity is independent of ϕ, so we
only need it to be integrable in order for the weak consistency result to hold.

Since this quantity is non-negative, Lemma 16 yields

E
[
max

(
0, log

1

infϕ qϕ(x)

)]
=

∫ ∞

0

P

(
max

(
0, log

1

infϕ qϕ(x)

)
≥ α

)
dα (120)

=

∫ ∞

0

P

(
log

1

infϕ qϕ(x)
≥ α

)
dα (121)

=

∫ ∞

0

P

(
inf
ϕ
qϕ(x) ≤ e−α

)
dα, (122)

and hence we only need to have the convergence of this integral. The integrand is bounded (between
0 and 1), so the integral is always convergent on (0, 1]. Hence, it is sufficient to have the convergence
of the integral on [1,∞), e.g., one sufficient condition might be

P

(
inf
ϕ
qϕ(x) ≤ e−α

)
≤ 1

α2
for α sufficiently large, (123)

equivalently,

P

(
inf
ϕ
qϕ(x) ≤ ϵ

)
≤ 1

(log(ϵ))2
for ϵ sufficiently small. (124)

Notice that Assumption 3 implies this condition, since it implies that infϕ qϕ(x) > 0 and hence for
sufficiently small ϵ > 0 we have

P

(
inf
ϕ
qϕ(x) ≤ ϵ

)
= 0 ≤ 1

(log(ϵ))2
. (125)

D.2 SUFFICIENT CONDITION FOR THE UNIFORM LIPSCHITZ CONTINUITY ASSUMPTION

In this section, we prove a practical sufficient condition for Assumption 5. More formally, the
following holds:
Lemma 7 (Sufficient Condition for the Uniform Lipschitz Continuity Assumption). Suppose the
following holds for every x = (s, a, s′)

1. The function ξ 7→ pξ(s
′ | s, a) is twice continuously differentiable (of class C2),

2. There exists two constants G1 > 0 and G2 > 0 such that |∇ξpξ(s
′ | s, a)| ≤ G1 and

|∇2
ξpξ(s

′ | s, a)| ≤ G2 ,

then Assumption 5 holds with L =
G1 +G2/2

c
.
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Before proving this result, state and prove a technical lemma that we use in our proof.

Lemma 18. For any c > 0, the logarithm function log is 1
c -Lipschitz on [c,∞).

Proof of Lemma 18. Let x and y be two real numbers such that c ≤ x < y. We have

|log(y)− log(x)| = log(y)− log(x) = log
(y
x

)
= log

(
1 +

y − x

x

)
≤ y − x

x
, (126)

and since x ≥ c, it follows

|log(y)− log(x)| ≤ 1

c
(y − x) =

1

c
|y − x|. (127)

Notice that this result can also be proved using the mean value inequality.

Proof of Lemma 7. Our goal is to prove that under the two assumptions of Lemma 7, we have

∀ϕ := (µ,Σ), ϕ′ := (µ′,Σ′) ∈ Φ,∀x,
∣∣a(x, ϕ)− a(x, ϕ′)

∣∣ ≤ L
∥∥ϕ− ϕ′

∥∥
2
. (128)

First, notice that using Lemma 18 and Assumption 3, we have

|a(x, ϕ)− a(x, ϕ′)| = | log(fx(ϕ))− log(fx(ϕ
′))| ≤ 1

c
|fx(ϕ)− fx(ϕ

′)|, (129)

where we used the notation fx(ϕ) := qϕ(s
′ | s, a) = Eξ∼Pϕ

[pξ(s
′ | s, a)]. Hence, it is sufficient to

prove that |fx(ϕ)− fx(ϕ
′)| ≤ L̃ ∥ϕ− ϕ′∥ for every x for some constant L̃ > 0.

We start by treating the case where Σ and Σ′ are non-singular.

Case 1: non-singular covariance matrices. In the case where Σ is non-singular,

fx(ϕ) =

∫
ξ

hx(ξ)N (ξ;µ,Σ)dξ, (130)

where hx(ξ) := pξ(s
′ | s, a) and N (ξ;µ,Σ) := (2π)−d/2 det(Σ)−

1
2 exp

(
− 1

2 (ξ−µ)
⊤Σ−1(ξ−µ)

)
.

Since µ 7→ µ⊤ and Σ 7→ Σ−1 are continuously differentiable respectively on Rd and GLd(R), then
the function ϕ 7→ N (ξ;µ,Σ) is C1 as long as Σ ≻ 0 with

∇µN (ξ;µ,Σ) = Σ−1(ξ − µ)N (ξ;µ,Σ). (131)

and using the matrix-calculus identities

dlog detΣ = tr(Σ−1 dΣ), d(Σ−1) = −Σ−1(dΣ)Σ−1, (132)

we compute

dlogN = d
[
− 1

2 log detΣ− 1
2 (ξ − µ)⊤Σ−1(ξ − µ)

]
(133)

= − 1
2 tr(Σ

−1 dΣ)− 1
2 (ξ − µ)⊤ d(Σ−1)(ξ − µ) (134)

= − 1
2 tr(Σ

−1 dΣ) + 1
2 (ξ − µ)⊤

[
Σ−1(dΣ)Σ−1

]
(ξ − µ). (135)

Since dN = N dlogN , we get

dN = 1
2N
[
(ξ − µ)⊤Σ−1(dΣ)Σ−1(ξ − µ)− tr(Σ−1 dΣ)

]
. (136)

Rewriting in Frobenius inner product form,

dN = tr
[(

1
2N [Σ−1(ξ − µ)(ξ − µ)⊤Σ−1 − Σ−1]

)⊤
dΣ
]
. (137)
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Thus the gradient is

∇ΣN (ξ;µ,Σ) =
1

2
N (ξ;µ,Σ)

[
Σ−1(ξ − µ)(ξ − µ)⊤Σ−1 − Σ−1

]
. (138)

On each compact subset K of Φ ∩ {(ξ,Σ) : Σ ≻ 0}, we have by the sub-multiplicativity of the norm
∥hx(ξ)∇µN (ξ;µ,Σ)∥2 ≤M

∥∥Σ−1
∥∥
2
∥ξ − µ∥2 N (ξ;µ,Σ), (139)

ans since the function ϕ 7→
∥∥Σ−1

∥∥
2
∥ξ − µ∥2 N (ξ;µ,Σ) is continuous on K, it attains its maximum

in some point of K, hence, there exists some µ0 and Σ0 ≻ 0 such that for all ϕ ∈ K,
∥hx(ξ)∇µN (ξ;µ,Σ)∥ ≤M

∥∥Σ−1
0

∥∥ ∥ξ − µ0∥N (ξ;µ0,Σ0), (140)
where the right term is integrable in ξ since EX∼N (ξ;µ0,Σ0)[∥X − µ0∥] <∞. Furthermore,

∥hx(ξ)∇ΣN (ξ;µ,Σ)∥F ≤ 1

2
MN (ξ;µ,Σ)

(∥∥Σ−1(ξ − µ)(ξ − µ)⊤Σ−1
∥∥
F
+
∥∥Σ−1

∥∥
F

)
, (141)

and
∥∥Σ−1(ξ − µ)(ξ − µ)⊤Σ−1

∥∥
F

≤
∥∥Σ−1

∥∥
F

∥∥(ξ − µ)(ξ − µ)⊤
∥∥
F

∥∥Σ−1
∥∥
F

. The middle factor
can be rewritten as follows∥∥(ξ − µ)(ξ − µ)⊤

∥∥
F
= tr

[
(ξ − µ)(ξ − µ)⊤(ξ − µ)(ξ − µ)⊤

]
(142)

= tr
[
(ξ − µ)⊤(ξ − µ)(ξ − µ)⊤(ξ − µ)

]
(143)

= ∥ξ − µ∥22 , (144)
which yields

∥hx(ξ)∇ΣN (ξ;µ,Σ)∥F ≤ 1

2
MN (ξ;µ,Σ)

(∥∥Σ−1
∥∥2
F
∥ξ − µ∥22 +

∥∥Σ−1
∥∥
F

)
. (145)

Again, the function ϕ 7→
(∥∥Σ−1

∥∥2
F
∥ξ − µ∥22 +

∥∥Σ−1
∥∥
F

)
N (ξ;µ,Σ) is continuous on K, it attains

its maximum in some point of K, hence, there exists some µ1 and Σ1 ≻ 0 such that for all ϕ ∈ K,

∥hx(ξ)∇ΣN (ξ;µ,Σ)∥F ≤ 1

2
M
(∥∥Σ−1

1

∥∥2
F
∥ξ − µ1∥22 +

∥∥Σ−1
1

∥∥
F

)
N (ξ;µ1,Σ1), (146)

where the right term in integrable in ξ since the Gaussian distribution has finite second order moment.

Using Leibniz integral rule, the function ϕ 7→ fx(ϕ) is C1 and we may interchange differentiation
and integration to get

∇µfx(ϕ) =

∫
ξ

hx(ξ)∇µN (ξ;µ,Σ)dξ (147)

=

∫
ξ

hx(ξ)Σ
−1(ξ − µ)N (ξ;µ,Σ) dξ (148)

=

∫
ξ

hx(ξ) [−∇ξN (ξ;µ,Σ)] dξ (149)

=

∫
ξ

∇ξhx(ξ)N (ξ;µ,Σ) dξ (150)

= Eξ∼N (µ,Σ) [∇ξhx(ξ)] , (151)

where Equation (150) follows from an integration by part.5 Furthermore,

∇Σfx(ϕ) =

∫
ξ

hx(ξ)∇ΣN (ξ;µ,Σ)dξ (152)

=

∫
ξ

hx(ξ)
1

2

[
Σ−1(ξ − µ)(ξ − µ)⊤Σ−1 − Σ−1

]
N (ξ;µ,Σ)dξ (153)

=
1

2
Σ−1Eξ∼N (µ,Σ)

[
hx(ξ)

[
(ξ − µ)(ξ − µ)⊤ − Σ

]]
Σ−1 (154)

=
1

2
Σ−1/2Eξ∼N (µ,Σ)

[
hx(ξ)

[
Σ−1/2(ξ − µ)(Σ−1/2(ξ − µ))⊤ − Id

]]
Σ−1/2 (155)

=
1

2
Σ−1/2Eξ∼N (µ,Σ)

[
g(z)(zz⊤ − Id)

]
Σ−1/2, (156)

5The first term of the integration by part vanishes since |hx(ξ)N (ξ;µ,Σ)| ≤MN (ξ;µ,Σ) −−−−−→
∥ξ∥→∞

0.
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where Σ−1/2 is the unique positive definite square root of Σ−1, z := Σ−1/2(ξ − µ) and g(z) :=
hx(ξ) = hx(Σ

1/2z + µ). Using the Iterated Stein formula (Bellec & Zhang, 2020; Stein, 1981) we
have

Eξ∼N (µ,Σ)

[
g(z)(zz⊤ − Id)

]
= Eξ∼N (µ,Σ)

[
∇2

zg(z)
]

(157)

= Eξ∼N (µ,Σ)

[
Σ∇2

ξhx(ξ)
]

(158)

= ΣEξ∼N (µ,Σ)

[
∇2
ξhx(ξ)

]
. (159)

Combining this equation with Equation (156) yields

∇Σfx(ϕ) =
1

2
Eξ∼N (µ,Σ)

[
∇2
ξhx(ξ)

]
. (160)

Since fx is C1 when Σ ≻ 0, for any two points ϕ, ϕ′ ∈ Φ such that Σ ≻ 0 and Σ′ ≻ 0, there is ϕ̃ on
the segment joining them (and thus Σ̃ ≻ 0) 6 so that by the mean-value theorem

fx(ϕ)− fx(ϕ
′) =

〈
∇ϕfx(ϕ̃), ϕ− ϕ′

〉
. (161)

In particular
|fx(ϕ)− fx(ϕ

′)| ≤ ∥∇ϕfx(ϕ̃)∥ ∥ϕ− ϕ′∥. (162)

By assumption (ii), ∥∇ξhx∥ ≤ G1 and ∥∇2
ξhx∥ ≤ G2. Hence

∥∇µfx(ϕ)∥ =
∥∥E[∇ξhx(ξ)]

∥∥ ≤ G1, ∥∇Σfx(ϕ)∥ = 1
2

∥∥E[∇2
ξhx(ξ)]

∥∥ ≤ G2

2 . (163)

Assembling the two blocks,

|fx(ϕ)− fx(ϕ
′)| ≤

(
G1 +

G2

2

)
∥ϕ− ϕ′∥. (164)

Therefore fx is Lipschitz in ϕ, with constant L′ = G1 +G2/2, and by Lemma 18 so is a(x, ϕ) =

log fx(ϕ) with constant L =
G1 +G2/2

c
.

General case. For the case where we no longer suppose that Σ and Σ′ are non-singular, we use
the density of the set of invertible matrices in Md(R). More precisely, there exists two sequences of
non-singular matrices {ΣN}N and {Σ′

N}N such that ΣN → Σ and Σ′
N → Σ′ when N → ∞. We

denote ϕN := (µ,ΣN ) and ϕ′N := (µ,Σ′
N ). The previous result yields

∀N ≥ 0, ∀x, |a(x, ϕN )− a(x, ϕ′N )| ≤ L ∥ϕN − ϕ′N∥ , (165)

and thus, when N → ∞ we get

∀x, |a(x, ϕ)− a(x, ϕ′)| ≤ L ∥ϕ− ϕ′∥ , (166)

where we used the continuity of the function ϕ 7→ a(x, ϕ) on Φ (Lemma 11). This concludes the
proof.

D.3 WEAK CONSISTENCY UNDER PARTIAL COVERAGE

Theorem 3. Under Assumptions 1, 2 and 3, the following holds, Any measurable maximizer
ϕ̂N ∈ argmax

ϕ∈Φ
LN (ϕ) satisfies dist(ϕ̂N ,Q⋆

µ)
P−−−−→

N−→∞
ϕ⋆ 7.

Proof of Theorem 3. As in Theorem 1, the uniform law of large numbers holds:

sup
ϕ∈Φ

∣∣LN (ϕ)− L(ϕ)
∣∣ P−→ 0. (167)

Lemma 9 proves that Q⋆
µ is nonempty and compact.

6Indeed, there exists t ∈ [0, 1] such that Σ̃ = tΣ + (1 − t)Σ′ where Σ ≻ 0 and Σ′ ≻ 0, thus for any
z ∈ Rd, z⊤Σ̃z = tz⊤Σz + (1− t)z⊤Σ′z > 0.

7where dist is the distance to a set defined by dist(ϕ,Q) := infψ∈Q ∥ϕ− ψ∥.
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Fix ε > 0 and define the separation (margin) outside the ε-neighborhood of Q⋆
µ:

η(ε) := inf
{
L(ϕ⋆)− L(ϕ) : ϕ⋆ ∈ Q⋆

µ, dist(ϕ,Q⋆
µ) ≥ ε

}
.

Because L is continuous and {ϕ ∈ Φ : dist(ϕ,Q⋆
µ) ≥ ε} is compact, we have η(ε) > 0.

By equation 167, there exists a sequence of events EN with P (EN ) → 1 such that on EN ,

sup
ϕ∈Φ

∣∣LN (ϕ)− L(ϕ)
∣∣ ≤ 1

3 η(ε).

On EN , for any ϕ with dist(ϕ,Q⋆
µ) ≥ ε and any ϕ⋆ ∈ Q⋆

µ,

LN (ϕ) ≤ L(ϕ) + 1
3η(ε) ≤ L(ϕ⋆)− η(ε) + 1

3η(ε) = L(ϕ⋆)− 2
3η(ε) < sup

ψ∈Q⋆
µ

LN (ψ),

where the last inequality uses LN (ψ) ≥ L(ψ)− 1
3η(ε) = L(ϕ⋆)− 1

3η(ε) for any ψ ∈ Q⋆
µ. Therefore,

no maximizer of LN can lie outside the ε-neighborhood of Q⋆
µ on EN . Equivalently,

dist
(
ϕ̂N ,Q⋆

µ

)
< ε on EN .

Since P (EN ) → 1 and ε > 0 is arbitrary, we conclude dist(ϕ̂N ,Q⋆
µ)

P−→ 0.

Lemma 9. Under Assumptions 1, 2 and 3 The identified set Q⋆
µ is non-empty and compact and and

the correspondence µ 7→ Q⋆
µ is upper hemicontinuous8 with respect to total variation.

Proof of Lemma 9. Write

L(ϕ, µ) = E(S,A)∼µ ES′∼pξ⋆ (·|S,A)[ a((S,A, S
′), ϕ) ] =

∫
S×A

fϕ(s, a)µ(ds, da),

where
fϕ(s, a) := ES′|s,a[a((s, a, S

′), ϕ)].

Step 1: Finite-valued and continuity in ϕ. We have

sup
ϕ∈Φ

|a(x, ϕ)| ≤ M̃ for all x = (s, a, s′).

Therefore |fϕ(s, a)| ≤ M̃ for all (s, a) and ϕ, and L(ϕ, µ) ∈ R. Moreover, Lemma 11 gives
continuity of ϕ 7→ a(x, ϕ) for each fixed x. By dominated convergence with the uniform bound M̃ ,
we obtain continuity (hence upper semicontinuity) of ϕ 7→ L(ϕ, µ) on Φ.

Step 2: Uniform TV–continuity in µ. Let µn → µ in total variation. Then, for any ϕ ∈ Φ,

|L(ϕ, µn)− L(ϕ, µ)| =
∣∣∣ ∫ fϕ(s, a) (µn − µ)(ds da)

∣∣∣ (168)

≤
∫

|fϕ(s, a)| |(µn − µ)|(ds da) (169)

≤ M̃ ∥µn − µ∥TV. (170)

Taking the supremum over ϕ ∈ Φ yields

sup
ϕ∈Φ

|L(ϕ, µn)− L(ϕ;µ)| ≤ M̃ ∥µn − µ∥TV −−−−→
n→∞

0. (171)

8A set-valued map F is upper hemicontinuous at x0 if, whenever xn→ x0 and yn ∈ F (xn) with yn → y,
then y ∈ F (x0). Equivalently: for every open U with F (x0) ⊆ U , there exists a neighborhood V of x0 such
that F (x) ⊆ U for all x ∈ V .
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Step 3: Joint continuity of L. Let (ϕn, µn) → (ϕ, µ) with ϕn → ϕ in Φ and µn → µ in TV. Then

|L(ϕn, µn)− L(ϕ, µ)| ≤ |L(ϕn, µn)− L(ϕn, µ)|+ |L(ϕn, µ)− L(ϕ, µ)|.

By uniform TV–continuity in µ (from |a(x, ϕ)| ≤ M̃ ),

sup
ψ∈Φ

|L(ψ, µn)− L(ψ, µ)| ≤ M̃ ∥µn − µ∥TV −−−−→
n→∞

0,

hence |L(ϕn, µn)− L(ϕn, µ)| → 0. By continuity in ϕ at fixed µ (dominated convergence with the
same bound), |L(ϕn, µ)− L(ϕ, µ)| → 0. Therefore L(ϕn, µn) → L(ϕ, µ), i.e., (ϕ, µ) 7→ L(ϕ, µ) is
jointly continuous

Hence, by Berge’s Maximum Theorem (Berge, 1963), for each µ the argmax set Q⋆
µ =

argmaxϕ∈Φ L(ϕ, µ) is nonempty and compact, and the correspondence µ 7→ Q⋆
µ is upper hemicon-

tinuous (in total variation).
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