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ABSTRACT

Reinforcement-learning (RL) agents often struggle when deployed from simulation
to the real-world. A dominant strategy for reducing the sim-to-real gap is domain
randomization (DR) which trains the policy across many simulators produced
by sampling dynamics parameters, but standard DR ignores offline data already
available from the real system. We study offline domain randomization (ODR),
which first fits a distribution over simulator parameters to an offline dataset. While
a growing body of empirical work reports substantial gains with algorithms such as
DROPO (Tiboni et al.| 2023), the theoretical foundations of ODR remain largely
unexplored. In this work, we cast ODR as a maximum-likelihood estimation over a
parametric simulator family and provide statistical guarantees: under mild regular-
ity and identifiability conditions, the estimator is weakly consistent (it converges in
probability to the true dynamics as data grows), and it becomes strongly consistent
(i.e., it converges almost surely to the true dynamics) when an additional uniform
Lipschitz continuity assumption holds. We examine the practicality of these as-
sumptions and outline relaxations that justify ODR’s applicability across a broader
range of settings. Taken together, our results place ODR on a principled footing
and clarify when offline data can soundly guide the choice of a randomization
distribution for downstream offline RL.

1 INTRODUCTION

In recent years, RL has achieved many empirical successes, attaining human-level performance
in tasks such as games (Mnih et al., 2013} |Silver et al.,|[2016)), robotics (Kalashnikov et al., 2018}
Schulman et al.,|2015), and recommender systems (Afsar et al.,|2021; |Chen et al.,[2021). Yet, RL
algorithms often require vast amounts of training data to learn effective policies, which severely
limits their applicability in real world settings where data collection is expensive, time-consuming, or
unsafe (Levine et al.,[2020; |Kiran et al., [2020).

Sim-to-real transfer tackles this problem by learning in simulation and transferring the resulting
policy to the real world (Sadeghi & Levine, 2016} Tan et al.| [2018; [Zhao et al.| [2020). However,
although simulation provides fast and safe data collection, inevitable discrepancies between the
simulated dynamics and the real world, commonly termed the sim-to-real gap, typically induce a
drop in performance upon deployment.

One of the most widely-used approaches to bridge this gap is domain randomization (DR). Rather
than training on a single fixed simulator, DR defines a family of simulators parameterized by physical
factors (e.g., masses, friction coefficients, sensor noise) and at the start of each episode randomly
samples one instance from this family for training. DR has enabled zero-shot transfer in robotic
control (Tobin et al.||2017;Sadeghi & Levinel 2016), dexterous manipulation (OpenAl et al.,2018)
and agile locomotion (Peng et al., 2017).

Despite this empirical track record, the choice of how to randomize is a fundamental challenge. In
the original form of DR (Tobin et al.l 2017;|Sadeghi & Levine} 2016), broad uniform ranges that look
reasonable for every parameter are chosen. While recent theoretical work (Chen et al., 2022) shows
that such uniform DR (UDR) can indeed bound the sim-to-real gap, the bound unfavorably scales in
0] (N 3log(N )) with respect to the number of candidate simulators, in part because UDR ignores
any data already available from the target system.
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In contrast, Offline Domain Randomization exploits a static dataset from the real environment before
policy training to fit a sampling distribution that concentrates on plausible dynamics while remaining
stochastic. Empirically, ODR variants such as DROID (Tsai et al.,|2021)) or DROPO (Tiboni et al.}
2023)) recover parameter distributions that explain the data and yield stronger zero-shot transfer than
hand-tuned UDR. Yet, to the best of our knowledge, ODR lacks a principled foundation: we do not
know (i) whether the fitted distribution converges to the real dynamics as data grows, nor (ii) how
much it actually reduces the sim-to-real gap compared with UDR.

Our Contributions:

» Weak consistency (Section[d). We formalize ODR as maximum-likelihood estimation
over a parametric simulator family and prove weak consistency: under mild regularity,
positivity, and identifiability assumptions, empirical maximizers converge in probability to
the population maximizers.

* Strong consistency (Section[5). Adding a single uniform Lipschitz continuity assumption on
the likelihood, we upgrade convergence to strong consistency: the ODR estimator converges
almost surely to the true parameter when it is uniquely identified.

* Assumptions in practice: discussion and relaxations (Section [6). We analyze when
the assumptions hold and provide drop-in relaxations and diagnostics: replacing i.i.d. by
strict stationarity and ergodicity for the, weakening mixture positivity via a logarithmic
tail condition, and giving simple sufficient conditions that imply the uniform Lipschitz
requirement.

2 RELATED WORKS

Sim-to-real transfer The sim-to-real gap has led to extensive research in sim-to-real transfer. Early
works exploited system identification or progressive networks to adapt controllers online (Floreano
et al.| 2008; Kober et al., 2013)), while more recent efforts have focused on purely offline training in
high-fidelity simulators. Although zero-shot transfer has been demonstrated for specific settings such
as legged locomotion (Peng et al., 2017), dexterous manipulation (Chebotar et al.||2018}; |(OpenAl
et al.} |2018) and visuomotor control (Rusu et al., 2016) a noticeable performance gap persists in
unstructured environments. Similar ideas have been explored in autonomous driving (Pouyanfar et al.|
2019; |N1u et al., [ 2021]).

Domain randomization Domain randomization (DR) varies environment parameters at every
training episode with the goal of producing policies that generalize across the induced simulator
family. Vision-based DR first showed zero-shot transfer for quadrotor flight from purely synthetic
images (Sadeghi & Levine,2016)), and dynamics randomization extended this success to legged robots
and manipulation (OpenAl et al., [2018)). To avoid manual tuning of randomization ranges, online
methods adapt the DR distribution using real-world feedback. Ensemble-based robust optimization
and Bayesian optimization techniques refine parameters via real rollouts (Rajeswaran et al., 2016;
Muratore et al., [2020), while meta RL further accelerates adaptation (Clavera et al., |2018}; |/Arndt
et al.,|2019). However, these require repeated—and potentially unsafe—hardware interactions during
training.

Offline domain randomization A growing line of work aims to find the best strategy to perform
domain randomization from a fixed offline dataset, obviating any further real-world trials. DROID
(Tsai et al.;[2021)) tunes simulator parameters using CMA-ES (Hansen & Ostermeier, 2001} Hansen)
2006) with the L? distance between a single human demonstration and its simulated counterpart as
objective function. BayesSim (Ramos et al.,2019) trains a conditional density estimator to predict a
posterior over simulator parameters given offline off-policy rollouts. Most recently, DROPO (Tiboni
et al.| [2023) introduces a likelihood-based framework that fits both the mean and covariance of a
Gaussian parameter distribution by maximizing the log-likelihood of the offline data under a mixture
simulator. This approach recovers rich uncertainty estimates, handles non-differentiable black-box
simulators via gradient-free optimizers, and outperforms DROID, BayesSim and uniform DR in
zero-shot transfer on standard benchmarks without any on-policy real-world interaction.
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Theoretical analyses Let M be the number of candidate simulators and H the horizon length. [Chen
et al.| (2022) modeled uniform DR as a latent MDP and proved that the performance gap between
the optimal policy in the true system and the policy trained with DR scales as O(M?3 log(M H )
in the case where the simulator class is finite and separated and O(y/M?3H log(M H)) in the finite
non-separated simulator class case. Other works have studied the information-theoretical limit of
sim-to-real transfer (Jiang, 2018), PAC-style guarantees via approximate simulators (Feng et al.
2019) and generalization in rich-observation MDPs (Zhong et al., [2019; Krishnamurthy et al., 2016)).
But none address the statistical benefits of offline DR. Our work bridges this gap by providing the first
consistency proofs and finite-sample gap bounds for offline DR, thereby unifying empirical successes
and theoretical understanding in a single framework.

3 PROBLEM SETUP AND ODR FORMULATION

Episodic MDPs We consider the episodic RL setting where each MDP corresponds to M =
(S, A, Pp, R, H, 51). S is the set of states, A is the set of actions, Prg: S X A — A(A) is the
transition probability matrix, R: S x A — [0, 1] is the reward function, H is the number of steps of
each episode, and s; is the initial state at step h = 1; we assume w.l.o.g. that the agent starts from the
same state in each episode.

At step h € [H], the agent observes the current state s;, € S, takes action ay, € A, receives reward
R(sn,an), and moves to state s with probability Pa((Sp+1 | Sh,an). The episode ends when
state sgy1 is reached.

A policy 7 is a sequence {mj, }}_, where each 7, maps histories traj, = {(s1,a1,...,s,)} to
action distributions. Denote by II the set of all such history-dependent policies. We denote
by V{ & — R the value function at step h under policy m on MDP M, i.e., V/(r,[’h(s) =

Ep x [Zf]:h R(st, at) ‘ Sp = s} We use 7, to denote the optimal policy for the MDP M, and
VXA, ,, to denote the optimal value under the optimal policy at step h.

We fix a simulator class U = {M¢ : £ € E C R} of candidate MDPs that share (S, A, R, H, s1)
but can differ in Py via the physical parameter vector £. The unknown real-world environment is
M* = Mg« € U. We assume full observability and that the learner can interact freely with any
M € U in simulation, but never observes £* directly.

Sim-to-real Transfer Problem Given access to the simulators in ¢/, the goal is to output a policy 7
that attains high return when executed in the real-world MDP M*. We quantify performance via the
sim-to-real gap which is defined as the difference between the value of the learned policy 7 during
the simulation phase (or training phase), and the value of an optimal policy for the real world, i.e.

Gap(n) := VX/(*,1(S1) - V/(r,l*_rl(sl).

Domain Randomization Domain randomization specifies a prior distribution v over parameters =
and thus over /. Sampling £ ~ v at the start of every episode induces a latent MDP (LMDP) whose
optimal Bayes policy is

T 1= argmax B [Vi 1 (s1)]

In practice we approximate mfy with any RL algorithm that trains in the simulator while resampling
& ~v each episode.

Offline Domain Randomization ODR assumes an offline data set D = {(s;, a;,s:)}¥, of i.i.d.
transitions collected in the real system M* under some unknown behavior policy. The aim is to
estimate a distribution p* over = that explains the data and can later be used for policy training. We
restrict py(£) = N (u, X) and learn ¢ by maximum likelihood:

'The original paper derived a looser bound, see Section for a tighter derivation.
2Since the policy r is allowed to be non Markovian, this quantity can be defined using the history Hy, =

{s1,...,5n} as follows: Eaq,~ [Zf:h R(st,at) | sn = s} =Eu,|sp=sEr,x [Zf:h R(s¢,ax) Hh] .
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pr(§) =argmax [ Eewpue) [Pe(sern | se,ar)] (1

Py () (st,a¢,5¢41)€ED

= argmax Z log []Eg,\,p¢(£) [Pg(st+1 | St, at)u . )
Ps (&) (s¢,at,5¢4+1)ED

We justify that this formulation is well-motivated in wSection[A.2]

Finally, we train a policy with the learned distribution:

TODR 1= arger%ax Eg“‘p*[vj\.r/lg,l(sl)]v
™

expecting mpy to transfer with lower gap thanks to the data-informed parameter distribution.

4 WEAK CONSISTENCY OF THE ODR ESTIMATOR

4.1 TECHNICAL ASSUMPTIONS
Before stating the theoretical guarantees for ODR, we introduce some mild assumptions of regularity
and identifiability that will be useful for our proofs.
The following assumption assures that P is regular in the following sense.
Assumption 1 (Simulator Regularity). There exists a o-finite measure A on S and a constant K < 0o
such that for all § € E and (s, a, s")

Pf(dsl |s,a):p5(s/ |53a))‘(d5/)7 ngﬁ(s/ | s,a) <K, (€))

and § — pe(s' | s, a) is continuous.

Notice that when S is finite, and A is the counting measure on S, then the first assumption clearly
holds with K = 1 because pe(s’ | s,a) = Pe({s'} | s,a) < 1. In this case, it suffices for
the mass probability to depend continuously on £ in order to verify Assumption [l| Another case
where this continuity holds is the Gaussian case p¢(s|s, a) = N (s'; A(§)s + B(§)a, C(£)), where
A(&), B(£), C(&) are matrices that vary continuously in .

[1]x

Assumption 2 N(Parameter—Space Compactness). We fitp = (1, X)) in® = {p € =2:0=3 3 =

OmaxI } Where = is compact, hence ® is compact in the product topology.
This is a natural assumption, since in practice one always has prior bounds on each physical parameter,
yielding a known compact search region.

Furthermore, we assume that all the transitions that appear in our dataset correspond to positive
mixture probability. More formally,

Assumption 3 (Mixture Positivity). There exists some constant ¢ > 0 such that the induced kernel

49(s" | 8,0) := Benp, (¢ [Pe(s"| 5,0)] = /pg(S’ | 5,a) Py(d), “
satisfies qy(s' | s,a) > ¢ > 0 for every (s,a,s’) € D and every ¢ € D.
This guarantees that every transition in the dataset lies within the support of the simulator under the

learned domain randomization distribution, so the log-likelihood is always well defined.

Furthermore, we assume that the only mixture distribution which exactly recovers the true transition
kernel is the degenerate distribution concentrated at the true parameters £*.

Assumption 4 (Identifiability). Ler u be the dataset’s distribution. If for u-almost every (s, a)
o (- | 5,0) = pe+ (- | 5,), then ¢ = (£*,0).
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4.2 NOTATION FOR ODR

Throughout this work, we use a capital letter, P, to denote a probability distribution, and the
corresponding lowercase letter, p, to denote its probability density (or mass) function.

We define the empirical and population log-likelihoods by

N
Ly(@)i= 3 Yo a(Xi0), L) = Exvr. [a(X.0)], ©)

where X; = (s;,a;, s;) is the i-th transition in D, and X = (s, a, s’) is a generic transition. The
function a is defined by

a(x,¢) :==logqs(s' | s,a) = 10g/€P§(S' | 5,a)pg(&)dE. (6)

4.3 MAIN THEOREM

The first lemma proves the uniqueness of the maximizer of the population log-likelihood L. A
detailed proof of this lemma can be found in Section B]

Lemma 1 (Uniqueness of the Population Maximizer). Under assumptions|[I| Bland[] the population
log-likelihood
L(¢) = E(s,0,8)~p,. [l0844(s" | 5,0)]

where qy(s' | s,a) = /Pg(s' | 5,a) Py(dE), has the unique maximizer ¢* = (u*,$*) = (£*, 0).

We now state our first consistency result for ODR.
Theorem 1 (Weak Consistency of ODR). Under Assumptions [I} 2] B| and H} any measurable

RN . ~ P
maximizer ¢y € arg max Ly (@) satisfies oy ——— o*.
¢e¢. N%OO

Theorem |1| guarantees that with a sufficiently large offline dataset, ODR recovers a distribution
arbitrarily close to the true parameter £*.

The following lemma is particularly strong: it establishes uniform convergence in probability of L .
Lemma 2. The function ¢ — L(¢) is uniformly continuous on ®, and furthermore

sup | L (¢) — L(9)| 0. @
oYt — 00

The proof of this lemma relies on a uniform law of large numbers (ULLN) -in particular the ULLN for
Glivenko-Cantelli classes from |Newey & McFadden| (1994)- and is deferred to Section In contrast,
the ordinary law of large numbers only guarantees that for each fixed ¢ one has Ly (¢) — L(¢)
in probability, i.e., |[Ly(¢) — L(¢)| — 0 for that particular ¢. This pointwise convergence does
not imply that sup 4 | L (¢) — L(¢)| — 0, which is exactly what the ULLN provides. Uniform
convergence over all ¢ € @ is crucial to control the behavior of the empirical maximizers and hence
to establish the consistency of our estimator.

The following lemma formalizes a uniform separation property: any parameter ¢ lying outside an
e-neighborhood of the true maximizer ¢* must have its population log-likelihood at least 1 > 0 below
L(¢").
Lemma 3. Let ¢* be the unique maximizer of L. We have

Ve > 0,3n(e) > 0,96 € @, |9 — 6| > ¢ = L(¢*) — L(#) > n(e) > 0. ®)

The proof of Lemma [3]is deferred to Section[B]

Proof of Theorem[I] We consider a sequence of measurable maximizers (;AS N € argmaxyeq Ly (9).
Let € > 0 be a fixed positive real number. Our goal is to prove that

p(Jiw -

> e) ——0. ©)
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Using Lemma[3] we conclude that there exists some 7 > 0 such that V¢ € ® if [|¢* — ¢|| > € then
L(¢*) — L(¢) > n > 0. Now, let E,, be the event

E, = {zlelg |Ln(¢) — L(®)| <n/3} (10)

then under E,), if ||¢* — ¢|| > € we have

Lyn(¢") = Ln(¢") = L(¢") + L(¢") = — |Ln(97) — L(¢")[ + L(¢") = —n/3 + L(¢7), (11)
since under E,, — |Ly(¢) — L(¢)| > —n/3, similarly

L(¢%) = L(¢) +n = L(¢) = Ln(6) + Ln(d) +n = — [Ln(9) — L(P)[ + Ln(4) + 1. (12)
and combining these two inequalities gives Ly (¢*) > Ly(¢) + n/3. This proves that, under E,),
On €B(¢%,¢) == {p € ® : ||¢— ¢*|| < e} thus {||¢n — ¢*|| > €} C B¢, which yields

P(Idx =97l 2 ) < P(sup Ln () — L(0)] 2 n/3) 258 0 (13)
O

The result is a weak consistency statement ((;AS N — ¢* in probability). In Sectionwe strengthen this
to almost-sure convergence by adding a Lipschitz regularity assumption.

5 STRONG CONSISTENCY UNDER UNIFORM LIPSCHITZ CONDITIONS

While Theorem [T guarantees that the ODR estimate converges in probability to the true parameter
distribution, in many practical settings one desires a stronger, almost sure guarantee. Intuitively, strong
consistency asserts that, with probability one, the estimated distribution will converge exactly to the
true one as more offline data is observed. In this section we show that, under an additional Lipschitz
continuity assumption on the log-likelihood function, ODR enjoys this almost-sure convergence

property.
5.1 ADDIOTIONAL ASSUMPTION

The key extra ingredient is a uniform control over how rapidly the single step log-likelihood a(:c, gb)
can change as we vary the distributional parameter ¢ = (u, ). Formally:

Assumption 5 (Uniform Lipschitz Continuity). There exists a constant L < oo such that for every
transition x = (s,a, s') and all ¢, € , we have |a(:£, o) — a(x,t/;)| <L Hgb — 1/)“2.

This condition ensures that the family {a(-, ¢) : ¢ € ®} is equi-Lipschitz, which -together with
compactness of ®- yields a uniform strong law of large numbers. In turn, this uniform convergence
of the empirical log-likelihood to its population counterpart underpins the almost sure convergence of
the maximizers.

5.2 MAIN RESULT

‘We can now state our strong consistency result:

Theorem 2 (Strong Consistency of ODR). Under Assumptionsm@ let (Z N € argmaxycq L N(®)
be any measurable maximizer of the empirical log-likelihood, then

o a.s.
(bN ¢* = (5*70)7 (14)
N—oc0
i.e., almost surely the estimated distribution collapses exactly onto the true simulator parameters.

The distinction between convergence in probability and almost surely is subtle but meaningful:
almost-sure consistency implies that, except on a set of histories of measure zero, as soon as enough
data is collected the optimizer will never stray from the true maximum again. In contrast, convergence
in probability only assures that large deviations become increasingly unlikely.

The heart of the proof is the following uniform strong law, which follows from empirical process
arguments once we have the Lipschitz control:
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Lemma 4 (Uniform Strong Law). Under Assumptions |l|to|5| the empirical and population log-
likelihoods satisfy sup ,cq |LN(¢) _ L(¢)| Na—b> 0.
— 00

Lemma [4] tells us that with probability one the worst-case difference between the finite-sample
objective and its ideal limit vanishes. Once this uniform convergence is in hand, classical arguments
on continuity and compactness show that the maximizers converge almost surely.

Proof (Sketch). We first show supycq |Ln(¢) — L(9)] Na—b> 0 by verifying for each ¢ > 0
— 00

that )\ P(supgeq [Ln(¢) — L(9)| > 2¢) < oo. By compactness of ® there is a finite ¢/ L-net
{¢1,..., 0K} so that Lipschitz continuity gives |Lx(¢) — Ly (¢;)| + |L(é) — L($i)| < € whenever
ll¢ — ¢il| < e/L. Hence

~

{supILx(0) — L(@)| > 26} € U (iEw00 = L@l > o) (15)
and Hoeffding’s inequality yields
Pl (o)~ L) > 9 < 20 (22, (16)
N 2M?2

where M := max {|log K|, |log c|}. So P(supy |Ly(¢) — L(¢)| > 2¢) < 2K exp(—cNe?), which
is summable in N. Borel-Cantelli lemma then gives uniform almost sure convergence. Finally, on the
event of uniform convergence one repeats the identification neighborhood argument of Theorem [I|to

conclude $ N — ¢* almost surely. O

Full details of the proof are deferred to Section[C| but the key takeaway is that the Lipschitz assumption
upgrades our earlier in probability consistency to the far stronger almost sure statement, giving robust
guarantees for ODR even in worst case data realizations.

5.3 A NOTION OF a-INFORMATIVENESS

The strong consistency yields the following

Lemma5. Lete > 0. [f oy = (un, Zn) 225 (£%,0) then almost surely there is Ny so that for all
N > Ny, P ( (g* ))>§

Proof of Lemmal[3] Fix e > 0 and let Zy ~ N(un, Xy ). Then P(||Zn — &*|| > €) < P([| Zn —
_ 2
pnll = §)+P(lun—E&*|| = §). By Chebyshev’s inequality, P (|| Zn —pn|| = §) < 1%2(12/7232]\,” =
4Cx) Hence Py (B(¢*,€)) = 1—P(|Zy — €[ > €) > 1= 2558 — P(|luy — & > €/2).
As (pun,XN) — (f* 0) a.s., we have ||uny — &*|| — 0 and tr(X ) — 0, so the right hand side tends

to 1 almost surely. Hence P; - (B(£*,€)) — 1 almost surely. O

The lemma states that when the estimator (ux, X ) converges almost surely to the true mean with
vanishing covariance, the Gaussian distribution fitted by ODR eventually assigns more than half
of its probability mass to any fixed e-ball around £*. In other words, ODR is so informative that
the learned randomization concentrates near the real world. This observation motivates a general,
model-agnostic notion of “informativeness” for ODR, applicable beyond the Gaussian setting.

Definition 1 («, e-Informativeness of an ODR Algorithm A). Let « € (0,1) and € > 0, an algorithm
A is «, e-informative if there exists almost surely Ny > 1 such that for all N > Ny, running A on
any collection D = {(s;,a;,s:)}¥,| ofi.i.d. transitions (from the real system) produces an ODR
distribution ¢ such that

Py (B(f*,e)) > a.

We say algorithm A is a-informative if A is «, e-informative for any € > 0.
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Under this language, Lemma [5] states that the Gaussian ODR procedure from Section [3] is a-
informative for every o < 1. When the simulator class = is finite, a-informativeness is equivalent to
the almost-sure existence of an index Ny such that, for all N > Ny, the fitted distribution assigns at
least o mass to the singleton {£*}, thatis, P (£*) > a.

6 ASSUMPTIONS: PRACTICALITY, VIOLATIONS, AND RELAXATIONS

6.1 THEIL.1.D. ASSUMPTION

The i.i.d. assumption on the offline dataset D holds whenever the offline dataset is collected using
a fixed, stationary behavior policy 7 (- | s). This assumption is stronger than needed for our weak
consistency result: we invoke it only to apply a uniform law of large numbers at the end of the proof
of Lemma@ As noted after Lemma 2.4 in Newey & McFadden| (1994), the same conclusion holds
(even for dependent data) for ergodic and strictly stationary sequences {X; = (s;, a;, s;)} which
means that the joint distribution of the vector (Xj, . .., X; 1., ) does not depend on ¢ for any m. This
is much weaker than the i.i.d. assumption and is satisfied whenever the offline dataset is collected by
a fixed behavior policy (not necessarily a stationary policy). In practice, weak consistency should
therefore hold broadly.

6.2 THE MIXTURE POSITIVITY ASSUMPTION

Assumptionis a strong requirement: it holds if and only if inf, inf, g4 (x) > 0, i.e., the density is
uniformly bounded away from zero over both z and ¢. This excludes common light-tailed families
(e.g., Gaussian-like), for which inf, q¢(x) = 0. For weak consistency, however, Assumptioncan
be relaxed:

Lemma 6 (Relaxation of Assumption[3). Weak consistency of ODR still holds if Assumption 3)is
replaced by the following tail condition: there exists epsilong > 0 such that for all epsilon € (0, €],

. 1
P <121>fq¢(X) < 6) < m- (17)

This assumption is strictly weaker than uniform positivity. The key point is that, to apply the uniform
law of large numbers from |[Newey & McFadden| (1994)) in the weak-consistency proof, it suffices
to have an integrable envelope d(z) with a(z, ¢) < d(x) for all ¢, rather than a uniform bound in
(z, ¢), the above tail control yields such an envelope. The proof is deferred to Section

6.3 THE UNIFORM LIPSCHITZ CONTINUITY

Assumption Assumption [5]is not immediately interpretable. We give a simple sufficient condition
under which it holds:

Lemma 7 (Sufficient Condition for the Uniform Lipschitz Continuity Assumption). Suppose the
Jollowing holds for every x = (s, a, s’)

1. The function & — pe(s' | s, a) is twice continuously differentiable (of class C?),

2. There exists two constants G1 > 0 and Gy > 0 such that |[Vepe(s' | s,a)] < Gy and
[VEpe(s' | s,a)| < G2,

G1+G2/2

then Assumption H holds with L =
c

A complete proof appears in Section[D.2] This sufficient condition is easy to interpret because it
depends only on the simulator’s transition kernel p¢. In practice, it is satisfied whenever the simulators
are governed by smooth physics.

6.4 THE IDENTIFIABILITY ASSUMPTION

Assumption 3]s a coverage condition on the dataset: it requires that any mixing Gaussian distribution
that reproduces the transition kernel on the state—action pairs observed in D must equal the degenerate
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Dirac mass at the true parameter. Intuitively, the dataset must visit state—action pairs that are
informative about £. This is information-theoretically minimal: no method can distinguish parameters
that are observationally identical on supp(u).

In the case of partial coverage, we naturally define the identified set under coverage yi as follows:
Q, ={pe®:qy(-|s,a)=pe(|s,a)forp—ae. (s,a)}. (18)

It follows from this definition and the proof of LemmalI| that:

Lemma 8. The following holds:

Q;, = argmax L(9). (19)
¢

Using this notion of identified set, we can generalize Theorem [T| when we relax Assumption [ as
follows:

Theorem 3. Under Assumptions [I} 2] and 3] the following holds, Any measurable maximizer
(51\/ € arg max Ly (9) satisfies dist(aN, Q) ., &P
bed N—ro0

This theorem states that under partial coverage, our estimator does not select a single parameter
but converges to an identified set of parameters that are observationally indistinguishable on the
state—action pairs visited by the data. The proof is deferred to Section

Without any additional assumptions, the only structural result that we can derive on the identified set
is:

Lemma 9 (Upper Hemicontinuity of Qj). Under Assumptions|l} [2|and[3| The identified set Qy; is

non-empty and compact and and the correspondence i — Q7 is upper hemicontinuous'|with respect
to total variation.

The proof of this lemma uses Berge’s Maximum Theorem and is deferred to Section|D.3

In short, this lemma says if we perturb the dataset’s coverage only slightly (in total-variation distance),
the set of maximizers cannot “jump” to a faraway region: any limit of maximizers for the perturbed
coverages remains a maximizer at the limit coverage (upper hemicontinuity). Intuitively, modestly
adding or reweighting offline data will not create spurious, distant optima, it keeps the solution set
nearby, and, as coverage includes more informative state—action pairs, typically makes it tighter.

The main limitation is that, without additional assumptions, we cannot provide a quantitative radius
for this set or a Lipschitz-type bound on how much it can move when coverage changes.

7 CONCLUSION

In this paper, we present a rigorous framework for ODR, bridging the gap between empirical success
and theoretical understanding in sim-to-real transfer. By casting ODR as maximum likelihood es-
timation over a parametric family of simulator distributions, we proved that, under mild regularity
conditions, the learned distribution is weakly consistent, concentrating on the true dynamics as the
offline dataset grows. With the addition of a uniform Lipschitz continuity assumption, we further
established strong consistency. Beyond these core results, we scrutinized the practicality of the
assumptions and provided diagnostics and relaxations—replacing i.i.d. with stationarity/ergodicity
for the ULLN, weakening mixture positivity via a logarithmic tail condition, and giving checkable
smoothness criteria that imply the uniform Lipschitz requirement—thereby justifying ODR’s applica-
bility across a broader range of settings. By demonstrating that offline logs are not merely passive
datasets but a powerful tool for principled domain randomization, we hope our formulation and
analysis can provide insight that paves the way for safer, more data-efficient sim-to-real pipelines in
robotics, autonomous vehicles, and beyond.

3where dist is the distance to a set defined by dist(¢, Q) := infyeo ||¢ — Y.

4A set-valued map F is upper hemicontinuous at z¢ if, whenever 2, — xo and y,, € F (zn) with y, — ¥,
then y € F(xo). Equivalently: for every open U with F'(z¢) C U, there exists a neighborhood V' of x¢ such
that F(z) C U forallz € V.
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A ADDITIONAL PRELIMINARIES

A.1 REFINED ANALYSIS OF THE UNIFORM DR SIM-TO-REAL GAP

In this section, we tighten the worst-case sim-to-real gap bound in the finite, §-separable setting
originally proved by (Chen et al.|(2022).

In the proof of Lemma 5 of the paper, Inequality (47) yields with probability at least 1 — Jy,

Z I (PM*(S/ | so,ao)> > npd> B log(l/a)\/Qno log (2/3,) — \/n0 log (2/80) /¢ — 2a.Sny.

5= P, (8| s0,a0) 2
(20)
The objective is to find a setting of parameters that guarantee with probability at least 1 — ﬁ,
P (s
Y I (M (s | 5o, a°)> > 0.
s'eH PMl (5 | SO’ CL())
It is sufficient to have the right term positive in Equation (20), i.e.,
n062
—log(1/a)v/2n¢log (2/80) — \/no log (2/d0) /¢ — 2aSngy > 0. 21
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. 2 . .
Setting o = g—s, 0o = ﬁ (the same values as in the paper), this term becomes

2
%— log(1/ar)\/2nglog (2/80) — v/nolog (2/80) /¢ — 2aSng 22)
2 2
= % — log(%)\/Zno log (QMH) — \/no log (QMH) /c — %no (23)

2
- % — log(iff)\/%zo log (2M H) — \/no log (2MH) Jc 24)

- Vel [ﬁ - (log<f5§>\/2 log (20 H) — \/log (3MH) /)} 25)

hence the condition 2] becomes equivalent to

Vo > %W (x/ilog (if) + 2) : (26)

or, equivalently,

16 85 17
ng > 51 log (2M H) (\/ﬁlog (52) + \ﬁ) . 27
Thus, there exists a valid setting that satisfies condition [21| which can be expressed as
52 1 colog(M H)log?(S/562)
=85 T T 5t ! (28)

for some constant ¢y > 0 sufficiently large.

With this new setting, the result of the Lemma 7 of the paper becomes

DM?log(MH)log®(S/6*

EMSO( oB(M H) g5 >>, 09)

The proof of Theorem 5 of the paper is not affected by the new expression of ny and gives

3 DM?log(MH)log*(S/4?
Vi 1(51) = Vi 1 (s1) < O(E[ho] + D) :o( = 54) g (5/ >). (30)
Combining this result with Lemma 1 of the paper leads to
) DM?3log(M H)log*(S/6?

Gap(wDR,Z/{):O< ( (54) (5/ )> 31

This shows that in the regime where H and M are relatively large, the O(M? log® (M H)) bound of
Chen et al.{(2022) can be tightened to O(M3 log(M H)).

A.2 INSIGHTS INTO THE ODR OBIJECTIVE

In this section, we explain why the formal ODR problem in Equation 2] corresponds exactly to fitting
the simulator parameter distribution that maximizes the likelihood of our offline dataset.

We seek the parameter ¢ of the distribution Py () that maximizes the probability of observing the
triples (s;, a;, ;) of our dataset, i.e., to solve

¢* = arg max P ({(si,ai, s;)}fil | d)) , (32)
[

This probability corresponds to P (N, {(s;, a;, s;)} | #) and since the data is i.i.d., ¢* can be
rewritten as follows

N
o = arg;naxHP({(Si,aiasg)} | ¢). (33)

i=1
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Now, we can approximate P({(s;,a;,s;)} | ¢) by the expected transition probability over all

£~ Py(6), ie,

N
¢* ~ argmax | [ Eewp, (o) [Pe(s] | si,a4)]- (34)

i=1
Since the logarithm is increasing, this is equivalent to
N
* arg;nax > logEenp, e [Pe(sh | sia:)] (35)
i=1

which recovers exactly the empirical log-likelihood objective stated in Equation [2]

B OMITTED PROOFS IN SECTION [4]
Proof of Lemmal[l] We have
L(¢) = E(s,a)Es’NpE*(.\s,a) |:10g ]Ef~p¢(§) [pf(sl ‘ S, a)}:| (36)

We rewrite the inner expectation as follows

(s | 5,a)

+ log pex (s s,a}. 37)
per( [ s,) | B o)

Es'wpg*(.|s,a) {IOg Q¢(3, | S,G,)} = Es’wpg*(.|s,a) |:10g

Notice that
/ qo(s" | s,a)\(ds") :/ / pe(s' | s,a)pe(dE)N(ds'), (38)
s'eS s'eS Jees
and using Fubini-Tonelli’s theorem, it follows,
[ pe Isawatan@s) = [ pota@e) [ pels |sans). 69
s'es Jeez ¢ex s'€S

Since pe(- | s, a) and py are probability densities, their total mass is 1, which yields
/ 4o(s' | 5, a)\(ds') = / po(de) = 1. (40)
s'eS £e=

Hence g4(. | s,a) is a probability density, and one can rewrite L(¢) using Kullback-Leibler (KL)
divergence (defined in|Kullback & Leibler| (1951))) as follows

L(¢) = E(S’a) [_DKL (pg*(. | S, a)||q¢(. | S, a)) + ES/NP&*(-|57‘1) [10gp5* (3/ ‘ s,a)}] (41)
=Esa) [=DkL (pe- (- | 5,0)llgs(- | 5,0))] + H(ET), (42)
where H(£*) = E(s a)Esinpen (|s,a) [l0g pe+(s” | 8, a)] is independent of ¢, and for a fixed (s, a),
Dgr (pex (.| s,a)|lgg(. | s,a)) > 0 with equality if and only if pe« (. | 5,a) = g4(. | 5,a).
Hence, forall ¢ € ®, L(¢) < H(£*), and

L(¢) = H(§") <= E(sa) [=Dxr (pe-(- | 5,0)llgs(- [ 5,0))] = 0 (43)

<= For almost every (s,a), Dk, (pe« (. | 5,0)]|ge(. | 5,a)) =0 (44)

<= For almost every (s,a),pe«(. | s,a) = gqg(. | s, a) 45)

= ¢ =(£%,0), (46)

where the last equivalence follows from Assumptiond] This concludes the proof. [
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Proof of Lemma|2] We begin by stating and proving a few intermediate lemmas that will simplify
the proof.

The following lemma states that convergence of ¢ implies convergence in distribution of Py.

Lemma 10. Let {¢,} = {(in,Sn)} € ®Y a sequence that converges to ¢ := (u, ) (i.e.
[pn — pll = 0 and ||[Zy, — X[, — 0). Then Py, converges weakly to Py (Py, = Pp).

Proof of Lemma[I0] We denote
Gn =N, 3n), G=N(X). 47

The characteristic function of G,, is

1
ea, (t) = exp (itT/J/n - 2tTEnt> ., teR% (48)

For every fixed t € R, we have

1
0, () —— exp (itm - Qtht) — walt). 49)
By Lévy’s continuity theorem (see Williams|(1991)), we have Py, = F;. [

Notice that the result holds also in the case where & = 0. In that case, pg(t) = exp (itT u) which is
the characteristic function of the degenerate distribution 6,, = N (1, 0).

This result will be used to derive the continuity of the function ¢ — a(z, ¢) in the following lemma.

Lemma 11. For some fixed © = (s, a,s') and ¢ € ®, the function

6> ala,0) = log [ pels' | s.a)pa(€)d€
13
is continuous on P.

Proof of LemmalIl] For ¢ € =, we denote h,(§) := pe(s' | s, a).
h, is continuous on = (by Assumption[I)) and bounded on =, because

VE € E, |ha(€)| = |pe(s’ | s,a) <M (again by Assumption|[L)).
Let {¢n} = {(1tn, Xn)} € @ a sequence that converges to ¢ := (1, ). Notice that

/5 pe(s' | 5,a)po, (€)d€ = Ep, [ha], (50)

and since Py, = P, (from Lemma , then Ep, [h,] — Ep, [hz].

We then compose by the logarithm function which is continuous on (0,00). This yields
logEp, [hq] — log Ep, [h.]. Equivalently,

a(x, dn) — a(z, P). (51)
n o0
This concludes the proof by the sequential characterization of continuity. O

Now we prove Lemma 2}

1 ii
We have Ly (¢) = N Zil a(X;, @), where X; = (s;,a;,8}) ad Pes.

%
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® is compact (by Assumption , and by Lemma for each z, ¢ — a(z, ¢) is continuous on P .
Additionally, the following holds for any ¢ € @,

la(z, )| =

log /5 pe(s’ | 5,a)pgy(€)dE (52)

By Assumptionsand we have ¢ < fg pe(s' | s,a)pe(§)dé < K. Hence
la(z, ¢)] < M :=max {|log¢|, [log K|} . (53)

Since L(¢) = Ex~p,. [a(X, ¢)], this implies (by Lemma 2.4 from Newey & McFadden (1994)
which is implied by Lemma 1 from [Tauchen| (1985))) that L is continuous on ® and thus uniformly
continuous since ¥ is compact by Heine-Cantor theorem. Furthermore,

sup | L (¢) — L(9)| —— 0. (54)
¢€<I> —> 00

O
Proof of Lemma[3] Let e > 0. We consider the set defined as follows
Corei={dc®|llo—0" =€} (55)
Cy~  is compact because it can be written as the intersection of a compact set

Core=2 N f;*l([e’oo)), (56)

where we denote fy« : ¢ — ||¢ — ¢*||. Indeed, @ is compact (by Assumption and fq,;l([e, 00)) is
closed as the inverse image of the closed set [e, 00) by the continuous function fy-.

The function g : ¢ — L(¢*) — L(¢) is continuous (by Lemma|2) on the compact set Cg+ ., hence by
the extreme value theorem, g attains its minimum on Cy-« . in some ¢ € .

Thus ~
Vo € Cyr e, L(¢") — L(¢) = g(o). (57)
By Lemmal(l] g > 0 on ® and
9(¢) =0 <= ¢=¢" (58)
Since ¢ # ¢* (because ¢ € Cy- (), we have g(4) > 0. Thus, the lemma holds with the choice of
n(e) = g(¢) > 0. O

C OMITTED PROOFS IN SECTION[3]
Before proving Lemmaf] we state and prove a few preliminary lemmas.

Notation for Strong Consistency We define the diameter of © by
Diam(®) := sup |[¢ — 9. (59)
¢ped

We begin with the following technical lemma, which gives an upper bound on the number of closed
balls of radius r = ¢/ L needed to cover P.

Lemma 12. Let 0 < ¢ < 2 Diam(®) L, and let N, be the minimum number of closed balls of radius
r = [ required to cover ®. Then

Ne <

4d(Diam((I>) L)d. 60)

€
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Proof of Lemmal[I2] We construct a sequence ¢1, ¢o, ... in ® satisfying
Vi#j, g — sl > (61)

This process must terminate after finitely many steps; denote the final index by K. Indeed, if it
were infinite, then compactness of ® would yield a convergent subsequence of {¢,, }, contradicting

equation

By construction,

K
® c [JB@n.1), (62)
k=1

for otherwise we could pick some ¢ ¢ Uszl B(¢x, ) to continue the process, contradicting the
definition of K. Hence N, < K.

Next, observe that the closed balls B(¢,r/2), k = 1,..., K, are pairwise disjoint: if there were
¢ € B(¢s,7/2) NB(¢;,7/2) with ¢ # j, then

16 — &5l < lli = @Il + I — &5l <v/247/2 =7, (63)

contradicting equation [61]

Moreover, for each k,
B(¢x,r/2) C B(¢1, Diam(®) + r/2), (64)

since if || — @ || < r/2then [|¢ — @1 < [|¢ — ¢kl + [[¢x — d1]| < 7/2 + Diam(®).
Thus

K
U B(¢k.7/2) © B(¢1, Diam(®) +r/2), (65)
k=1

and by comparing volumes of disjoint balls in R? we get

(r/2)4r/? B (Diam(®) + r/2)d7d/2

< (66)
¢ +1) r'(¢+1)
Hence p p
N. < K < (1 42 Diam(cb)) < (4 Diam(cb)) ’ (67)
where the final inequality uses € < 2 Diam(®) L. O
In the following two lemmas establish a sufficient condition for the almost sure convergence.
Lemma 13. Let (Ag)s>1 be a sequence of events. We have
P UAE =0 < W>1, P(A)=0. (68)

>1

Proof of LemmalI3| If P (Uezl Ag) = 1, then for all £ > 1, we have clearly P(A;) <
P (U£21 Ag) = 0 and so P(4,) = 0.

If P(Ay) = 0 for every £ > 0, then we have by Boole’s inequality,

PlJA | <> PA) =0 (69)

>1 £>0

17
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Lemma 14. Let {Z,}, be a sequence of random variables. We have

> a.s.
Ve > 0, ;P(|Zn|7e)<oo = Zn 0. (70)
nz

Proof of Lemma We have by definition of the almost sure convergence, Z,, ——— 0 if and only
n—oo

if P ( lim 7, = 0) — 1. Equivalently,
P(NVe>0,an>1,Ym >n,|Z,| <¢€) =1, (71)

and since we can replace e by any sequence of positive real numbers that converges to 0, the previous
condition is equivalent to

rIOAUN {|Zn|<2} =1 (72)

£>1n>1m>n

Considering the complementary event, this is equivalent to

rlUN U {|Zn|22} =0. (73)

£>1n>1m>n

Using Lemma([T3] in order to have the almost sure convergence of Z,, to 0, it is sufficient to prove that

1
vex1, P ) U{|Zn|>€} =0. (74)

n>1m>n

Now suppose that forall e > 0, Y -, P (|Z,] > €) < oco. This implies that for all £ > 1, we have

>p (|Zn| > 2) < 0. (75)

n>1

Using Borel-Cantelli lemma, this implies that

1
vex1, P ) U{|Zn|2£} =0. (76)

n>1m>n

This concludes the proof. O

Lemma 15. For any fixed ¢ € ®, and e > 0, we have

62
P(IL(6) — L(9)| > €) < 2exp <§]§4) | )

Proof of Lemmal[I3 We have
L
Ln(®) = 5 i:zla(X“ 9). L(¢) = Exnp- [a(X,0)], (78)

where X, X1,..., Xn irideg*.

18



Under review as a conference paper at ICLR 2026

We already establish that |a(z, ¢)| < M (see|53), hence

P(|Ln(¢) — L(9)| =€) ( > (af —Ex~p- [a(X,9)])| > Ne> (79)
N 62
S 2exp ( > M2) ) 8D
where Inequality [80]results from Hoeffding’s inequality. O

ProofofLemma Let 0 < € < 2DL. We cover ® by N, closed balls of radius r = ¢/L, i.e.,

Ne
® c B¢ 1)
k=1

DL\*
for some ¢1, ..., ¢y, € ®, where N, < 44 <) by Lemma
€

For all ¢ € ®, there exists an integer 1 < k(¢) < N, such that ||q5 — Dr(4) H < r, hence it follows
from Assumption [5] that

Ve, |la(z,¢) = a(@, dr@)|| < L6 — due| < Lr =« (82)

‘We have
|ILn(¢) — L(¢)| < |Ln(¢) — Ln(de))| + |Ln (Bre)) — L(dnis))| + | L(dn(s)) — L()] -

The first term can be bounded using Inequality @ as follows,
|Ln(¢) = L (dn(s))| Z la(Xi,¢) — a(Xi, brp))| < e (83)

Similarly, the third term satisfies
|L(drp)) — L(®)| = |[Exa(X, dpp) — Exa(X,¢)| < Ex |a(X, ¢r(s) — a(X,8)| <,

where the first equality holds from Jensen'’s inequality.

Putting these inequalities together yields
iug\LN(¢) L(¢)l = max [Ln(¢i) — L(¢i)| + 2e. (84)
c K3

yeeesNe

This implies that

P(Zug|LN<¢>L<¢> z&) gP(, max Ly (60) — L(6) ze) (85)
€ =5
Ne
<Y P(ILn(¢i) — L(¢:)| > €) (86)
=1
Ne Ne¢?
< 2 exp <> (87)
~ 2M?2
2
= 2N, exp (_QNJ\;?) (83)
. (DL\* Ne2
<2.4 (6) exp (—QMQ> (89)



Under review as a conference paper at ICLR 2026

where Equation (86) uses union bound, Equation (87) follows from Lemma [I3]and the last inequality
follows from Lemma[12

This yields when N — oo

1
P (sup ILn(¢) — L(9)] = 3e> =0 <N2) : (90)
ped®
This assures that Y v, P (supgeq [Ln(¢) — L(¢)| > 3¢) < oo, which gives by Lemma
sup Ly (¢) = L(¢)] == 0. 1)
HED N—oo
O

Proof of Theorem|2} By the preceding lemma we have the event

r <QO = {w ssup | Ly (o, w) — L(p)| —— O}) =1. (92)

pED N—oo

Fix w € Qg and, let € > 0. From Lemma 3] there exists > 0 such that
Voed, [¢"—ollze = L(¢") — L(¢) =0 >0. (93)

Since w € €, there exists a random index Ny(w,n) with
sup |ILn(¢) — L(#)| <n/3 VN = No(w,n). (94)
€

Take N > Ny(w,n) and suppose, towards a contradiction, that ||<$N(w) — ¢*|| > €. Then, using
equation [93}-equation

Ln(on (@) < L(on(w))+n/3 < L(6*) —n+n/3 = L($*) —2n/3 < L (¢") —1/3 < LN((?%)

which contradicts the maximality of ¢ (w). Hence, for all N > Ny(w,7),
lon(w) = ¢*[l <. (96)

This implies that Qy C {w : b (w) o qS*}. Since P(£2y) = 1, we conclude
— 00

o ot 97)

D OMITTED PROOFS IN SECTION [6]

D.1 RELAXATION OF THE MIXTURE POSITIVITY ASSUMPTION

Lemmal6l The weak consistency of ODR still holds if we replace Assumption[3|with the following
(weaker) assumption:

1
P (igf gp(x) < e) < w for € sufficiently small. (98)

Proof of Lemmal6] We start by proving these two elementary lemmas.

Lemma 16. For any almost surely non-negative random variable Z, i.e., P(Z > 0) = 1, we have

E[Z] = /000 P(Z > «a)da. (99)
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Proof of Lemmal[I6] We have

/ P(Z > «) / E[lz>a]d (100)
0 0
:/ 1.>0dP(2)da (101)
a=0 Jz=0

:/Z:O UOO Z>ada} dP(2) (102)
{

1da} P(2) (103)

=0
— / (104)
2=0

E[Z], (105)

where Equality equation follows from Fubini-Tonelli’s theorem, and Equality equation
follows from the non-negativity of the random variable Z. O

Lemma 17. For any positive function f : I — (0, 00) defined on some interval I C R, we have

suplog f(x) = logsup f(z). (106)

Proof of LemmalIl7] For any x € I we have by monotonicity of the logarithm function
log f(x) < logsup f(z), (107)
hence, sup, log f(z) < logsup, f(x). Furthermore,
f(z) = elog f(®) < gsup, log f('"ﬂ), (108)
and taking the supremum over = € I yields sup,, f(x) < 5= 108 f(#) thus

logsup f(x) < sup, log f(z), (109)

which concludes the proof. O

Note that the only passage of the proof of Theorem [I]in which we use Assumption [3]is when we
derive a uniform bound on the function a in Inequality More precisely, we proved that

Yz, Yp € ®, |a(z, )| < M := max {|log(c)|, | log(M)|} . (110)

While this is sufficient to apply Lemma 2.4 fromNewey & McFadden|(1994), this lemma only require
to bound a(x, ¢) by some quantity d(z) that is independent of ¢ and integrable in x.

‘We have

la(z, ¢)| = |log gy (x)] (111)
= (log go(2)) " + (log g () (112)
where 2T and 2~ denote respectively the positive and negative parts of 2.
We have
(log gy (x))" = max(0, log gy () (113)
=m0 e |5 0)po(€) ) an

and by Assumptlon | pe(s” | 5,a) < M, hence (log gg(x))™ < |log(M)|. Thus, the first term of
equation [112]is bounded by | log( )| which is independent of ¢ and integrable in .
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Furthermore,
(log gy(z))” = max(0, —log g4 (z)) (115)
= max (O,log ! ) (116)
g ()
1
< max | 0,suplog (117)
o do(x)
1
=max | 0,logsup —— (118)
6 4o(T)
1
= max <O,log ) , (119)
infy ()

where Equality equation[T18]follows from Lemma[I7] The last quantity is independent of ¢, so we
only need it to be integrable in order for the weak consistency result to hold.

Since this quantity is non-negative, Lemma [[6] yields

E {max <0,log 1>] = /OO P <max <0,1og 1) > a> da (120)
infy gg () 0 infy gy ()
= / P <1og —_— 1 > a) da (121)
0 infy gy (2)

= / P (inf ge(z) < e_O‘) da, (122)
0 [

and hence we only need to have the convergence of this integral. The integrand is bounded (between
0 and 1), so the integral is always convergent on (0, 1]. Hence, it is sufficient to have the convergence
of the integral on [1, 00), e.g., one sufficient condition might be

1
P <i2f gg(x) < eO“) < —; for a sufficiently large, (123)
o

equivalently,

1
P (infgy(z) < €] < ————— for € sufficiently small. 124
(89000 <) = i ’ (12

Notice that Assumption implies this condition, since it implies that inf g4(x) > 0 and hence for
sufficiently small € > 0 we have

1

(log(e)?” (12)

P (igf%(z) < e) =0<

O

D.2 SUFFICIENT CONDITION FOR THE UNIFORM LIPSCHITZ CONTINUITY ASSUMPTION

In this section, we prove a practical sufficient condition for Assumption [5} More formally, the
following holds:
Lemma [7] (Sufficient Condition for the Uniform Lipschitz Continuity Assumption). Suppose the
Sollowing holds for every x = (s,a,s’)

1. The function & — pe(s' | s, a) is twice continuously differentiable (of class C?),

2. There exists two constants G1 > 0 and G3 > 0 such that |[Vepe(s' | s,a)] < Gy and
|VEpe(s' | s,a)| < G2,

G1+G2/2

then Assumption H holds with L =
c
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Before proving this result, state and prove a technical lemma that we use in our proof.

Lemma 18. For any c > 0, the logarithm function log is %-Lipschitz on [c, o0).

Proof of LemmalI8 Let « and y be two real numbers such that ¢ < 2 < y. We have

Y Yy—x y—
— = — = — = _— <
[log(y) —log(z)| = log(y) — log(z) = log (x) log (1 + ) < (126)
and since x > c, it follows
1 1
[log(y) — log(z)| < “y-a)= gly—w|~ (127)

Notice that this result can also be proved using the mean value inequality.

Proof of Lemmal7} Our goal is to prove that under the two assumptions of Lemma[7} we have

Vo= (1, 0), ¢ = (1, %) € ¥, |a(z,¢) —a(x,¢)| < L|o— ¢,  (128)

First, notice that using Lemma[I8and Assumption[3] we have

la(z,¢) — a(x, ¢)| = [log(f(4)) — log(fz(¢"))| < %|fz(¢) = fa(&))], (129)

where we used the notation f,(¢) := q4(s" | s,a) = E¢up, [pe(s’ | 5,a)]. Hence, it is sufficient to

prove that | f,(¢) — fo(¢')| < L||¢ — ¢'|| for every z for some constant L > 0.

We start by treating the case where ¥ and X’ are non-singular.

Case 1: non-singular covariance matrices. In the case where ¥ is non-singular,

fo() = /}E ha(OON (€ 1. ), (130)

where hy (€) = pe(s' | 5,a) and N (€ 1, 5) 1= (2m)~%/2 det(2)" 2 exp(— 3(6—p) T8 (E ).

Since p ++ 7 and ¥+ X! are continuously differentiable respectively on R? and GL4(R), then
the function ¢ — N (&; i1, ) is C* as long as ¥ = 0 with

VN (&, D) =571 E - ) N (&, D). (131)
and using the matrix-calculus identities
dlogdet ¥ = tr(X dX), dx™) = -z dx)n (132)
we compute
dlog N = d[—% logdet X — 1(6 — )T~ 1(¢ — ,,L)] (133)
= —5tr(Z7HdE) — (€~ p) " AETH(E - p) (134)
= =3 tr(R71AR) + 3(€ - p) T [BTHAD)Z (€ - p). (135)

Since dNV = N dlog NV, we get
AN = %N[(g ) TEAD)D (€ - p) — tr(D dE)}. (136)
Rewriting in Frobenius inner product form,

cW:tr[(%N[zfl(gfﬂ)(gfu)Tzfl 72*1])Td2}. (137)
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Thus the gradient is

VEN (€ ) = N (& D[S E - mE—p TR -8, (138)

On each compact subset K of @ N {(£,X) : ¥ > 0}, we have by the sub-multiplicativity of the norm
10 () VN (&5 1 D)y < MZTH], 1€ = pally N (& 11, 2), (139)

ans since the function ¢ — HZ_l H2 & — plly N(&; 1, ) is continuous on K, it attains its maximum
in some point of K, hence, there exists some py and ¢ > 0 such that for all ¢ € K,

1P (VN (€ 11, D) < M |0 1€ = poll V(&5 110, o), (140)
where the right term is integrable in & since Ex ar(e;0,50)[|X — #0]|] < oo. Furthermore,
1 _
1ha( VSN (& s D)l < GMN (&, E) (127HE =€ =) 27| + (1271 2) 4D

and ||[S7H(E—p) (€ —p) TR 1|\F 1= 1€ = )€ = 1) T|| o [|=7]| o- The middle factor
can be rewritten as follows

[E=m(E—w || =tr[(€—mE - (E—pE—1p] (142)
=tr[(€— ) E—pE—n"(E—p)] (143)
= |l& — ull2, (144)
which yields
e (€ VSN 1.2 < MN D) (Sl -l +[57,) . (49)

Again, the function ¢ (HE 1HF €=l + =Y ) (&; 1, %) is continuous on K, it attains
its maximum in some point of K, hence, there exists some 17 and 3; > 0 such that for all ¢ € K,
1 —1)12
11 (&VsN (€ Dl < 5M (17 6 = all3 + |27 ) M€ pa, ), (146)
where the right term in integrable in £ since the Gaussian distribution has finite second order moment.

Using Leibniz integral rule, the function ¢ +— f,(¢) is C' and we may interchange differentiation
and integration to get

Vufo(6) = /5 ha (), N (€5 1, 5) dé (147)
- /E ha (€)1 — WN(€: 1, D) dg (148)
= / +(€) [VeN (& p, X)) dE (149)
/ Vehy (§ N (& p, E) dg (150)
=Een(uz) [Veha(§)] (151)
where Equation follows from an integration by partﬂ Furthermore,
Vsfa(6) = /6 he (VSN (€ 1, %) dé (152)
= /ghm@); [2‘1(5 —m(E—-p)'E - 2_1]/\/(5; p, %) dg (153)
= LS B [hel©) [(€ — )€~ )T — 5] 5 (154)
=SS B [he©) [S € - E A E- )T - 1[5 as9)
1

= 55 P Eenu [9(2) (227 — 1)) B7V2, (156)

>The first term of the integration by part vanishes since |k (€) N'(&; p, )| < MN (& 11, %)

1€l —o0
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where ¥71/2 is the unique positive definite square root of X!, z := X ~1/2(¢ — 1) and g(2) :=
he(€) = he(2Y22 4 p). Using the Iterated Stein formula (Bellec & Zhang, 2020; Stein, 1981) we
have

Eenus) [9(2) (22" —1a)] = Eeanus) [Vag(2)] (157)
= Eeon(uz) [E Veha(€)] (158)
=Y Een(uy) [Viha(9)] - (159)

Combining this equation with Equation (I56) yields

Vs fz(0) = EE&N(,L,E) [Veha(€)] . (160)

Since f, is C'' when ¥ > 0, for any two points ¢, ¢’ € ® such that ¥ = 0 and X/ > 0, there is ¢ on
the segment joining them (and thus 3 = 0) |E| so that by the mean-value theorem

Fo(8) = (&) = (Vo fuld), o = ). (161)
In particular ~
|fu(@) = fo (@) < IV fa(@) o — ¢'ll. (162)
By assumption (ii), [|[Vehe || < Gy and [[VZh.|| < Go. Hence
IVufe(@)] = [|E[Veha (O] < Gr, Vs fa(@)] = 5[E[VER(O]]] < - (163)
Assembling the two blocks,
fa(0) = (&) < (G1+ )16 — ¢/ (164)
Therefore f,, is Lipschitz in ¢, with constant L’ = G'1 + G2/2, and by Lemma|18|so is a(z, ¢) =
log f.(¢) with constant L = 6’1%6’2/2

General case. For the case where we no longer suppose that 3 and ¥’ are non-singular, we use
the density of the set of invertible matrices in M4(R). More precisely, there exists two sequences of
non-singular matrices {3y} y and {¥;} y; such that ¥ — ¥ and ¥y, — ¥’ when N — co. We
denote ¢ := (, Xn) and @'y := (p, X'y ). The previous result ylelds

VN >0,Va, |a(z, on) — a(z,¢y)| < Lllon — ¢l (165)

and thus, when N — oo we get
VCC, |a(x,¢)—a(:z:,q§’)| < LH(b_Q/)/Hv (166)
where we used the continuity of the function ¢ — a(z, ¢) on & (Lemma . This concludes the
proof. O

D.3 WEAK CONSISTENCY UNDER PARTIAL COVERAGE

Theorem B} Under Assumptions |ZI 2] and 3| the following holds, Any measurable maximizer

(bN € arg max L (9) satisfies dlbt(¢N, 9, ) o*
ped
Proof of Theorem[3] As in Theorem|[I] the uniform law of large numbers holds:
P
sup | L (¢) — L(¢)| = 0. (167)
ped

Lemmagproves that Q7 is nonempty and compact.

SIndeed, there exists ¢ € [0, 1] such that ¥ = ¢ + (1 — ¢)%’ where & > 0 and &’ > 0, thus for any
2z€RY, 282 =t2"Sz+ (1 —t)2' X2 > 0.
"where dist is the distance to a set defined by dist(¢, Q) := infyeo ||¢ — V.
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Fix € > 0 and define the separation (margin) outside the e-neighborhood of Q7 :

n(e) = inf {L(9") — L(9) : 6" € Q, dist(6,Q}) > ¢ .
Because L is continuous and {¢ € ® : dist(¢, Q},) > £} is compact, we have n(g) > 0.
By equation there exists a sequence of events £y with P(Ex) — 1 such that on &,
sup Ly () = L(9)| < gn(e).
On &y, for any ¢ with dist(¢, Q;) > ¢ and any ¢* € QF,

Ln(¢) < L(¢) + 3n(e) < L(¢*) —nle) + 3n(e) = L(¢*) — 3n(e) < Sup Ly(),

where the last inequality uses Ly () > L(¢)) — 2n(¢) = L(¢*) — in(e) forany ¢ € Qy,. Therefore,
no maximizer of Ly can lie outside the e-neighborhood of Qj; on £y . Equivalently,

dist(dA)N, Q1) < e onéy.
Since P(Ex) — 1 and & > 0 is arbitrary, we conclude dist(¢, Q) 0. O

Lemma@ Under Assumptions and[3| The identified set Q7, is non-empty and compact and and
the correspondence o — Q7 is upper hemicontinuous’|with respect to total variation.

Proof of Lemmal9] Write

L6 1) = Eqsoayon Espe (15,0 (S, 4, 57).6)] = /S S5, (. da),

where
f¢(57 a) = ES’\S,G[G((& a, S/)v (b)]
Step 1: Finite-valued and continuity in ¢. We have

sup |a(z,¢)| < M foralla = (s,a,s).
PpeD

Therefore |fy(s,a)| < M for all (s,a) and ¢, and L(¢, 1) € R. Moreover, Lemma@gives

continuity of ¢ — a(z, ¢) for each fixed . By dominated convergence with the uniform bound M,
we obtain continuity (hence upper semicontinuity) of ¢ — L(¢, i) on ®.

Step 2: Uniform TV-continuity in 4. Let i, — g in total variation. Then, for any ¢ € P,

L(vstn) = L] = | [ Fols.a) (un — s do (168)
< / s (5,0)| |t — )| (ds da) (169)
< M ||pn — ptllov- (170)

Taking the supremum over ¢ € @ yields

sup |L(¢, pin) — L(¢; )| < M ||t — ptllry —— 0. (171)
PpeD n—o00

8A set-valued map F' is upper hemicontinuous at x if, whenever x,, — o and y,, € F' (zn) with y, — ¥,
then y € F(xo). Equivalently: for every open U with F'(z¢) C U, there exists a neighborhood V' of x¢ such
that F(z) C U forallz € V.
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Step 3: Joint continuity of L. Let (¢, pn) — (¢, ) with ¢,, — ¢ in ® and p,, — p in TV. Then
|L(¢na ,U/n) - L(¢7 ,u)| < |L(¢naﬂn) - L((ﬁn,ﬂ)l + |L(¢nvﬂ) - L(¢7 ,u)|
By uniform TV—continuity in p (from |a(z, ¢)| < M),

sup |L(¢, ptn) — LW, )| < M ||pt, — || v —— 0,
we(p n—o0

hence | L(¢pp, ptn) — L(¢pn, 1)| — 0. By continuity in ¢ at fixed ;1 (dominated convergence with the

same bound), |L(¢n, 1) — L(é, )] — 0. Therefore L(¢py,, ptn) = L(d, p), i€, (¢, pt) — L(, ) is
jointly continuous

Hence, by Berge’s Maximum Theorem (Berge, [1963), for each p the argmax set Q; =
arg maxgeq L(@, p1) is nonempty and compact, and the correspondence p — Q7 is upper hemicon-
tinuous (in total variation). O
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