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Abstract

Recent years have seen unprecedented growth001
in natural language understanding and genera-002
tion research with the help of pre-trained lan-003
guage models (PLMs). Autoencoding and au-004
toregressive language model pre-training are005
the two dominant techniques, and recent works006
unify them to excel on both natural language un-007
derstanding and generation tasks. In this study,008
we aim to fill in the vacancy of an in-depth009
investigation of using PLMs for keyphrase ex-010
traction and generation. We focus on keyphrase011
extraction as sequence labeling and keyphrase012
generation as sequence-to-sequence genera-013
tion. Our study investigates the performance014
of encoder-only versus encoder-decoder PLMs,015
the influence of pre-training domains, and us-016
ing encoders and decoders of various depths.017
Experiment results on benchmarks in the sci-018
entific domain and the news domain show that019
(1) strong and resource-efficient keyphrase gen-020
eration models can be built with in-domain021
encoder-only PLMs; (2) the keyphrase ex-022
traction formulation does not help the model023
learn to find better present keyphrases; (3) for024
keyphrase generation, using a deep encoder025
and a shallow decoder works well. Finally,026
we present a strong encoder-decoder model027
SciBART pre-trained on a large scientific cor-028
pus and demonstrate its outstanding keyphrase029
generation performance and advantage over030
state-of-the-art PLMs.031

1 Introduction032

Keyphrases are the phrases that condense salient033

information of a document. Because of their high034

information density, keyphrases have been widely035

used for indexing documents, linking to relevant036

information, or recommending products (Wu and037

Bolivar, 2008; Dave and Varma, 2010). Keyphrases038

have also functioned as important features for text039

summarization (Zhang et al., 2004), information040

retrieval (Jones and Staveley, 1999; Song et al.,041

2006; Kim et al., 2013; Tang et al., 2017; Boudin042

Document title
J.F.K. Workers Moved Drugs, Authorities Say
Document body
Airline employees exploited weaknesses in security proce-
dures to help a New York drug ring smuggle heroin and
cocaine through Kennedy International Airport, federal au-
thorities charged yesterday. At least 18 people have been
charged, the authorities said, including seven employees of
Delta Airlines, one employee of American Airlines and two
who worked at the airport.
Present and Absent Keyphrases
smuggling, heroin, kennedy international airport

drug abuse and traffic, crime and criminals, cocaine and crack
cocaine

Figure 1: An example document with present and absent
keyphrases, highlighted in blue and red, respectively.

et al., 2020), document clustering (Hammouda 043

et al., 2005), and text classification (Hulth and 044

Megyesi, 2006; Wilson et al., 2005; Berend, 2011). 045

Recently, automatic keyphrase identification is be- 046

ing widely studied. Given a document, a keyphrase 047

is a present keyphrase if it appears as a span in the 048

document, or an absent keyphrase otherwise. The 049

task keyphrase extraction requires a model to ex- 050

tract present keyphrases. Meng et al. (2017) further 051

introduce keyphrase generation where the model 052

is required to predict both present keyphrases and 053

absent keyphrases. 054

With the successful application of pre-trained 055

language models (PLMs) on various NLP tasks 056

(Devlin et al., 2019; Brown et al., 2020; Lewis 057

et al., 2020; Raffel et al., 2020; Conneau et al., 058

2020), many latest keyphrase identification stud- 059

ies have based their approach on PLMs. For in- 060

stance, PLMs have been used for unsupervised 061

keyphrase extraction (Sun et al., 2020; Liang et al., 062

2021), keyphrase extraction via sequence labeling 063

(Sahrawat et al., 2019; Dascalu and Trăuşan-Matu, 064

2021), and keyphrase generation via sequence-to- 065

sequence (seq2seq) generation (Liu et al., 2020, 066

2021a; Chowdhury et al., 2022; Kulkarni et al., 067

2022; Wu et al., 2022; Gao et al., 2022). 068
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Academic domain
BioBERT (Lee et al., 2019), ChemBERTa (Chithrananda
et al., 2020), [Bio|CS]_RoBERTa (Gururangan et al., 2020),
SciBERT (Beltagy et al., 2019), PubMedBERT (Gu et al.,
2022), MatSciBERT (Gupta et al., 2021)
Social domain
ClinicalBERT (Alsentzer et al., 2019), FinBERT (Liu et al.,
2021b), LEGAL-BERT (Chalkidis et al., 2020), JobBERT
(Zhang et al., 2022), PrivBERT (Srinath et al., 2021), Sports-
BERT (Srinivasan and Mashetty)
Web domain
Twitter-roberta (Barbieri et al., 2020), BERTweet (Nguyen
et al., 2020), [News|Reviews]_RoBERTa (Gururangan et al.,
2020), HateBERT (Caselli et al., 2021)

Figure 2: Domain-specific encoder-only PLMs are avail-
able in a variety of domains.

Nevertheless, these studies mainly use PLMs as069

an effective means to achieve stronger performance,070

without an in-depth investigation of the pre-training071

domain or the model architecture. Following the072

seq2seq formulation in Yuan et al. (2020), previous073

keyphrase generation studies often use encoder-074

decoder PLMs such as BART (Lewis et al., 2020)075

or T5 (Raffel et al., 2020).1 However, we notice076

that there is a diverse set of encoder-only domain-077

specific PLMs (Figure 2) whose domain knowledge078

may be leveraged to build better and more data-079

efficient keyphrase generation models. This leaves080

us with the high-level question: are we using the081

right PLMs in the most effective way?082

In this empirical study, we aim at carefully083

searching for the best methods to use PLMs for084

keyphrase extraction and generation. Our study085

covers three important factors: (1) encoder-only086

vs. encoder-decoder PLMs, (2) the pre-training087

domain, and (3) using a deep encoder vs. a deep088

decoder. Our results suggest that domain-specific089

PLMs are preferred for low-resource keyphrase ex-090

traction or generation. We find that the sequence091

generation objective does not significantly under-092

perform sequence labeling for predicting present093

keyphrases, while allowing the model to generate094

absent keyphrases. In addition, we explore two095

novel approaches to fine-tune encoder-only PLMs096

on keyphrase generation: (1) adding a decoder ini-097

tialized from an encoder-only PLM (Rothe et al.,098

2020) and (2) manipulating attention masks (Dong099

et al., 2019). Experiments on (1) show that this100

approach allows an in-domain BERT (Devlin et al.,101

2019) to outperform a BART by a large margin102

in low resource scenarios. For (2), we find that a103

1We use seq2seq PLMs and encoder-decoder PLMs inter-
changeably in this paper.

strong PLM-based encoder is crucial for keyphrase 104

generation performance, while using a PLM de- 105

coder is not required. 106

Finally, to fill the vacancy of seq2seq PLMs in 107

the scientific domain, we pre-train a BART model 108

(which we call SciBART) using the S2ORC dataset 109

(Lo et al., 2020) and show its effectiveness in sci- 110

entific keyphrase generation. Further studies reveal 111

that SciBART outperforms KeyBART (Kulkarni 112

et al., 2022) which is specifically pre-trained on 113

keyphrase generation. The major contributions of 114

this paper are summarized as follows: 115

1. We show that in-domain PLMs are extremely 116

sample efficient to learn keyphrase genera- 117

tion. We find that the in-domain encoder- 118

only SciBERT outperforms BART on scien- 119

tific keyphrase generation. 120

2. We find a deep encoder combined with a 121

shallow decoder greatly outperforms the re- 122

verse configuration in terms of keyphrase gen- 123

eration quality and inference latency. 124

3. We verify that present keyphrases are not eas- 125

ier to extract than generate. 126

4. We present SciBART. Pre-trained on unsu- 127

pervised scientific papers, it achieves better 128

scientific keyphrase generation performance 129

than KeyBART despite being 3x smaller. 130

To facilitate future research, we will make the 131

code and pre-trained models publicly available. 132

2 Methods 133

2.1 Problem Definition 134

We view a keyphrase example as a triple 135

(x,yp,ya), corresponding to the input document 136

x = (x1, x2, ..., xd), the set of present keyphrases 137

yp = {yp1 , yp2 , ..., ypm}, and the set of absent 138

keyphrases ya = {ya1 , ya2 , ..., yan}. For both 139

keyphrase extraction and generation, x is obtained 140

by concatenating the title, a special [sep] token, 141

and the document body. Following Meng et al. 142

(2017), each ypi ∈ yp is a substring of x, and each 143

yai ∈ ya does not appear in x. 144

Using this formulation, the keyphrase extrac- 145

tion task requires the model to predict yp in any 146

order. We use a sequence labeling formulation for 147

keyphrase extraction with PLMs. Concretely, for 148

each xi ∈ x, we assign a label ci ∈ {Bkp, Ikp, O} 149

depending on x being the beginning token of 150

a present keyphrase, the subsequent token of a 151

present keyphrase, or otherwise. The model is 152

required to predict the label for each token. On 153
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the other hand, the keyphrase generation task re-154

quires the prediction of yp ∪ ya. Following Yuan155

et al. (2020), we use a special separator token ;156

to join all the keyphrases as the target sequence157

y = (yp1 ; ... ; ypm ; ya1 ; ... ; yam).158

2.2 Keyphrase Extraction159

For this task, we fine-tune three encoder-only160

PLMs: BERT (Devlin et al., 2019), SciBERT161

(Beltagy et al., 2019), and RoBERTa (Liu et al.,162

2019) 2. For each model, we add a fully connected163

layer to project the hidden representation of every164

token into 3 logits. The model is trained on the165

cross-entropy loss. We also experiment with using166

Conditional Random Field (Lafferty et al., 2001)167

to better model the sequence-level transitions. We168

use +CRF to refer to models with this change.169

2.3 Keyphrase Generation170

2.3.1 Encoder-Decoder PLMs171

Using the sequence generation formulation, we172

directly fine-tune BART-base (Lewis et al., 2020),173

T5-base (Raffel et al., 2020), and SciBART-base174

(discussed in section 2.3.3). The models are trained175

with cross-entropy loss for generating the target176

sequence of concatenated keyphrases.177

2.3.2 Encoder-only PLMs178

Seq2seq via BERT2BERT We construct179

seq2seq models by initializing the encoder and the180

decoder with two encoder-only PLMs. Following181

Rothe et al. (2020), we add the encoder-decoder182

attention mechanism to the decoder. The models183

are then fine-tuned as seq2seq models. We184

use five pre-trained BERT checkpoints from185

Turc et al. (2019) that have hidden size 768, 12186

attention heads per layer, and 2, 4, 6, 8, 10 layers,187

respectively. B2B-e+d denotes a BERT2BERT188

model with an e-layer pre-trained BERT as the189

encoder and a d-layer pre-trained BERT as the190

decoder. We use BERT2RND (B2R) to denote191

randomly initializing the decoder and RND2BERT192

(R2B) to denote randomly initializing the encoder.193

Seq2seq via Mask Manipulation Dong et al.194

(2019) propose jointly pre-training unidirectional,195

bidirectional, and seq2seq language modeling by196

controlling mask patterns. In their seq2seq setup,197

the input becomes x [eos] y. The attention mask is198

designed such that tokens in x are only allowed199

2In this paper, we use base variants of all the encoder-only
models unless otherwise specified

to attend to other tokens within x, and that to- 200

kens in y are only allowed to attend to tokens on 201

their left. Using this formulation, we fine-tune 202

encoder-only PLMs for seq2seq keyphrase gen- 203

eration. Following Dong et al. (2019), we mask 204

and randomly replace tokens from y and train the 205

model on the cross-entropy loss between its recon- 206

struction and the original sequence. We call our 207

models BERT-G, SciBERT-G, and RoBERTa-G. 208

As these PLMs are only pre-trained on bidirec- 209

tional language modeling, we further experiment 210

on an UniLMv2 model without relative position 211

bias (Bao et al., 2020), denoted as UniLM. 212

2.3.3 In-domain Encoder-Decoder PLM 213

Previous works such as Beltagy et al. (2019) and 214

Gururangan et al. (2020) have established the 215

unique advantage of domain-specific PLMs in a 216

wide range of tasks. To fill the vacancy of encoder- 217

decoder PLMs in the scientific domain, we pre- 218

train a SciBART-base model using the S2ORC 219

dataset (Lo et al., 2020). 220

Corpus and Data Preprocessing The S2ORC 221

dataset contains over 100M papers from a variety 222

of disciplines (Figure 5). We train on all the titles 223

and abstracts to increase the coverage of different 224

topics. After removing non-English3 or title-only 225

entries, we fix wrong unicode characters, remove 226

emails and urls, and convert the text to ASCII en- 227

coding4. The final dataset contains 171.7M docu- 228

ments, or 15.4B tokens in total. We reserve 10k 229

documents for validation and 10k documents for 230

testing, and use the rest as training data. 231

Vocabulary Beltagy et al. (2019) suggest that 232

using a domain-specific vocabulary is crucial to 233

downstream in-domain fine-tuning performance. 234

Following their approach, we build a cased BPE 235

vocabulary in the scientific domain using the Sen- 236

tencePiece5 library on the cleaned training data. 237

We set the vocabulary size to 30K. 238

Training For the pre-training objective, we only 239

use text infilling as introduced in Lewis et al. 240

(2020). We mask 30% of all tokens in each ex- 241

ample, with the spans randomly sampled from a 242

Poisson distribution (λ = 3.5). For 10% of the 243

spans selected to mask, we replace them with a 244

3We use guess_language for language detection.
4We use clean-text for data cleaning.
5https://github.com/google/

sentencepiece
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random token instead of the mask token. We set245

the maximum sequence length to 512. The model246

is pre-trained for 250k steps with batch size 2048,247

learning rate 3e-4, 10k warm-up steps, and poly-248

nomial learning rate decay. We use the Adam opti-249

mizer for pre-training. Using 8 Nvidia A100 GPUs,250

the training process took approximately 8 days.251

3 Experimental Setup252

3.1 Benchmarks253

We test the methods in the scientific and the news254

domain. The statistics of all the testing datasets are255

provided in appendix section A.256

SciKP Meng et al. (2017) introduce KP20k, a257

large keyphrase generation dataset containing 500k258

Computer Science papers. Following their work,259

we train on KP20k and evaluate on the KP20k260

test set and four testing datasets in the Computer261

Science domain: Inspec (Hulth, 2003a), Krapivin262

(Krapivin et al., 2009), NUS (Nguyen and Kan,263

2007), and SemEval (Kim et al., 2010).264

KPTimes Gallina et al. (2019) introduce KPTi-265

mes, a keyphrase generation dataset in the news266

domain containing over 250k examples. We train267

on the KPTimes train set and report the perfor-268

mance on the union of KPTimes test set and the269

out-of-distribution test set JPTimes.270

3.2 Baselines271

We compare PLMs with the following supervised272

keyphrase generation baselines:273

CatSeq (Yuan et al., 2020) is a CopyRNN (Meng274

et al., 2017) trained on generating keyphrases as a275

sequence, separated by the separator token.276

ExHiRD-h (Chen et al., 2021) is an improved277

version of CatSeq, where a hierarchical decoding278

framework and a hard exclusion mechanism is used279

to reduce duplicates.280

Transformer and SetTrans are proposed by Ye281

et al. (2021). Transformer is a standard 12-layer282

Transformer (Vaswani et al., 2017) model with283

copy mechanism, while SetTrans performs order-284

agnostic keyphrase generation. Using learned con-285

trol codes, SetTrans generates each present/absent286

keyphrase separately in parallel.287

For keyphrase extraction, we train a randomly288

initialized Transformer as the main baseline. We289

also include a range of traditional keyphrase extrac-290

tion methods. The full list of all baselines and their291

performance can be found in the appendix.292

3.3 Evaluation 293

We normalize each method’s predictions into a se- 294

quence of present keyphrases and a sequence of 295

absent keyphrases. For the sequence labeling ap- 296

proaches, we order the phrases by the position they 297

appear in the source document to obtain the present 298

keyphrase predictions. Then, we apply the Porter 299

Stemmer (Porter, 1980) to the output and target 300

phrases and remove the duplicated phrases from 301

the output. Following Chan et al. (2019) and Chen 302

et al. (2020), we report the macro-averaged F1@5 303

and F1@M scores. For all the results except the 304

ablation studies, we train the model with three dif- 305

ferent random seeds and report the averaged scores. 306

3.4 Implementation Details 307

Keyphrase Extraction We implemented our 308

models with Huggingface Transformers6 and 309

TorchCRF7. The models are trained for 10 epochs 310

with early stopping. We use a learning rate of 1e-5 311

with linear decay and batch size 32 for most models 312

(see appendix for all the hyperparameters). We use 313

AdamW with β1 = 0.9 and β2 = 0.999. 314

Keyphrase Generation For BART and T5, we 315

use Huggingface Transformers and train for 15 316

epochs with early stopping. We use learning rate 317

6e-5, polynomial decay, batch size 64, and the 318

AdamW optimizer. To fine-tune SciBART, we use 319

the Translation task provided by fairseq8 and train 320

for 10 epochs. We use learning rate 3e-5, polyno- 321

mial decay, and the AdamW optimizer. 322

For BERT-G, SciBERT-G, RoBERTa-G, and 323

UniLM, we base on Dong et al. (2019)’s imple- 324

mentations 9. For most models, we train for 20k 325

steps with batch size 128, learning rate to 1e-4, and 326

linear decay. We set the maximum source and tar- 327

get length to 464 and 48, respectively. We mask 328

80% of the target tokens, and randomly replace an 329

additional 10%. We use the AdamW optimizer. 330

We use greedy decoding for all the models. The 331

fine-tuning experiments are run on a local GPU 332

server with Nvidia GTX 1080 Ti and RTX 2080 Ti 333

GPUs. We use at most 4 GPUs and use gradient 334

accumulation to achieve desired the batch sizes. 335

6https://github.com/huggingface/
transformers

7https://github.com/s14t284/TorchCRF
8https://github.com/facebookresearch/

fairseq
9https://github.com/microsoft/unilm
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4 Results and Analysis336

We aim to address the following questions.337

1. How do PLMs compare with non-PLM ap-338

proaches for rich and low resource keyphrase339

generation? Are encoder-decoder PLMs al-340

ways better than encoder-only ones?341

2. Does the keyphrase extraction formulation342

make present keyphrases easier to find?343

3. Is a deep PLM-based encoder necessary344

for good keyphrase generation performance?345

Does the same pattern hold for the decoder?346

4. How well does SciBART’s performance com-347

pare with state-of-the-art PLMs?348

4.1 In-domain PLMs are good low-resource349

learners for keyphrase generation350

First, we compare encoder-only and encoder-351

decoder PLMs with established keyphrase gen-352

eration methods. Table 1 presents the main re-353

sults in the scientific domain. Full results are pre-354

sented in the appendix. We observe that with 500k355

training data, directly fine-tuning base-sized PLMs356

on seq2seq keyphrase generation generally gives357

worse performance to specially designed objectives358

such as SetTrans, while deeper models such as T5-359

base can approach the state-of-the-art. However,360

the pattern is not consistent across domains. On361

KPTimes, PLMs establish an absolute advantage362

over CatSeq, ExHiRD, and SetTrans. We empha-363

size that this comparison mainly aims at faithfully364

examining the gap between fine-tuning PLMs and365

training from scratch. To build stronger models,366

one may consider initializing SetTrans with PLMs.367

More importantly, we find the pre-training368

domain greatly influences the keyphrase gener-369

ation performance of PLMs. For the scientific370

benchmarks, SciBERT-G and SciBART-base out-371

perform BART-base, while on KPTimes, BART-372

base is stronger than T5-base despite being shal-373

lower. Moreover, in-domain PLMs are much374

better low-resource learners. From Figure 3, we375

clearly observe that SciBERT and SciBART require376

much less data to achieve as good performance as377

BART on KP20k, consistently outperforming the378

baselines using training sets of different sizes.379

In summary, we highlight that (1) in rich-380

resource keyphrase generation, deep seq2seq PLMs381

can approach SOTA performance and (2) in the low-382

resource regime, in-domain PLMs are extremely383

data-efficient and greatly outperform SOTA meth-384

ods trained from scratch.385
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Figure 3: Different methods’ present keyphrase genera-
tion performance as a function of training set size.

4.2 Do encoder-only models generate better 386

keyphrases than encoder-decoder models? 387

In the previous section, we have established the 388

performance of using of encoder-only and seq2seq 389

PLMs in the classic manner, demonstrating their 390

unique merits compared to the baselines. Next, we 391

focus on using encoder-only PLMs for keyphrase 392

generation. We compare the performance of 393

(1) directly training for sequence generation by 394

manipulating masks (BERT-G, SciBERT-G, and 395

RoBERTa-G), (2) the best performance of assem- 396

bling BERT2BERT models with the same 12-layer 397

budget (full results are in Table 4), (3) UniLM, and 398

(4) BART-base. Table 2 presents the keyphrase 399

generation results on KP20k and KPTimes. 400

We start with the surprising result that strong 401

keyphrase generation models can be obtained by 402

using seq2seq attention masks to fine-tune encoder- 403

only PLMs. On KP20k, SciBERT-G outperforms 404

BART on all the metrics. On KPTimes, RoBERTa- 405

G has comparable F1@5 and better F1@M for 406

absent keyphrase generation when compared to 407

BART. On the other hand, although specifically 408

pre-trained on seq2seq masks, UniLM does not 409

outperform the domain-specific SciBERT-G and 410

RoBERTa-G. Meanwhile, out-of-domain encoder- 411

only PLMs (i.e., BERT-G and RoBERTa-G on 412

KP20k, or BERT-G and SciBERT on KPTimes) 413

still cannot outperform BART. This suggests that 414

for keyphrase generation, an in-domain encoder- 415

only PLM is able to outperform a domain- 416

general encoder-decoder PLM of a similar size. 417

Next, we observe that combining two smaller- 418
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Method |M| KP20k Inspec Krapivin NUS SemEval
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Present keyphrase generation
CatSeq 21M 29.1 36.7 22.5 26.2 26.9 35.4 32.3 39.7 24.2 28.3
ExHiRD-h 22M 31.1 37.4 25.4 29.1 28.6 30.8 - - 30.4 28.2
Transformer 98M 33.3 37.6 28.8 33.3 31.4 36.5 37.8 42.9 28.8 32.1
SetTrans 98M 35.6 39.1 29.1 32.8 33.5 37.5 39.9 44.6 32.2 34.2
SciBERT-G 110M 32.8 39.7 25.7 31.3 27.2 33.4 35.8 41.5 24.7 28.4
SciBART-base 124M 34.1 39.6 27.5 32.8 28.2 32.9 37.3 42.1 27.0 30.4
BART-base 140M 32.2 38.8 27.0 32.3 27.0 33.6 36.6 42.4 27.1 32.1
T5-base 223M 33.6 38.8 28.8 33.9 30.2 35.0 38.8 44.0 29.5 32.6
Absent keyphrase generation
CatSeq 21M 1.5 3.2 0.4 0.8 1.8 3.6 1.6 2.8 2.0 2.8
ExHiRD-h 22M 1.6 2.5 1.1 1.6 2.2 3.3 - - 1.6 2.1
Transformer 98M 2.2 4.6 1.2 2.3 3.3 6.3 2.5 4.4 1.6 2.2
SetTrans 98M 3.5 5.8 1.9 3.0 4.5 7.2 3.7 5.5 2.2 2.9
SciBERT-G 110M 2.4 4.6 1.4 2.7 2.4 4.6 3.4 5.9 1.3 1.8
SciBART-base 124M 2.9 5.2 1.6 2.8 3.3 5.4 3.3 5.3 1.8 2.2
BART-base 140M 2.2 4.2 1.0 1.7 2.8 4.9 2.6 4.2 1.6 2.1
T5-base 223M 1.7 3.4 1.1 2.0 2.3 4.3 2.7 5.1 1.4 2.0

Table 1: Scientific keyphrase generation results of keyphrase generation baselines and PLM-based methods. The
best results are boldfaced. In addition, the best results across the PLM-based methods are underlined.

Method |M| KP20k KPTimes
F1@5 F1@M F1@5 F1@M

Present keyphrase generation
Encoder-only PLM
BERT-G 110M 31.3 37.9 32.3 47.4
SciBERT-G 110M 32.8 39.7 33.0 48.4
RoBERTa-G 125M 28.8 36.9 33.0 48.2
UniLM 110M 26.7 34.6 32.4 47.9
B2R-8+4 143M 31.2 37.9 33.2 48.0
B2B-8+4 143M 32.2 38.0 33.8 48.6
Encoder-Decoder PLM
BART-base 140M 32.2 38.8 35.9 49.9
Absent keyphrase generation
Encoder-only PLM
BERT-G 110M 1.9 3.7 16.5 24.6
SciBERT-G 110M 2.4 4.6 15.7 24.7
RoBERTa-G 125M 2.0 3.9 17.1 25.5
UniLM 110M 1.4 2.8 15.2 24.1
B2R-8+4 143M 2.1 4.1 16.8 24.7
B2B-8+4 143M 2.2 4.2 16.8 24.5
Encoder-Decoder PLM
BART-base 140M 2.2 4.2 17.1 24.9

Table 2: A comparison across encoder-only and encoder-
decoder PLMs for keyphrase generation. The best re-
sults are boldfaced, and the best encoder-only PLM
results are underlined.

sized BERT models and training on keyphrase gen-419

eration produce better results than BERT-G despite420

having a similar amount of parameters. On KP-421

Times, the B2B model with an 8-layer encoder422

and a 4-layer decoder (discussed in 4.4) achieves423

the best present keyphrase generation performance424

among all encoder-only PLMs. The model also425

has a lower inference latency due to its shallow426

decoder structure (section B).427

In conclusion, we recommend that in the ab-428

Method |M| KP20k KPTimes
F1@5 F1@M F1@5 F1@M

Transformer 110M 23.5 33.8 28.8 42.7
BERT 110M 27.9 38.9 34.0 49.3
RoBERTa 125M 27.9 39.4 33.2 48.9
SciBERT 110M 28.6 40.5 31.8 47.7
Transformer+CRF 110M 24.9 36.4 28.2 43.2
BERT+CRF 110M 28.0 40.6 33.9 49.9
RoBERTa+CRF 125M 26.7 39.0 32.4 48.4
SciBERT+CRF 110M 28.4 42.1 31.8 48.1

Table 3: Present keyphrase extraction results of PLM-
based sequence labeling approaches.

sence of in-domain seq2seq PLMs, an in-domain 429

encoder-only PLM should be preferred over the 430

domain-general BART. From Figure 3, this prefer- 431

ence is even more evident in the low-resource sce- 432

narios. SciBERT only requires 5k data To achieve 433

the same F1@M for present keyphrase of BART 434

fine-tuned with 100k data. On the other hand, we 435

find that BERT2BERT models are not as resource- 436

efficient likely due to the insertion of randomly 437

initialized parameters for cross attention. 438

4.3 Are Present Keyphrases Easier to Extract 439

than Generate? 440

Table 3 compares PLM-based sequence labeling 441

with the Transformer baseline. It is apparent that 442

with pre-training, encoder-only PLMs perform bet- 443

ter than Transformer by a large margin. However, 444

comparing SciBERT with SciBERT-G in Table 1, 445

we find that training on seq2seq keyphrase gener- 446

ation greatly improves the F1@5 with minimal 447

harm to F1@M. In other words, the sequence 448
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labeling objective does not make the finding449

present keyphrases easier than sequence gen-450

eration. Thus, we recommend using the latter ob-451

jective as the former also suffers from predicting452

too few phrases (reflected by lower F1@5) and453

unable to predict absent keyphrases.454

For BERT and SciBERT, we find that adding a455

CRF layer consistently improves the performance456

by a small margin on KP20k. Nevertheless, this457

observation is not true for RoBERTa, and does not458

apply to KPTimes. Therefore, we recommend that459

(1) training on keyphrase generation rather than460

sequence labeling and (2) prioritizing choosing a461

correct base PLM over tuning the CRF layer.462

4.4 Does the depth of encoder and decoder463

impact keyphrase generation?464

Observing that BART-base can be outperformed465

by the deeper T5-base, we are interested in further466

investigating the depth configuration of seq2seq467

models for keyphrase generation. Specifically, are468

deep encoders and deep decoders of the same im-469

portance? If one of them is less important, then un-470

der constrained parameter budgets, we can improve471

the performance by initializing it with a lightweight472

module and the other with a deeper PLM.473

To answer the question, we conduct a series of474

ablation studies on KP20k and KPTimes. We fix475

a total budget of 12 layers with hidden size 768,476

and experiment with five different encoder-decoder477

combinations. Table 4 presents the results. For both478

datasets, we find that the performance increases479

sharply then plateaus as the depth of the encoder480

increases. With the same budget, a deep encoder481

followed by a shallow decoder is strongly pre-482

ferred over a shallow encoder followed by a deep483

decoder. We hypothesize this pattern reflects the484

nature of keyphrase generation: comprehending the485

input article is important and difficult, while gen-486

erating a short string comprising several phrases487

based on the encoded document does not require488

significant knowledge from PLMs.489

To verify, we further conduct the following two490

ablation studies. We randomly initialize either the491

encoder ("R2B") or the decoder ("B2R"), and train492

in the same manner as B2B. The results are shown493

in Table 4. For both datasets, we observe that ran-494

domly initializing the encoder greatly harms the495

performance, while randomly initializing the de-496

coder does not significantly impact the perfor-497

mance (the absent keyphrase generation is even498

e-d |M| Arch. KP20k KPTimes
F1@5 F1@M F1@5 F1@M

Present keyphrase generation
2-10 158M B2B 30.4 36.4 31.6 46.5

4-8 153M
B2B 31.7 37.7 32.9 47.6
R2B 26.3 35.2 28.2 43.3
B2R 31.7 37.9 32.6 47.5

6-6 148M
B2B 32.1 37.7 33.8 48.4
R2B 26.4 35.3 27.8 42.9
B2R 32.0 38.4 33.3 48.2

8-4 143M
B2B 32.2 38.0 33.8 48.6
R2B 27.3 35.4 27.8 42.8
B2R 31.2 37.9 33.2 48.0

10-2 139M B2B 31.7 38.0 33.5 48.4
Absent keyphrase generation
2-10 158M B2B 2.1 3.9 16.2 23.2

4-8 153M
B2B 2.2 4.1 15.9 23.6
R2B 2.5 4.2 14.7 24.3
B2R 2.2 4.2 16.5 24.1

6-6 148M
B2B 2.2 4.1 16.4 24.1
R2B 2.6 4.3 14.5 20.8
B2R 2.3 4.4 16.2 23.9

8-4 143M
B2B 2.2 4.2 16.8 24.5
R2B 2.4 4.1 14.9 21.0
B2R 2.1 4.1 16.8 24.7

10-2 139M B2B 2.1 4.1 16.8 24.5

Table 4: A comparison between different BERT2BERT
architectures. In e-d, e and d indicates the number of
encoder and decoder layers, respectively. All B2B lines
are repeated with three different seeds. The best results
among B2B models are boldfaced. All ablation studies
(R2B and B2R) are run once with the same seed.

benefited in some cases). We also use keyphrase 499

extraction to measure the learned encoder repre- 500

sentations and the results (presented in appendix 501

section C) align with our main findings. To summa- 502

rize, we find that having a deep PLM as the encoder 503

is important for keyphrase generation, while the ini- 504

tialization of the decoder is not crucial. 505

4.5 Does task-specific pre-training waive the 506

need for in-domain pre-training? 507

Table 1 and Figure 3 have well demonstrated the 508

effectiveness of SciBART on keyphrase genera- 509

tion. KeyBART (Kulkarni et al., 2022) is a recent 510

effective approach by fine-tuning BART-large on 511

keyphrase generation using the OAGKX dataset 512

(Çano and Bojar, 2020) with a special objective 513

that corrupts the input text by removing keyphrases. 514

Compared to KeyBART, SciBART only performs 515

task-agnostic in-domain pre-training. To compare 516

and understand the effectiveness of these two train- 517

ing schemes, we fine-tune SciBART on keyphrase 518

generation using OAGKX without corrupting the 519

input text, and evaluate the resulting model’s zero- 520

shot and transfer performance on KP20k. We train 521
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Model |M| Present KPs Absent KPs
F1@5 F1@M F1@5 F1@M

KeyBART 406M 20.4 22.8 1.7 0.9
KeyBART+ft 406M 32.5 39.8 2.6 4.7
SciBART 124M 26.6 31.2 1.5 2.6
SciBART+ft 124M 35.3 41.5 2.8 5.2
SciBART†+ft 124M 34.1 39.6 2.9 5.2

Table 5: Comparison between SciBART and KeyBART
in zero-shot and fine-tuned settings. Both KeyBART
and SciBART are first trained on OAGKX to learn to
generate keyphrases. "+ft" means fine-tuned on KP20k.
† indicates directly fine-tuning the pre-trained SciBART
on KP20k without training on OAGKX.

SciBART with batch size 256, learning rate 3e-5,522

and 250k steps in total, which is approximately 2.8523

epochs, comparable to Kulkarni et al. (2022) where524

the model is trained for 2 epochs.525

The results are presented in Table 5. Despite526

being a 3x smaller base-sized model, utilizing its527

in-domain knowledge, SciBART outperforms Key-528

BART on the zero-shot transfer from OAGKX to529

KP20k. After fine-tuning on KP20k, SciBART530

trained on OAGK also has superior performance531

than KeyBART. This suggests that in-domain gen-532

eral pre-training followed by fine-tuning is at least533

as effective as the task-specific pre-training ap-534

proaches used on e.g., KeyBART. In other words,535

we argue that for keyphrase generation, in-domain536

language modeling pre-training is fundamental537

and can add significant value even if it precedes538

a large-scale task-specific pre-training.539

5 Related Work540

Keyphrase Extraction Early work on keyphrase541

extraction mainly follow a pipelined approach.542

First, a range of candidates (usually noun phrases)543

is selected by e.g., regular expression matching.544

Then, various scoring methods are used to rank the545

candidates, and the ones with the highest scores are546

returned as keyphrase predictions (Hulth, 2003b;547

Mihalcea and Tarau, 2004; Wan and Xiao, 2008b;548

Bougouin et al., 2013; Sun et al., 2020; Boudin,549

2018; Liang et al., 2021). Later works adopt the550

sequence labeling formulation, which removes the551

need for selecting candidates (Zhang et al., 2016;552

Luan et al., 2017; Sahrawat et al., 2019).553

Keyphrase Generation Meng et al. (2017) pro-554

poses the task Deep Keyphrase Generation and555

a strong baseline model CopyRNN. Following556

works improve the architecture by adding corre-557

lation constraints (Chen et al., 2018) and linguis-558

tic constraints (Zhao and Zhang, 2019), exploiting 559

learning signal from titles (Ye and Wang, 2018; 560

Chen et al., 2019b), and hierarchical modeling the 561

phrases and words (Chen et al., 2020). Yuan et al. 562

(2020) reformulate the problem as generating a 563

sequence of keyphrases, while Ye et al. (2021) 564

further uses a set generation formulation to re- 565

move the influence of ordering. Other works in- 566

clude incorporating reinforcement learning (Chan 567

et al., 2019; Luo et al., 2021), GANs (Swaminathan 568

et al., 2020), and unifying keyphrase extraction 569

with keyphrase generation (Chen et al., 2019a; Ah- 570

mad et al., 2021). Meng et al. (2021) conducts an 571

empirical study on architecture, generalizability, 572

phrase ordering, and decoding strategies. 573

More recently, Sahrawat et al. (2019), Liu et al. 574

(2020), Liu et al. (2021a), and Dascalu and Trăuşan- 575

Matu (2021) have considered using pre-trained 576

BERT (Devlin et al., 2019) for keyphrase extrac- 577

tion and generation. In addition, Chowdhury et al. 578

(2022), Kulkarni et al. (2022), Wu et al. (2022), and 579

Gao et al. (2022) use seq2seq PLMs such as BART 580

or T5 in their approach. Wu et al. (2022) show 581

that although outperformed by task-specific mod- 582

els in rich resource settings, the knowledge gained 583

in pre-training can benefit low-resource keyphrase 584

generation. Kulkarni et al. (2022) use keyphrase 585

generation as a pre-training task to learn rich repre- 586

sentations. 587

6 Conclusion 588

In this paper, we present an empirical study of us- 589

ing various types of PLMs for keyphrase extraction 590

and generation. We investigate the performance of 591

encoder-only vs. encoder-decoder PLMs, the influ- 592

ence of pre-training domains, and the significance 593

of using deeper encoder vs. decoder. We show that 594

we can build strong and data-efficient keyphrase 595

generation models with in-domain encoder-only 596

PLMs. We demonstrate that the encoder has a more 597

important role and a deep encoder shallow decoder 598

approach empirically works well. Finally, we in- 599

troduce a strong encoder-decoder PLM SciBART 600

pre-trained on a large scientific corpus and show its 601

advantage over state-of-the-art PLMs. A compari- 602

son with KeyBART suggests that task-specific pre- 603

training does not waive the need for in-domain pre- 604

training. Future studies may investigate PLMs with 605

more parameters, keyphrase generation in other 606

domains, and employing SciBART in other down- 607

stream NLP applications. 608
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Limitations and Ethical Statement609

Due to the constraints on computational power,610

we do not study large language models that have611

more parameters than BART-large. We hope future612

work can continue studying the effect of scaling613

up model size. In addition, our study only covers614

two important domains for keyphrase generation.615

It is interesting to see whether our results can fur-616

ther generalize to more domains. Finally, although617

we have tested SciBART thoroughly on keyphrase618

generation, we do not study it on other NLP tasks.619

S2ORC and OAGKX are released under the620

Creative Commons By 4.0 License. We perform621

text cleaning as well as email and url filtering on622

S2ORC to remove sensitive information, and we623

keep OAGKX as-is. We use the SciKP and KP-624

Times benchmarking datasets distributed by the625

original authors. No additional preprocessing is626

performed before fine-tuning except lower-casing627

and tokenization. We do not distribute any of the628

pre-training and benchmark datasets.629

Potential risks of SciBART include accidental630

leakage of (1) sensitive personal information and631

(2) inaccurate factual information. For (1), we care-632

fully preprocess the data in the preprocessing stage633

to remove personal information including emails634

and urls. However, we had difficulties in desen-635

sitizing names and phone numbers in the text be-636

cause they have large overlap with the informative637

content. For (2), since SciBART is pre-trained on638

scientific papers, it is possible for it to generate639

scientific-style statements that include inaccurate640

information. We encourage the potential users of641

SciBART to not fully rely on its outputs without642

verifying the correctness.643

Pre-training SciBART is computationally heavy644

and we estimate the total CO2 emission to be645

around 150 kg using the calculation application646

provided by Lacoste et al. (2019). In addition, we647

estimate that all the fine-tuning experiments, includ-648

ing hyperparameter optimization, emitted around649

1500 kg CO2. We release the hyperparameters650

in the appendix section D to help the community651

reduce the energy spent at optimizing PLMs for652

keyphrase extraction and keyphrase generation.653
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Supplementary Material: Appendices

A Dataset Statistics1187

Table 6 summarizes the statistics of all testing1188

datasets we use. In addition, we present the topic1189

distribution of the S2ORC dataset in Figure 5.1190

Dataset #Examples #KP %AKP |KP|
KP20k 20000 5.3 37.1 2.0
Inspec 500 9.8 26.4 2.5
Krapivin 400 5.9 44.3 2.2
NUS 211 11.7 45.6 2.2
SemEval 100 14.7 57.4 2.4
KPTimes 20000 5.0 37.8 2.0

Table 6: Test sets statistics. #KP, %AKP, and |KP|
refer to the average number of keyphrases per document,
the percentage of absent keyphrases, and the average
number of words that each keyphrase contains.

B Inference Speed1191

To quantify the inference speed of different1192

BERT2BERT configurations, we measure and com-1193

pare the inference throughput of B2B-2+10, B2B-1194

4+8, B2B-6+6, B2B-8+4, B2B-10+2 on GPU and1195

CPU. We use the best model trained on KP20k and1196

test on the KP20k test set with batch size 1, no1197

padding, and no speedup libraries. For GPU, we1198

use a Nvidia GTX 1080 Ti card and test on the full1199

KP20k test set. For CPU, we use a local server1200

with 40 cores and test on the first 1000 examples1201

from the KP20k test set. We report the averaged1202

throughput (in example/s) across three runs in Fig-1203

ure 4. For both CPU and GPU, we observe that the1204

throughput decreases significantly with deeper de-1205

coders. Our recommended B2B-8+4 configuration1206

achieves better performance than 6+6 while being1207

37% faster on GPU and 11% faster on CPU.1208

C Encoder Quality of B2B models1209

To further investigate the nature of the encoder rep-1210

resentation after being trained in a BERT2BERT1211

formulation on keyphrase generation, we separate1212

the encoder’s weights and use it as a feature extrac-1213

tor. Concretely, we fix the encoder weights, add1214

a CRF layer on top of it, and train on keyphrase1215

extraction via sequence labeling on KPTimes for 51216

epochs. The results are summarized in Table 7. We1217

find that the encoders of BERT2BERT keyphrase1218
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Figure 4: Inference speed of BERT2BERT models with
different encoder-decoder configurations on GPU and
CPU. All models have 12 layers in total. The model
with x decoder layers has 12-x encoder layers.

Model Size |M| freeze+CRF unfreeze
F1@5 F1@M F1@5 F1@M

2 layers 39M 19.2 30.5 31.5 45.2
4 layers 53M 26.5 38.1 32.6 46.7
6 layers 67M 27.4 39.1 33.2 47.8
8 layers 81M 26.8 38.7 34.4 48.5
10 layers 95M 26.9 38.3 33.0 47.9

Table 7: Feature quality of the encoders via sequence
labeling results on the KPTimes test set. The mod-
els are the encoders taken from BERT2BERT mod-
els trained on keyphrase generation and further trained
on keyphrase extraction on KPTimes. "freeze" means
freezing the underlying encoder model while "unfreeze"
means fine-tuning the entire model. For the unfreeze
version we found using CRF unnecessary.

generation models indeed build a strong representa- 1219

tion such that simply fine-tuning a linear classifier 1220

on the top can achieve non-trivial keyphrase ex- 1221

traction performance. Furthermore, the quality of 1222

encoder is positively related to the corresponding 1223

BERT2BERT performance. 1224

D Hyperparameter Optimization 1225

For each of the PLM-based keyphrase extraction 1226

and keyphrase generation methods, we perform a 1227

careful hyperparameter search over learning rate, 1228

learning rate scheduling, batch size, and warm-up 1229

steps. The corresponding search spaces are {1e-5, 1230
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Figure 5: Domain distribution of the S2ORC dataset.

5e-4}, {linear, polynomial}, {16, 32, 64, 128}, and1231

{500, 1000, 2000, 4000}. The best hyperparameters1232

found are presented in Table 8.1233

E Baselines and Implementation1234

Keyphrase Extraction We further compare with1235

a range of baselines including statistical meth-1236

ods YAKE (Campos et al., 2018) and KP-1237

Miner (El-Beltagy and Rafea, 2010), graph-1238

based unsupervised methods TextRank (Hulth1239

and Anette, 2004), SingleRank (Wan and Xiao,1240

2008a), PositionRank (Florescu and Caragea,1241

2017), and MultipartiteRank (Boudin, 2018),1242

as well as embedding-based unsupervised meth-1243

ods EmbedRank (Bennani-Smires et al., 2018),1244

SIFRank+ (Sun et al., 2020), and the recent1245

method Liang et al. (2021) which combines BERT1246

embedding and graph structure. We also compare1247

with a supervised feature-based model Kea (Wit-1248

ten et al., 1999). We use Boudin (2016)’s public1249

implementations for most of these baselines. For1250

EmbedRank and SIFRank, we use the authors’ pub-1251

lic implementations. We implement our own ver-1252

sion of Liang et al. (2021)’s approach. We tune the1253

hyperparameters of these method using the KP20k1254

and KPTimes validation set.1255

Keyphrase Generation For CatSeq, we run1256

experiments using the publicly available imple-1257

mentation of Chan et al. (2019).10 For Ex-1258

HiRD, Transformer, and SetTrans, we use the1259

authors’ implementations to measure the perfor-1260

mance. We use the earliest version of Key-1261

10https://github.com/kenchan0226/
keyphrase-generation-rl

BART available at https://zenodo.org/ 1262

record/5784384#.Y0eToNLMJcA. 1263

F Artifact Release 1264

To facilitate future research, we plan to release 1265

our pre-trained SciBART checkpoint as well as 1266

the SciBART fine-tuned on OAGK. We will limit 1267

the access to the SciBART model with a non- 1268

commercial license. We will also release the raw 1269

predictions of our models to enable fair compar- 1270

isons by future work. 1271

G All Experiment Results 1272

We summarize all of our experiment results on 1273

SciKP and KPTimes in Table 9, Table 10, Table 11, 1274

and Table 12. 1275

H Qualitative Results 1276

In Figure 6, we present a few qualitative results on 1277

KP20k from BART, T5, SciBERT, SciBART, and 1278

KeyBART. 1279
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Model dropout wdecay optimizer bsz #epoch #warm-up lr lr schedule
Keyphrase extraction
Transformer 0.1 0.01 AdamW 32 10 2000 3e-5 linear
BERT 0.1 0.01 AdamW 32 10 1000 1e-5 linear
SciBERT 0.1 0.01 AdamW 32 10 1000 1e-5 linear
RoBERTa 0.1 0.01 AdamW 32 10 1000 1e-5 linear
Transformer+CRF 0.1 0.01 AdamW 32 10 2000 3e-5 linear
BERT+CRF 0.1 0.01 AdamW 32 10 2000 1e-5 linear
SciBERT+CRF 0.1 0.01 AdamW 32 10 2000 1e-5 linear
RoBERTa+CRF 0.1 0.01 AdamW 32 10 2000 1e-5 linear
Keyphrase generation
BERT-G 0.1 0.01 AdamW 64 6 4000 1e-4 linear
SciBERT-G 0.1 0.01 AdamW 128 6 2000 1e-4 linear
RoBERTa-G 0.1 0.01 AdamW 64 6 4000 1e-4 linear
UniLM 0.1 0.01 AdamW 128 6 2000 1e-4 linear
BERT2BERT 0.0 0.01 AdamW 32 20 2000 5e-5 linear
BART-base 0.1 0.01 AdamW 64 15 2000 6e-5 polynomial
SciBART-base 0.1 0.01 AdamW 32 10 2000 3e-5 polynomial
T5-base 0.1 0.01 AdamW 64 15 2000 6e-5 polynomial
KeyBART 0.1 0.01 AdamW 64 15 2000 3e-5 polynomial

Table 8: Hyperparameters for fine-tuning PLMs for keyphrase extraction and keyphrase generation on KP20k.
The hyperparameters are determined using the loss on the KP20k validation dataset. We follow a similar set of
hyperparameters for KPTimes. "wdecay" = weight decay, "bsz" = batch size, "#warm-up" = number of warm-up
steps, "lr" = learning rate, "lr schedule" = learning rate decay schedule. We use early stopping for all the models and
use the model with lowest validation loss as the final model.
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Method |M| KP20k Inspec Krapivin NUS SemEval
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

(keyphrase extraction baselines)
KP-Miner - 21.9 - 14.4 - 20.6 - 28.3 - 24.4 -
YAKE - 18.8 - 19.0 - 19.4 - 22.4 - 20.7 -
TextRank - 16.2 - 22.6 - 13.6 - 20.8 - 18.7 -
PositionRank - 18.9 - 30.4 - 18.9 - 23.0 - 23.8 -
MultipartiteRank - 18.8 - 25.9 - 17.4 - 24.8 - 22.2 -
EmbedRank - 15.5 - 33.6 - 16.9 - 17.3 - 19.2 -
SIFRank+ - 20.0 - 35.1 - 19.6 - 25.5 - 24.8 -
Liang et al. (2021) - 17.7 - 29.6 - 16.9 - 25.0 - 25.3 -
Kea - 19.4 - 12.7 - 16.0 - 23.6 - 15.5 -
(supervised keyphrase extraction)
Transformer 110M 23.5 33.8 11.1 15.4 16.6 26.5 26.1 35.9 18.7 25.2
Transformer+CRF 110M 24.9 36.4 13.3 18.7 18.9 29.7 27.8 37.7 19.8 27.3
BERT-base 110M 27.9 38.9 12.8 17.4 20.7 30.2 30.9 41.0 21.8 28.5
BERT-base+CRF 110M 28.0 40.6 13.7 18.8 21.0 32.6 31.3 41.9 22.3 29.3
SciBERT 110M 28.6 40.5 13.1 17.8 19.9 30.3 29.7 39.0 20.0 26.3
SciBERT+CRF 110M 28.4 42.1 13.9 19.6 20.6 32.2 29.9 40.8 21.3 28.6
RoBERTa-base 125M 27.9 39.4 13.9 18.9 19.1 29.5 29.6 38.7 20.7 25.8
RoBERTa-base+CRF 125M 26.7 39.0 12.5 17.5 18.7 29.3 28.7 39.5 20.1 26.8
(supervised keyphrase generation)
CatSeq 21M 29.1 36.7 22.5 26.2 26.9 35.4 32.3 39.7 24.2 28.3
ExHiRD-h 22M 31.1 37.4 25.4 29.1 28.6 30.8 - - 30.4 28.2
Transformer 98M 33.3 37.6 28.8 33.3 31.4 36.5 37.8 42.9 28.8 32.1
SetTrans 98M 35.6 39.1 29.1 32.8 33.5 37.5 39.9 44.6 32.2 34.2
BERT-G 110M 31.3 37.9 25.9 31.3 26.3 32.2 35.2 40.9 26.3 31.0
SciBERT-G 110M 32.8 39.7 25.7 31.3 27.2 33.4 35.8 41.5 24.7 28.4
RoBERTa-G 125M 28.8 36.9 22.0 27.4 23.5 31.3 30.9 38.1 23.3 28.6
UniLM 110M 26.7 34.6 18.2 23.6 23.5 28.5 28.4 35.3 21.5 26.8
B2B-2+10 158M 30.4 36.4 26.0 31.3 27.6 33.1 36.0 41.0 27.4 31.1
B2B-4+8 153M 31.7 37.7 26.5 31.7 27.1 32.5 35.6 40.3 26.0 30.5
B2B-6+6 148M 32.1 37.7 26.7 31.7 27.3 31.6 35.4 40.3 26.4 29.8
B2B-8+4 143M 32.2 38.0 26.0 30.9 27.2 32.1 36.4 41.8 28.0 32.8
B2B-10+2 139M 31.7 38.0 26.4 31.8 26.4 31.3 34.4 39.4 26.0 30.0
SciBART-base 124M 34.1 39.6 27.5 32.8 28.2 32.9 37.3 42.1 27.0 30.4
SciBART-base+OAGK 124M 35.3 41.5 27.1 33.0 27.7 33.7 38.2 42.4 29.2 32.9
BART-base 140M 32.2 38.8 27.0 32.3 27.0 33.6 36.6 42.4 27.1 32.1
T5-base 223M 33.6 38.8 28.8 33.9 30.2 35.0 38.8 44.0 29.5 32.6
KeyBART 406M 32.5 39.8 26.8 32.5 28.7 36.5 37.3 43.0 26.0 28.9

Table 9: Present keyphrase evaluation results of all the methods on the SciKP benchmark. The reported results are
averaged across three runs with different random seeds.

Method |M| KP20k Inspec Krapivin NUS SemEval
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq 21M 1.5 3.2 0.4 0.8 1.8 3.6 1.6 2.8 2.0 2.8
ExHiRD-h 22M 1.6 2.5 1.1 1.6 2.2 3.3 - - 1.6 2.1
Transformer 98M 2.2 4.6 1.2 2.3 3.3 6.3 2.5 4.4 1.6 2.2
SetTrans 98M 3.5 5.8 1.9 3.0 4.5 7.2 3.7 5.5 2.2 2.9
BERT-G 110M 1.9 3.7 1.0 1.9 2.4 4.3 2.2 3.9 1.4 2.0
SciBERT-G 110M 2.4 4.6 1.4 2.7 2.4 4.6 3.4 5.9 1.3 1.8
RoBERTa-G 125M 2.0 3.1 1.0 2.0 2.7 4.8 2.5 4.3 2.1 2.9
UniLM 110M 1.4 2.8 0.5 0.8 1.4 2.4 1.7 3.2 1.0 1.5
B2B-2+10 158M 2.1 3.9 1.1 1.9 2.7 4.7 2.8 4.7 1.9 2.6
B2B-4+8 153M 2.2 4.1 1.1 2.0 2.6 4.4 2.7 4.3 2.2 2.9
B2B-6+6 148M 2.2 4.1 1.0 1.8 2.7 4.6 2.8 4.2 1.7 2.3
B2B-8+4 143M 2.2 4.2 1.1 2.0 2.8 5.2 2.6 4.1 1.8 2.3
B2B-10+2 139M 2.1 4.1 1.2 2.3 2.4 4.4 2.6 4.6 1.8 2.5
SciBART-base 124M 2.9 5.2 1.6 2.8 3.3 5.4 3.3 5.3 1.8 2.2
SciBART-base+OAGK 124M 2.8 5.2 1.5 2.7 3.2 5.7 2.8 4.8 1.8 2.4
BART-base 140M 2.2 4.2 1.0 1.7 2.8 4.9 2.6 4.2 1.6 2.1
T5-base 223M 1.7 3.4 1.1 2.0 2.3 4.3 2.7 5.1 1.4 2.0
KeyBART 406M 2.6 4.7 1.4 2.3 3.6 6.4 3.1 5.5 1.6 2.2

Table 10: Absent keyphrase evaluation results of all keyphrase generation methods on the SciKP benchmark.
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Method |M| F1@5 F1@M
(keyphrase extraction baselines)
KP-Miner - 18.0 -
YAKE - 13.1 -
TextRank - 17.4 -
PositionRank - 11.9 -
MultipartiteRank - 19.5 -
EmbedRank - 10.2 -
SIFRank+ - 15.8 -
Liang et al. (2021) - 16.2 -
Kea - 18.3 -
(supervised keyphrase extraction)
Transformer 110M 28.8 42.7
Transformer+CRF 110M 28.2 43.2
BERT-base 110M 34.0 49.3
BERT-base+CRF 110M 33.9 49.9
SciBERT 110M 31.8 47.7
SciBERT+CRF 110M 31.8 48.1
RoBERTa-base 125M 33.2 48.9
RoBERTa-base+CRF 125M 32.4 48.4
(supervised keyphrase generation)
CatSeq 21M 29.5 45.3
ExHiRD-h 22M 23.3 34.2
Transformer 98M 20.2 34.2
SetTrans 98M 25.9 37.5
BERT-base-G 110M 32.3 47.4
SciBERT-G 110M 33.0 48.4
RoBERTa-base-G 125M 33.0 48.2
UniLM 110M 33.2 48.0
B2B-2+10 158M 31.6 46.5
B2B-4+8 153M 32.9 47.6
B2B-6+6 148M 33.8 48.4
B2B-8+4 143M 33.8 48.6
B2B-10+2 139M 33.5 48.4
SciBART-base 124M 34.8 48.8
BART-base 140M 35.9 49.9
T5-base 223M 34.6 49.2

Table 11: Present keyphrase evaluation results of all the methods on KPTimes. The reported results are averaged
across three runs with different random seeds.

Method |M| F1@5 F1@M
CatSeq 21M 15.7 22.7
ExHiRD-h 22M 7.0 9.1
Transformer 98M 8.4 13.8
SetTrans 98M 12.9 14.8
BERT-G 110M 16.5 24.6
SciBERT-G 110M 15.7 24.7
RoBERTa-G 125M 17.1 25.5
UniLM 110M 15.2 24.1
B2B-2+10 158M 16.2 23.2
B2B-4+8 153M 15.9 23.6
B2B-6+6 148M 16.4 24.1
B2B-8+4 143M 16.8 24.5
B2B-10+2 139M 16.8 24.5
SciBART-base 124M 17.2 24.6
BART-base 140M 17.1 24.9
T5-base 223M 15.3 24.2

Table 12: Absent keyphrase evaluation results of all the methods on KPTimes.
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Title: a review of design pattern mining techniques .
Abstract: the quality of a software system highly depends on its architectural design . high quality software systems typically
apply expert design experience which has been captured as design patterns . as demonstrated solutions to recurring problems ,
design patterns help to reuse expert experience in software system design . they have been extensively applied in the industry
. mining the instances of design patterns from the source code of software systems can assist in the understanding of the
systems and the process of re engineering them . more importantly , it also helps to trace back to the original design decisions
, which are typically missing in legacy systems . this paper presents a review on current techniques and tools for mining
design patterns from source code or design of software systems . we classify different approaches and analyze their results in
a comparative study . we also examine the disparity of the discovery results of different approaches and analyze possible
reasons with some insight .
Ground Truth: design pattern, discovery, reverse engineering
BART: unrelated scheduling, mechanism design, approximation algorithms
T5: design patterns, software architecture, software design, software reuse
SciBERT: design patterns, software systems, software engineering, software mining
SciBART: design pattern mining, software system design, reverse engineering, software reuse
KeyBART: design patterns, software architecture, software reuse, software quality, software maintenance
Title: stabilization of second order nonholonomic systems in canonical chained form .
Abstract: stabilization of a class of second order nonholonomic systems in canonical chained form is investigated in this
paper . first , the models of two typical second order nonholonomic systems , namely , a three link planar manipulator with the
third joint unactuated , and a kinematic redundant manipulator with all joints free and driven by forces torques imposing on
the end effector , are presented and converted to second order chained form by transformations of coordinate and input . a
discontinuous control law is then proposed to stabilize all states of the system to the desired equilibrium point exponentially .
computer simulation is given to show the effectiveness of the proposed controller .
Ground Truth: second order nonholonomic systems, canonical second order chained form, underactuated manipulator,
discontinuous coordinate transformation, discontinuous stabilization
BART: stabilization, second order nonholonomic systems, canonical chained form, discontinuous control law
T5: stabilization, second order nonholonomic system, canonical chained form, discontinuous control
SciBERT: stabilization, nonholonomic system, canonical chained form, redundant manipulator
SciBART: stabilization, second order nonholonomic systems, canonical chained form, discontinuous control law
KeyBART: stabilization, second order nonholonomic systems, discontinuous control law
Title: characterizing output processes of e m e k [digit] queues .
Abstract: our goal is to study which conditions of the output process of a queue preserve the increasing failure rate ( ifr )
property in the interdeparture time . we found that the interdeparture time does not always preserve the ifr property , even
if the interarrival time and service time are both erlang distributions with ifr . we give a theoretical analysis and present
numerical results of e m e k [digit] queues . we show , by numerical examples , that the interdeparture time of e m e k [digit]
retains the ifr property if m > k. ( c ) [digit] elsevier ltd. all rights reserved .
Ground Truth: ifr, erlang distribution, departure process, ph g [digit], queueing theory
BART: output process, increasing failure rate, interdeparture time, erlang distribution
T5: output process, increasing failure rate, erlang distribution
SciBERT: increasing failure rate, interdeparture time, erlang distribution, output process of a queue
SciBART: output process, increasing failure rate, interdeparture time, erlang distribution, queueing theory
KeyBART: output process, increasing failure rate, interdeparture time, erlang distribution, queueing theory
Title: optimal tool selection for 2.5 d milling , part [digit] a solid modeling approach for construction of the voronoi mountain
Abstract: cutter selection is a critical subtask of machining process planning . in this two part series , we develop a robust
approach for the selection of an optimal set of milling cutters for a 2.5 d generalized pocket . in the first article ( part [digit] )
, we present a solid modeling approach for the construction of the voronoi mountain for the pocket geometry , which is a
3d extension of the voronoi diagram . the major contributions of this work include ( [digit] ) the development of a robust
and systematic procedure for construction of the voronoi mountain for a multiply connected curvilinear polygon and ( b ) an
extension of the voronoi mountain concept to handle open edges .
Ground Truth: 2.5 d milling, solid modelling, voronoi mountain, cutter selection, open edges
BART: solid modeling, voronoi mountain, cutter selection, 2.5 d generalized pocket, curve generation
T5: tool selection, 2.5 d milling, voronoi diagram, machining geometry
SciBERT: tool selection, milling, voronoi mountain, pocket geometry, cutter path planning
SciBART: tool selection, 2.5 d milling, voronoi mountain, cutter selection, voronoi diagram, pocket milling
KeyBART: tool selection, 2.5 d milling, voronoi mountain, process planning, generalized pocket, vlsi cad cam

Figure 6: Example outputs from various PLMs on the SciKP benchmarks. Correct keyphrases are colored in blue.
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