

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONDITIONAL KRR: INJECTING UNPENALIZED FEATURES INTO KERNEL METHODS WITH APPLICATIONS TO KERNEL THRESHOLDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Conditionally positive definite (CPD) kernels are defined with respect to a function class \mathcal{F} . It is well known that such a kernel K is associated with its native space (defined analogously to an RKHS), which in turn gives rise to a learning method — called conditional kernel ridge regression (conditional KRR) due to its analogy with KRR — where the estimated regression function is penalized by the square of its native space norm. This method is of interest because it can be viewed as classical linear regression, with features specified by \mathcal{F} , followed by the application of standard KRR to the residual (unexplained) component of the target variable. Methods of this type have recently attracted increasing attention.

We study the statistical properties of this method by reducing its behavior to that of KRR with another fixed kernel, called the residual kernel. Our main theoretical result shows that such a reduction is indeed possible, at the cost of an additional term in the expected test risk, bounded by $\mathcal{O}(1/\sqrt{N})$, where N is the sample size and the hidden constant depends on the class \mathcal{F} and the input distribution.

This reduction enables us to analyze conditional KRR in the case where K is positive definite and \mathcal{F} is given by the first k principal eigenfunctions in the Mercer decomposition of K . We also consider the setting where \mathcal{F} consists of k random features from a random feature representation of K . It turns out that these two settings are closely related. Both our theoretical analysis and experiments confirm that conditional KRR outperforms standard KRR in these cases whenever the \mathcal{F} -component of the regression function is more pronounced than the residual part.

1 INTRODUCTION

Kernel Ridge Regression (KRR) is a powerful supervised learning method that has found applications in the learning theory of neural networks Jacot et al. (2018; 2020a), operator approximation Köhne et al. (2025), and reinforcement learning Novelli et al. (2025), among others. To apply the method to a specific learning task, one must define a positive definite function $K(x, y)$ on pairs of inputs, called the kernel function. It has been observed that for KRR (and other kernel-based methods such as SVM or Kernel PCA), the requirement of positive definiteness can be relaxed to the more general property of conditional positive definiteness Schölkopf (2000); Chi et al. (2022). For a kernel that is conditionally positive definite (CPD) w.r.t. a class of functions \mathcal{F} , we only require that the quadratic form $\sum_{ij} K(x_i, x_j) \zeta_i \zeta_j$ is non-negative for any vector $[\zeta_i]$ orthogonal to the set $\{[f(x_i)] \mid f \in \mathcal{F}\}$. Classical techniques such as spline estimation and Gaussian process regression are parameterized by kernels of this type, where the class \mathcal{F} is interpreted as a set of unpenalized features. This connection has made the study of CPD kernels an important theme in approximation theory over the past decades Wahba (1990); Poggio & Girosi (1990); Schaback & Wendland (2006).

The majority of work on CPD kernels focuses on the case where \mathcal{F} is defined as the set of multivariate polynomials of degree at most k Duchon (1977), or on variations of this definition, while the case of a general \mathcal{F} has largely been neglected. One of the motivations of the present paper is that, even when the original kernel K is simply positive definite, treating it as a CPD kernel w.r.t. a general class of functions \mathcal{F} leads naturally to a broader framework, which we call conditional KRR. This

Figure 1: Structure of conditional KRR for $\mathcal{F} = \text{span}(\{f_1, \dots, f_k\})$.

extension allows us to develop a non-trivial statistical theory of learning within this setting, thereby deepening our understanding of standard KRR.

The organization of the paper is as follows. In Section 2, we define CPD kernels and introduce the associated notion of the *residual kernel*, proving that the latter is positive definite (Theorem 1). Similar constructions are standard in the theory of native spaces induced by CPD kernels (e.g., see Meinguet (1979)), but our definition depends explicitly on the input data distribution, which makes it central to the subsequent development. In Section 3, after recalling the standard definition of a native space, we provide an alternative characterization in terms of the Reproducing Kernel Hilbert Space (RKHS) associated with the residual kernel (Theorem 2). The conditional KRR is then formulated analogously to the standard KRR, with the regularization term replaced by the squared native space semi-norm. The residual kernel further allows us to interpret this problem as a combination of linear regression and standard KRR applied to residual data (Theorem 3, diagram 1).

Section 4 develops the statistical theory of conditional KRR. In our framework, the regression function is decomposed into two components: the first belonging to \mathcal{F} and the second to the RKHS of the residual kernel. We introduce the concept of an \mathcal{F} -conditional learner, which has full access to the \mathcal{F} -component the regression function and learns the second component from data using standard KRR with the residual kernel. To analyze the statistical properties of the estimator produced by conditional KRR, we compare it with the output of this learner. The distance between the two estimators is referred to as the *cost of conditioning*. This quantity measures the extent to which conditional KRR can be viewed as standard KRR with a modified kernel. Our main theoretical result, stated in Theorem 4, establishes that with probability at least $1 - \delta$, the cost of conditioning is bounded by $C \frac{\log k}{\sqrt{N}}$, where N is the sample size, k is the dimension of \mathcal{F} , and C hides logarithmic factors in k and δ , as well as additional dependencies on the regression function, K , and \mathcal{F} .

In the next part of the paper (Section 5), we apply our theoretical results to the case where the initial kernel K is already positive definite and, consequently, CPD w.r.t. any class \mathcal{F} . We study conditional KRR under three specific scenarios: (a) the *hard thresholding* case, i.e. where \mathcal{F} is defined as the first k principal eigenfunctions in the Mercer decomposition of K (subsection 5.1); (b) the *soft thresholding* case, i.e. where \mathcal{F} consists of k random realizations of a Gaussian process with covariance function K (subsection 5.2); (c) \mathcal{F} consists of k random features (or, equivalently, k realizations of a random field) whose covariance function is K (subsection 5.2). Our theoretical analysis, corroborated by experimental evidence, demonstrates that the expected test risk of conditional KRR is strictly lower than that of standard KRR, provided that the \mathcal{F} -component of the signal is sufficiently strong.

Related work. The statistical properties of the KRR regression function estimator have been studied extensively, with particular focus on convergence rates Caponnetto & De Vito (2007); Marteau-Ferey et al. (2019); Cui et al. (2021), the distribution of expected risk under universality assumptions Bordelon et al. (2020); Jacot et al. (2020a); Simon et al. (2023), and the double-descent phenomenon Mei & Montanari (2022); Nakkiran et al. (2021). Our results show that these existing estimates can be directly extended to conditional KRR, provided that one accounts for the cost of conditioning.

108 Conditional KRR belongs to a broader family of two-stage methods: first recovering the main component
 109 of the signal with a base neural network, and then learning from the residuals. As shown
 110 in Yang et al. (2023), this strategy yields lower test risk than relying on the base network alone and
 111 additionally allows explicit memorization of the training labels. This line of research is related to
 112 the classical works on boosting Freund & Schapire (1997), where the strategy is to iteratively refine
 113 an ensemble by training each new weak learner on the residual errors left by the previous ones.
 114

115 2 CONDITIONALLY POSITIVE DEFINITE AND RESIDUAL KERNELS

117 **Definition 1.** Let \mathcal{X} be a nonempty set, and let $f_1, \dots, f_k : \mathcal{X} \rightarrow \mathbb{R}$ be linearly independent real-
 118 valued functions. Define $\mathcal{F} = \text{span}\{f_1, \dots, f_k\} \subseteq \mathbb{R}^{\mathcal{X}}$. A symmetric kernel $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 119 is called conditionally positive definite (CPD) with respect to \mathcal{F} if, for any points $x_1, \dots, x_n \in \mathcal{X}$
 120 and any coefficients $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ satisfying the constraints $\sum_{i=1}^n \alpha_i f_i(x_i) = 0$ for all $f \in \mathcal{F}$,
 121 we have $\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) \geq 0$. If the inequality holds for all $\alpha \in \mathbb{R}^n$ without additional
 122 constraints, then K is said to be positive definite (PD).
 123

124 Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a compact set, $f_1, \dots, f_k : \mathcal{X} \rightarrow \mathbb{R}$ be continuous functions, and $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 125 be a continuous CPD kernel with respect to \mathcal{F} . Denote by $\mathcal{B}(\mathcal{X})$ the Borel σ -algebra on \mathcal{X} , and by
 126 $\mathcal{P}(\mathcal{X})$ the set of probability Borel measures on \mathcal{X} .
 127

128 For $P \in \mathcal{P}(\mathcal{X})$, the projection of f onto \mathcal{F} , denoted $\Pi_P f$, is defined by $\Pi_P f(x) = \int_{\mathcal{X}} \Pi(x, y) f(y) dP(y)$, where $\Pi(x, y)$ is the kernel associated with the projection operator, given
 129 by

$$130 \quad \Pi(x, y) = \sum_{i,j=1}^k (G^+)^{ij} f_i(x) f_j(y),$$

133 for $G = [\langle f_i, f_j \rangle_{L_2(\mathcal{X}, P)}]_{i,j=1}^k$ and G^+ as the Moore-Penrose inverse of G . Given a function
 134 $f(x, \omega)$, the notation $\Pi_P f(\cdot, \omega)$ refers to the projection operator applied to the function f for fixed
 135 ω . The result is another function $\tilde{f}(x, \omega)$. If G is invertible, then $\Pi_P f = f$ for any $f \in \mathcal{F}$. In
 136 this case, the distribution P is said to be \mathcal{F} -nondegenerate. The following theorem extends the
 137 construction of the kernel given in equation (20) of Meinguet (1979).

138 **Theorem 1.** Let $P \in \mathcal{P}(\mathcal{X})$ be \mathcal{F} -nondegenerate. Define the residual kernel

$$139 \quad K_P(x, y) = K(x, y) - \Pi_P[K(x, \cdot)](x, y) - \Pi_P[K(\cdot, y)](x, y) + \Pi_P[\Pi_P[K(x, \cdot)](\cdot, y)](x, y).$$

140 Then, $K_P(x, y)$ is a positive definite kernel.
 141

142 Note that, using slightly more advanced notation, one can write $K_P = ((I - \Pi_P) \otimes (I - \Pi_P))[K]$,
 143 where I denotes the identity operator on $L_2(\mathcal{X}, P)$, and \otimes is the tensor product of operators on
 144 $L_2(\mathcal{X}, P)$, producing an operator on $L_2(\mathcal{X}, P) \otimes L_2(\mathcal{X}, P)$.
 145

146 3 THE NATIVE SPACE AND RIDGE REGRESSION WITH CPD KERNELS

148 The reduced native space of a CPD kernel K w.r.t. \mathcal{F} , denoted $\tilde{\mathcal{H}}_K^{\mathcal{F}}$, is defined as the completion of
 149

$$150 \quad \mathcal{L} = \left\{ f = \sum_{i=1}^n \alpha_i K(x_i, \cdot) \mid \sum_{i=1}^n \alpha_i f_j(x_i) = 0 \text{ for all } j = 1, \dots, k \right\},$$

153 equipped with the inner product

$$154 \quad \left\langle \sum_{i=1}^n \alpha_i K(x_i, \cdot), \sum_{j=1}^n \beta_j K(x_j, \cdot) \right\rangle_{\mathcal{L}} = \sum_{i,j=1}^n \alpha_i \beta_j K(x_i, x_j).$$

157 The space $\tilde{\mathcal{H}}_K^{\mathcal{F}}$ is a Hilbert space Wendland (2004).
 158

159 Since K is continuous, the reduced native space $\tilde{\mathcal{H}}_K^{\mathcal{F}}$ embeds naturally into $C(\mathcal{X})$. Hence, w.l.o.g.,
 160 we may regard $\tilde{\mathcal{H}}_K^{\mathcal{F}}$ as a subspace of $C(\mathcal{X})$. The full native space is then defined as the direct sum
 161

$$\mathcal{H}_K^{\mathcal{F}} = \tilde{\mathcal{H}}_K^{\mathcal{F}} \oplus \mathcal{F},$$

162 equipped with the semi-norm $\|f\|_{\mathcal{H}_K^{\mathcal{F}}} := \sqrt{\langle f_{\perp}, f_{\perp} \rangle_{\tilde{\mathcal{H}}_K^{\mathcal{F}}}}$ where $f = f_{\parallel} + f_{\perp}$ is the unique decom-
 163 position with $f_{\parallel} \in \mathcal{F}$ and $f_{\perp} \in \tilde{\mathcal{H}}_K^{\mathcal{F}}$. This semi-norm corresponds to the inner product $\langle \cdot, \cdot \rangle_{\tilde{\mathcal{H}}_K^{\mathcal{F}}}$,
 164 turning $\mathcal{H}_K^{\mathcal{F}}$ into a semi-Hilbert space. The subspace \mathcal{F} is referred to as the null space of $\mathcal{H}_K^{\mathcal{F}}$.
 165

166 Let $\tilde{\mathcal{H}}_K^{\mathcal{F}}$ denote the RKHS of the residual kernel K_P . Note that functions in $\tilde{\mathcal{H}}_K^{\mathcal{F}}$ are all orthogonal
 167 to \mathcal{F} in $L_2(\mathcal{X}, P)$. Then we define the semi-Hilbert space $\mathcal{H}_K^{\mathcal{F}}$ as the set of functions $\tilde{\mathcal{H}}_K^{\mathcal{F}} \oplus \mathcal{F}$ with
 168 the inner product
 169

$$\langle f_{\parallel} + f_{\perp}, g_{\parallel} + g_{\perp} \rangle_{\mathcal{H}_K^{\mathcal{F}}} = \langle f_{\perp}, g_{\perp} \rangle_{\tilde{\mathcal{H}}_K^{\mathcal{F}}},$$

170 where $f_{\parallel} \in \mathcal{F}$, $f_{\perp} \in \tilde{\mathcal{H}}_K^{\mathcal{F}}$. The following theorem claims that the latter two definitions are equiva-
 171 lent. It is a generalization of Theorem 4 from Cucker & Smale (2001) for PD kernels to the case of
 172 CPD kernels.
 173

174 **Theorem 2.** *Let P be a probabilistic Borel measure non-degenerate on \mathcal{X} . Then, $\mathcal{H}_K^{\mathcal{F}} = \mathcal{H}_K^{\mathcal{F}}$.*

175 Now, suppose that we are given a dataset $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{X} \times \mathbb{R}$. We now introduce the conditional
 176 Kernel Ridge Regression problem, defined as the minimization of the functional
 177

$$178 \quad 179 \quad 180 \quad J(f) = \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2, \quad (1)$$

181 over all $f \in \mathcal{H}_K^{\mathcal{F}}$. The role of the empirical residual kernel is demonstrated by the following theorem,
 182 which establishes a connection between conditional KRR and standard KRR for PD kernels.
 183

184 **Theorem 3.** *Let $P = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ and let \mathcal{H}_{K_P} be the RKHS of K_P . Assuming that $F =$
 185 $[f_i(x_j)]_{i=1, j=1}^N \in \mathbb{R}^{k \times N}$ is of rank k , we have*

$$186 \quad 187 \quad \min_{f \in \mathcal{H}_K^{\mathcal{F}}} \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 = \min_{g \in \mathcal{H}_{K_P}} \frac{1}{N} \sum_{i=1}^N (g(x_i) - r_i)^2 + \lambda \|g\|_{\mathcal{H}_{K_P}}^2,$$

188 where $r = (r_1, \dots, r_N)^\top \in \mathbb{R}^N$ is a projection of $y = (y_1, \dots, y_N)^\top \in \mathbb{R}^N$ onto the orthogonal
 189 complement of the row space of F .
 190

191 If f^* is an optimal function of the first task then $g = (I - \Pi_P)f^*$ is an optimal function for the
 192 second task. Reversely, if g^* is an optimal function for the second task, then

$$193 \quad f = g^* + [f_1(x), \dots, f_k(x)](FF^\top)^{-1}Fy,$$

194 is an optimal function for the first task.
 195

196 **Remark 1.** *The intuition behind this theorem is as follows. Suppose we are given a set of features
 197 f_1, \dots, f_k . For a training set $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{X} \times \mathbb{R}$, we first solve a standard linear regression
 198 problem with the model*

$$199 \quad Y = \beta_1 f_1(X) + \dots + \beta_k f_k(X) + \varepsilon,$$

200 which amounts to projecting the target vector y onto the row space of F . The remaining unexplained
 201 component of y is the residual vector r . These residuals can then be predicted using KRR with the
 202 kernel K_P . The theorem shows that this two-step procedure is exactly equivalent to performing
 203 conditional KRR with the kernel K , which is CPD w.r.t. \mathcal{F} (see diagram 1).
 204

4 THE \mathcal{F} -CONDITIONAL LEARNING AND THE COST OF CONDITIONING

205 Suppose P is a distribution whose support is \mathcal{X} . The residual kernel w.r.t. $\mathcal{F} = \text{span}(f_1, \dots, f_k)$,
 206 K_P , has a Mercer-type representation,
 207

$$208 \quad 209 \quad 210 \quad K_P(x, y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y),$$

211 Each ϕ_i belongs to $L_2(\mathcal{X}, P) \cap \mathcal{F}^\perp$, where the orthogonality is taken w.r.t. the inner product in
 212 $L_2(\mathcal{X}, P)$. Let f be a function from $\mathcal{H}_K^{\mathcal{F}}$ which, by Theorem 2, can be written as $f = f_{\parallel} + f_{\perp}$,
 213 where

$$214 \quad 215 \quad f_{\parallel} = \sum_{i=1}^k u_i f_i, f_{\perp} = \sum_{i=1}^{\infty} v_i \sqrt{\lambda_i} \phi_i.$$

216 By construction, $\|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 = \sum_{i=1}^{\infty} v_i^2$.
 217

218 Let $P_{X,Y}$ be a distribution on $\mathcal{X} \times \mathbb{R}$ defined by
 219

$$(X, Y) \sim P_{X,Y} \Leftrightarrow X \sim P, Y = f(X) + \tilde{\varepsilon},$$

220 where $\tilde{\varepsilon} \sim \mathcal{N}(0, \sigma^2)$ is independent of X . Pairs of the training set $\mathcal{T} = \{(X_1, Y_1), \dots, (X_N, Y_N)\}$
 221 are generated independently from $P_{X,Y}$, i.e. $Y_i = f(X_i) + \varepsilon_i$. To the latter training set one can
 222 relate another training set (called residual), $\mathcal{T}_{\text{res}} = \{(X_i, Y_i^{\perp})\}_{i=1}^N$, where $Y_i^{\perp} = f_{\perp}(X_i) + \varepsilon_i$. The
 223 corresponding distribution over input–output pairs is denoted by $P_{X,Y}^{\perp}$. Note that the noise term is
 224 included as part of the residual training set.
 225

226 We now outline the idea of \mathcal{F} -conditional learning. Suppose that, prior to learning the target map-
 227 ping f from the dataset \mathcal{T} , the learner has full access to the component f_{\parallel} . The learner can then
 228 construct the residual dataset \mathcal{T}_{res} by defining $Y_i^{\perp} = Y_i - f_{\parallel}(X_i)$. Next, KRR with the residual
 229 kernel K_P is applied to \mathcal{T}_{res} , yielding an estimator h of the residual function f_{\perp} , i.e.
 230

$$h = \arg \min_{g \in \mathcal{H}_{K_P}} \frac{1}{N} \sum_{i=1}^N (g(X_i) - Y_i^{\perp})^2 + \lambda \|g\|_{\mathcal{H}_{K_P}}^2.$$

233 Suppose that $\hat{f} = \sum_{i=1}^{\infty} \hat{v}_i \sqrt{\lambda_i} \phi_i + \sum_{i=1}^k \hat{u}_i f_i$ is an argument at which (1) attains its minimum, i.e.
 234 $\hat{f} = \arg \min_{g \in \mathcal{H}_K^{\mathcal{F}}} \frac{1}{N} \sum_{i=1}^N (g(X_i) - Y_i)^2 + \lambda \|g\|_{\mathcal{H}_K^{\mathcal{F}}}^2$. For the trained function \hat{f} one can define
 235 $\hat{f}_{\perp} = \sum_{i=1}^{\infty} \hat{v}_i \sqrt{\lambda_i} \phi_i$ and $\hat{f}_{\parallel} = \sum_{i=1}^k \hat{u}_i f_i$. Due to Theorem 3, it is natural to expect that $\hat{f}_{\perp} \approx h$
 236 and $\hat{f}_{\parallel} \approx f_{\parallel}$. The discrepancy between \hat{f} , obtained without access to f_{\parallel} , and $f_{\parallel} + h$, produced by
 237 an \mathcal{F} -conditional learner, can be naturally interpreted as the cost of conditioning.
 238

239 **Definition 2.** *The difference*

$$c_{\text{con}} = \mathbb{E}[(\hat{f}(X) - f_{\parallel}(X) - h(X))^2] = \|\hat{f}_{\perp} - h\|_{L_2(\mathcal{X}, P)}^2 + \|\hat{f}_{\parallel} - f_{\parallel}\|_{L_2(\mathcal{X}, P)}^2 \quad (2)$$

240 is referred to as the cost of conditioning. Note that c_{con} is a random variable, depending on
 241 X_1, \dots, X_N and the noise.
 242

243 **Theorem 4.** Suppose that f_1, \dots, f_k are orthogonal functions of unit norm in $L_2(\mathcal{X}, P)$, $k \geq 1$.
 244 With probability at least $1 - \delta$ over randomness in X_1, \dots, X_N , we have
 245

$$\mathbb{E}_{\varepsilon}[c_{\text{con}}] \leq c_1 \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_{\infty}(\mathcal{X})}^2 \frac{k \log^{1/2}(\frac{2k}{\delta})}{N^{1/2}} + \frac{c_2 \sigma^2}{N},$$

246 where $C_{K_P} = \sqrt{\max_x K_P(x, x)}$, $c_1 = 32\sqrt{2}(2 + 3\lambda_1(\frac{7C_{K_P}}{\lambda} + \frac{343C_{K_P}^3}{\lambda^2})^2)$, $c_2 =$
 247 $\frac{9\lambda_1 C_{K_P}^2}{\lambda^2} (\frac{C_{K_P}^2}{\lambda} + 1)^2 + 2k$, and provided that $N \geq \max((\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_{\infty}(\mathcal{X})}^2 +$
 248 $\frac{4}{3} \log(\frac{4k}{\delta}), k^2 \log(\frac{2k}{\delta}) \max_{j:1 \leq j \leq k} \|f_j\|_{L_{\infty}(\mathcal{X})}^4)$.
 249

250 For fixed $\lambda \neq 0$, the second term behaves as $\mathcal{O}(\frac{\sigma^2(k+1)}{N})$, which matches the decay rate of the
 251 expected loss in linear regression with k features. When the signal part of the output lies entirely in
 252 \mathcal{F} , i.e. $f_{\perp} = 0$ and $\|f\|_{\mathcal{H}_K^{\mathcal{F}}} = 0$, the first term in the inequality vanishes. In this case, conditional
 253 KRR yields \hat{f} such that $\mathbb{E}_{\varepsilon}[\|\hat{f}_{\perp} - h\|_{L_2(\mathcal{X}, P)}^2] = \mathcal{O}(\frac{\sigma^2(k+1)}{N})$, $\mathbb{E}_{\varepsilon}[\|\hat{f}_{\parallel} - f_{\parallel}\|_{L_2(\mathcal{X}, P)}^2] = \mathcal{O}(\frac{\sigma^2(k+1)}{N})$.
 254

255 That is, \hat{f}_{\parallel} recovers the signal f with the accuracy of linear regression, while \hat{f}_{\perp} is $\mathcal{O}(\frac{\sigma^2(k+1)}{N})$ -
 256 close to h , the output of KRR with residual kernel K_P . In other words, noise can make a substantial
 257 contribution (beyond $\mathcal{O}(\frac{\sigma^2(k+1)}{N})$) only to the component orthogonal to \mathcal{F} , and hence orthogonal to
 258 the signal f . Unlike linear regression, however, \mathcal{F} -conditional learning is capable of memorizing the
 259 noise in the training set. This effect may be described as *weak benign overfitting*. Moreover, if the
 260 eigenvalues of the residual kernel K_P decay as $\lambda_i \sim \frac{1}{i \log^{\alpha} i}$ with $\alpha > 1$, then $h \rightarrow 0$ as $N \rightarrow \infty$. In
 261 this regime, the learner exhibits partial memorization of the training set without degrading the error
 262 loss, a phenomenon known simply as *benign overfitting* Mallinar et al. (2022).
 263

264 Finally, toy experiments reported in Section 6 suggest that the cost of conditioning typically decays
 265 as $\sim \frac{1}{N}$, even when $f \notin \mathcal{F}$. Although our theoretical bound allows for a contribution from any
 266 nontrivial f_{\perp} that decays as $\sim \frac{1}{\sqrt{N}}$, we did not observe this slower rate in practice.
 267

270 5 APPLICATIONS OF THEOREM 4
271272 5.1 \mathcal{F} -CONDITIONING WITH k PRINCIPAL EIGENFUNCTIONS: HARD THRESHOLDING
273274 Suppose the initial kernel K is positive definite, i.e.
275

276
$$K(x, y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y),$$

277

278 where $\{\lambda_i\}$ are strictly positive eigenvalues and $\{\phi_i\}$ are the corresponding eigenfunctions of the
279 integral operator $\phi \rightarrow \int_{\mathcal{X}} K(\cdot, x) \phi(x) dP(x)$ acting on $L_2(\mathcal{X}, P)$. Let us treat K as a CPD kernel
280 w.r.t. $\Phi_k = \text{span}(\{\phi_1, \dots, \phi_k\})$ and study the task (1). Thus, the set of unpenalized features
281 coincides with first k eigenfunctions of K . Then, the residual kernel w.r.t. to Φ_k is simply the tail
282 part of K , i.e.
283

284
$$K_P(x, y) = \sum_{i=k+1}^{\infty} \lambda_i \phi_i(x) \phi_i(y).$$

285

286 Following the formalism of the previous section, let us now assume that the regression function has
287 the form:
288

289
$$f = \sum_{i=1}^k u_i \phi_i.$$

290 As shown in the previous section, with probability at least $1 - \delta$ over the randomness in the inputs,
291 conditional KRR with a CPD kernel K (w.r.t. Φ_k) and a regularization parameter $\lambda > 0$ can be
292 interpreted as standard KRR with the residual kernel K_P applied to the residual dataset $\{(X_i, \varepsilon_i)\}_{i=1}^N$
293 (which now consists solely of noise, since $f \in \Phi_k$). The only difference is the presence of an ad-
294 dditional conditioning cost, bounded by $\mathcal{O}(\frac{\sigma^2(k+1)}{N})$, which contributes to the test error (noting that,
295 by construction, $\|f\|_{\mathcal{H}_K^{\mathcal{F}}} = 0$).296 Let $\varkappa > 0$ be such that $\sum_{i=1}^{\infty} \frac{\lambda_i}{\lambda_i + \varkappa} + \frac{\lambda}{\varkappa} = N$, and let
297

298
$$\mathcal{E} = \mathcal{E}_{\text{noise}} \left(\sum_{i=1}^{\infty} (1 - \mathcal{L}_i)^2 u_i^2 + \sigma^2 \right),$$

299

300 where $\mathcal{L}_i = \frac{\lambda_i}{\lambda_i + \varkappa}$ denotes the learnability of the mode ϕ_i , and $\mathcal{E}_{\text{noise}} = \frac{N}{N - \sum_{i=1}^{\infty} \mathcal{L}_i^2}$ is the over-
301 fitting coefficient. According to Simon et al. (2023), the expected error of KRR with the kernel
302 K approximately equals \mathcal{E} . Analogously, let $\varkappa' > 0$ be such that $\sum_{i=k+1}^{\infty} \frac{\lambda_i}{\lambda_i + \varkappa'} + \frac{\lambda}{\varkappa'} = N$ and
303 $\mathcal{L}'_i = \frac{\lambda_i}{\lambda_i + \varkappa'}$, $\mathcal{E}'_{\text{noise}} = \frac{N}{N - \sum_{i=k+1}^{\infty} (\mathcal{L}'_i)^2}$. Then, the output of KRR with the residual kernel K_P
304 has the expected error of approximately $\mathcal{E}' = \mathcal{E}'_{\text{noise}} \sigma^2$. To estimate the expected error of condi-
305 tional KRR with the CPD kernel K (w.r.t. Φ_k), the loss \mathcal{E}' must be augmented by the conditioning
306 cost $\mathbb{E}[c_{\text{con}}] = \mathcal{O}(\frac{\sigma^2(k+1)}{N})$. Therefore, in order for the expected error of conditional KRR to be
307 smaller than that of standard KRR (i.e., KRR with the PD kernel K and no unpenalized features),
308 the following condition must hold
309

310
$$0 > \mathbb{E}[c_{\text{con}}] + \mathcal{E}' - \mathcal{E} = \mathcal{E}'_{\text{noise}} \sigma^2 - \mathcal{E}_{\text{noise}} \left(\sum_{i=1}^k (1 - \mathcal{L}_i)^2 u_i^2 + \sigma^2 \right) + \mathcal{O}(\frac{\sigma^2(k+1)}{N}),$$

311

312 or, equivalently,
313

314
$$\sum_{i=1}^k \frac{\varkappa^2}{(\lambda_i + \varkappa)^2} u_i^2 > \sigma^2 \left(\frac{\mathcal{E}'_{\text{noise}}}{\mathcal{E}_{\text{noise}}} - 1 \right) + \mathcal{O}(\frac{\sigma^2(k+1)}{N \mathcal{E}_{\text{noise}}}). \quad (3)$$

315

316 Note that the right-hand side of this inequality, as well as the coefficients $\frac{\varkappa^2}{(\lambda_i + \varkappa)^2}$ on the left-hand
317 side, do not depend on the target function f . Hence, the inequality provides a sufficient condition on
318 the coefficients of f in the basis $\{\phi_i\}_{i=1}^k$ ensuring that conditional KRR outperforms standard KRR
319 without unpenalized features (equivalently, that the expected test error is a U-shaped function of k).
320 Our experiments confirm that the test error is often non-monotonic in k (the number of unpenalized
321 principal components) when the signal f is sufficiently strong. In contrast, for pure-noise datasets
322 ($f = 0$), the test MSE consistently increased with k across all experiments. The corresponding
323 experimental results are presented in Section 6.

324 5.2 \mathcal{F} -CONDITIONING WITH k RANDOM GAUSSIAN FEATURES: SOFT THRESHOLDING
325

326 In what follows, we show that choosing $\mathcal{F} = \Phi_k = \text{span}\{\phi_1, \dots, \phi_k\}$ is closely related to defining
327 \mathcal{F} as k random Gaussian features with the covariance function K . Recall that the kernel admits
328 the Mercer decomposition $K(x, y) = \sum_{j=1}^{\infty} \lambda_j \phi_j(x) \phi_j(y)$ where $\{\phi_j\}_{j=1}^{\infty} \subset L_2(\mathcal{X}, P)$ forms
329 an orthonormal system and the eigenvalues $\{\lambda_j\}$ are positive and decreasing. Let $\{f(\omega, x)\}_{x \in \mathcal{X}}$
330 denote a centered Gaussian random field with covariance function K . Using the Karhunen-Loéve
331 representation of $f(\omega, x) \in L_2(\mathcal{X}, P)$, we have

$$332 \quad 333 \quad 334 \quad f(\omega, x) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \xi_j(\omega) \phi_j(x),$$

335 where $\{\xi_j(\omega)\}_{j=1}^{\infty} \sim^{\text{iid}} \mathcal{N}(0, 1)$.

336 Let us assume that $g_i(x) = f(\omega_i, x)$ for i.i.d. samples $\omega_1, \dots, \omega_k$ and denote $\omega = (\omega_1, \dots, \omega_k)$.
337 Thus, we have $g_i(x) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \xi_{ij} \phi_j(x)$, where $\{\xi_{ij}\}_{i=1}^k \sim_{j=1}^{\infty} \mathcal{N}(0, 1)$. We now define
338 $\mathcal{G}_k = \text{span}(g_1, \dots, g_k)$ and consider conditional KRR with the CPD kernel K w.r.t. \mathcal{G}_k .
339

340 Let K_P^{ω} be a residual kernel w.r.t. \mathcal{G}_k . Let us define

$$341 \quad 342 \quad 343 \quad M_{\ell, m} = \sum_{i, j=1}^k \xi_{i\ell} (G^{-1})_{ij} \xi_{jm}.$$

344 where $G \in \mathbb{R}^{k \times k}$ is the Gram matrix with $G_{ij} = \langle g_i, g_j \rangle_{L_2(\mathcal{X}, P)} = \sum_{\ell=1}^{\infty} \lambda_{\ell} \xi_{i\ell} \xi_{j\ell}$. The kernel of
345 the projection operator onto \mathcal{G}_k in $L_2(\mathcal{X}, P)$ is
346

$$347 \quad 348 \quad 349 \quad \Pi_k(x, y) = \sum_{i, j=1}^k \left(\sum_{\ell=1}^{\infty} \sqrt{\lambda_{\ell}} \xi_{i\ell} \phi_{\ell}(x) \right) (G^{-1})_{ij} \left(\sum_{m=1}^{\infty} \sqrt{\lambda_m} \xi_{jm} \phi_m(y) \right).$$

350 After grouping terms we have

$$351 \quad 352 \quad 353 \quad \Pi_k(x, y) = \sum_{\ell, m=1}^{\infty} \sqrt{\lambda_{\ell} \lambda_m} \left(\sum_{i, j=1}^k \xi_{i\ell} (G^{-1})_{ij} \xi_{jm} \right) \phi_{\ell}(x) \phi_m(y) = \sum_{\ell, m=1}^{\infty} \sqrt{\lambda_{\ell} \lambda_m} M_{\ell, m} \phi_{\ell}(x) \phi_m(y).$$

354 Since $K_P^{\omega} = (I - \Pi_k) \otimes (I - \Pi_k)[K]$, the dependence of K_P^{ω} on ω is encapsulated in coefficients
355 $M_{\ell, m}$. Also, $\langle \phi_i, \mathbb{E}_{Y \sim P} K_P^{\omega}(\cdot, Y) \phi_i(Y) \rangle_{L_2(\mathcal{X}, P)} = \lambda_i (1 - 2\lambda_i M_{i, i} + \sum_{j=1}^{\infty} \lambda_j^2 M_{i, j}^2)$.
356

357 **Remark 2.** In a slightly different context, the coefficients $M_{\ell, m}$ were analyzed in Appendix C.3.1
358 of Jacot et al. (2020b) (see also Subsection I.7 of Simon et al. (2023)), under the assumption that k
359 is large, corresponding to the so-called ‘‘thermodynamic limit’’. We have $G = \sum_{i=1}^{\infty} \lambda_i \xi_i \xi_i^{\top}$, where
360 $\xi_i \sim \mathcal{N}(\mathbf{0}, I_k)$ are generated independently. Let $G_{-i} = \sum_{j: j \neq i} \lambda_j \xi_j \xi_j^{\top}$, that is $G = \lambda_i \xi_i \xi_i^{\top} + G_{-i}$.
361

Then the Sherman-Morrison formula gives

$$362 \quad 363 \quad 364 \quad G^{-1} = G_{-i}^{-1} - \frac{\lambda_i G_{-i}^{-1} \xi_i \xi_i^{\top} G_{-i}^{-1}}{1 + \lambda_i \xi_i^{\top} G_{-i}^{-1} \xi_i},$$

365 and, therefore,

$$366 \quad 367 \quad 368 \quad M_{i, j} = \xi_i^{\top} G^{-1} \xi_j = \xi_i^{\top} G_{-i}^{-1} \xi_j - \frac{\lambda_i \xi_i^{\top} G_{-i}^{-1} \xi_i \cdot \xi_i^{\top} G_{-i}^{-1} \xi_j}{1 + \lambda_i \xi_i^{\top} G_{-i}^{-1} \xi_i} = \frac{\xi_i^{\top} G_{-i}^{-1} \xi_j}{1 + \lambda_i \xi_i^{\top} G_{-i}^{-1} \xi_i}.$$

369 As shown in Simon et al. (2023), the quantity $\xi_i^{\top} G_{-i}^{-1} \xi_i$ concentrates sharply around its mean as
370 $k \rightarrow \infty$, and moreover $\mathbb{E}[\xi_i^{\top} G_{-i}^{-1} \xi_i] \approx \mathbb{E}[\xi_j^{\top} G_{-j}^{-1} \xi_j]$. The off-diagonal coefficients, i.e. $M_{i, j}, i \neq j$,
371 concentrate sharply around zero. To analyze the effect of k unpenalized random Gaussian features,
372 it suffices to study the structure of $\mathbb{E}_{\omega}[K_P^{\omega}(x, y)]$, which is the subject of the next theorem.

373 **Theorem 5.** The expectation of K_P^{ω} over randomness in $\omega = (\omega_1, \dots, \omega_k)$, i.e. $\mathbb{E}_{\omega}[K_P^{\omega}(x, y)]$, is
374 a Mercer kernel that is equal to

$$375 \quad 376 \quad 377 \quad \sum_{i=1}^{\infty} \mu_i \phi_i(x) \phi_i(y),$$

where $\mu_i = \lambda_i (1 - 2\lambda_i \cdot \mathbb{E}[M_{i, i}] + \sum_{j=1}^{\infty} \lambda_j^2 \cdot \mathbb{E}[M_{i, j}^2])$.

378 To analyze the behavior of $\frac{\mu_i}{\lambda_i}$, we need to estimate the quantity $1 - 2\lambda_i \mathbb{E}[M_{i,i}] + \sum_{j=1}^{\infty} \lambda_j^2 \mathbb{E}[M_{i,j}^2]$,
 379 which again, turns out to be tractable in the thermodynamic limit. In Appendix F we provide a
 380 non-rigorous argument (supported by experiments) showing that, as $k \rightarrow \infty$, the following approx-
 381 imation holds:

$$382 \quad \frac{\mu_i}{\lambda_i} \approx \frac{c\kappa^2}{(\lambda_i + \kappa)^2}, \quad (4)$$

385 where $\kappa > 0$ satisfies $\sum_{i=1}^{\infty} \frac{\lambda_i}{\lambda_i + \kappa} = k$. The interpretation of the latter estimate is straightforward:
 386 when $\lambda_i \gg \kappa$, the i -th mode is strongly suppressed in the residual kernel, while for $\lambda_i \ll \kappa$, the
 387 corresponding eigenvalue is amplified by some factor c . Our numerical experiments (see Figure 5
 388 in Appendix F) confirm that this behavior persists even for finite k . This shows that defining \mathcal{F} via
 389 k random Gaussian features has a similar effect to choosing \mathcal{F} as the top k eigenfunctions: in both
 390 cases the residual kernel $K_P^{\omega}(x, y)$ resembles a truncated kernel, but with the suppression of large
 391 eigenvalues applied in a soft manner. For this reason, it is natural to refer to these two approaches
 392 as *soft thresholding* and *hard thresholding*, respectively.

393 We expect that the theoretical prediction of a U-shaped dependence of the expected error on k should
 394 also hold for soft thresholding, just as it does for hard thresholding (under conditions analogous to
 395 formula (3)). Our experiments, reported in Section 6, confirm that the non-monotone dependence of
 396 the expected test error on k commonly arises in this setting as well.

397 **\mathcal{F} -conditioning with k random features.** Let us assume that K is a Mercer kernel that is given
 398 through the random features mapping $f : \Omega \times \mathcal{X} \rightarrow \mathbb{R}$ and $(\Omega, \Sigma, \mathcal{P})$ is a probabilistic space, that
 399 is $K(x, y) = \mathbb{E}_{\omega \sim \mathcal{P}}[f(\omega, x)f(\omega, y)]$. Since K is a positive definite kernel, it is in particular CPD
 400 w.r.t. any subspace $\mathcal{F} = \text{span}(f_1, \dots, f_k)$. Given a dataset $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{X} \times \mathbb{R}$, we consider the
 401 conditional KRR problem w.r.t. \mathcal{F} , namely the optimization task (1).

402 We conducted experiments with $\mathcal{F} = \mathcal{R}_k$, where $\mathcal{R}_k = \text{span}\{g_1, \dots, g_k\}$ and $g_i(x) = f(\omega_i, x)$
 403 for i.i.d. samples $\omega_1, \dots, \omega_k \sim \mathcal{P}$. When $\{f(\omega, x)\}_{x \in \mathcal{X}}$ is a Gaussian random field, this setup
 404 coincides with the soft thresholding framework. Hence, it can be seen as a generalization of soft
 405 thresholding to the case of non-Gaussian features. Prior work Louart et al. (2018); Benigni & Péché
 406 (2021) has shown that general random feature models behave similarly to the Gaussian case, and
 407 thus we expect the U-shaped dependence of the expected risk on k to be a generic phenomenon here
 408 as well. This hypothesis is verified experimentally in the next section.

410 6 EXPERIMENTS

412 **Experiments with hard thresholding.** To examine the cost of conditioning and the U-shaped
 413 dependence of the test risk on the number of unpenalized principal eigenfunctions in the hard-
 414 thresholding case, predicted theoretically by inequality (3), we carried out a toy experiment. On
 415 the domain $\mathcal{X} = [0, 2\pi]$ with the uniform input distribution, we consider the kernel $K(x, y) =$
 416 $1 + \sum_{i=1}^{\infty} i^{-2s} (\cos(ix) \cos(iy) + \sin(ix) \sin(iy))$, parameterized by a smoothness parameter $s >$
 417 0 . For a fixed parameter k , the set of unpenalized features \mathcal{F} is defined as $\text{span}(\{\cos(ix)\}_{i=0}^k \cup$
 418 $\{\sin(ix)\}_{i=1}^k)$.

419 The dependence of \hat{c}_{con} on the parameters N, k , and σ^2 for various target functions is shown in Figure 2. The plots for k and σ^2 exhibit linear trends fully consistent with the predictions of Theorem 4.
 420 Across all experiments, we observed a decay rate of $\hat{c}_{\text{con}} \sim \frac{1}{N}$ as N increases. In contrast, the upper
 421 bound of Theorem 4 scales as $\frac{1}{\sqrt{N}}$ whenever $\|f\|_{\mathcal{H}_K^{\mathcal{F}}} \neq 0$ or $f \notin \mathcal{F}$. Whether the faster $\frac{1}{N}$ decay is
 422 a general property of the hard thresholding setting, or merely a peculiarity of our experiments, re-
 423 mains an open theoretical question. For the regression function $f(x) = \sum_{n=0}^5 \cos(nx)$ the resulting
 424 U-shaped behavior of the test error as a function of k is illustrated in Figure 3.

427 **Experiments with random features.** We also conducted experiments on \mathcal{F} -conditioning with k
 428 random features. In this setup, we worked directly with random feature representations rather than
 429 explicitly computing the kernel K . As shown in Appendix G, conditional KRR in this setting can
 430 be approximated by ridge regression with two types of random features: a large set of penalized
 431 features and k unpenalized ones. We considered three activation functions: $\cos(x)$, $\text{ReLU}(x)$,
 and $\tanh(x)$. In each case, a random field on $\mathcal{X} = \mathbb{S}^{d-1}$ with covariance K was defined as fol-

Figure 2: Dependence of the cost of conditioning on N , k and σ^2 in the hard thresholding setting.Figure 3: Effect of hard thresholding when the regression function is a combination of the first five principal eigenfunctions. As expected, the test MSE attains its minimum at $k = 5$.

lows: (a) $f(x, [\omega, b]) = \cos(\omega^\top x + b)$ with $\omega \sim \mathcal{N}(\mathbf{0}, I_d)$ and $b \sim U([0, 2\pi])$; (b) $f(x, [\omega, b]) = \text{ReLU}(\omega^\top x + b)$ with $\omega \sim \mathcal{N}(\mathbf{0}, I_d)$ and $b \sim U([-1, 1])$; (c) $f(x, [\omega, b]) = \tanh(\omega^\top x + b)$ with $\omega \sim \mathcal{N}(\mathbf{0}, I_d)$ and $b \sim U([-1, 1])$. Note that in case (a), K corresponds to the Gaussian kernel. The U-shaped dependence of the expected risk for all three cases is shown in Figure 4.

Details of described experiments, together with additional experiments, are provided in Appendix H.

Figure 4: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and the regression function $f(x_1, \dots, x_d) = \sin(x_1) + \frac{1}{2} \cos(x_2)$.

7 CONCLUSIONS AND OPEN PROBLEMS

We have developed a statistical theory of learning with conditional KRR and applied it to both hard and soft thresholding settings. Attempting to study the memorization phenomenon in conditional KRR encounters an immediate difficulty: all of our bounds require the regularization parameter $\lambda \neq 0$, whereas perfect memorization of the training set is possible only when $\lambda = 0$. Extending our statistical analysis to cover this latter case remains an open direction for future research.

486 REFERENCES
487

488 Yves Auffray and Pierre Barbillon. Conditionally positive definite kernels: theoretical contribution,
489 application to interpolation and approximation. Research Report RR-6835, INRIA, 2009. URL
490 <https://inria.hal.science/inria-00359944>.

491 Lucas Benigni and Sandrine Péché. Eigenvalue distribution of some nonlinear models of random
492 matrices. *Electronic Journal of Probability*, 26(none):1 – 37, 2021. doi: 10.1214/21-EJP699.
493 URL <https://doi.org/10.1214/21-EJP699>.

494 Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
495 kernel regression and wide neural networks. In *Proceedings of the 37th International Conference
496 on Machine Learning*, ICML’20. JMLR.org, 2020.

497 A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. *Founda-
498 tions of Computational Mathematics*, 7(3):331–368, Jul 2007. ISSN 1615-3383. doi: 10.1007/
499 s10208-006-0196-8. URL <https://doi.org/10.1007/s10208-006-0196-8>.

500 Ta-Chung Chi, Ting-Han Fan, Peter J. Ramadge, and Alexander I. Rudnick. Kerple: kernelized
501 relative positional embedding for length extrapolation. In *Proceedings of the 36th International
502 Conference on Neural Information Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2022.
503 Curran Associates Inc. ISBN 9781713871088.

504 Felipe Cucker and Stephen Smale. On the mathematical foundations of learning. *Bulletin of the
505 American Mathematical Society*, 39:1–49, 2001.

506 Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova. Generalization error rates
507 in kernel regression: The crossover from the noiseless to noisy regime. In A. Beygelzimer,
508 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing
509 Systems*, 2021. URL https://openreview.net/forum?id=Da_EHrAcfwd.

510 Jean Duchon. Splines minimizing rotation-invariant semi-norms in sobolev spaces. In Walter
511 Schempp and Karl Zeller (eds.), *Constructive Theory of Functions of Several Variables*, pp. 85–
512 100, Berlin, Heidelberg, 1977. Springer Berlin Heidelberg. ISBN 978-3-540-37496-1.

513 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
514 and an application to boosting. *Journal of Computer and System Sciences*, 55(1):119–139,
515 1997. ISSN 0022-0000. doi: <https://doi.org/10.1006/jcss.1997.1504>. URL <https://www.sciencedirect.com/science/article/pii/S00220009791504X>.

516 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
517 eralization in neural networks. In *Proceedings of the 32nd International Conference on Neural
518 Information Processing Systems*, NIPS’18, pp. 8580–8589, Red Hook, NY, USA, 2018. Curran
519 Associates Inc.

520 Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Kernel
521 alignment risk estimator: risk prediction from training data. In *Proceedings of the 34th Interna-
522 tional Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY, USA,
523 2020a. Curran Associates Inc. ISBN 9781713829546.

524 Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clement Hongler, and Franck Gabriel. Implicit
525 regularization of random feature models. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of
526 the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine
527 Learning Research*, pp. 4631–4640. PMLR, 13–18 Jul 2020b. URL <https://proceedings.mlr.press/v119/jacot20a.html>.

528 Frederik Köhne, Friedrich M. Philipp, Manuel Schaller, Anton Schiela, and Karl Worthmann. L^∞ -
529 error bounds for approximations of the koopman operator by kernel extended dynamic mode
530 decomposition. *SIAM Journal on Applied Dynamical Systems*, 24(1):501–529, 2025. doi: 10.
531 1137/24M1650120. URL <https://doi.org/10.1137/24M1650120>.

532 Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks.
533 *The Annals of Applied Probability*, 28(2):1190 – 1248, 2018. doi: 10.1214/17-AAP1328. URL
534 <https://doi.org/10.1214/17-AAP1328>.

540 Neil Mallinar, James Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, and Preetum
 541 Nakkiran. Benign, tempered, or catastrophic: Toward a refined taxonomy of overfitting. In
 542 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
 543 Neural Information Processing Systems*, volume 35, pp. 1182–1195. Curran Associates, Inc.,
 544 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/08342dc6ab69f23167b4123086ad4d38-Paper-Conference.pdf.

545

546 Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least-
 547 squares: Fast rates for regularized empirical risk minimization through self-concordance. In Alina
 548 Beygelzimer and Daniel Hsu (eds.), *Proceedings of the Thirty-Second Conference on Learning
 549 Theory*, volume 99 of *Proceedings of Machine Learning Research*, pp. 2294–2340. PMLR, 25–
 550 28 Jun 2019. URL <https://proceedings.mlr.press/v99/marteau-ferey19a.html>.

551

552

553 Song Mei and Andrea Montanari. The generalization error of random features regression: Pre-
 554 cise asymptotics and the double descent curve. *Communications on Pure and Applied Math-
 555 ematics*, 75(4):667–766, 2022. doi: <https://doi.org/10.1002/cpa.22008>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22008>.

556

557 Jean Meinguet. Multivariate interpolation at arbitrary points made simple. *Zeitschrift für ange-
 558 wandte Mathematik und Physik ZAMP*, 30(2):292–304, Mar 1979. ISSN 1420-9039. doi:
 559 [10.1007/BF01601941](https://doi.org/10.1007/BF01601941). URL <https://doi.org/10.1007/BF01601941>.

560

561 Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma. Optimal regularization can
 562 mitigate double descent. In *International Conference on Learning Representations*, 2021. URL
 563 <https://openreview.net/forum?id=7R7fAoUygoa>.

564

565 Pietro Novelli, Marco Praticò, Massimiliano Pontil, and Carlo Ciliberto. Operator world models
 566 for reinforcement learning. In *Proceedings of the 38th International Conference on Neural Infor-
 567 mation Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
 568 9798331314385.

569

570 T. Poggio and F. Girosi. Networks for approximation and learning. *Proceedings of the IEEE*, 78(9):
 1481–1497, 1990. doi: [10.1109/5.58326](https://doi.org/10.1109/5.58326).

571

572 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
 573 In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), *Advances in Neural In-
 574 formation Processing Systems*, volume 20. Curran Associates, Inc., 2007. URL
 575 https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.

576

577 Robert Schaback and Holger Wendland. Kernel techniques: From machine learning to meshless
 578 methods. *Acta Numerica*, 15:543–639, 2006. doi: [10.1017/S0962492906270016](https://doi.org/10.1017/S0962492906270016).

579

580 Bernhard Schölkopf. The kernel trick for distances. In T. Leen, T. Dietterich, and
 581 V. Tresp (eds.), *Advances in Neural Information Processing Systems*, volume 13. MIT Press,
 582 2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/file/4e87337f366f72daa424dae11df0538c-Paper.pdf.

583

584 James B Simon, Madeline Dickens, Dhruva Karkada, and Michael R DeWeese. The eigen-
 585 learning framework: A conservation law perspective on kernel ridge regression and wide neu-
 586 ral networks. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL
 587 <https://openreview.net/forum?id=FDbQGCAViI>.

588

589 Joel A. Tropp. An introduction to matrix concentration inequalities. *Foundations and Trends®
 590 in Machine Learning*, 8(1-2):1–230, 2015. ISSN 1935-8237. doi: [10.1561/2200000048](https://doi.org/10.1561/2200000048). URL
 591 [http://dx.doi.org/10.1561/2200000048](https://dx.doi.org/10.1561/2200000048).

592

593 Grace Wahba. *Spline Models for Observational Data*. Society for Industrial and Applied Mathemat-
 594 ics, 1990. doi: [10.1137/1.9781611970128](https://doi.org/10.1137/1.9781611970128). URL <https://pubs.siam.org/doi/abs/10.1137/1.9781611970128>.

594 Holger Wendland. *Scattered Data Approximation*. Cambridge Monographs on Applied and Com-
 595 putational Mathematics. Cambridge University Press, 2004.
 596

597 Zitong Yang, Michal Lukasik, Vaishnav Nagarajan, Zonglin Li, Ankit Rawat, Manzil Zaheer,
 598 Aditya K Menon, and Sanjiv Kumar. Resmem: Learn what you can and memorize the rest.
 599 In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 600 Neural Information Processing Systems*, volume 36, pp. 60768–60790. Curran Associates, Inc.,
 601 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/bf0857cb9a41c73639f028a80301cdf0-Paper-Conference.pdf.
 602

603

A PROOF OF THEOREM 1

604

606 Let $\mathcal{M}(\mathcal{X})$ be the set of finite signed Borel measures on \mathcal{X} . The following characterization of CPD
 607 requires only standard argumentation.

608 **Lemma 1.** *K is CPD w.r.t. \mathcal{F} if and only if for all finite signed Borel measures $\mu \in \mathcal{M}(\mathcal{X})$ satisfying
 609 $\int f(x) d\mu(x) = 0$ for all $f \in \mathcal{F}$, we have:*

610

$$\iint K(x, x') d\mu(x) d\mu(x') \geq 0.$$

613 Let us first prove that $K_P(x, y)$ is a PD kernel, i.e. that

614

$$\iint K_P(x, y) d\mu(x) d\mu(y) \geq 0$$

615 for any $\mu \in \mathcal{M}(\mathcal{X})$. We define $\nu = (I - \Pi_P)^* \mu \in \mathcal{M}(\mathcal{X})$ as the unique signed measure satisfying

616

$$\int f(x) d\nu(x) = \int (I - \Pi_P)f(x) d\mu(x) \quad \text{for all } f \in C(\mathcal{X}).$$

617 From Riesz-Markov-Kakutani representation theorem we obtain that ν is a finite signed Borel mea-
 618 sure. For every $f \in \mathcal{F}$, we have $(I - \Pi_P)f = 0$ due to nondegeneracy of P . Thus, we have

619

$$\int f(x) d\nu(x) = \int (I - \Pi_P)f(x) d\mu(x) = 0.$$

620 From the definition of K_P , we have $K_P = (I - \Pi_P)[(I - \Pi_P)[K(x, \cdot)](\cdot, y)]$, so for any $\mu \in$
 621 $\mathcal{M}(\mathcal{X})$,

$$\begin{aligned} \iint K_P(x, y) d\mu(x) d\mu(y) &= \int \left[\int (I - \Pi_P)[(I - \Pi_P)[K(x, \cdot)](\cdot, y)](x, y) d\mu(x) \right] d\mu(y) = \\ &= \int \left[\int (I - \Pi_P)[K(x, \cdot)](x, y) d\nu(x) \right] d\mu(y) = \int \left[\int (I - \Pi_P)[K(x, \cdot)](x, y) d\mu(y) \right] d\nu(x) \\ &= \int \left[\int K(x, y) d\nu(y) \right] d\nu(x) = \iint K(x, y) d\nu(x) d\nu(y). \end{aligned}$$

622 The latter expression is non-negative due to conditional positive definiteness of K . Therefore,
 623 $K_P(x, y)$ is positive definite.

624

B PROOF OF THEOREM 2

639 Define $O_K^P : L_2(\mathcal{X}, P) \rightarrow L_2(\mathcal{X}, P)$ by

640

$$O_K^P f(x) = \int_{\mathcal{X}} K_P(x, y) f(y) dP(y).$$

645 By Mercer's theorem, the kernel K_P can be expanded as

646

$$K_P(x, y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y),$$

648 where $\{\lambda_i\}$ are non-zero eigenvalues of O_K^P and $\{\phi_i\}$ are corresponding orthogonal eigenfunctions
 649 of unit length. Note that $\phi_i \in L_2(\mathcal{X}, P) \cap \mathcal{F}^\perp$ due to $O_K^P[L_2(\mathcal{X}, P) \cap \mathcal{F}^\perp] \subseteq L_2(\mathcal{X}, P) \cap \mathcal{F}^\perp$ and
 650 $O_K^P[\mathcal{F}] = \{0\}$. It is well-known (see Theorem 4 from Cucker & Smale (2001)) that $\tilde{H}_K^{\mathcal{F}}$ is a Hilbert
 651 space with a set of functions $\sqrt{O_K^P[L_2(\mathcal{X}, P)]}$, i.e. the set of functions of the form
 652

$$653 \sum_{i=1}^{\infty} \sqrt{\lambda_i} x_i \phi_i$$

654 where $[x_i]_{i=1}^{\infty} \in l^2(\mathbb{N})$. For $f = \sum_{i=1}^{\infty} \sqrt{\lambda_i} x_i \phi_i$ and $g = \sum_{i=1}^{\infty} \sqrt{\lambda_i} y_i \phi_i$, the inner product on $\tilde{H}_K^{\mathcal{F}}$
 655 equals
 656

$$657 \langle f, g \rangle_{\tilde{H}_K^{\mathcal{F}}} = \sum_{i=1}^{\infty} x_i y_i.$$

658 First let us prove that $\mathcal{L} \subseteq \tilde{H}_K^{\mathcal{F}}$ which will directly imply $\mathcal{L} \oplus \mathcal{F} \subseteq \tilde{H}_K^{\mathcal{F}}$. Let $f \in \mathcal{L}$ and
 659

$$660 f = \sum_{i=1}^n \alpha_i K(x_i, \cdot) \text{ such that } \sum_{i=1}^n \alpha_i f_j(x_i) = 0 \text{ for all } j = 1, \dots, k.$$

661 Since $\sum_{i=1}^n \alpha_i f_j(x_i) = 0$, then $(I - \Pi_P)^* \sum_{i=1}^n \alpha_i \delta_{x_i} = \sum_{i=1}^n \alpha_i \delta_{x_i}$. Therefore, the function f
 662 can be expressed as
 663

$$664 f(x) = \int_{\mathcal{X}} K(y, x) d\left(\sum_{i=1}^n \alpha_i \delta_{x_i}\right)(y) = \int_{\mathcal{X}} K(y, x) d((I - \Pi_P)^* \sum_{i=1}^n \alpha_i \delta_{x_i})(y) =$$

$$665 \int_{\mathcal{X}} (I - \Pi_P)[K(\cdot, z_2)](y, x) d\left(\sum_{i=1}^n \alpha_i \delta_{x_i}\right)(y) = \sum_{i=1}^n \alpha_i (I - \Pi_P)[K(\cdot, z_2)](x_i, x) =$$

$$666 \sum_{i=1}^n \alpha_i (I - \Pi_P)[(I - \Pi_P)[K(\cdot, z_2)](z_1, \cdot)](x_i, x) + \alpha_i \Pi_P[(I - \Pi_P)[K(\cdot, z_2)](z_1, \cdot)](x_i, x).$$

667 Note that $\Pi_P[(I - \Pi_P)[K(\cdot, z_2)](z_1, \cdot)](x_i, x) \in \mathcal{F}$ and we obtained
 668

$$669 f(x) = \sum_{i=1}^n \alpha_i K_P(x_i, x) + \tilde{f},$$

670 where $\tilde{f} \in \mathcal{F}$. Since
 671

$$672 \sum_{i=1}^n \alpha_i K_P(x_i, x) = \sum_{i=1}^n \alpha_i \sum_{j=1}^{\infty} \lambda_j \phi_j(x_i) \phi_j(x) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \left(\sum_{i=1}^n \alpha_i \phi_j(x_i) \right) \sqrt{\lambda_j} \phi_j(x),$$

673 and

$$674 \left\| \left[\sqrt{\lambda_j} \left(\sum_{i=1}^n \alpha_i \phi_j(x_i) \right) \right]_{j=1}^{\infty} \right\|_{l^2(\mathbb{N})}^2 = \sum_{j=1}^{\infty} \lambda_j \sum_{i, i'=1}^n \alpha_i \alpha_{i'} \phi_j(x_i) \phi_j(x_{i'}) = \sum \alpha_i \alpha_{i'} K(x_i, x_{i'}) < \infty$$

675 we conclude that $\sum_{i=1}^n \alpha_i K_P(x_i, x) \in \tilde{H}_K^{\mathcal{F}}$. Thus, we proved $f \in \tilde{H}_K^{\mathcal{F}}$, and therefore, $\mathcal{L} \oplus \mathcal{F} \subseteq \tilde{H}_K^{\mathcal{F}}$.
 676

677 Let us now prove that for any $g \in \tilde{H}_K^{\mathcal{F}}$ and the previous $f \in \mathcal{L}$ we have
 678

$$679 \langle g, f \rangle_{\tilde{H}_K^{\mathcal{F}}} = \sum_{i=1}^n \alpha_i g(x_i).$$

680 The latter property is an analog of the reproducing property of the kernel K in the theory of RKHSs.
 681 By construction, we have $g = \sum_j r_j \sqrt{\lambda_j} \phi_j + \tilde{g}$ for $[r_i]_{i=1}^{\infty} \in l^2(\mathbb{N})$ and $\tilde{g} \in \mathcal{F}$. Thus,
 682

$$683 \langle g, f \rangle_{\tilde{H}_K^{\mathcal{F}}} = \sum_{j=1}^{\infty} r_j \sqrt{\lambda_j} \left(\sum_{i=1}^n \alpha_i \phi_j(x_i) \right) = \sum_{i=1}^n \alpha_i (g(x_i) - \tilde{g}(x_i)) = \sum_{i=1}^n \alpha_i g(x_i),$$

702 due to $\sum_{i=1}^n \alpha_i \tilde{g}(x_i) = 0$.
 703

704 The inner product in \mathcal{L} matches the inner product in $H_K^{\mathcal{F}}$. Indeed, let $f, g \in \mathcal{L}$. In the previous
 705 analysis we established that

$$706 \quad 707 \quad 708 \quad f = \sum_{j=1}^{\infty} p_j \sqrt{\lambda_j} \phi_j + \tilde{f}, g = \sum_{j=1}^{\infty} q_j \sqrt{\lambda_j} \phi_j + \tilde{g},$$

709 where $p_j = \sqrt{\lambda_j} (\sum_{i=1}^n \alpha_i \phi_j(x_i))$, $q_j = \sqrt{\lambda_j} (\sum_{i=1}^m \beta_i \phi_j(y_i))$ and $\tilde{f}, \tilde{g} \in \mathcal{F}$. Therefore,
 710

$$711 \quad 712 \quad 713 \quad \langle f, g \rangle_{H_K^{\mathcal{F}}} = \sum_{j=1}^{\infty} p_j q_j = \sum_{j=1}^{\infty} \lambda_j (\sum_{i=1}^n \alpha_i \phi_j(x_i)) (\sum_{i=1}^m \beta_i \phi_j(y_i)) = \sum_{i=1}^n \sum_{j=1}^m K(x_i, y_j) \alpha_i \beta_j.$$

714 So, we have $\langle f, g \rangle_{\mathcal{L}} = \langle f, g \rangle_{H_K^{\mathcal{F}}}$. This implies to $\langle f, g \rangle_{H_K^{\mathcal{F}}} = \langle f, g \rangle_{H_K^{\mathcal{F}}}$ for any $f, g \in \mathcal{L} \oplus \mathcal{F}$.
 715

716 To complete the proof we need to show that $\mathcal{L} \oplus \mathcal{F} \subseteq H_K^{\mathcal{F}}$ is dense in $H_K^{\mathcal{F}}$. The latter follows
 717 from the denseness of $(\mathcal{L} \oplus \mathcal{F}) \cap \tilde{H}_K^{\mathcal{F}}$ in $\tilde{H}_K^{\mathcal{F}}$. Indeed, let $f \in \tilde{H}_K^{\mathcal{F}}$ be orthogonal to all functions in
 718 $(\mathcal{L} \oplus \mathcal{F}) \cap \tilde{H}_K^{\mathcal{F}}$, then the previous analysis shows that it should be orthogonal to all functions from
 719 \mathcal{L} , i.e.

$$720 \quad 721 \quad 722 \quad \langle f, \sum_{i=1}^n \alpha_i K(x_i, \cdot) \rangle_{H_K^{\mathcal{F}}} = 0 \text{ whenever } \sum_{i=1}^n \alpha_i f_j(x_i) = 0 \text{ for all } j = 1, \dots, k.$$

723 This implies

$$724 \quad 725 \quad 726 \quad \sum_{i=1}^n \alpha_i f(x_i) = 0 \text{ whenever } \sum_{i=1}^n \alpha_i f_j(x_i) = 0 \text{ for all } j = 1, \dots, k.$$

727 The latter implies $f \in \mathcal{F}$. Since $\mathcal{F} \cap \tilde{H}_K^{\mathcal{F}} = \{0\}$, we obtain $f = 0$. Theorem proved.
 728

730 C PROOF OF THEOREM 3

732 By the Representer Theorem (e.g. see Theorem 6.1 from Auffray & Barbillon (2009)), the solution
 733 f^* of the initial task (1) has the form

$$734 \quad 735 \quad 736 \quad f^*(x) = \sum_{i=1}^N \alpha_i K(x_i, x) + \sum_{j=1}^k \beta_j f_j(x),$$

738 where $\sum_i \alpha_i f_j(x_i) = 0$, $1 \leq j \leq k$, which leads us to the following optimization task
 739

$$740 \quad \min_{\alpha, \beta} \|\mathbf{K}\alpha + F^\top \beta - y\|^2 + \lambda \alpha^\top \mathbf{K}\alpha \quad \text{subject to} \quad F\alpha = 0,$$

741 where $y = (y_1, \dots, y_N)^\top \in \mathbb{R}^N$, $\mathbf{K} = [K(x_i, x_j)]_{i,j=1}^N \in \mathbb{R}^{N \times N}$, $\alpha = (\alpha_1, \dots, \alpha_N)^\top \in \mathbb{R}^N$ and
 742 $\beta = (\beta_1, \dots, \beta_k)^\top \in \mathbb{R}^k$.

744 Since the matrix FF^\top is invertible, the minimization over β gives
 745

$$746 \quad \beta = -(FF^\top)^{-1} F(\mathbf{K}\alpha - y).$$

747 The matrix $\Pi = F^\top (FF^\top)^{-1} F$ corresponds to the projection operator onto the row space of F .
 748 Let us denote $r = (I_N - \Pi)y$, where $I_N = [\delta_{ij}]_{i,j=1}^N$. Note that $\alpha = (I_N - \Pi)\alpha$ due to $F\alpha = 0$.
 749 After we plug the expression for β into the former objective, we obtain a new objective
 750

$$751 \quad \|(I_N - \Pi)(\mathbf{K}\alpha - y)\|^2 + \lambda \alpha^\top \mathbf{K}\alpha = \\ 752 \quad \|(I_N - \Pi)\mathbf{K}(I_N - \Pi)\alpha - r\|^2 + \lambda \alpha^\top (I_N - \Pi)\mathbf{K}(I_N - \Pi)\alpha.$$

754 Let us denote $\tilde{\mathbf{K}} = (I_N - \Pi)\mathbf{K}(I_N - \Pi)$. We obtained the task
 755

$$\min_{\alpha} \|\tilde{\mathbf{K}}\alpha - r\|^2 + \lambda \alpha^\top \tilde{\mathbf{K}}\alpha \quad \text{subject to} \quad F\alpha = 0.$$

756 For any $y \in \{x \in \mathbb{R}^N \mid Fx = 0\}^\perp = \text{row}(F)$ we have $\tilde{\mathbf{K}}y = 0$. Therefore, the latter task is
 757 equivalent to solving the unconstrained
 758

$$759 \min_{\alpha'} \|\tilde{\mathbf{K}}\alpha' - r\|^2 + \lambda \alpha'^\top \tilde{\mathbf{K}}\alpha',$$

760 and then setting $\alpha = (I_N - \Pi)\alpha'$. Further, let us denote solutions of the latter two tasks α and α'
 761 respectively. Note that $\tilde{\mathbf{K}}$ is the kernel matrix for the residual kernel function K_P . By Theorem 1,
 762 K_P is positive semidefinite and the latter task leads to the KRR optimization task
 763

$$764 \min_{g \in \mathcal{H}_{K_P}} \sum_{i=1}^N (g(x_i) - r_i)^2 + \lambda \|g\|_{\mathcal{H}_{K_P}}^2,$$

765 with the correspondence between solutions of the KRR and the previous one established by the rule
 766

$$767 g^*(x) = \sum_{i=1}^N \alpha'_i K_P(x_i, \cdot).$$

768 Note that adding to α' any vector from $\text{row}(F)$ does not change g^* , therefore we can write $g^*(x) =$
 769 $\sum_{i=1}^N \alpha_i K_P(x_i, \cdot)$. Since $\alpha = (I_N - \Pi)\alpha'$ and $[K_P(x_i, \cdot)]_{i=1}^N = (I_N - \Pi)[(I - \Pi_P)[K(x_i, \cdot)]]_{i=1}^N$,
 770 we obtain
 771

$$772 g^*(x) = \sum_{i=1}^N \alpha_i (I - \Pi_P)[K(x, \cdot)](x_i, x)$$

773 That is, $g^* = (I - \Pi_P)f^*$.
 774

775 Next, given g^* , let us recover f^* . We have
 776

$$777 f^* = g^* + \Pi_P f^* = g^* + \Pi_P \left(\sum_{i=1}^N \alpha_i K(x_i, x) + \sum_{j=1}^k \beta_j f_j(x) \right) =$$

$$778 g^* + \Pi_P \left(\sum_{i=1}^N \alpha_i K(x_i, x) \right) + \beta^\top [f_1(x), \dots, f_k(x)]^\top =$$

$$779 g^* + \alpha^\top \mathbf{K} F^\top (FF^\top)^{-1} [f_1(x), \dots, f_k(x)]^\top + \beta^\top [f_1(x), \dots, f_k(x)]^\top.$$

780 Using $\beta = -(FF^\top)^{-1}F(\mathbf{K}\alpha - y)$, we conclude
 781

$$782 f^* = g^* + \Pi_P f^* = g^* + y^\top F^\top (FF^\top)^{-1} [f_1(x), \dots, f_k(x)]^\top.$$

783 Theorem proved.
 784

785 D PROOF OF THEOREM 4

786 Let $l^2(\mathbb{N})$ denote the Hilbert space of sequences $[x_i]_{i=1}^\infty$ such that $\sum_i x_i^2 < \infty$ with the standard dot
 787 product of sequences. By $\mathcal{B}(A, B)$ we denote bounded linear operators between spaces A and B .
 788 E.g., $\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))$ can be identified with certain $\mathbb{N} \times N$ matrices.
 789

800 D.1 EXPRESSIONS FOR TRANSFER MATRICES

801 Following Section 4, let us introduce notations
 802

$$803 u = [u_1, \dots, u_k]^\top, v = [v_1, v_2, \dots]^\top, \hat{u} = [\hat{u}_1, \dots, \hat{u}_k]^\top, \hat{v} = [\hat{v}_1, \hat{v}_2, \dots]^\top$$

$$804 y = [Y_1, \dots, Y_N]^\top, \phi_i = [\phi_i(X_1), \dots, \phi_i(X_N)]^\top, \mathbf{f}_i = [f_i(X_1), \dots, f_i(X_N)]^\top$$

$$805 \Phi = [\phi_i(X_j)]_{i=1}^N, F = [f_i(X_j)]_{i=1}^N \in \mathbb{R}^{k \times N}, \Lambda = [\lambda_i \delta_{ij}]_{i,j=1}^\infty.$$

806 Note that $y = \Phi^\top \Lambda^{1/2} v + F^\top u + \varepsilon$ where $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_N)$ is independent of $\mathcal{D}_N = (X_1, \dots, X_N)$.
 807

810 **Theorem 6.** Let F be of rank k . For the v -part of the regression function we have $\hat{v} = T_\phi v + T_{\phi\varepsilon}\varepsilon$,
 811 with matrices T_ϕ and $T_{\phi\varepsilon}$ defined by

$$813 \quad T_\phi = \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2},$$

$$814 \quad T_{\phi\varepsilon} = \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} (I_N - F^\top (F F^\top)^{-1} F),$$

816 where $\Psi = \Phi(I_N - F^\top (F F^\top)^{-1} F)$ and $I = [\delta_{ij}]_{i,j=1}^\infty$. For the u -part of the regression function
 817 we have $\hat{u} = u + T_f v + T_{f\varepsilon}\varepsilon$ where

$$818 \quad T_f = (F F^\top)^{-1} F \Phi^\top \Lambda^{1/2} (I - \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2}),$$

$$819 \quad T_{f\varepsilon} = (F F^\top)^{-1} F.$$

821 **Remark 3.** The latter theorem claims that a linear relationships between coefficients of the regression
 822 function and the trained function can be described by the following diagram.

830 Note that \hat{v} and $\hat{u} - u$ do not depend on u . This implies that for a fixed u , the distribution of
 831 $(\hat{f}(X) - f(X))^2$ for $X \sim P$ does not depend on u . Therefore, in a statistical analysis of this
 832 expression we may assume that $u = \mathbf{0}$.

833 The fact that \hat{v} does not depend on u follows from Theorem 3. Indeed, according to Remark 1
 834 KRR with the CPD kernel can be understood as the two step process: the first step being the linear
 835 regression with features f_1, \dots, f_k and the second step being the KRR on residuals. The first step
 836 “erases” all correlations with u , i.e. the \mathcal{F} -part of the signal. That is why the part of the trained
 837 function that belongs to the RKHS of K_P does not depend on u .

838 Further, given a kernel \tilde{K} , $\tilde{K}(x, \mathcal{D}_N)$ denotes the row $[\tilde{K}(x, X_1), \dots, \tilde{K}(x, X_N)]$ and $\tilde{K}(\mathcal{D}_N, \mathcal{D}_N)$
 839 denotes the matrix $[\tilde{K}(X_i, X_j)]_{i,j=1}^N$. We define $P_N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$, i.e. the empirical measure.
 840 Also, in all lemmas below we assume that F is of rank k , i.e. P_N is \mathcal{F} -nondegenerate.

841 **Lemma 2.** We have $\langle \phi_i, K_{P_N}(\cdot, \mathcal{D}_N) \rangle_{L_2(\mathcal{X}, P)} = \lambda_i \phi_i^\top (I_N - F^\top (F F^\top)^{-1} F)$.

842 *Proof.* By construction, $\langle \phi_i, K_P(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} = \lambda_i \phi_i(y)$. Let $\Pi(x, y) =$
 843 $\sum_{i,j=1}^k (G^{-1})_{ij} f_i(x) f_j(y)$ where $G = [G_{ij}]_{i,j=1}^k = [\langle f_i, f_j \rangle_{L_2(\mathcal{X}, P)}]_{i,j=1}^k$. The residual
 844 kernel equals

$$845 \quad K_P(x, y) = K(x, y) - \mathbb{E}_{S \sim P}[K(x, S)\Pi(S, y)] - \mathbb{E}_{S \sim P}[\Pi(x, S)K(S, y)] +$$

$$846 \quad \mathbb{E}_{S, T \sim P}[\Pi(x, S)K(S, T)\Pi(T, y)].$$

847 Since $\langle \phi_i, f_j \rangle_{L_2(\mathcal{X}, P)} = 0$, we obtain

$$848 \quad \langle \phi_i, K(\cdot, y) - \mathbb{E}_{S \sim P}[K(\cdot, S)\Pi(S, y)] \rangle_{L_2(\mathcal{X}, P)} = \lambda_i \phi_i(y).$$

849 For any S , $\Pi(S, y) \in \text{span}(f_1, \dots, f_k)$, therefore,

$$850 \quad \langle \phi_i, K(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} - \lambda_i \phi_i \in \text{span}(f_1, \dots, f_k).$$

851 The residual kernel w.r.t. P_N equals

$$852 \quad K_{P_N}(x, y) = K(x, y) - \mathbb{E}_{S \sim P_N}[K(x, S)\Pi_N(S, y)] - \mathbb{E}_{S \sim P_N}[\Pi_N(x, S)K(S, y)] +$$

$$853 \quad \mathbb{E}_{S, T \sim P_N}[\Pi_N(x, S)K(S, T)\Pi_N(T, y)],$$

854 where $\Pi_N(x, y) = \sum_{i,j=1}^k (H^{-1})_{ij} f_i(x) f_j(y)$ and $H = [H_{ij}]_{i,j=1}^k = [\langle f_i, f_j \rangle_{L_2(\mathcal{X}, P_N)}]_{i,j=1}^k$.
 855 Therefore,

$$856 \quad \langle \phi_i, K_{P_N}(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} = \langle \phi_i, K(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} - \mathbb{E}_{S \sim P_N}[\langle \phi_i, K(\cdot, S) \rangle_{L_2(\mathcal{X}, P)} \Pi_N(S, y)].$$

864 Since $\langle \phi_i, K(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} - \lambda_i \phi_i \in \text{span}(f_1, \dots, f_k)$, we have

$$866 \langle \phi_i, K(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} - \mathbb{E}_{S \sim P_N} [\langle \phi_i, K(\cdot, S) \rangle_{L_2(\mathcal{X}, P)} \Pi_N(S, y)] = \\ 867 \lambda_i \phi_i - \mathbb{E}_{S \sim P_N} [\lambda_i \phi_i(S) \Pi_N(S, y)].$$

868 Thus,

$$870 \langle \phi_i, K_{P_N}(\cdot, \mathcal{D}_N) \rangle_{L_2(\mathcal{X}, P)} = \lambda_i \phi_i^\top - \frac{1}{N} \sum_{j=1}^N \lambda_i \phi_i(X_j) \Pi_N(X_j, \mathcal{D}_N) = \\ 872 \lambda_i \phi_i^\top (I_N - F^\top (FF^\top)^{-1} F).$$

873 Lemma proved. □

874 **Lemma 3.** For any \mathcal{F} -nondegenerate distribution Q , we have

$$875 (I_N - F^\top (FF^\top)^{-1} F) K(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F) = \\ 876 (I_N - F^\top (FF^\top)^{-1} F) K_Q(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F).$$

877 *Proof.* The residual kernel equals

$$878 K_Q(x, y) = \int (\delta(x - s) - \Pi(x, s)) (\delta(y - t) - \Pi(y, t)) K(s, t) dQ(s) dQ(t),$$

879 where $\Pi(x, y) = \sum_{i,j=1}^k (G^{-1})_{ij} f_i(x) f_j(y)$ and $[G_{ij}]_{i,j=1}^k = [\langle f_i, f_j \rangle_{L_2(\mathcal{X}, Q)}]_{i,j=1}^k$. So,

$$880 K(x, y) = K_Q(x, y) + \int \Pi(x, s) K(s, y) dQ(s) + \\ 881 \int \Pi(y, t) K(x, t) dQ(t) - \int \Pi(x, s) \Pi(y, t) K(s, t) dQ(s) QP(t).$$

882 Since $[\Pi(x_i, s)]_{i=1}^N \in \text{span}(\mathbf{f}_1, \dots, \mathbf{f}_k)$ we have $(I_N - F^\top (FF^\top)^{-1} F) [\Pi(x_i, s)]_{i=1}^N = 0$. Analogously, $([\Pi(t, x_i)]_{i=1}^N)^\top (I_N - F^\top (FF^\top)^{-1} F) = 0$. Therefore,

$$883 (I_N - F^\top (FF^\top)^{-1} F) K(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F) = \\ 884 (I_N - F^\top (FF^\top)^{-1} F) K_Q(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F).$$

885 Lemma proved. □

886 **Corollary 1.** We have

$$887 (I_N - F^\top (FF^\top)^{-1} F) K(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F) = \\ 888 (I_N - F^\top (FF^\top)^{-1} F) \Phi^\top \Lambda \Phi (I_N - F^\top (FF^\top)^{-1} F).$$

889 *Proof.* After setting $Q = P$ in the previous lemma and, from $K_P(\mathcal{D}_N, \mathcal{D}_N) = \Phi^\top \Lambda \Phi$, we obtain the needed statement. □

890 *Proof of Theorem 6.* The vector of residuals is given by

$$891 r = (I_N - F^\top (FF^\top)^{-1} F) y = (I_N - F^\top (FF^\top)^{-1} F) (\Phi^\top \Lambda^{1/2} v + F^\top u + \varepsilon) = \\ 892 (I_N - F^\top (FF^\top)^{-1} F) (\Phi^\top \Lambda^{1/2} v + \varepsilon).$$

893 From Theorem 3, the trained mapping $\hat{f} = \sum_{i=1}^{\infty} \hat{v}_i \sqrt{\lambda_i} \phi_i + \sum_{i=1}^k \hat{u}_i f_i$ can be given as

$$894 K_{P_N}(x, \mathcal{D}_N) (K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) + \lambda N I_N)^{-1} r + \sum_{i=1}^k \hat{u}_i f_i,$$

895 which gives

$$896 \sqrt{\lambda_i} \hat{v}_i = \langle \phi_i, K_{P_N}(\cdot, \mathcal{D}_N) (K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) + \lambda N I_N)^{-1} r \rangle_{L_2(\mathcal{X}, P)}.$$

918 From Lemma 2 we conclude $\langle \phi_i, K_{P_N}(\cdot, \mathcal{D}_N) \rangle_{L_2(\mathcal{X}, P)} = \lambda_i \phi_i^\top (I_N - F^\top (FF^\top)^{-1} F)$. Therefore,
919

$$\begin{aligned} 920 \sqrt{\lambda_i} \hat{v}_i &= \lambda_i \phi_i^\top (I_N - F^\top (FF^\top)^{-1} F) (K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) + \lambda N I_N)^{-1} r = \\ 921 \lambda_i \phi_i^\top (I_N - F^\top (FF^\top)^{-1} F) (K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) + \lambda N I_N)^+ (I_N - F^\top (FF^\top)^{-1} F) (\Phi^\top \Lambda^{1/2} v + \varepsilon) = \\ 923 \lambda_i \phi_i^\top ((I_N - F^\top (FF^\top)^{-1} F) K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F) + \\ 924 \lambda N (I_N - F^\top (FF^\top)^{-1} F))^+ (\Phi^\top \Lambda^{1/2} v + \varepsilon). \\ 925 \end{aligned}$$

926 Above we used the property $(AB)^+ = B^+ A^+$ for commuting symmetric matrices A, B and the
927 fact that $A^+ = A$ for a projection operator A . From Lemma 3 and Corollary 1 we conclude
928

$$\begin{aligned} 929 (I_N - F^\top (FF^\top)^{-1} F) K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) (I_N - F^\top (FF^\top)^{-1} F) = \\ 930 (I_N - F^\top (FF^\top)^{-1} F) \Phi^\top \Lambda \Phi (I_N - F^\top (FF^\top)^{-1} F) = \\ 931 (I_N - F^\top (FF^\top)^{-1} F) \Psi^\top \Lambda \Psi (I_N - F^\top (FF^\top)^{-1} F). \\ 932 \end{aligned}$$

933 Thus,
934

$$935 \hat{v}_i = \sqrt{\lambda_i} \phi_i^\top (I_N - F^\top (FF^\top)^{-1} F) (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} (I_N - F^\top (FF^\top)^{-1} F) (\Phi^\top \Lambda^{1/2} v + \varepsilon), \\ 936$$

937 and, therefore, $T_\phi = \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2}$. Also, $T_\varepsilon = \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \\ 938 \lambda N I_N)^{-1} (I_N - F^\top (FF^\top)^{-1} F)$.

939 Let us now derive the formula for \hat{u} as a function of u, v and ε . First we will assume that f_1, \dots, f_k
940 are orthogonal unit vectors in $L_2(\mathcal{X}, P_N)$. Using $\hat{f} = \sum_{i=1}^{\infty} \hat{v}_i \sqrt{\lambda_i} \phi_i + \sum_{i=1}^k \hat{u}_i f_i$, we have
941

$$942 \langle f_i, \hat{f} \rangle_{L_2(\mathcal{X}, P_N)} = \frac{1}{N} \sum_{j=1}^{\infty} \hat{v}_j \sqrt{\lambda_j} \mathbf{f}_i^\top \phi_j + \hat{u}_i = \frac{1}{N} \mathbf{f}_i^\top \Phi^\top \Lambda^{1/2} \hat{v} + \hat{u}_i. \\ 943 \\ 944$$

945 From $\hat{f} = K_{P_N}(x, \mathcal{D}_N) (K_{P_N}(\mathcal{D}_N, \mathcal{D}_N) + \lambda N I_N)^{-1} r + \sum_{i=1}^k \tilde{u}_i f_i$ we also derive
946 $\langle \hat{f}, f_i \rangle_{L_2(\mathcal{X}, P_N)} = \tilde{u}_i$. Thus,
947

$$948 \hat{u}_i = \tilde{u}_i - \frac{1}{N} \mathbf{f}_i^\top \Phi^\top \Lambda^{1/2} \hat{v}. \\ 949 \\ 950$$

951 Since $\tilde{u} = (FF^\top)^{-1} F y = \frac{1}{N} F y$ and $y = \Phi^\top \Lambda^{1/2} v + F^\top u + \varepsilon$ we conclude
952

$$\begin{aligned} 953 \hat{u} &= u + \frac{1}{N} F \Phi^\top \Lambda^{1/2} v - \frac{1}{N} F \Phi^\top \Lambda^{1/2} \hat{v} + \frac{1}{N} F \varepsilon = \\ 954 u + \frac{1}{N} F \Phi^\top \Lambda^{1/2} (v - \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2} v) + \frac{1}{N} F \varepsilon, \\ 955 \\ 956 \end{aligned}$$

957 where $\Psi = \Phi(I_N - F^\top (FF^\top)^{-1} F) = \Phi(I_N - \frac{1}{N} F^\top F)$. Therefore,
958

$$959 F^\top (\hat{u} - u) = \frac{1}{N} F^\top F \Phi^\top \Lambda^{1/2} (v - \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2} v) + \frac{1}{N} F^\top F \varepsilon. \\ 960 \\ 961$$

962 In the latter derivation we assumed that f_1, \dots, f_k are already orthogonalized in $L_2(\mathcal{X}, P_N)$. If we
963 do not make such an assumption, the matrix of the projection operator onto \mathcal{F} in $L_2(\mathcal{X}, P_N)$ is not
964 $\frac{1}{N} F^\top F$, but $F^\top (FF^\top)^{-1} F$, which gives us

$$965 F^\top (\hat{u} - u) = F^\top (FF^\top)^{-1} F \left(\Phi^\top \Lambda^{1/2} (v - \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2} v) + \varepsilon \right). \\ 966 \\ 967$$

968 Thus,

$$969 \hat{u} = u + (FF^\top)^{-1} F \left(\Phi^\top \Lambda^{1/2} (v - \Lambda^{1/2} \Psi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Psi^\top \Lambda^{1/2} v) + \varepsilon \right). \\ 970 \\ 971$$

972 where $\Psi = \Phi(I_N - F^\top (FF^\top)^{-1} F)$. From the latter the expression for T_f is straightforward. \square

972 D.2 DISTANCE BETWEEN \hat{f}_\perp AND h_\perp (\hat{f}_\parallel AND f_\parallel)
973974 Recall that $h = \arg \min_{g \in \mathcal{H}_{K_P}} \frac{1}{N} \sum_{i=1}^N (g(X_i) - Y_i^\perp)^2 + \lambda \|g\|_{\mathcal{H}_{K_P}}^2$. The following theorem bounds
975 the difference between h and \hat{f} (or \hat{f}_\perp) in \mathcal{H}_K . Let \hat{v} be such that $h = \sum_{i=1}^\infty \hat{v}_i \sqrt{\lambda_i} \phi_i$. From
976 Theorem 6 we conclude, $\hat{v} = \hat{T}_\phi v + \hat{T}_{\phi\varepsilon} \varepsilon$ where
977

978
$$\hat{T}_\phi = \Lambda^{1/2} \Phi (\Phi^\top \Lambda \Phi + \lambda N I_N)^{-1} \Phi^\top \Lambda^{1/2}$$

979

980 and
981

982
$$\hat{T}_{\phi\varepsilon} = \Lambda^{1/2} \Phi (\Phi^\top \Lambda \Phi + \lambda N I_N)^{-1}.$$

983

984 Let us introduce $t : \mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N})) \rightarrow \mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))$ by
985

986
$$t(A) = A(A^\top A + \lambda I_N)^{-1} A^\top \in \mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N})).$$

987

988 Then, we have $\hat{T}_\phi = t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi)$ and $T_\phi = t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Psi)$.
989990 **Lemma 4.** *We have*

991
$$\mathbb{E}_\varepsilon [\|h - \hat{f}\|_{\mathcal{H}_K}^2] \leq \|t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi) - t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Psi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}^2 \|f\|_{\mathcal{H}_K}^2 +$$

992
$$\sigma^2 \frac{9C_{K_P}^2}{N\lambda^2} \left(\frac{C_{K_P}^2}{\lambda} + 1 \right)^2.$$

993

994 *Proof.* Using Theorem 2, the squared semi-norm $\|h - \hat{f}\|_{\mathcal{H}_K}^2$ equals
995

996
$$\|\sum_{i=1}^\infty \hat{v}_i \sqrt{\lambda_i} \phi_i - \sum_{i=1}^\infty \hat{v}_i \sqrt{\lambda_i} \phi_i\|_{\mathcal{H}_{K_P}}^2 = \|\hat{v} - \hat{v}\|_{l^2(\mathbb{N})}^2 = \|\hat{T}_\phi v + \hat{T}_{\phi\varepsilon} \varepsilon - T_\phi v - T_{\phi\varepsilon} \varepsilon\|_{l^2(\mathbb{N})}^2 =$$

997
$$\|(\hat{T}_\phi - T_\phi)v\|_{l^2(\mathbb{N})}^2 + \|(\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})\varepsilon\|_{l^2(\mathbb{N})}^2 + 2\langle (\hat{T}_\phi - T_\phi)v, (\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})\varepsilon \rangle_{l^2(\mathbb{N})}.$$

998

1000 Taking the expectation over ε gives
1001

1002
$$\mathbb{E}_\varepsilon [\|h - \hat{f}\|_{\mathcal{H}_K}^2] = \|(\hat{T}_\phi - T_\phi)v\|_{l^2(\mathbb{N})}^2 + \sigma^2 \text{Tr}((\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})^\top (\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})).$$

1003

1004 The v -dependent term can be bounded by
1005

1006
$$\|(\hat{T}_\phi - T_\phi)v\|_{l^2(\mathbb{N})}^2 \leq \|\hat{T}_\phi - T_\phi\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}^2 \|v\|_{l^2(\mathbb{N})}^2 =$$

1007
$$\|t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi) - t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Psi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}^2 \|f\|_{\mathcal{H}_K}^2.$$

1008

1009 Let us denote $\Pi_F = F^\top (FF^\top)^{-1} F$. The coefficient $\text{Tr}((\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})^\top (\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon})) = \|\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon}\|_F^2$ can be bounded by
1010

1011
$$\|\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon}\|_F \leq \|\Lambda^{1/2} \Phi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} - \Lambda^{1/2} \Phi (\Phi^\top \Lambda \Phi + \lambda N I_N)^{-1}\|_F +$$

1012
$$\|\Lambda^{1/2} \Phi \Pi_F (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1}\|_F + \|\Lambda^{1/2} \Phi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Pi_F\|_F +$$

1013
$$+ \|\Lambda^{1/2} \Phi \Pi_F (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} \Pi_F\|_F.$$

1014

1015 The resolvent identity allows to bound the first term term by
1016

1017
$$\|\Lambda^{1/2} \Phi (\Psi^\top \Lambda \Psi + \lambda N I_N)^{-1} - \Lambda^{1/2} \Phi (\Phi^\top \Lambda \Phi + \lambda N I_N)^{-1}\|_F \leq$$

1018
$$\frac{1}{\sqrt{N}} \|\frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi\|_F \cdot \|(\frac{1}{N} \Psi^\top \Lambda \Psi + \lambda I_N)^{-1} - (\frac{1}{N} \Phi^\top \Lambda \Phi + \lambda I_N)^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq$$

1019
$$\frac{C_{K_P}}{\sqrt{N}} \|(\frac{1}{N} \Psi^\top \Lambda \Psi + \lambda I_N)^{-1} - (\frac{1}{N} \Phi^\top \Lambda \Phi + \lambda I_N)^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq$$

1020
$$\frac{C_{K_P}}{\sqrt{N\lambda^2}} \|\frac{1}{N} \Psi^\top \Lambda \Psi - \frac{1}{N} \Phi^\top \Lambda \Phi\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)}.$$

1021

1026 Since

$$\begin{aligned} 1028 \quad \|\frac{1}{N}\Psi^\top \Lambda \Psi - \frac{1}{N}\Phi^\top \Lambda \Phi\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} &\leq \|\frac{1}{N}\Pi_F^\top \Phi^\top \Lambda \Phi\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} + \|\frac{1}{N}\Phi^\top \Lambda \Phi \Pi_F\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} + \\ 1029 \quad &\|\frac{1}{N}\Pi_F^\top \Phi^\top \Lambda \Phi \Pi_F\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq 3\|\frac{1}{N}\Phi^\top \Lambda \Phi\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq 3C_{K_P}^2, \\ 1030 \quad &\|\frac{1}{N}\Pi_F^\top \Phi^\top \Lambda \Phi \Pi_F\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq 3\|\frac{1}{N}\Phi^\top \Lambda \Phi\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq 3C_{K_P}^2, \\ 1031 \end{aligned}$$

1032 the first term is bounded by $\frac{3C_{K_P}^3}{\sqrt{N}\lambda^2}$. The 2nd, 3rd and 4th terms are bounded by

$$\begin{aligned} 1034 \quad \|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\|_F &\leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}, \\ 1035 \quad \|\Lambda^{1/2}\Phi(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F &\leq \|\Lambda^{1/2}\Phi(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\|_F \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}, \\ 1036 \quad \|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F &\leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}. \\ 1037 \quad &\|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F \leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}. \\ 1038 \quad &\|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F \leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}. \\ 1039 \quad &\|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F \leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}. \\ 1040 \quad &\|\Lambda^{1/2}\Phi\Pi_F(\Psi^\top \Lambda \Psi + \lambda NI_N)^{-1}\Pi_F\|_F \leq \frac{\|\Lambda^{1/2}\Phi\Pi_F\|_F}{\lambda N} \leq \frac{\|\Lambda^{1/2}\Phi\|_F}{\lambda N} \leq \frac{C_{K_P}}{\sqrt{N}\lambda}. \\ 1041 \end{aligned}$$

To conclude, we have

$$1042 \quad \|\hat{T}_{\phi\varepsilon} - T_{\phi\varepsilon}\|_F \leq \frac{3C_{K_P}^3}{\sqrt{N}\lambda^2} + \frac{3C_{K_P}}{\sqrt{N}\lambda}.$$

1043 Lemma proved. \square

1044 The following theorem bounds the difference between f_{\parallel} and \hat{f}_{\parallel} in $L_2(\mathcal{X}, P)$.

1045 **Lemma 5.** *We have*

$$1046 \quad \mathbb{E}_\varepsilon[\|\hat{f}_{\parallel} - f_{\parallel}\|_{L_2(\mathcal{X}, P)}^2] \leq \|T_f\|_{\mathcal{B}(l^2(\mathbb{N}), \mathbb{R}^k)}^2 \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 + \frac{k}{N} \|(\frac{1}{N}FF^\top)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \sigma^2.$$

1047 *Proof.* The squared norm $\|\hat{f}_{\parallel} - f_{\parallel}\|_{L_2(\mathcal{X}, P)}^2$ equals

$$\begin{aligned} 1048 \quad \mathbb{E}_\varepsilon[\|\sum_{i=1}^k \hat{u}_i f_i - \sum_{i=1}^k u_i f_i\|_{L_2(\mathcal{X}, P)}^2] &= \mathbb{E}_\varepsilon[\|\hat{u} - u\|^2] = \mathbb{E}_\varepsilon[\|T_f v + T_{f\varepsilon} \varepsilon\|^2] = \\ 1049 \quad \|T_f v\|^2 + \sigma^2 \text{Tr}(T_{f\varepsilon}^\top T_{f\varepsilon}) &\leq \|T_f\|_{\mathcal{B}(l^2(\mathbb{N}), \mathbb{R}^k)}^2 \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 + \sigma^2 \text{Tr}(T_{f\varepsilon}^\top T_{f\varepsilon}). \\ 1050 \end{aligned}$$

1051 The second term can be bounded by

$$\begin{aligned} 1052 \quad \text{Tr}(T_{f\varepsilon}^\top T_{f\varepsilon}) &= \text{Tr}(T_{f\varepsilon} T_{f\varepsilon}^\top) = \text{Tr}((FF^\top)^{-1}FF^\top(FF^\top)^{-1}) = \\ 1053 \quad \text{Tr}((FF^\top)^{-1}) &\leq \frac{k}{N} \|(\frac{1}{N}FF^\top)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)}. \\ 1054 \end{aligned}$$

\square

1055 Thus, to control $\mathbb{E}_\varepsilon[\|\hat{f}_{\perp} - h\|_{\mathcal{H}_K^{\mathcal{F}}}^2]$ and $\mathbb{E}_\varepsilon[\|\hat{f}_{\parallel} - f_{\parallel}\|_{L_2(\mathcal{X}, P)}^2]$ we need to bound $\|t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi) - t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}^2$, $\|T_f\|_{\mathcal{B}(l^2(\mathbb{N}), \mathbb{R}^k)}$ and $\|(\frac{1}{N}FF^\top)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)}$. Required bounds for the latter expressions are obtained in the next section.

1056 D.3 CONCENTRATION OF TRANSFER MATRICES

1057 Let us introduce the notation:

$$1058 \quad e(x) = [\sqrt{\lambda_1}\phi_1(x), \sqrt{\lambda_2}\phi_2(x), \dots]^\top \in l^2(\mathbb{N}).$$

1059 Given $x_1, \dots, x_N \in \mathcal{X}$, let

$$1060 \quad e(x_1, \dots, x_N) = [e(x_1), \dots, e(x_N)] \in \mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N})),$$

1061 Given continuous functions $f_j : \mathcal{X} \rightarrow \mathbb{R}$, $j = 1, \dots, k$, let us define a vector-function $\mathbf{f}(x) = [f_1(x), \dots, f_k(x)]^\top$ and denote

$$1062 \quad \mathbf{f}(x_1, \dots, x_N) = [\mathbf{f}(x_1), \dots, \mathbf{f}(x_N)] \in \mathbb{R}^{k \times N}.$$

Using the introduced notation, the matrix $\Lambda^{1/2}\Phi$ can be rewritten as $e(X_1, \dots, X_N)$, the matrix F as $\mathbf{f}(X_1, \dots, X_N)$, and the matrix $\Lambda^{1/2}\Psi$ in the following form:

$$\begin{aligned} & \Lambda^{1/2}\Psi = e(X_1, \dots, X_N) \times \\ & (I_N - \mathbf{f}(X_1, \dots, X_N)^\top (\mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top)^{-1} \mathbf{f}(X_1, \dots, X_N)). \end{aligned}$$

Our first goal is to bound $\|\Lambda^{1/2}\Psi - \Lambda^{1/2}\Phi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}$, or to bound

$$\|e(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top (\mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top)^{-1} \mathbf{f}(X_1, \dots, X_N)\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

The latter expression can be bounded by a product of

$$\left\| \frac{1}{N} e(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right\|_{\mathcal{B}(\mathbb{R}^k, l^2(\mathbb{N}))},$$

and

$$\left\| \left(\frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right)^{-1} \right\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \|\mathbf{f}(X_1, \dots, X_N)\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^k)}.$$

The following lemma is dedicated to the first factor.

Lemma 6. *Let $X_1, \dots, X_N \sim^{iid} P$. For any $t > 0$, we have*

$$\begin{aligned} & \left\| \frac{1}{N} e(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right\|_{\mathcal{B}(\mathbb{R}^k, l^2(\mathbb{N}))} \leq \\ & \sqrt{k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + t \right)}, \end{aligned}$$

with probability at least $1 - ke^{-\frac{Nt^2}{8C_{K_P}^4 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^4}}$.

To prove it we need to prepare a number of lemmas.

Lemma 7. *Let $f \in \text{span}(f_1, \dots, f_k)$ and $X_1, \dots, X_N \sim^{iid} P$. We have*

$$\mathbb{E} \left[\|f'_N\|_{H_{K_P}}^2 \right] = \frac{1}{N} \mathbb{E}_{X \sim P} [f(X)^2 K_P(X, X)],$$

where $f'_N(\cdot) = \frac{1}{N} \sum_{i=1}^N f(X_i) K_P(X_i, \cdot)$.

Proof. By the reproducing property

$$\begin{aligned} \|f'_N\|_{H_K}^2 &= \frac{1}{N^2} \sum_{i,j=1}^N f(X_i) f(X_j) \langle K_P(X_i, \cdot), K_P(X_j, \cdot) \rangle_{H_{K_P}} = \\ &= \frac{1}{N^2} \sum_{i,j=1}^N f(X_i) f(X_j) K_P(X_i, X_j). \end{aligned}$$

Hence,

$$\mathbb{E}[\|f'_N\|_{H_{K_P}}^2] = \frac{1}{N} \mathbb{E}_{X \sim P} [f(X)^2 K_P(X, X)],$$

due to $\int_{\mathcal{X}} K_P(x, y) f(y) dP(y) = 0$. Lemma proved. \square

Lemma 8. *Under the assumptions of the previous lemma, for any $t > 0$, we have*

$$\mathbb{P}[\|f'_N\|_{H_{K_P}}^2 > \frac{1}{N} C_{K_P}^2 \|f\|_{L_\infty(\mathcal{X})}^2 + t] \leq e^{-\frac{Nt^2}{8C_{K_P}^4 \|f\|_{L_\infty(\mathcal{X})}^4}}.$$

Proof. Let us define the function \tilde{h} by $\tilde{h}(X_1, \dots, X_N) = \|f'_N\|_{H_{K_P}}^2 - \frac{1}{N^2} \sum_{i=1}^N f(X_i)^2 K_P(X_i, X_i)$. The function satisfies

$$|\tilde{h}(x_1, \dots, x_N) - \tilde{h}(x_1, \dots, x_{i-1}, x'_i, x_{i+1}, \dots, x_N)| \leq$$

$$\frac{2}{N^2} \sum_{j:j \neq i}^N |f(x_i) f(x_j) K_P(x_i, x_j) - f(x'_i) f(x_j) K_P(x'_i, x_j)| \leq \frac{4C_{K_P}^2 \|f\|_{L_\infty(\mathcal{X})}^2}{N}.$$

1134 due to $|f(x)f(y)K_P(x, y)| \leq C_{K_P}^2 \|f\|_{L_\infty(\mathcal{X})}^2$.
 1135

1136 Using McDiarmid's concentration inequality, we obtain
 1137

$$1138 \mathbb{P}[\tilde{h}(X_1, \dots, X_N) - \mathbb{E}[\tilde{h}(X_1, \dots, X_N)] > t] \leq e^{-\frac{Nt^2}{8C_{K_P}^4 \|f\|_{L_\infty(\mathcal{X})}^4}}. \\ 1139$$

1140 From $\int_{\mathcal{X}} K_P(x, y) f(y) dP(y) = 0$, we obtain $\mathbb{E}[\tilde{h}(X_1, \dots, X_N)] = 0$. Thus,
 1141

$$1142 \mathbb{P}[\tilde{h}(X_1, \dots, X_N) > t] \leq e^{-\frac{Nt^2}{8C_{K_P}^4 \|f\|_{L_\infty(\mathcal{X})}^4}}, \\ 1143$$

1144 and
 1145

$$\mathbb{P}[\|f'_N\|_{\mathcal{H}_{K_P}}^2 > \frac{1}{N} C_{K_P}^2 \|f\|_{L_\infty(\mathcal{X})}^2 + t] \leq e^{-\frac{Nt^2}{8C_{K_P}^4 \|f\|_{L_\infty(\mathcal{X})}^4}}.$$

1146 \square
 1147

1148
 1149 *Proof of Lemma 6.* Using the notations of the previous lemma, we simply need to note that
 1150

$$1151 \|\frac{1}{N} \sum_{i=1}^N e(X_i) f_j(X_i)\|_{l^2(\mathbb{N})}^2 = \|(f_j)'_N\|_{\mathcal{H}_{K_P}}^2. \\ 1152$$

1153 For each of functions $\{f_j\}$, using the previous lemma we obtain that one of the inequalities
 1154

$$1155 \|(f_j)'_N\|_{\mathcal{H}_{K_P}}^2 > \frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + t, 1 \leq j \leq k,$$

1156 can be violated with probability no more than $ke^{-\frac{Nt^2}{8C_{K_P}^4 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^4}}$. Thus, with probability at
 1157 least $1 - ke^{-\frac{Nt^2}{8C_{K_P}^4 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^4}}$ we have
 1158

$$1159 \max_{j:1 \leq j \leq k} \|\frac{1}{N} \sum_{i=1}^N e(X_i) f_j(X_i)\|_{l^2(\mathbb{N})}^2 \leq \frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + t.$$

1160 From
 1161

$$1162 \|\frac{1}{N} e(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top\|_{\mathcal{B}(\mathbb{R}^k, l^2(\mathbb{N}))} \leq \sqrt{k} \max_{j:1 \leq j \leq k} \|\frac{1}{N} \sum_{i=1}^N e(X_i) f_j(X_i)\|_{l^2(\mathbb{N})}, \\ 1163$$

1164 we obtain the needed statement. \square
 1165

1166 Let us now deal with the second factor, i.e.
 1167

$$1168 \|\left(\frac{1}{N} \mathbf{f}(x_1, \dots, x_N) \mathbf{f}(x_1, \dots, x_N)^\top\right)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \|\mathbf{f}(x_1, \dots, x_N)\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^k)}.$$

1169 The matrix $\frac{1}{N} \mathbf{f}(x_1, \dots, x_N) \mathbf{f}(x_1, \dots, x_N)^\top$ is simply the empirical covariance matrix for features
 1170 f_1, \dots, f_k and it concentrates around its mean w.r.t. the operator norm due to the standard Bernstein
 1171 matrix inequality argument.
 1172

1173 **Lemma 9.** Let $X_1, \dots, X_N \sim^{iid} P$. We have
 1174

$$1175 \|\left(\frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top\right)^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq 2,$$

$$1176 \|\left(\frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top\right)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \|\mathbf{f}(X_1, \dots, X_N)\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^k)} \leq \sqrt{6N}, \\ 1177$$

1178 with probability at least $1 - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$.
 1179

1188 *Proof.* We have

$$1190 \quad \frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top - I_k = \frac{1}{N} \sum_{i=1}^N (\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k).$$

1193 Matrices $\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k \in \mathbb{R}^{k \times k}$ are independent and

$$1194 \quad \|\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \leq \|\mathbf{f}(X_i) \mathbf{f}(X_i)^\top\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} + 1 \leq \\ 1195 \quad k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + 1.$$

1198 Note that $\mathbb{E}[\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k] = 0$. For the second moment we have

$$1199 \quad \mathbb{E}[(\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k)^2] = \mathbb{E}[\|\mathbf{f}(X_i)\|^2 \mathbf{f}(X_i) \mathbf{f}(X_i)^\top] - I_k \preceq \\ 1200 \quad (k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 - 1) I_k \preceq k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 I_k.$$

1203 After summing we obtain

$$1204 \quad \left\| \sum_{i=1}^N \mathbb{E}[(\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k)^2] \right\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \leq N k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2.$$

1208 Matrix Bernstein inequality (see Theorem 6.1.1 in Tropp (2015)) gives us

$$1209 \quad \mathbb{P}\left[\left\| \frac{1}{N} \sum_{i=1}^N (\mathbf{f}(X_i) \mathbf{f}(X_i)^\top - I_k) \right\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \geq t\right] \leq \\ 1210 \quad 2k \exp\left(-\frac{Nt^2/2}{k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + (k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + 1)t/3}\right).$$

1215 Let us choose $t = \frac{1}{2}$ in the previous inequality. Then, we have

$$1217 \quad \left\| \frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top - I_k \right\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} < \frac{1}{2}$$

1220 with probability at least $1 - 2k \exp\left(-\frac{N/8}{k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + (k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + 1)/6}\right)$. In that case
1221 we have

$$1223 \quad \left\| \left(\frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right)^{-1} \right\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} < \frac{1}{1 - 0.5} = 2,$$

1224 and

$$1226 \quad \|\mathbf{f}(X_1, \dots, X_N)\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^k)} = \sqrt{N} \sqrt{\left\| \frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)}} \leq \sqrt{\frac{3N}{2}}.$$

1228 Thus, we have

$$1230 \quad \left\| \left(\frac{1}{N} \mathbf{f}(X_1, \dots, X_N) \mathbf{f}(X_1, \dots, X_N)^\top \right)^{-1} \right\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \|\mathbf{f}(X_1, \dots, X_N)\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^k)} \leq \sqrt{6N}.$$

1232 Lemma proved. □

1234 A combination of Lemma 6 and Lemma 9 gives us that for any $t > 0$,

$$1235 \quad \left\| \frac{1}{\sqrt{N}} \Lambda^{1/2} \Psi - \frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi \right\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq \sqrt{6k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + t \right)}$$

1238 with probability at least

$$1240 \quad q(t) = 1 - k \exp\left(-\frac{Nt^2}{8C_{K_P}^4 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^4}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$$

1242 over randomness in inputs X_1, \dots, X_N .
 1243

1244 In the next step, we need to bound $\|t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi) - t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}$. Note that
 1245

$$1246 \quad \|\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq C_{K_P},$$

1247 and therefore,
 1248

$$1249 \quad \|\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq C_{K_P} + \sqrt{6k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + t \right)},$$

1252 with probability at least $q(t)$. We now need a lemma that bounds $\|t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi) -$
 1253 $t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}$ in terms of $\|\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}$, $\|\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}$ and
 1254 $\|\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi - \frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}$.
 1255

1256 **Lemma 10.** *Let $A, B \in \mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))$ be such that $\|A\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}, \|B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq \alpha$. Then,*
 1257

$$1258 \quad \|t(A) - t(B)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))} \leq \left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2} \right) \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

1261 *Proof.* Let us denote $M_A = A^\top A + \lambda I_N$ and $M_B = B^\top B + \lambda I_N$. We have
 1262

$$1263 \quad t(A) - t(B) = AM_A^{-1}A^\top - BM_B^{-1}B^\top.$$

1264 By adding and subtracting $AM_A^{-1}B^\top$ and $BM_A^{-1}B^\top$ we split
 1265

$$1266 \quad t(A) - t(B) = \\ 1267 \quad (AM_A^{-1}A^\top - AM_A^{-1}B^\top) + (AM_A^{-1}B^\top - BM_A^{-1}B^\top) + (BM_A^{-1}B^\top - BM_B^{-1}B^\top) = \\ 1268 \quad AM_A^{-1}(A - B)^\top + (A - B)M_A^{-1}B^\top + B(M_A^{-1} - M_B^{-1})B^\top.$$

1269 The first term can be bounded by
 1270

$$1271 \quad \|AM_A^{-1}(A - B)^\top\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))} \leq \\ 1272 \quad \|A\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \cdot \|M_A^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \cdot \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq \frac{\alpha}{\lambda} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

1274 The second term by
 1275

$$1276 \quad \|(A - B)M_A^{-1}B^\top\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))} \leq \\ 1277 \quad \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \cdot \|M_A^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \cdot \|B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} \leq \frac{\alpha}{\lambda} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

1279 From the resolvent identity $M_A^{-1} - M_B^{-1} = M_A^{-1}(M_B - M_A)M_B^{-1}$, we obtain
 1280

$$1281 \quad \|M_A^{-1} - M_B^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq \frac{1}{\lambda^2} \|M_A - M_B\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq \\ 1283 \quad \frac{1}{\lambda^2} (\|A\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} + \|B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}) \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} = \frac{2\alpha}{\lambda^2} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}$$

1285 Using this, we bound the third term by
 1286

$$1286 \quad \|B(M_A^{-1} - M_B^{-1})B^\top\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))} \leq \|B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}^2 \cdot \|M_A^{-1} - M_B^{-1}\|_{\mathcal{B}(\mathbb{R}^N, \mathbb{R}^N)} \leq \\ 1288 \quad \alpha^2 \cdot \frac{2\alpha}{\lambda^2} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} = \frac{2\alpha^3}{\lambda^2} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

1290 After collecting the bounds, we obtain
 1291

$$1292 \quad \|t(A) - t(B)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))} \leq \frac{2\alpha}{\lambda} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} + \frac{2\alpha^3}{\lambda^2} \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))} = \\ 1294 \quad \left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2} \right) \|A - B\|_{\mathcal{B}(\mathbb{R}^N, l^2(\mathbb{N}))}.$$

1295 Lemma proved. □

1296
1297 **Lemma 11.** Let $t > 0$ and $\alpha = C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \sqrt{6k \left(\frac{1}{N} + t \right)} \right)$. Then,

1298
1299
$$\|t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi) - t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi)\|_{\mathcal{B}(l^2(\mathbb{N}),l^2(\mathbb{N}))} \leq$$

1300

1301
1302
$$\left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2} \right) C_{K_P} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \sqrt{6k \left(\frac{1}{N} + t \right)},$$

1303

1304 with probability at least $1 - k \exp\left(-\frac{Nt^2}{8}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}\right)$.
1305
1306

1307 *Proof.* After we apply Lemma 10 to $A = \frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi$, $B = \frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi$ we obtain the following
1308

1309 statement: let $t > 0$ and $\alpha = C_{K_P} + \sqrt{6k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + t \right)}$. Then,
1310

1311
1312
$$\|t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Psi) - t(\frac{1}{\sqrt{N}}\Lambda^{1/2}\Phi)\|_{\mathcal{B}(l^2(\mathbb{N}),l^2(\mathbb{N}))} \leq$$

1313
1314
$$\left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2} \right) \sqrt{6k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + t \right)},$$

1315
1316

1317 with probability at least $1 - k \exp\left(-\frac{Nt^2}{8C_{K_P}^4} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^4\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}\right)$. Rescaling $t = t' C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2$ gives the
1318 desired inequality. \square
1319
1320
1321
1322

1323 Recall that $T_f = (FF^\top)^{-1}F\Phi^\top\Lambda^{1/2}(I - \Lambda^{1/2}\Psi(\Psi^\top\Lambda\Psi + \lambda NI_N)^{-1}\Psi^\top\Lambda^{1/2})$. We finally need
1324 to bound $\|T_f\|_{\mathcal{B}(l^2(\mathbb{N}),\mathbb{R}^k)}$ which is done in the next lemma.
1325

1326 **Lemma 12.** For any $t > 0$, we have

1327
1328
$$\|T_f\|_{\mathcal{B}(l^2(\mathbb{N}),\mathbb{R}^k)} \leq 4C_{K_P} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \sqrt{k \left(\frac{1}{N} + t \right)},$$

1329

1330
1331 with probability at least $1 - ke^{-\frac{Nt^2}{8}} - 2k \exp\left(-\frac{N}{\frac{28}{3}k} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}\right)$.
1332

1333 *Proof.* From Lemma 6 we obtain
1334

1335
1336
$$\left\| \frac{1}{N} F\Phi^\top\Lambda^{1/2} \right\|_{\mathcal{B}(l^2(\mathbb{N}),\mathbb{R}^k)} = \left\| \frac{1}{N} \Lambda^{1/2}\Phi F^\top \right\|_{\mathcal{B}(\mathbb{R}^k,l^2(\mathbb{N}))} \leq \sqrt{k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + t \right)},$$

1337

1338
1339 with probability at least $1 - ke^{-\frac{Nt^2}{8C_{K_P}^4}} \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^4$. Therefore, using Lemma 9, we have

1340
1341
$$\|T_f\|_{\mathcal{B}(l^2(\mathbb{N}),\mathbb{R}^k)} \leq \left\| \left(\frac{1}{N} FF^\top \right)^{-1} \right\|_{\mathcal{B}(\mathbb{R}^k,\mathbb{R}^k)} \left\| \frac{1}{N} F\Phi^\top\Lambda^{1/2} \right\|_{\mathcal{B}(l^2(\mathbb{N}),\mathbb{R}^k)}.$$

1342
1343
$$\|I - \Lambda^{1/2}\Psi(\Psi^\top\Lambda\Psi + \lambda NI_N)^{-1}\Psi^\top\Lambda^{1/2}\|_{\mathcal{B}(l^2(\mathbb{N}),l^2(\mathbb{N}))} \leq$$

1344
1345
$$2\sqrt{k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + t \right)}.$$

1346
1347
$$\left(1 + \|\Lambda^{1/2}\Psi(\Psi^\top\Lambda\Psi + \lambda NI_N)^{-1}\Psi^\top\Lambda^{1/2}\|_{\mathcal{B}(l^2(\mathbb{N}),l^2(\mathbb{N}))} \right) \leq$$

1348
1349
$$4\sqrt{k \left(\frac{1}{N} C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + t \right)},$$

1350
1351 with probability at least $1 - ke^{-\frac{Nt^2}{8C_{K_P}^4 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^4}} - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$. By
1352 rescaling $t = t' C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2$ we obtain the needed inequality. \square
1353
1354

1355 D.4 FINAL STEPS OF THE PROOF
1356

1357 **Lemma 13.** Suppose that f_1, \dots, f_k are orthogonal functions of unit norm in $L_2(\mathcal{X}, P)$. Let
1358 $t > 0$ and $\alpha = C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})} \sqrt{6k \left(\frac{1}{N} + t\right)}\right)$. With probability at least $1 -$
1359 $k \exp\left(-\frac{Nt^2}{8}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$ over randomness in X_1, \dots, X_N , we have
1360
1361

$$\mathbb{E}_\varepsilon[c_{\text{con}}] \leq \|f\|_{\mathcal{H}_K}^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 k \left(\frac{1}{N} + t\right) \left(16 + 6\lambda_1 \left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2}\right)^2\right) + \frac{\sigma^2}{N} \left(\frac{9\lambda_1 C_{K_P}^2}{\lambda^2} \left(\frac{C_{K_P}^2}{\lambda} + 1\right)^2 + 2k\right).$$

1363
1364 *Proof of Lemma 13.* From Theorem 2 we conclude that
1365

$$\|\hat{f}_\perp - h\|_{L_2(\mathcal{X}, P)} \leq \sqrt{\lambda_1} \|\hat{f}_\perp - h\|_{\mathcal{H}_{K_P}} = \sqrt{\lambda_1} \|\hat{f}_\perp - h\|_{\mathcal{H}_K^F}.$$

1366 Therefore,
1367

$$c_{\text{con}} \leq \lambda_1 \|\hat{f}_\perp - h\|_{\mathcal{H}_K^F}^2 + \|\hat{f}_\parallel - f_\parallel\|_{L_2(\mathcal{X}, P)}^2.$$

1368 From Lemmas 4 and 5 we obtain
1369

$$\mathbb{E}_\varepsilon[c_{\text{con}}] \leq \lambda_1 \|t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Phi) - t(\frac{1}{\sqrt{N}} \Lambda^{1/2} \Psi)\|_{\mathcal{B}(l^2(\mathbb{N}), l^2(\mathbb{N}))}^2 \|f\|_{\mathcal{H}_K^F}^2 + \lambda_1 \sigma^2 \frac{9C_{K_P}^2}{N\lambda^2} \left(\frac{C_{K_P}^2}{\lambda} + 1\right)^2 + \|T_f\|_{\mathcal{B}(l^2(\mathbb{N}), \mathbb{R}^k)}^2 \|f\|_{\mathcal{H}_K^F}^2 + \frac{k}{N} \|(\frac{1}{N} FF^\top)^{-1}\|_{\mathcal{B}(\mathbb{R}^k, \mathbb{R}^k)} \sigma^2.$$

1370 Using Lemma 11, the first term is bounded by
1371

$$\lambda_1 \|f\|_{\mathcal{H}_K^F}^2 \left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2}\right)^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 6k \left(\frac{1}{N} + t\right),$$

1372 with probability at least $1 - k \exp\left(-\frac{Nt^2}{8}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$, where $t > 0$
1373 and $\alpha = C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})} \sqrt{6k \left(\frac{1}{N} + t\right)}\right)$.
1374

1375 Using Lemma 12, the third term is bounded by
1376

$$16 \|f\|_{\mathcal{H}_K^F}^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 k \left(\frac{1}{N} + t\right),$$

1377 with probability at least $1 - k \exp\left(-\frac{Nt^2}{8}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$.
1378

1379 Using Lemma 9, the last term is bounded by
1380

$$\frac{2k\sigma^2}{N},$$

1381 with probability at least $1 - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L_\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$.
1382

1404
1405 Thus, with probability at least $1 - 2k \exp\left(-\frac{Nt^2}{8}\right) - 6k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$, we have
1406
1407
$$\mathbb{E}_\varepsilon[c_{\text{con}}] \leq \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 k \left(\frac{1}{N} + t\right) (16 + 6 \left(\frac{2\alpha}{\lambda} + \frac{2\alpha^3}{\lambda^2}\right)^2 \lambda_1) +$$

1408
$$\lambda_1 \sigma^2 \frac{9C_{K_P}^2}{N\lambda^2} \left(\frac{C_{K_P}^2}{\lambda} + 1\right)^2 + \frac{2k\sigma^2}{N}.$$

1409
1410

1411 The latter almost coincides with the statement of lemma, though constants in front of k in the expression for the probability are different. Note that $k \exp\left(-\frac{Nt^2}{8}\right)$ is the probability of the violation
1412 of the inequality of Lemma 6 and $2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$ is the probability of the violation
1413 of the inequality of Lemma 9. In the latter sequence of arguments we counted the first probability twice and the second one three times. More accurate reasoning gives us that the last inequality
1414 is true with probability at least $1 - k \exp\left(-\frac{Nt^2}{8}\right) - 2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}}\right)$. \square
1415
1416

1417 *Proof of Theorem 4.* Let $t > 0$ be such that $k \exp\left(-\frac{Nt^2}{8}\right) = \frac{\delta}{2}$, i.e. $t = \sqrt{\frac{8 \log(\frac{2k}{\delta})}{N}}$.
1418 Our assumption that $N \geq (\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}) \log(\frac{4k}{\delta})$ is equiv-
1419 alent to $2k \exp\left(-\frac{N}{\frac{28}{3}k \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 + \frac{4}{3}}\right) \leq \frac{\delta}{2}$. In Lemma 13 we have $\alpha =$
1420
1421

1422
$$C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \sqrt{6k \left(\frac{1}{N} + t\right)}\right)$$
. So, using $\sqrt{\frac{8 \log(\frac{2k}{\delta})}{N}} \geq \frac{1}{N}$, we have

$$\alpha \leq C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \sqrt{12k \sqrt{\frac{8 \log(\frac{2k}{\delta})}{N}}}\right) \leq$$

$$C_{K_P} \left(1 + \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})} \frac{6k^{1/2} \log^{1/4}(\frac{2k}{\delta})}{N^{1/4}}\right) \leq 7C_{K_P}.$$

1423 provided that $N \geq k^2 \log(\frac{2k}{\delta}) \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^4$.
1424

1425 From Lemma 13 we obtain that with probability at least $1 - \delta$ we have
1426
1427

$$\mathbb{E}_\varepsilon[c_{\text{con}}] \leq \|f\|_{\mathcal{H}_K^{\mathcal{F}}}^2 C_{K_P}^2 \max_{j:1 \leq j \leq k} \|f_j\|_{L^\infty(\mathcal{X})}^2 2k \sqrt{\frac{8 \log(\frac{2k}{\delta})}{N}} \left(16 + 6\lambda_1 \left(\frac{14C_{K_P}}{\lambda} + \frac{686C_{K_P}^3}{\lambda^2}\right)^2\right) +$$

$$\frac{\sigma^2}{N} \left(\frac{9\lambda_1 C_{K_P}^2}{\lambda^2} \left(\frac{C_{K_P}^2}{\lambda} + 1\right)^2 + 2k\right).$$

1428 Theorem proved. \square
1429

E PROOF OF THEOREM 5

1430 Since
1431

$$\mathbb{E}[\Pi_k(x, y)] = \sum_{\ell, m=1}^{\infty} \sqrt{\lambda_\ell \lambda_m} \cdot \mathbb{E}[M_{\ell, m}] \cdot \phi_\ell(x) \phi_m(y),$$

1432 our task reduces to computing
1433

$$\mathbb{E}[M_{\ell, m}] = \mathbb{E} \left[\sum_{i, j=1}^k \xi_{i\ell} (G^{-1})_{ij} \xi_{jm} \right].$$

1458 **Lemma 14.** *The off-diagonal elements of the projection coefficient matrix $[M_{\ell,m}]_{\ell,m=1}^{\infty}$ satisfy*

$$1459 \quad \mathbb{E}[M_{\ell,m}] = 0 \quad \text{for } \ell \neq m.$$

1460 *Proof.* Define $v_{\ell} = (\xi_{1\ell}, \dots, \xi_{k\ell})^{\top} \in \mathbb{R}^k$. Note that $G = \sum_{j=1}^{\infty} \lambda_j v_j v_j^{\top}$ and $M_{\ell,m} = v_{\ell}^{\top} G^{-1} v_m$.
1461 Consider flipping the sign of all components of v_{ℓ} , i.e., define

$$1462 \quad \tilde{v}_j = \begin{cases} -v_{\ell} & \text{if } j = \ell, \\ v_j & \text{if } j \neq \ell. \end{cases}$$

1463 For $\tilde{G} = \sum_{j=1}^{\infty} \lambda_j \tilde{v}_j \tilde{v}_j^{\top}$, and $\tilde{M}_{\ell,m} = \tilde{v}_{\ell}^{\top} \tilde{G}^{-1} \tilde{v}_m$, observe $\tilde{G} = G$ and

$$1464 \quad \tilde{M}_{\ell,m} = (-v_{\ell})^{\top} G^{-1} v_m = -v_{\ell}^{\top} G^{-1} v_m = -M_{\ell,m}.$$

1465 Since Gaussians are symmetric, the joint distribution of all $\xi_{ij} \sim \mathcal{N}(0, 1)$ is invariant under sign
1466 flips of any single coordinate vector v_{ℓ} . Therefore, $\mathbb{E}[M_{\ell,m}] = 0$. \square

1467 Recall that Π_P denotes the projection operator onto the span(g_1, \dots, g_k). From Lemma 14 we
1468 conclude

$$1469 \quad \mathbb{E}[\Pi_k(x, y)] = \sum_{\ell=1}^{\infty} \lambda_{\ell} \cdot \mathbb{E}[M_{\ell,\ell}] \cdot \phi_{\ell}(x) \phi_{\ell}(y).$$

1470 and, therefore,

$$1471 \quad \mathbb{E}[\Pi_P[\Pi_P[K(\cdot, z_2)](x, y)]] = \langle \mathbb{E}[\Pi_n(x, \cdot)], K(\cdot, y) \rangle_{L_2(\mathcal{X}, P)} = \sum_{\ell=1}^{\infty} \lambda_{\ell}^2 \cdot \mathbb{E}[M_{\ell,\ell}] \cdot \phi_{\ell}(x) \phi_{\ell}(y).$$

1472 Let us now compute

$$1473 \quad \mathbb{E}[\Pi_P[\Pi_P[K(\cdot, z_2)](z_1, \cdot)](x, y)] = \mathbb{E} \left[\iint \Pi_k(x, u) K(u, v) \Pi_k(v, y) dP(u) dP(v) \right].$$

1474 Recall that $K(u, v) = \sum_{\ell=1}^{\infty} \lambda_{\ell} \phi_{\ell}(u) \phi_{\ell}(v)$. Now plug into the expression for $\Pi_k(x, y)$ and obtain
1475 that the latter equals

$$1476 \quad \begin{aligned} & \iint \left(\sum_{i,j} \sqrt{\lambda_i \lambda_j} M_{i,j} \phi_i(x) \phi_j(u) \right) \left(\sum_{\ell} \lambda_{\ell} \phi_{\ell}(u) \phi_{\ell}(v) \right) \left(\sum_{m,n} \sqrt{\lambda_m \lambda_n} M_{m,n} \phi_m(v) \phi_n(y) \right) dP(u) dP(v) \\ &= \sum_{i,j,n} \lambda_j \sqrt{\lambda_i \lambda_j \lambda_n} \cdot M_{i,j} M_{j,n} \cdot \phi_i(x) \phi_n(y) = \sum_{i,j,n} \lambda_j^2 \sqrt{\lambda_i \lambda_n} \cdot M_{i,j} M_{j,n} \cdot \phi_i(x) \phi_n(y). \end{aligned}$$

1477 Thus,

$$1478 \quad \mathbb{E}[\Pi_P[\Pi_P[K(\cdot, z_2)](z_1, \cdot)](x, y)] = \sum_{i,n} \phi_i(x) \phi_n(y) \cdot \sqrt{\lambda_i \lambda_n} \cdot \left(\sum_j \lambda_j^2 \cdot \mathbb{E}[M_{i,j} M_{j,n}] \right)$$

1479 Let us define

$$1480 \quad C_{i,n} = \sum_{j=1}^{\infty} \lambda_j^2 \cdot M_{i,j} M_{j,n},$$

1481 so that

$$1482 \quad \mathbb{E}[\Pi_P[\Pi_P[K(\cdot, z_2)](z_1, \cdot)](x, y)] = \sum_{i,n} \sqrt{\lambda_i \lambda_n} \cdot \mathbb{E}[C_{i,n}] \cdot \phi_i(x) \phi_n(y).$$

1483 **Lemma 15.** *The off-diagonal elements $C_{i,n}$ satisfy*

$$1484 \quad \mathbb{E}[C_{i,n}] = 0 \quad \text{for } i \neq n.$$

1485 *Proof.* Fix $i \neq n$. Using the notations of the previous lemma we have

$$1486 \quad C_{i,n} = \sum_j \lambda_j^2 \cdot v_i^{\top} G^{-1} v_j \cdot v_j^{\top} G^{-1} v_n.$$

1487 Flipping the sign of $v_i \rightarrow -v_i$, and leaving all other v_j unchanged, leads to the change in the sign
1488 of $C_{i,n}$. Therefore, $\mathbb{E}[C_{i,n}] = 0$. \square

1512 From Lemma 15 we obtain
 1513
 1514
 1515

$$\mathbb{E}[\Pi_P[\Pi_P[K(\cdot, z_2)](z_1, \cdot)](x, y)] = \sum_i \lambda_i \cdot \mathbb{E}[C_{i,i}] \cdot \phi_i(x)\phi_i(y),$$

1516 with
 1517
 1518

$$\mathbb{E}[C_{i,i}] = \sum_j \lambda_j^2 \cdot \mathbb{E}[M_{i,j}^2].$$

1519 So, we proved
 1520
 1521

$$\mathbb{E}_\omega[K_P^\omega(x, y)] = \sum_{i=1}^{\infty} \lambda_i (1 - 2\lambda_i \cdot \mathbb{E}[M_{i,i}] + \sum_j \lambda_j^2 \cdot \mathbb{E}[M_{i,j}^2]) \cdot \phi_i(x)\phi_i(y).$$

F THE BEHAVIOUR OF μ_i/λ_i IN THE THERMODYNAMIC LIMIT

1524 Let us qualitatively analyze how $\{\mu_i\}$ are related to $\{\lambda_i\}$. This type of non-rigorous analysis has
 1525 been applied to a similar expression in Simon et al. (2023), though it should be considered as a
 1526 way to derive the formula (4), rather than a mathematically precise statement. So, as pointed out
 1527 in Remark 2, we may substitute $(\xi_i^\top G_{-i}^{-1} \xi_i)^{-1}$ with a constant \varkappa around which this expression
 1528 concentrates as $k \rightarrow +\infty$. That is, $\mathbb{E}[M_{i,i}] \approx M_{i,i} \approx \frac{1/\varkappa}{1+\lambda_i/\varkappa} = \frac{1}{\lambda_i+\varkappa}$. Since $\sum_{i=1}^{\infty} \lambda_i \xi_i^\top G^{-1} \xi_i =$
 1529 $\text{Tr}(G^{-1}G) = k$, the constant $\varkappa > 0$ can be calculated from the condition $\sum_{i=1}^{\infty} \frac{\lambda_i}{\lambda_i+\varkappa} = k$.
 1530

1531 The expression $\sum_j \lambda_j^2 \mathbb{E}[M_{i,j}^2]$ in Theorem 5 decomposes to $\lambda_i^2 \mathbb{E}[M_{i,i}^2] + \sum_{j \neq i} \lambda_j^2 \mathbb{E}[M_{i,j}^2]$, where
 1532 $\lambda_i^2 \mathbb{E}[M_{i,i}^2] \approx \frac{\lambda_i^2}{(\lambda_i+\varkappa)^2}$. The remaining part without the expectation equals
 1533

$$\sum_{j:j \neq i} \lambda_j^2 M_{i,j}^2 = \frac{\xi_i^\top G_{-i}^{-1} \sum_{j:j \neq i} \lambda_j^2 \xi_j \xi_j^\top G_{-i}^{-1} \xi_i}{(1 + \lambda_i \xi_i^\top G_{-i}^{-1} \xi_i)^2}.$$

1534 If we neglect the remaining term, using Theorem 5, we would obtain $\frac{\mu_i}{\lambda_i} \approx 1 - \frac{2\lambda_i}{\lambda_i+\varkappa} + \frac{\lambda_i^2}{(\lambda_i+\varkappa)^2} =$
 1535 $\frac{\varkappa^2}{(\lambda_i+\varkappa)^2}$. As our experiments show (see Figures 5 and 6), this term cannot be neglected although it
 1536 contributes proportionally to $\frac{\varkappa^2}{(\lambda_i+\varkappa)^2}$. So, we conjecture
 1537

$$\frac{\mu_i}{\lambda_i} \approx \frac{c\varkappa^2}{(\lambda_i + \varkappa)^2}.$$

1538 For $\lambda_i = \frac{1}{i^a}$ we observe $c \approx a$.
 1539

G RANDOM FEATURE APPROXIMATION TO THE CONDITIONAL KRR

1540 The goal of this section is to establish existence of the random feature approximation of conditional
 1541 KRR, similar to the approximation of standard KRR Rahimi & Recht (2007). Recall that $K(x, y) =$
 1542 $\mathbb{E}_{\omega \sim \mathcal{P}}[f(\omega, x)f(\omega, y)]$ where $(\Omega, \Sigma, \mathcal{P})$ is a probabilistic space. Let us now introduce new features
 1543 $f'_i(x) = \frac{1}{\sqrt{m}} f(\omega'_i, x)$ for i.i.d. samples $\omega'_1, \dots, \omega'_m \sim \mathcal{P}$ and define feature vectors as $\phi(x) =$
 1544 $[f_1(x), \dots, f_k(x)]^\top$ and $\psi(x) = [f'_1(x), \dots, f'_m(x)]^\top$. Consider the following random feature ridge
 1545 regression (RFRR) problem
 1546

$$\min_{u \in \mathbb{R}^k, w \in \mathbb{R}^m} \frac{1}{N} \sum_{i=1}^N (u^\top \phi(x_i) + w^\top \psi(x_i) - y_i)^2 + \lambda \|w\|_2^2. \quad (5)$$

1547 The meaning of this task is to give a budget on weights of features f'_i while having a complete
 1548 freedom in selection of weights for the features $f_i, i = 1, \dots, k$.
 1549

1550 **Theorem 7.** Let $\text{rank}([f_i(x_j)]_{i=1}^k)_{j=1}^N = k$ and $u \in \mathbb{R}^k, w \in \mathbb{R}^m$ be the solution of the task (5).
 1551 Then, as $m \rightarrow +\infty$,

$$u^\top \phi(x) + w^\top \psi(x) \rightarrow f(x) \text{ with probability 1,}$$

1552 where f is the solution of the task (1).
 1553

Figure 5: The behaviour of $1 - 2\lambda_i \cdot \mathbb{E}[M_{i,i}] + \sum_{j=1}^{\infty} \lambda_j^2 \cdot \mathbb{E}[M_{i,j}^2]$ computed by 50 times Monte-Carlo sampling for $k = 10, 100, 200, 300$ (columns) and eigenvalues (a) $\lambda_i = \frac{1}{i^4}$, (b) $\lambda_i = \frac{1}{i^2}$, (c) $\lambda_i = \frac{1}{i^{1.1}}$, (d) $\lambda_i = e^{-0.1i}$.

Figure 6: Scatter plot for $\frac{\kappa^2}{(\lambda_i + \kappa)^2}$ vs. $1 - 2\lambda_i \cdot \mathbb{E}[M_{i,i}] + \sum_{j=1}^{\infty} \lambda_j^2 \cdot \mathbb{E}[M_{i,j}^2]$ for (a) $\lambda_i = \frac{1}{i^4}$, (b) $\lambda_i = \frac{1}{i^2}$, (c) $\lambda_i = \frac{1}{i^{1.1}}$, (d) $\lambda_i = e^{-0.1i}$.

Proof. The goal is to minimize

$$\|A^\top u + B^\top w - y\|^2 + \lambda N w^\top w,$$

where $y = (y_1, \dots, y_N)^\top \in \mathbb{R}^N$ and $A = [f_i(x_j)]_{i=1, j=1}^N \in \mathbb{R}^{k \times N}$ and $B = [f'_i(x_j)]_{i=1, j=1}^N \in \mathbb{R}^{m \times N}$. Gradients w.r.t. u and w are equal to 0 if an only if

$$\begin{aligned} AA^\top u &= -A(B^\top w - y), \\ (BB^\top + \lambda NI_m)w &= -B(A^\top u - y). \end{aligned}$$

So, the trained function satisfies

$$\begin{aligned} u^\top \phi(x) + w^\top \psi(x) &= -(w^\top B - y^\top A^\top) (AA^\top)^{-1} \phi(x) + w^\top \psi(x) = \\ &= y^\top A^\top (AA^\top)^{-1} \phi(x) + w^\top (\psi(x) - BA^\top (AA^\top)^{-1} \phi(x)). \end{aligned}$$

1620 Note that $y^\top A^\top (AA^\top)^{-1} \phi(x)$ is the output mapping of the linear regression with the feature vector
 1621 $\phi(x)$ applied to the training data.
 1622

1623 Recall that Π_{P_N} denotes the projection operator onto $\text{span}(f_1, \dots, f_k)$ in $L_2(\mathcal{X}, P_N)$. Let $\tilde{f}_i =$
 1624 $(I - \Pi_{P_N})[f'_i]$,

$$1625 \tilde{\psi}(x) = [\tilde{f}_1(x), \dots, \tilde{f}_m(x)]^\top = (I - \Pi_{P_N})[\psi]$$

1626 and $\tilde{B} = [\tilde{f}_i(x_j)]_{i=1}^m_{j=1} \in \mathbb{R}^{m \times N}$. By construction, $BA^\top (AA^\top)^{-1} \phi(x) = \Pi_{P_N}[\psi](x) = \psi(x) -$
 1627 $\tilde{\psi}(x)$. Thus, we have
 1628

$$1629 1630 u^\top \phi(x) + w^\top \psi(x) = w^\top \tilde{\psi}(x) + y^\top A^\top (AA^\top)^{-1} \phi(x).$$

1631

1632 The matrix $\Pi = A^\top (AA^\top)^{-1} A$ is the projection matrix onto the row space of A . So, we have
 1633

$$1634 (BB^\top + \lambda NI_m)w = -B(-\Pi B^\top w + \Pi y - y) \Rightarrow$$

$$1635 w = (B(I - \Pi)B^\top + \lambda NI_m)^{-1}B(I - \Pi)y.$$

1636 The vector $r = (I - \Pi)y$ is exactly the vector of residuals. By construction, $\tilde{B} = B(I - \Pi)$. Then,
 1637 $\tilde{B}\tilde{B}^\top = B(I - \Pi)B^\top$ and $Br = \tilde{B}r$. Therefore,
 1638

$$1639 w = (\tilde{B}\tilde{B}^\top + \lambda NI_m)^{-1}\tilde{B}r.$$

1640 The Woodbury matrix identity gives $(\tilde{B}\tilde{B}^\top + \lambda NI_m)^{-1} = \frac{1}{\lambda N}I_m - \frac{1}{\lambda N}\tilde{B}(\lambda NI_N + \tilde{B}^\top \tilde{B})^{-1}\tilde{B}^\top$,
 1641 and we obtain the standard kernel trick identity
 1642

$$1643 w = \tilde{B}(\lambda NI_N + \tilde{B}^\top \tilde{B})^{-1}r.$$

1644 Let us denote $\tilde{K} = [\tilde{\psi}(x_i)^\top \tilde{\psi}(x_j)]_{i,j=1}^N = \tilde{B}^\top \tilde{B}$. So, $w = \sum_{j=1}^N a_i \tilde{\psi}(x_j)$ where $a = [a_i]_{i=1}^N =$
 1645 $(\tilde{K} + \lambda NI_N)^{-1}r$. Thus, the first term of the trained function $\tilde{f}(x) = w^\top \tilde{\psi}(x)$ is
 1646

$$1647 \tilde{f}(x) = \sum_{i=1}^N a_i \tilde{\psi}(x_i)^\top \tilde{\psi}(x) = r^\top (\tilde{K} + \lambda NI_N)^{-1} [\tilde{\psi}(x_1)^\top \tilde{\psi}(x), \dots, \tilde{\psi}(x_N)^\top \tilde{\psi}(x)]^\top.$$

1648 Let us analyze the behaviour of that function under $m \rightarrow +\infty$. By the law of large numbers
 1649

$$1650 \tilde{K} \rightarrow [K_{P_N}(x_i, x_j)]_{i,j=1}^N,$$

1651 and
 1652

$$1653 \tilde{\psi}(x_i)^\top \tilde{\psi}(x) \rightarrow K_{P_N}(x_i, x),$$

1654 as $m \rightarrow +\infty$. That is
 1655

$$1656 \tilde{f}(x) \rightarrow r^\top ([K_{P_N}(x_i, x_j)] + \lambda NI_N)^{-1} [K_{P_N}(x_1, x), \dots, K_{P_N}(x_N, x)]^\top.$$

1657 The latter is exactly the solution of
 1658

$$1659 \min_{g \in \mathcal{H}_{K_{P_N}}} \frac{1}{N} \sum_{i=1}^N (g(x_i) - \tilde{y}_i)^2 + \lambda \|g\|_{\mathcal{H}_{K_{P_N}}}^2,$$

1660 Using Theorem 3 we conclude that
 1661

$$1662 u^\top \phi(x) + w^\top \psi(x) \rightarrow f(x) \text{ with probability 1.}$$

1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Thus, RFRR method can be considered as an approximation of the conditional KRR.

□

1674 H ADDITIONAL EXPERIMENTS

1676 H.1 DETAILS OF EXPERIMENTS ON HARD THRESHOLDING: DEPENDENCE OF THE COST OF 1677 CONDITIONING ON N, k, σ^2

1679 To verify the decay rates of the conditioning cost c_{con} predicted by Theorem 4, we used the experimental
1680 setup described in Section 6 (the hard thresholding case). For fixed parameters N (sample
1681 size), k (chosen such that $\dim(\mathcal{F}) = 2k+1$), σ^2 (noise variance), and a selected regression function,
1682 we repeated the following procedure 20 or 50 times: (a) sample training and test sets; (b) train both
1683 the conditional KRR and the \mathcal{F} -conditional learner; (c) estimate c_{con} as the mean squared distance
1684 between the two resulting estimators on the test set. Finally, we averaged c_{con} across repetitions and
1685 denote this empirical estimate by \hat{c}_{con} .

1686 In the main part of the paper we present experiments for the hard-thresholding setting with fixed
1687 regularization parameter $\lambda = 1.0$ and the regression function $f(x) = \sum_{n=0}^5 \cos(nx)$. These ex-
1688 periments confirm that the test MSE as a function of k achieves its minimum at $k = 5$, exactly as
1689 expected. Figure 7 shows test-MSE curves (with 95% confidence intervals) for varying regularar-
1690 ization parameter λ in two representative cases: $k = 0$ (standard KRR) and $k = 5$, where the regression
1691 function is $f(x) = \sum_{n=0}^5 n \cos(nx)$. Taken together, these results suggest that adjusting the number
1692 of unpenalized features within the hard-thresholding framework can be beneficial for essentially any
1693 value of λ , including the value optimally tuned for standard KRR.

1703 Figure 7: Comparison of test MSE for Conditional KRR with $k = 0$ (standard KRR) and $k = 5$
1704 across a range of regularization parameters λ .

1705 H.2 SOFT THRESHOLDING WITH RANDOM FEATURES

1709 According to Theorem 7, the larger m (the number of penalized random features), the closer RFRR
1710 approximates conditional KRR. The plots reported in Section 6 were obtained with $m = 2000$.
1711 We also tested the method on several non-synthetic datasets and consistently observed the same
1712 U-shaped behavior. As an illustrative example, we used 12214 samples of the digits 7 and 9 from
1713 the MNIST training set. Each image was cropped to a 24×24 window by removing border pixels,
1714 rescaled so that pixel intensities fall within $[0, 1]$, and mean-centered. We assigned the label $+1$ to
1715 digit 7 and -1 to digit 9. Figure 8 shows the RFRR train/test MSE as a function of k (the number
1716 of unpenalized random features) for $m = 10000$. For the cosine activation, adding unpenalized
1717 features consistently worsens the test MSE due to catastrophic overfitting, a well-known issue in
ridgeless Gaussian KRR (equivalent to using unpenalized random features with cosine activation).

1718 The code can be accessed on GitHub, allowing for easy reproduction of our results.

1720 H.3 EXPERIMENTS WITH HARD THRESHOLDING ON REAL WORLD DATA

1722 For real (non-synthetic) data, the eigenfunctions ϕ_i of the integral operator $\phi \mapsto$
1723 $\int_{\mathcal{X}} K(\cdot, x)\phi(x)dP(x)$ are not available in closed form and must be estimated from samples. Given
1724 a Mercer kernel K and training points X_1, \dots, X_N , let $G = [K(X_i, X_j)] \in \mathbb{R}^{N \times N}$ be the
1725 Gram matrix, and let $(\hat{\lambda}_i, \alpha_i)$ denote the eigenpairs of the Hermitian matrix $\frac{1}{N}G$, ordered so that
1726 $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \dots$ and normalized by $\|\alpha_i\|_2 = 1$. We write $P_N = \frac{1}{N} \sum_{j=1}^N \delta_{X_j}$ for the empirical
1727 distribution.

Figure 8: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and the MNIST dataset.

We estimate the eigenfunction ϕ_i by its empirical extension

$$\hat{\phi}_i(x) = \frac{1}{\sqrt{N}\hat{\lambda}_i} \sum_{j=1}^N \alpha_i(j) K(x, X_j), \quad i = 1, \dots, \text{rank}(G).$$

This normalization is chosen so that $\hat{\phi}_i(X_\ell) = \sqrt{N}\alpha_i(\ell)$, making the family $\hat{\phi}_i$ orthonormal in $L_2(\mathcal{X}, P_N)$. Moreover, each $\hat{\phi}_i$ is an eigenfunction of the empirical integral operator

$$O_N f(x) = \frac{1}{N} \sum_{j=1}^N K(x, X_j) f(X_j),$$

satisfying $O_N \hat{\phi}_i = \hat{\lambda}_i \hat{\phi}_i$.

In all our experiments, we therefore substitute $\hat{\phi}_i$ for the true eigenfunctions ϕ_i and define $\mathcal{F}_k = \hat{\phi}_1, \dots, \hat{\phi}_k$. Conditional KRR with respect to this \mathcal{F}_k can be seen as a practical approximation of the hard-thresholding setting described in Subsection 5.1.

Figure 9: U-shaped Test MSE in the hard thresholding setup for the MNIST dataset (with standardization).

We conducted numerical experiments using this empirical approximation to the hard-thresholding setup on the 7-vs-9 MNIST dataset described above. We performed 10-fold cross-validation to evaluate the Conditional KRR model for a fixed parameter $\lambda = 0.01$ and a range of sizes k . In each fold, the data were re-standardized, Conditional KRR was fitted on the training subset and its test MSE was recorded for all k , after which the mean test MSE and its 95% confidence interval across folds were computed. Results for different kernels are shown on Figure 9.

As shown in the results, both the Gaussian and NNGP- erf kernels exhibit a U-shaped dependence of the test MSE on k . In the case of the NNGP- erf kernel, however, overfitting is very mild and becomes noticeable only when k approaches the size of the training set (approximately 11,000, the largest value for which $\hat{\phi}_k(x)$ is defined). Interestingly, no overfitting is observed for the Laplace kernel. We attribute this behavior to the fact that, for the Laplace kernel, essentially all of the first 11,000 empirical eigenfunctions remain informative for prediction; detecting overfitting would require a substantially larger sample size to allow $\hat{\phi}_k(x)$ to be defined for larger k .

We also compared the test MSE of Conditional KRR—using a fixed regularization parameter λ and selecting k via validation—with the test MSE of standard KRR equipped with an optimally tuned λ .

1782	Kernel	KRR	C-KRR
1783	Gaussian (RBF)	0.0671 ± 0.0015	0.0732 ± 0.0023
1784	Laplace	0.0750 ± 0.0029	0.0744 ± 0.0023
1785	Matern ($\nu = 1.5$)	0.1102 ± 0.0038	0.1087 ± 0.0029
1786	NNGP (erf)	0.0574 ± 0.0020	0.0572 ± 0.0022
1787			

1788 Table 1: Test MSE comparison of KRR ($k = 0$) with λ optimized on the validation set and the
1789 hard thresholding setup ($\lambda = 0.01$) with k optimized on the validation set for different kernels (on
1790 MNIST).

1791
1792 As shown in Table 1, the resulting test errors are extremely close, to the point where their difference
1793 is statistically insignificant (at least for the kernels considered and for the MNIST dataset).

1794 We also investigated the effect of varying k while keeping λ fixed at the value optimally tuned for
1795 standard KRR. In this setting, the test MSE for small k is nearly identical to its value at $k = 0$,
1796 and it increases only for sufficiently large k . These empirical findings suggest that when λ is already
1797 optimized for KRR, adjusting k provides essentially no additional benefit. Naturally, this conclusion
1798 applies only to the MNIST dataset and the set of kernels examined here.

1799 **Remark 4** (Beyond hard and soft thresholding setups). *Suppose that λ is optimally tuned for*
1800 *standard KRR. Although the results above suggest that using the eigenfunctions of the operator*
1801 *$\phi \mapsto \int_{\mathcal{X}} K(\cdot, x)\phi(x)dP(x)$ as unpenalized features does not improve the test MSE, this does not*
1802 *imply that Conditional KRR cannot outperform standard KRR when supplied with a different choice*
1803 *of unpenalized features.*

1804
1805 *To demonstrate that Conditional KRR can exhibit a clear U-shaped dependence of $\text{MSE}(k)$ on k*
1806 *for the MNIST dataset, we conducted the following experiment. We first trained a two-layer neural*
1807 *network with ReLU activation and 20 hidden units, i.e., the model $\text{NN}_{\theta}(x) = \sum_{i=1}^{20} a_i \text{ReLU}(w_i^T x +$*
1808 *b_i) + c , using L_2 -regularization and the MNIST training set. Next, we trained a random-feature*
1809 *approximation of Conditional KRR based on the corresponding ReLU kernel*

$$1810 \quad K(x, y) = \mathbb{E}_{w \sim \mathcal{N}(0, I_d/d), b \sim U[-1, 1]} [\text{ReLU}(w^T x + b) \text{ReLU}(w^T y + b)],$$

1811
1812 *using $m = 10,000$ random features. We set $k = 20$ and defined the unpenalized subspace $\mathcal{F}_k =$*
1813 *$\{\text{ReLU}(w_i^T x + b_i) \mid 1 \leq i \leq k\}$, i.e. the features extracted from the trained neural network. The*
1814 *resulting test MSE curves as functions of λ are shown in Figure 10.*

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 10: Conditional KRR with trained unpenalized features vs standard KRR.