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ABSTRACT

Conditionally positive definite (CPD) kernels are defined with respect to a func-
tion class F. It is well known that such a kernel K is associated with its native
space (defined analogously to an RKHS), which in turn gives rise to a learning
method — called conditional kernel ridge regression (conditional KRR) due to
its analogy with KRR — where the estimated regression function is penalized by
the square of its native space norm. This method is of interest because it can be
viewed as classical linear regression, with features specified by JF, followed by
the application of standard KRR to the residual (unexplained) component of the
target variable. Methods of this type have recently attracted increasing attention.

We study the statistical properties of this method by reducing its behavior to that
of KRR with another fixed kernel, called the residual kernel. Our main theoretical
result shows that such a reduction is indeed possible, at the cost of an additional
term in the expected test risk, bounded by O(1/ VN ), where N is the sample size
and the hidden constant depends on the class F and the input distribution.

This reduction enables us to analyze conditional KRR in the case where K is pos-
itive definite and JF is given by the first k principal eigenfunctions in the Mercer
decomposition of K. We also consider the setting where F consists of k¥ random
features from a random feature representation of K. It turns out that these two
settings are closely related. Both our theoretical analysis and experiments con-
firm that conditional KRR outperforms standard KRR in these cases whenever
the F-component of the regression function is more pronounced than the residual
part.

1 INTRODUCTION

Kernel Ridge Regression (KRR) is a powerful supervised learning method that has found appli-
cations in the learning theory of neural networks Jacot et al.| (2018}, |2020a), operator approxima-
tion [Kohne et al.| (2025), and reinforcement learning [Novelli et al.|(2025)), among others. To apply
the method to a specific learning task, one must define a positive definite function K (z,y) on pairs
of inputs, called the kernel function. It has been observed that for KRR (and other kernel-based
methods such as SVM or Kernel PCA), the requirement of positive definiteness can be relaxed to
the more general property of conditional positive definiteness |Scholkopf| (2000); (Chi et al.| (2022)).
For a kernel that is conditionally positive definite (CPD) w.r.t. a class of functions F, we only require
that the quadratic form ), K (@i, ;)¢5 is non-negative for any vector [(;] orthogonal to the set
{[f(x:)] | f € F}. Classical techniques such as spline estimation and Gaussian process regression
are parameterized by kernels of this type, where the class F is interpreted as a set of unpenalized
features. This connection has made the study of CPD kernels an important theme in approximation
theory over the past decades Wahba|(1990); Poggio & Girosi|(1990); Schaback & Wendland|(2006).

The majority of work on CPD kernels focuses on the case where F is defined as the set of multivari-
ate polynomials of degree at most k£|{Duchon|(1977)), or on variations of this definition, while the case
of a general F has largely been neglected. One of the motivations of the present paper is that, even
when the original kernel K is simply positive definite, treating it as a CPD kernel w.r.t. a general
class of functions F leads naturally to a broader framework, which we call conditional KRR. This
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Figure 1: Structure of conditional KRR for 7 = span({fi, -, fx})-

extension allows us to develop a non-trivial statistical theory of learning within this setting, thereby
deepening our understanding of standard KRR.

The organization of the paper is as follows. In Section 2] we define CPD kernels and introduce
the associated notion of the residual kernel, proving that the latter is positive definite (Theorem [I)).
Similar constructions are standard in the theory of native spaces induced by CPD kernels (e.g.,
see [Meinguet| (1979)), but our definition depends explicitly on the input data distribution, which
makes it central to the subsequent development. In Section 3] after recalling the standard definition
of a native space, we provide an alternative characterization in terms of the Reproducing Kernel
Hilbert Space (RKHS) associated with the residual kernel (Theorem [2). The conditional KRR is
then formulated analogously to the standard KRR, with the regularization term replaced by the
squared native space semi-norm. The residual kernel further allows us to interpret this problem as a
combination of linear regression and standard KRR applied to residual data (Theorem[3] diagram [T).

Section ] develops the statistical theory of conditional KRR. In our framework, the regression func-
tion is decomposed into two components: the first belonging to F and the second to the RKHS of
the residual kernel. We introduce the concept of an F-conditional learner, which has full access to
the F-component the regression function and learns the second component from data using stan-
dard KRR with the residual kernel. To analyze the statistical properties of the estimator produced
by conditional KRR, we compare it with the output of this learner. The distance between the two
estimators is referred to as the cost of conditioning. This quantity measures the extent to which
conditional KRR can be viewed as standard KRR with a modified kernel. Our main theoretical re-
sult, stated in Theorem 4] establishes that with probability at least 1 — 4, the cost of conditioning is

bounded by C' 1%, where N is the sample size, k is the dimension of F, and C' hides logarithmic

factors in k and 4, as well as additional dependencies on the regression function, K, and F.

In the next part of the paper (Section[3)), we apply our theoretical results to the case where the initial
kernel K is already positive definite and, consequently, CPD w.r.t. any class F. We study condi-
tional KRR under three specific scenarios: (a) the hard thresholding case, i.e. where F is defined
as the first k principal eigenfunctions in the Mercer decomposition of K (subsection [5.1)); (b) the
soft thresholding case, i.e. where F consists of k& random realizations of a Gaussian process with
covariance function K (subsection @; (c) F consists of k random features (or, equivalently, k
realizations of a random field) whose covariance function is K (subsection [5.2). Our theoretical
analysis, corroborated by experimental evidence, demonstrates that the expected test risk of condi-
tional KRR is strictly lower than that of standard KRR, provided that the /-component of the signal
is sufficiently strong.

Related work. The statistical properties of the KRR regression function estimator have been stud-
ied extensively, with particular focus on convergence rates (Caponnetto & De Vito| (2007)); Marteau-
Ferey et al.| (2019); (Cui et al.| (2021)), the distribution of expected risk under universality assump-
tions [Bordelon et al.| (2020); Jacot et al.| (2020a); |Simon et al.| (2023), and the double-descent phe-
nomenon [Mei & Montanari (2022); Nakkiran et al.| (2021). Our results show that these existing
estimates can be directly extended to conditional KRR, provided that one accounts for the cost of
conditioning.
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Conditional KRR belongs to a broader family of two-stage methods: first recovering the main com-
ponent of the signal with a base neural network, and then learning from the residuals. As shown
in|Yang et al.| (2023), this strategy yields lower test risk than relying on the base network alone and
additionally allows explicit memorization of the training labels. This line of research is related to
the classical works on boosting [Freund & Schapire|(1997), where the strategy is to iteratively refine
an ensemble by training each new weak learner on the residual errors left by the previous ones.

2 CONDITIONALLY POSITIVE DEFINITE AND RESIDUAL KERNELS

Definition 1. Let X' be a nonempty set, and let f1, ..., fr : X — R be linearly independent real-
valued functions. Define F = span{fi,..., fr} C RY. A symmetric kernel K : X x X — R
is called conditionally positive definite (CPD) with respect to F if, for any points x1,...,x, € X
and any coefficients o, ..., o, € R satisfying the constraints y -, o f(x;) = 0 forall f € F,
we have Y| 22:1 a0 K (x;, ;) > 0. If the inequality holds for all o € R™ without additional
constraints, then K is said to be positive definite (PD).

Let ¥ CR%bea compact set, f1,..., fr : X — R be continuous functions, and K : X x X — R
be a continuous CPD kernel with respect to 7. Denote by B(X) the Borel o-algebra on X, and by
P(X) the set of probability Borel measures on X.

For P € P(X), the projection of f onto F, denoted IIpf, is defined by Ilpf(z) =
S Iz, y) f(y)dP(y), where II(x,y) is the kernel associated with the projection operator, given
by

k
M(z,y) = Y (GF)iifil@)f;(v).
ij=1
for G = [(fi, i) Lacx, p)]ﬁj:l and GT as the Moore-Penrose inverse of G. Given a function

f(z,w), the notation IIp f(-,w) refers to the projection operator applied to the function f for fixed

w. The result is another function f(z,w). If G is invertible, then IIpf = f for any f € F. In
this case, the distribution P is said to be F-nondegenerate. The following theorem extends the
construction of the kernel given in equation (20) of Meinguet| (1979).

Theorem 1. Let P € P(X) be F-nondegenerate. Define the residual kernel
Kp(x,y) = K(z,y) — Up[K(z,)[(x,y) — Tp[K(, y)](x, y) + Hp[lp[K(z, )], y)](z,y).
Then, Kp(x,vy) is a positive definite kernel.

Note that, using slightly more advanced notation, one can write Kp = ((I —I1p) ® (I —I1p))[K],

where I denotes the identity operator on Ly (X, P), and ® is the tensor product of operators on
Lo (X, P), producing an operator on Lo (X, P) @ La(X, P).

3 THE NATIVE SPACE AND RIDGE REGRESSION WITH CPD KERNELS

The reduced native space of a CPD kernel K w.r.t. F, denoted 7-lf , is defined as the completion of
L={f= ZaiK(mi,~) \ Zaifj(aci) =0forallj=1,...,k},
i=1 =1
equipped with the inner product
O @ik (i), > BiK (x5, ) e = Y ciffK (wi, ).
i=1 j=1 i,5=1
The space 7—7% is a Hilbert space [Wendland|(2004).

Since K is continuous, the reduced native space ﬁﬁ embeds naturally into C(X'). Hence, w.l.0.g.,
we may regard ’H; as a subspace of C(X'). The full native space is then defined as the direct sum

HE =HE B F,
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equipped with the semi-norm || f|[5,= =, /(fL, fgﬁ{( where f = f| + fL is the unique decom-

position with f; € F and f, € ’;Zﬁ This semi-norm corresponds to the inner product (-, ->ﬁ§,

turning ’Hﬁ into a semi-Hilbert space. The subspace F is referred to as the null space of 7—[;

Let ﬁf( denote the RKHS of the residual kernel K p. Note that functions in ﬁf( are all orthogonal
to F in Lo(X, P). Then we define the semi-Hilbert space H¥ as the set of functions HY; & F with
the inner product

i+ 79 +90)uz = (fL900z

where f| € F, f1 € ﬁﬁ The following theorem claims that the latter two definitions are equiva-
lent. It is a generalization of Theorem 4 from (Cucker & Smale| (2001) for PD kernels to the case of
CPD kernels.

Theorem 2. Let P be a probabilistic Borel measure non-degenerate on X. Then, H7, = H§

Now, suppose that we are given a dataset {(x;,7;)}Y.; C X x R. We now introduce the conditional
Kernel Ridge Regression problem, defined as the minimization of the functional

1 N

_ - N )2 2
J(f) = N;wn v + Al F 1R (1)
overall f € ’H§ The role of the empirical residual kernel is demonstrated by the following theorem,
which establishes a connection between conditional KRR and standard KRR for PD kernels.
Theorem 3. Let P = 4 Zfil 0z, and let Hy, be the RKHS of Kp. Assuming that ' =

[fi(z)]i o) € R¥*N is of rank k, we have

N
min, NZ (2:) = yi)* + Ml fl = i Z: )2+ Mgl
where r = (r1,...,7n)" € RY is a projection of y = (yl, ...,yn)" € RY onto the orthogonal

complement of the row space of .

If f* is an optimal function of the first task then g = (I — Ilp) f* is an optimal function for the
second task. Reversely, if g* is an optimal function for the second task, then

f=9"+1A@), - fu@)](FF")"Fy,
is an optimal function for the first task.

Remark 1. The intuition behind this theorem is as follows. Suppose we are given a set of features
fi,-+, fx. For a training set {(z;,y;)}Y, C X x R, we first solve a standard linear regression

problem with the model

Y = B1fi(X) + ..+ Brfu(X) + e,
which amounts to projecting the target vector y onto the row space of F. The remaining unexplained
component of y is the residual vector r. These residuals can then be predicted using KRR with the

kernel Kp. The theorem shows that this two-step procedure is exactly equivalent to performing
conditional KRR with the kernel K, which is CPD w.r.t. F (see diagram [Z])

4 THE F-CONDITIONAL LEARNING AND THE COST OF CONDITIONING

Suppose P is a distribution whose support is X'. The residual kernel w.r.t. F = span(f1, -, fx)s
K p, has a Mercer-type representation,

z,y) = Z Xiti ()i (y)

Each ¢; belongs to Ly (X, P) N F*, where the orthogonality is taken w.r.t. the inner product in
La(X, P). Let f be a function from H7 which, by Theorem can be written as f = f + f1,
where

k o
fi = Zuifiva_ = Zvi\//\jsbi.
=1 =1
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By construction, || f||3,- = Y=, v}
K

=1 "
Let Px y be a distribution on X x R defined by
(X,Y)~Pxy<eX~PY=FfX)+¢
where & ~ N(0, 0?) is independent of X . Pairs of the training set 7 = {(X1,Y1), -, (Xn,Yn)}
are generated independently from Px y, ie. Y; = f (X;) + 51 To the latter training set one can
relate another training set (called residual), Tres = {(X;, ;1) Y, where Y- = £, (X;) +¢&;. The

corresponding distribution over input—output pairs is denoted by P)%’Y. Note that the noise term is
included as part of the residual training set.

We now outline the idea of F-conditional learning. Suppose that, prior to learning the target map-
ping f from the dataset 7T, the learner has full access to the component f. The learner can then

construct the residual dataset T;cs by defining Y;+ = Y; — J(X3). Next, KRR with the residual
kernel K p is applied to Tres, yielding an estimator A of the residual function £ , i.e.

h = arg mln NZ "’/\HQHHK

Suppose that f = ZZ L0V i + Z ", U, f; is an argument at which (1) attains its minimum, i.e.
f=arg mingey s ZZ (g(Xa) —Yi)2 + )\HgH 7 For the trained function f one can define

fi= Yoo, 0iv/Aii and f\l Zl 1 U; f;. Due to Theoreml it is natural to expect that f| ~

and f” f)- The discrepancy between f obtained without access to f|, and f| + h, produced by
an F-conditional learner, can be naturally interpreted as the cost of conditioning.

Definition 2. The difference
Ceon = E[(F(X) = £1(X) = A(X))’] = |1 = Bl e.p) + ) = fil oy 2

is referred to as the cost of conditioning. Note that c.on is a random variable, depending on
X1, -+, Xn and the noise.

Theorem 4. Suppose that f1,--- , fi are orthogonal functions of unit norm in Lo(X, P), k > 1.
With probability at least 1 — § over randomness in X1, --- , X, we have
1/2(2k
Ec[ceon] < CleHHFCKP jmax, |fy||Lw(X)k10]gVi/2(6) 62]327
where Ck, = max, Kp(z,z), ¢ = 32\@(2 + 3/\1(70;(}3 + 343/\6;?(’3 )2) co =
QM)\C;?(P (Ci{P + ) + 2k, and provided that N > max ((28kj max, lf5112 ) T
4)log(%). W 1og(2) max 511

For fixed A # 0, the second term behaves as O(%), which matches the decay rate of the
expected loss in linear regression with k features. When the signal part of the output lies entirely in
Foie. fi =0and|[/f|z = 0, the first term in the inequality vanishes. In this case, conditional

. ¢ r o2(k r o2 (k
KRR yields f such that E.[|| f1 = A3, v py] = O(ZS). Ee[llf) = Fll3, o py) = O(TEED).

~ ~ 2
That is, f) recovers the signal f with the accuracy of linear regression, while f, is O(%)-
close to h, the output of KRR with residual kernel K p. In other words, noise can make a substantial

contribution (beyond O(%)) only to the component orthogonal to F, and hence orthogonal to
the signal f. Unlike linear regression, however, F-conditional learning is capable of memorizing the
noise in the training set. This effect may be described as weak benign overfitting. Moreover, if the
eigenvalues of the residual kernel K p decay as \; ~ ﬁ witha > 1,then h — 0as N — oo. In

this regime, the learner exhibits partial memorization of the training set without degrading the error
loss, a phenomenon known simply as benign overfitting Mallinar et al.| (2022).

Finally, toy experiments reported in Section [6] suggest that the cost of conditioning typically decays
as ~ %, even when f ¢ F. Although our theoretical bound allows for a contribution from any
nontrivial f, that decays as ~ Tlﬁ’ we did not observe this slower rate in practice.
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5 APPLICATIONS OF THEOREM {4l

5.1 JF-CONDITIONING WITH k PRINCIPAL EIGENFUNCTIONS: HARD THRESHOLDING

Suppose the initial kernel K is positive definite, i.e.
o0
i=1

where {\;} are strictly positive eigenvalues and {¢;} are the corresponding eigenfunctions of the
integral operator ¢ — [, K (-, )¢(x)dP(x) acting on Ly(X, P). Let us treat K as a CPD kernel
wrt. @, = span({¢1, - ,¢r}) and study the task (I). Thus, the set of unpenalized features
coincides with first k eigenfunctions of K. Then, the residual kernel w.r.t. to @i is simply the tail
partof K, i.e.

o0
Kp(z,y) = Z Ai¢i()di(y).
i=k+1
Following the formalism of the previous section, let us now assume that the regression function has

the form:
k
f= Z U Pj.
i=1

As shown in the previous section, with probability at least 1 — ¢ over the randomness in the inputs,
conditional KRR with a CPD kernel K (w.r.t. ;) and a regularization parameter A > 0 can be in-
terpreted as standard KRR with the residual kernel K p applied to the residual dataset {(X;, ;) } Y,
(which now consists solely of noise, since f € @;). The only difference is the presence of an ad-
ditional conditioning cost, bounded by O(%)
by construction, || f[l3z = 0).

, which contributes to the test error (noting that,

Let > > 0 be such that } ;2| s2— + 2 = N, and let

£ = Enoise(Y_(1 = L:)*u? +0?),
=1

i denotes the learnability of the mode ¢;, and & pise = N

Xi+e N-> 2, L2
fitting coefficient. According to |Simon et al.[ (2023), the expected error of KRleith the kernel
K approximately equals £. Analogously, let >/ > 0 be such that > 5~ , 41 ﬁ + % = N and

L = ﬁ, El ise = W Then, the output of KRR with the residual kernel Kp
i i=k+1\~

has the expected error of approximately &' = &!

where £; = is the over-

! ise0 2. To estimate the expected error of condi-
tional KRR with the CPD kernel K (w.r.t. @), the loss £’ must be augmented by the conditioning

cost Elceon] = O(%) Therefore, in order for the expected error of conditional KRR to be
smaller than that of standard KRR (i.e., KRR with the PD kernel K and no unpenalized features),
the following condition must hold

k

2(k+1
0> Elceon] + &€ — € = E}iae0® — Enoise(D_(1 = L3)%uf +07) + 0(%+>),
i=1
or, equivalently,
k 2 ! 2
P 9 5, &L s o?(k+1)
4 noise _ 1 O . 3
; (>‘7 + %)2UZ -7 (5noise )+ ( Ngnoise ) ( )

Note that the right-hand side of this inequality, as well as the coefficients ﬁ on the left-hand

side, do not depend on the target function f. Hence, the inequality provides a sufficient condition on
the coefficients of f in the basis {¢; }*_; ensuring that conditional KRR outperforms standard KRR
without unpenalized features (equivalently, that the expected test error is a U-shaped function of k).
Our experiments confirm that the test error is often non-monotonic in k (the number of unpenalized
principal components) when the signal f is sufficiently strong. In contrast, for pure-noise datasets
(f = 0), the test MSE consistently increased with & across all experiments. The corresponding
experimental results are presented in Section [6]
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5.2 F-CONDITIONING WITH k RANDOM GAUSSIAN FEATURES: SOFT THRESHOLDING

In what follows, we show that choosing F = @, = span{¢u, ..., ¢y} is closely related to defining
F as k random Gaussian features with the covariance function K. Recall that the kernel admits
the Mercer decomposition K (z,y) = Y72, N\jd;(x)¢;(y) where {¢;}32, C Lo(X, P) forms
an orthonormal system and the eigenvalues {);} are positive and decreasing. Let {f(w,z)}zcx
denote a centered Gaussian random field with covariance function K. Using the Karhunen-Loéve
representation of f(w,x) € Lo(X, P), we have

z) =Y VA& (w)e(x)

j=1

where {&;(w)}52, ~14 N(0,1).

Let us assume that gl( ) = f(wl, ) for i.i. d samples w1, . .., wy and denote w = (w1, ...,wk).
Thus, we have gi(z) = Y277, \/A;&i;0;(x), where {&;;}5,52, ~* N(0,1). We now define

G = span(gi, - -, gk) and consider condmonal KRR with the CPD kernel K w.r.t. G.

Let K5 be a residual kernel w.r.t. Gy. Let us define

Z fze zyéjm

3,j=1

where G € R¥** is the Gram matrix with Gij = (9i» 95) La(x,P) = Z;’;l Ae&ie;je. The kernel of
the projection operator onto G, in Lo (X, P) is

k

1, ( Z ngzl¢€ B Zj Z VA g]m¢m )
i,j=1 £=1

After grouping terms we have

Z \/)\E)\ Z 51[ 2]€jm)¢f Z \/>\Z)\ M5m¢é ( )

Lm=1 i,j=1 Lm=1
Since K¢ = (I — II;) ® (I — II)[K], the dependence of K% on w is encapsulated in coefficients
M- Als0, (¢i, Eynp KE( Y)0i(Y)) Ly(x,py = ML — 20 M, 5 + 3772 AXAME).

Remark 2. In a slightly different context, the coefficients My ,, were analyzed in Appendix C.3.1
of Jacot et al.|(2020b) (see also Subsection 1.7 of Simon et al.|(2023))), under the assumption that k
is large, corresponding to the so-called “thermodynamic limit”. We have G=Y21 N &6, where

& ~ N(0, 1) are generated independently. Let G_; = > \; §j , thatis G = N&ET + Gy
Jij#i
Then the Sherman-Morrison formula gives

ol — o1 NGZI&E G
BRI
and, therefore,
MNETGTIGETGTIE 6T
Y N T W
As shown in |Simon et al|(2023), the quantity 5: G:gfi concentrates sharply around its mean as
k — oo, and moreover E[¢ G~1 €] ~ E[@TG:;@-]. The off-diagonal coefficients, i.e. M; ;,i # j,

concentrate sharply around zero. To analyze the effect of k unpenalized random Gaussian features,
it suffices to study the structure of B, [K8(x,y)], which is the subject of the next theorem.

=& G =¢1GTle -

Theorem 5. The expectation of K8 over randomness in w = (w1, -+ ,wg), L.e. E,[K$(x,y)], is

a Mercer kernel that is equal to
o0

> midi(x)ei(y),

=1

where p; = Xi(1 —2X; - E[M; ;] + 3772, A} - E[M7}]).
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To analyze the behavior of £, we need to estimate the quantity 1 — 2\,E[M; ;] + 372, AIE[M? ],
which again, turns out to be tractable in the thermodynamic limit. In Appendix [F| we provide a
non-rigorous argument (supported by experiments) showing that, as k — oo, the following approx-
imation holds:

Hi o’

—_~ 4
where 3¢ > 0 satisfies >~ ; /\,_’\i% = k. The interpretation of the latter estimate is straightforward:

when \; > s, the i-th mode is strongly suppressed in the residual kernel, while for \; < sz, the
corresponding eigenvalue is amplified by some factor ¢. Our numerical experiments (see Figure [3]
in Appendix [F)) confirm that this behavior persists even for finite k. This shows that defining F via
k random Gaussian features has a similar effect to choosing F as the top % eigenfunctions: in both
cases the residual kernel K¢ (z,y) resembles a truncated kernel, but with the suppression of large
eigenvalues applied in a soft manner. For this reason, it is natural to refer to these two approaches
as soft thresholding and hard thresholding, respectively.

We expect that the theoretical prediction of a U-shaped dependence of the expected error on & should
also hold for soft thresholding, just as it does for hard thresholding (under conditions analogous to
formula (3))). Our experiments, reported in Section[6] confirm that the non-monotone dependence of
the expected test error on & commonly arises in this setting as well.

F-conditioning with k¥ random features. Let us assume that K is a Mercer kernel that is given
through the random features mapping f : Q x X — R and (2, X, P) is a probabilistic space, that
is K(z,y) = Eynp[f(w, z) f(w,y)]. Since K is a positive definite kernel, it is in particular CPD
w.r.t. any subspace F = span(fi, ..., fx). Given a dataset {(x;,y;)}¥.; C X x R, we consider the
conditional KRR problem w.r.t. F, namely the optimization task (T)).

We conducted experiments with F = Ry, where Ry, = span{g1,...,gx} and g;(z) = f(w;, )
for i.i.d. samples wy,...,wr ~ P. When {f(w,z)},cx is a Gaussian random field, this setup
coincides with the soft thresholding framework. Hence, it can be seen as a generalization of soft
thresholding to the case of non-Gaussian features. Prior work [Louart et al.| (2018)); Benigni & Péché
(2021) has shown that general random feature models behave similarly to the Gaussian case, and
thus we expect the U-shaped dependence of the expected risk on & to be a generic phenomenon here
as well. This hypothesis is verified experimentally in the next section.

6 EXPERIMENTS

Experiments with hard thresholding. To examine the cost of conditioning and the U-shaped
dependence of the test risk on the number of unpenalized principal eigenfunctions in the hard-
thresholding case, predicted theoretically by inequality (3), we carried out a toy experiment. On
the domain X = [0, 2] with the uniform input distribution, we consider the kernel K(z,y) =
14352, i2%(cos(ix) cos(iy) + sin(iz) sin(iy)), parameterized by a smoothness parameter s >
0. For a fixed parameter k, the set of unpenalized features F is defined as span({cos(ix) koU

fsin(ia)}L,).

The dependence of ¢, on the parameters N, k, and o2 for various target functions is shown in Fig-
ure The plots for k and o2 exhibit linear trends fully consistent with the predictions of Theorem

Across all experiments, we observed a decay rate of C.on ~ % as N increases. In contrast, the upper

bound of Theorem@seales as ﬁ whenever || f[|3;z # 0 or f ¢ 7. Whether the faster + decay is

a general property of the hard thresholding setting, or merely a peculiarity of our experiments, re-

mains an open theoretical question. For the regression function f(z) = Zi: cos(nx) the resulting
U-shaped behavior of the test error as a function of k is illustrated in Figure

Experiments with random features. We also conducted experiments on JF-conditioning with k
random features. In this setup, we worked directly with random feature representations rather than
explicitly computing the kernel K. As shown in Appendix |G| conditional KRR in this setting can
be approximated by ridge regression with two types of random features: a large set of penalized
features and k unpenalized ones. We considered three activation functions: cos(z), ReLU(x),
and tanh(z). In each case, a random field on X = S%~! with covariance K was defined as fol-
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Figure 2: Dependence of the cost of conditioning on N, k and o2 in the hard thresholding setting.
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Figure 3: Effect of hard thresholding when the regression function is a combination of the first five
principal eigenfunctions. As expected, the test MSE attains its minimum at k = 5.

lows: (a) f(z,[w,b]) = cos(w'x + b) with w ~ N(0,1;) and b ~ U([0,27)); (b) f(z, [w,b]) =
ReLU(w "z + b) with w ~ N(0, 1) and b ~ U([-1,1)); (¢) f(z,[w,b]) = tanh(w 2 + b) with
w ~ N(0,1;) and b ~ U(]—1,1]). Note that in case (a), K corresponds to the Gaussian kernel.
The U-shaped dependence of the expected risk for all three cases is shown in Figure[d]

Details of described experiments, together with additional experiments, are provided in Appendix [H]
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Figure 4: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and
the regression function f(z1,- -+ ,2q) = sin(z1) + 1 cos(22).

7 CONCLUSIONS AND OPEN PROBLEMS

We have developed a statistical theory of learning with conditional KRR and applied it to both hard
and soft thresholding settings. Attempting to study the memorization phenomenon in conditional
KRR encounters an immediate difficulty: all of our bounds require the regularization parameter
A # 0, whereas perfect memorization of the training set is possible only when A = 0. Extending our
statistical analysis to cover this latter case remains an open direction for future research.
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A PROOF OF THEOREM 1]

Let M(X) be the set of finite signed Borel measures on X'. The following characterization of CPD
requires only standard argumentation.

Lemma 1. K is CPD w.r.t. F if and only if for all finite signed Borel measures . € M(X) satisfying
[ f(x)du(z) =0 forall f € F, we have:

/ / K(z, o) du(x) du(a’) > 0.

Let us first prove that K p(z,y) is a PD kernel, i.e. that
[[ Ketw) dute) dutw = 0
for any p € M(X). We define v = (I — Ilp)*pu € M(X) as the unique signed measure satisfying
/ F(@) du(z) = / (I - Tip)f(z)du(z) forall f € C(X).

From Riesz-Markov-Kakutani representation theorem we obtain that v is a finite signed Borel mea-
sure. For every f € F, we have (I — IIp)f = 0 due to nondegeneracy of P. Thus, we have

/ f(@) du(a) = / (I - TIp) f(x) du(z) = 0.

From the definition of Kp, we have Kp = (I —IIp) [(I —Ip) [K(z,")](,y)], so for any p €
M(X),

J[ frtwyduta dnt = [ | [ (=110 1 = 110) 1o 100 ) )| ) =
[ @ mo i@ ave) du = [ | [ -1 1w dut]| avto

:/[/K(gg,y) du(y)} dv(x) =//K(3:,y) dv(z)dv(y).

The latter expression is non-negative due to conditional positive definiteness of K. Therefore,
Kp(z,y) is positive definite.

B PROOF OF THEOREM [2]
Define O% : Ly(X, P) — Lo(X, P) by

OF f(x) = / Kp(,9)f (4)dP(y).
X

By Mercer’s theorem, the kernel K p can be expanded as

Kp(z,y) = Z Aidi(2)di(y),
i=1
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where {);} are non-zero eigenvalues of O% and {¢;} are corresponding orthogonal eigenfunctions
of unit length. Note that ¢; € Lo(X, P) N F* due to O [Lo(X, P) N FL] C Ly(X, P)NF+ and
OL[F] = {0}. It is well-known (see Theorem 4 from [Cucker & Smale|(2001)) that H¥ is a Hilbert

space with a set of functions |/ OF.[Lo (X, P)], i.e. the set of functions of the form

> Vi

i=1
where [2;]2, € I2(N). For f = 3.°, v/ Aizidi and g = 372 /Ay, the inner product on HZ
equals

F = Z ZiYi-
i=1

First let us prove that £ C H7 which will directly imply £ @® F C H%. Let f € £ and

= Zaz wz,)suchthatZalf] (z;)=0forallj=1,... k.
=1

Since >, i fi(z;) = 0, then (I —IIp)* >0 | @by, = > i, @iy, Therefore, the function f
can be expressed as

-/ K(%w)d(zn: b)) (y) = / K(y,md(u—nw*illaiami)(y) -
- Zaz ) = éaiu K ()] i, 2) =
S ll ~ eI ~ o) 221, (i) + ol ~ )[R 22)er, ] ).
Noie: ihat Ip[(I —p)[K (-, z)](z1, )] (xs, 2) € F and we obtained
Z%Kp zi,7) + f,

where f € F. Since

ZaiKP(xi’x) = ZO‘ZZ)‘J@ zi)¢;(x) = Z\/E Zaz% NV A b5 ()
i=1 =1 j=1 =1 im1

and

VN i @) ey = Z oy Z @iy gy (i) dj (i) =Y oy K (wi,i) < 00
i=1 i,4'=1
we conclude that > i, a; Kp(zi,2) € Hﬁ Thus, we proved f € HZ, and therefore, L&F C H¥.
Let us now prove that for any g € H7- and the previous f € £ we have
(9, f>H§ = Z a;g(@;).
i=1

The latter property is an analog of the reproducing property of the kernel K in the theory of RKHSs.
By construction, we have g = . 7;1/A;¢; + g for [r]52, € [>(N) and § € F. Thus,

90 Pz = DoAY s ) = Dl — i) = Y- aige)

13
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dueto > | a;g(w;) = 0.

The inner product in £ matches the inner product in Hf( Indeed, let f,g € L. In the previous
analysis we established that

F=> pivNei+F.9=> a;VAid; +3,
j=1 j=1
where p; = /X (31 aid(x)). ¢ = /N (31, Bidi (i) and f,§ € F. Therefore,
ooz =D 2y = D MO ;@) Bids (i) =D Y K(wi,y;)aib;.
j=1 j=1 =1 =1 =1 j=1

So, we have (f, g)z = (f, g)uz. This implies to (f, g)3.z = (f, 9)uz forany f,g € L& F.

To complete the proof we need to show that £ & F C HY is dense in H7;. The latter follows
from the denseness of (£ & F) N HY; in HY.. Indeed, let f € H7; be orthogonal to all functions in

(LeF)N HZ, then the previous analysis shows that it should be orthogonal to all functions from
L, ie.

(f, Z o; K (x;,"))uz = 0 whenever Zaifj(xi) =0forallj=1,...,k.
i=1 i=1
This implies

Zaif(a:i) = 0 whenever Zaifj(xi) =0forallj=1,... k.
i=1 i=1

The latter implies f € F. Since F N ﬁﬁ = {0}, we obtain f = 0. Theorem proved.

C PROOF OF THEOREM [3]

By the Representer Theorem (e.g. see Theorem 6.1 from Auffray & Barbillon| (2009)), the solution
f* of the initial task (T) has the form

N k
fr(z) = Z%’K(Iz’,l‘) + Zﬂjfg‘(ﬁﬁ),

where ), «; fj(z;) = 0,1 < j < k, which leads us to the following optimization task
Hliél |IKa+ FT8—y||> +Aa'Ka subjectto Fa =0,
where y = (y1,...,yn)" € RN, K = [K(z;,2;)]);_; e RV*N o = (og,...,an)" € RV and

B=(B1,....0r)" €RE.
Since the matrix F'F' " is invertible, the minimization over 3 gives
B=—(FFT)""F(Ka - y).
The matrix I = FT(FFT)~'F corresponds to the projection operator onto the row space of F.
Let us denote r = (Iy — IT)y, where Iy = [d;;]]¥;_,. Note that & = (I — IT)av due to Fa = 0.
After we plug the expression for S into the former objective, we obtain a new objective
Iy —I)(Ka —y)||> +Aa' Ka =
[(In —IDK(Iy — D)o — 7|2 +Aa" (Iy — IK(Iy — Ma.
Let us denote K = (Iy — II)K(Iy — IT). We obtained the task

min |[Ka — || + Ao Ka  subjectto  Fa = 0.

14
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Forany y € {x € RN | Fz = 0} = row(F) we have Ky = 0. Therefore, the latter task is
equivalent to solving the unconstrained

min Ko —7|? + A/ TKd/,
«

and then setting « = (Iy — IT)o’. Further, let us denote solutions of the latter two tasks o and o’

respectively. Note that K is the kernel matrix for the residual kernel function Kp. By Theorem
Kp is positive semidefinite and the latter task leads to the KRR optimization task

N
: 2 2
min T;)— 1)+ A ,
QEHKP i:1(g( 7«) 'L) ||g||HKP

with the correspondence between solutions of the KRR and the previous one established by the rule

N
x) = Z i Kp(zi,-)
i=1

Note that adding to o’ any vector from row (F') does not change g*, therefore we can write g*(z) =
ity aip(i, ). Since a = (Iy = Maand [Kp(a, )]y = (Iy = {1 = Tp)[K (2, )]y,
we obtain

Zazf p) [K (2, )] (4, 2)
Thatis, g* = (I — p) f*.

Next, given g*, let us recover f*. We have

N k
=g +Tpf =g +T0p(>_ K (zi, )+ Y Bif(x)) =
j=1

i=1

g" +1Ip Zaz xl? +BT[f1( ) : 7fk(x)]—r
g +a KFT(FFT)” m(x), o f@)T BT @), (@]
Using 8 = —(FFT)"'F(Ka — y), we conclude
fr=g +Upf =g +y FI(FF) fi(2), - frl2)]
Theorem proved.
D PROOF OF THEOREM [4]

Let /2(N) denote the Hilbert space of sequences [;]52; such that Y, 27 < oo with the standard dot
product of sequences. By B(A, B) we denote bounded linear operators between spaces A and B.
E.g., B(RY,1?(N)) can be identifed with certain N x N matrices.

D.1 EXPRESSIONS FOR TRANSFER MATRICES

Following Section[d] let us introduce notations

w=[uy, - uk] v = (v, vg, 1T A= [l ] T D = (01, 09,00 )T
y= [Yh"' Y], i = [¢i(X1) 7¢i(XN)]T £ = [fi(X1), -, filXN)] T
[¢l( )]z 1_] 17 [fl( )]z 1_7 1 ERkXN?A [)‘ 6”]1] 1

Note thaty = ® T AY2y+F T u+e where e ~ N'(0,0%Iy) is independent of Dy = (X1, --- , Xn).
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Theorem 6. Let F' be of rank k. For the v-part of the regression function we have 0 = Tyv + Ty.¢,
with matrices Ty and Ty, defined by

Ty = AYV2U(UTAT 4 ANTN) 1O TAY2
Type = AV2U(UTAY £ ANTN) Iy — F(FFT)7'F),
where U = ®(Iy — FT(FFT)"'F)and I = [0i4]75 =1 For the u-part of the regression function
we have i = u + Tyv + Ty where
Ty = (FFT) ' FOTAY2(I — AY20(UTAY + ANTy) 10T AY2),
Ty = (FFT)™'F.

Remark 3. The latter theorem claims that a linear relationships between coefficients of the regres-
sion function and the trained function can be described by the following diagram.

€ v
€ Td)
Ty
Iy

&
=

Note that U and U — u do not depend on u. This implies that for a fixed u, the distribution of
(f(X) — f(X))? for X ~ P does not depend on u. Therefore, in a statistical analysis of this
expression we may assume that u = 0.

The fact that © does not depend on u follows from Theorem [3} Indeed, according to Remark []
KRR with the CPD kernel can be understood as the two step process: the first step being the linear
regression with features f1,--- , fi and the second step being the KRR on residuals. The first step
“erases” all correlations with u, i.e. the F-part of the signal. That is why the part of the trained
Sfunction that belongs to the RKHS of Kp does not depend on .

Further, given a kernel K, K (z, D) denotes the row [K (x, X1),--- , K (z, Xy)] and K (Dy, D)

denotes the matrix [K (X;, X;)],_,. We define Py = + Zfil dx,, i.e. the empirical measure.

Also, in all lemmas below we assume that F' is of rank k, i.e. Py is F-nondegenerate.
Lemma 2. We have <¢“ KPN(-, DN)>L2(X7P) = /\1(}5:(11\[ — FT(FFT)_lF).

Proof By construction, (6, Kp(,p))raer) =  Aiu(y).  Let T(zy) =

Zf,jzl(G’l)ijfi(x)fj(y) where G = [Gij]ﬁjzl = [<fi,fj>L2(X7p)]§’j:1. The residual
kernel equals

Kp($7y> = K(Qj?y) - ESNP[K($7 S)H(Sv y)] - ESNP[H(CC) S)K(57 y)]+
ES,T~P[H($7 S)K(S7 T)H(T7 y)]

Since (¢, fj) L, (x,p) = 0, we obtain
(¢i, K(-,y) = Esup[K (-, YIS, Y)]) Lo (x,p) = Xidhi(y).
For any S, II(S, y) € span(f1,-- -, fx), therefore,
<¢ia K(a y)>L2(X,P) - >\Z¢’L € Span(fh T 7fk)-

The residual kernel w.r.t. Py equals

KPN (x’ y) = K(.’E, y) - ES""PN [K(l‘, S)HN(S’ y)] - IESNPN [HN(x’ S)K(Sa y)]+
Esrepy [y (z, S)K(S, T)N (T, y)],

k _
where Ty (z,y) = Y7, (H V)i fi(x)fi(y) and H = [Hyli ;20 = [(fis [ La.pa)]ij=1-
Therefore,

(i Ky (3 9)) Lo, Py = (D K(4)) Lo(xe, Py — Esmpy [(04, K (+,.9)) Lo, )N (S, 9)].

16
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Since (@i, K(-,4)) L,(x,p) — Nii € span(fi,---, fx), we have

(i, K(,9)) Lo(x,P) — Es~py [(06, K(-,9)) L, (x,p)IIN (S, y)] =
Xi¢i —Es~py [)\iQSi(S)HN (Sv y)]
Thus,

N
1

(0, Kpy (. DN)) Lo (,p) = Nidd — — Y Nighi(X;) N (X, Dy) =
N &

\io] (In — FT(FFT)7IF).
Lemma proved.
Lemma 3. For any F-nondegenerate distribution @, we have
(In—F(FF")'F)K(Dn,Dy)(Ix — FT(FFT)"'F) =
(In — F(FF')'F)Ko(Dn,Dn)(In — FT(FFT)7'F).

Proof. The residual kernel equals
Kq(,y) = / (8(z — ) = (2, 5)) (5(y — t) — Ty, £) K (s,)dQ(s)dQ(1),
where T1(z,y) = 327 (G™) fi(2) f;(y) and [Gi]F sy = [(fis 1) 1o, )F 21 SO
K(a,y) = Kolo,y) + [ 1w, 5)K (5,)dQ(s) +

/ T(y, 1) (2, 1)dQ(t) — / T(z, )T1(y, ) K (5, 1)dQ(s) QP (1),

Since [II(z;, s)]X., € span(fy,--- ,f;) we have (Iy — FT(FFT)"1F)[l(z;,s)]Y, = 0. Analo-

gously, ([I(¢,z;)]X,) T (In — FT(FFT)"1F) = 0. Therefore,
(In—F'(FF") " 'F)K(Dn,Dy)(Ix — FT(FFT)"'F) =
(In — F'(FF")'F)Ko(Dn,Dn)(In — FT(FFT)7'F).
Lemma proved.
Corollary 1. We have
(In—F'(FF")'F)K(Dn,Dy)(Ix — FT(FFT)"'F) =
(In—F"(FF")'F)®TA®(Iy — FT(FFT)7LF).

Proof. After setting Q = P in the previous lemma and, from Kp(Dy,Dy) = & T AD, we obtain

the needed statement.

Proof of Theorem|[6] The vector of residuals is given by
r=Uy—F (FF") 'Fyy=(Uy—-F" (FF)'F)(® A 20+ FTu+e¢) =
(In — FT(FFT)TIF)(@TAY2y 1 ¢).

From Theorem the trained mapping f = Y0 91/ A + Zle @; f; can be given as

k
Kpy (2, Dn)(Kpy (Dn, Dn) +ANIN) 7 + Z i fi,
i=1

which gives

VAiti = (¢i, Kpy (- DN ) (Kpy (Dn, Dn) + M) ') 1,20, p)-

17
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From Lemmal2|we conclude (i, Kpy (-, D)) 1,(x,p) = \id] (In — F T (FFT)~'F). Therefore,

VAits = Nip; (In — FT(FFT)"'F)(Kpy (Dn,Dn) + ANIy) 'r =

Nigp; Iy — FT(FFT) 'F)(Kpy (Dn,Dn) + ANIN)T(Iy — FT(FFT) I F)(@TAY 20 4 ¢) =
Nio! (In — FY(FF") " 'F)Kp, (Dn,Dn)(In — FT(FFT)"'F)+

AN(Iy — FT(FF)TLENH(@TAY 20 +¢).

Above we used the property (AB)T = BT A™ for commuting symmetric matrices A, B and the
fact that AT = A for a projection operator A. From Lemma and Corollary we conclude

(In —F'(FF") 'F)Kpy(Dn,Dn)(Iy — FT(FFT)7'F) =
(In—F(FF)'F)®TA®(Iy — FT(FFT)"'F) =
(In—FT(FF)T'F)UTAU(Iy — FT(FFT)7LF).
Thus,
b = VN Iy — FT(FFT) ' F)WTAU +ANIy) Y(Iy — FT(FFT) 1R (@ TAY?0 +¢),

and, therefore, T, = AY2U(UTAY + ANIy)"'WTAY2. Also, T. = AYV2U(UTAV +
ANIN) Y Iy — FT(FFT)~'F).

Let us now derive the formula for 4 as a function of u, v and €. First we will assume that f1,--- , fx
are orthogonal unit vectors in Lo (X, Py ). Using f = Y2, 97/ A + Ele 1, f;, we have

R 1 o=~ X 1 o
(Fis P Lae.p) = 7 ;vj\//\jqusj + 1y = NfiT(bTAl/% + .
From f = Kpy(z,Dn)(Kpy(Dn,Dn) + ANIN) ' + Y% G;f; we also derive
(f, fi) Lo(x,Px) = U;. Thus,
1
fy = 1 — NfiTq)TAl/%.
Since @ = (FF")'Fy= % Fyandy = ®"AY?0 + FTu + £ we conclude
d=ut ~FOTAY 2~ S FSTAV2) 4 ~Fe=
N N N
1 1
u+ NFqFAl/?(U — AYV2O(WTAD 4+ AIy) TR TAY 20) 4 ~Fe
where U = ®(Iy — FT(FFT)"'F) = ®(Iy — +F"F). Therefore,

1 1
FT(t—u) = NFTF‘I)TAUQ(’U — AYV2U(UTAY + AIy) PO TAY2y) + NFTFa.

In the latter derivation we assumed that f1,- - - , fi are already orthogonalized in Lo(X, Py ). If we
do not make such an assumption, the matrix of the projection operator onto F in Lo(X, Py) is not
L FTF,but FT(FFT)~1F, which gives us

Fl(i—u)=F (FFT)'F (@TAI/% CAYV2R(UTAY + ANTy) PO TAY ) ¢ s) .
Thus,
t=u+ (FFT)™'F (@TAW(U — AYV2O(UTAY 4 ANTy) O TAY 20) + 5) .

where ¥ = ®(Iy — FT(FFT)~!F). From the latter the expression for T is straightforward. [

18



Under review as a conference paper at ICLR 2026

D.2 DISTANCE BETWEEN fL AND h (fH AND f)))

Recall that h = arg minges,, + va (g(X3) =Y )2 +)\Hg|\§_[K The following theorem bounds

the difference between h and f (or f 1) in Hy. Let 0 be such that b = Y2, 9;v/Ai¢p;. From
Theorem|§|we conclude, v = T¢v + T¢Es where

Ty =A2H(@TAD + ANIy) ' & T A2

and A
Tye = AV2O(@TAD +ANTy) ™!

Let us introduce ¢ : B(RY,13(N)) — B(I*(N), [*(N)) by

t(A) = A(ATA+AIy) "t AT € B(I3(N), 1*(N)).
Then, we have T = t(ﬁAl/QCD) and Ty = t(ﬁAl/Q\I’).
Lemma 4. We have

" 1 1
Ec[|[h — f||3r¢§] < [t(—=A"®) - t(ﬁAlmm)H%(P(N),P(N))Hf”%-[{("‘

VN
2

NA2 A
Proof. Using Theorem the squared semi-norm || — f 13, equals
1D 0/ Xidi = > 0/ Xibbillage, = 16— 07y = I Tpv + Tpee — Tov — Tyetllp ) =
i=1 i=1

Ty = To)vllmy + 1(Toe — Toe)ellgny + 2((To — To)v, (Toe — Toe)e)iz -
Taking the expectation over € gives
Ec(llh = flFz] = N(Ty = To)ollfaqy + o Te(Tpe — Toe) T (Tge — Tpe)).

The v-dependent term can be bounded by

Ty = To)olleay < N1To — TollBaz o, zanllvllm) =

1 1
Ht(ﬁ/\l/zq’) - t(ﬁl\l/z‘l’)||%(z2(N),z2(N))Hf||§.[§-

Let us denote Iy = FT (FFT)~'F. The coefficient Tr((T'pe — Tpe) T (Tge — Tpe)) = |Tpe —
Te||% can be bounded by
1T ge — Toellr < |AV2@(UTAW +ANIN)F = AV2D(@TAD + ANIy) |+
[AY2QT e (W TAY + ANIN) | p + [[AY2R(UTAY + AN Iy) " lp|| p+
+||AY2ST o (U TAY + ANIy) g | p.

The resolvent identity allows to bound the first term term by

IAY2D(UTAY + AN Ty) ™! = AY20(@TAD + ANIx) | <

1,1 1 B 1 _
7NHWA1/2@HF : ||(W‘I’TA‘I’ +AIy)t - (N‘DTA‘I’ +AMN) sy mry <
C 1 1
(Y AL + ML) <—<I>TA<I> AN e ) <
Cxk 1
\ﬁp || TTAD — N(bTA@HB(RwN).

19
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Since

1 1 1 1
”NWTA\D — N@A@HB(RN,RN) < \|NH;¢TA<D||B(RN,RN) + |\N¢>TA<1>HF\|B(RN7RN)+

1 1
HNH;(I)TA@HF”B(RN,RN) < 3||N(I)TA(I>”B(RN,RN) <30k,

3

the first term is bounded by ——=.. The 2nd, 3rd and 4th terms are bounded by

3C
V NA2

P

AY2oI1 A2
||A1/2¢’HF(\I/TA\I/—|—7\NIN)_1HF < ” F”F < || ”F < Ck

AN = AN~ NN
A2 C
A2O(UTAY + ANTy) I < |IAV2O(UTAY + ANTy) <|| F o ZKp
| ( +ANIN) plr < | ( +ANIN) " F < WS Uy
NOIp|r _ [AYV20]r _ Ok
AV2OI (U TAY + ANTN) I < AE < Z&p
l Falt + N) rllr < N < N < 7Wx
To conclude, we have
Toe — Tpellr < —E2 £
1T pe ¢s||F_\/N7\2 T
Lemma proved. O

The following theorem bounds the difference between f) and f\l in Ly (X, P).

Lemma 5. We have

. Eo1 _
Belllfy = filliace,my) < 1 TelEae o mn 1 13z + NG FE) ™ @ reo™

Proof. The squared norm Hf\l = fi ||%2(X p) equals

k k
el aifi = Y wifilll,e.py) = Eellla — ul’) = Ec[| Ty + Tyeel] =
i=1 i=1

ITyoll* + o Te(TLTye) < T lgo . I f 13z + o Te(T7Tye).
The second term can be bounded by
Te(T/.Tye) = Te(TpTy.) = Te(FFT) ' FF(FFT)™") =
_ ko1 _
Tr((FFT)™!) < NH(NFFT) Hls@e rE)-
O

Thus, to control E.[||f1 — hHiL}f(] and EE[HfH -1y H2LQ(X7P)] we need to bound Ht(ﬁ/\l/mb) _

t(ﬁAl/Q‘I’)H%(F(N),ﬂ(N))’ Tt 52 rey and [|[(FF )7 gwn gry- Required bounds for the
latter expressions are obtained in the next section.

D.3 CONCENTRATION OF TRANSFER MATRICES

Let us introduce the notation:

e(z) = [VMo1(2), VAzda(z), -] € (V).

Given z1,--- ,xny € X, let
6({E1, T 7xN) = [6(1‘1)7 T 7e(xN)] € B(RN7 lQ(N))7
Given continuous functions f; : X — R, j = 1,--- ,k, let us define a vector-function f(z) =

[fi(z), -, fr(z)] " and denote
f(xh--- 773N) — [f(xl)’ 7f(xN)] ERkXN.
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Using the introduced notation, the matrix A/2® can be rewritten as e(Xy, -+, Xn), the matrix F'
as f(X1,---, Xy), and the matrix A'/2W in the following form:

AYV2U = e(Xy, -, XN)X
(In = (X1, Xn) TE(X - XN)E(X, - X)) D) T (X, X))

Our first goal is to bound ||AY/?¥ — A1/2@||B(RN’12(N)), or to bound

Je(Xa, -, Xn)ECX D+, Xo) T (B(X, e, X B(Xr, o+, X)) (X0 X e o

The latter expression can be bounded by a product of

e R, X e iy,
and 1
(G E - XK, X)) T g oy [E (X0, X))
The following lemma is dedicated to the first factor.
Lemma 6. Let X,,..., Xy ~" P. Foranyt > 0, we have

(X1, XNEX, o XN) T e 2y <

1
—2 |12
\/k (ks s 151+ 1):

I~
—€
N

Nt2
4 ax.: X 14
8CKkp maxji<i<k 51T o xy

with probability at least 1 — k:e_

To prove it we need to prepare a number of lemmas.
Lemma 7. Let f € span(fy,---, fx) and X1,..., Xn ~" P. We have

E I B, | = 5 Bx~plf(X)?Kp(X, X)),
where (1) = & Zily f(X)Kp(Xi, ).

Proof. By the reproducing property

N
£330 = % D PN FXGNER(Xi, ) Kp(Xj, ), =

ij=1 o
Nz Z (X)) f(X5) Kp(Xi, Xj).
ij=1
Hence,
Bl 4 [y ] = 7 Ex~p [F(X)?Kp (X, X)),
dueto [, Kp(x,y)f(y)dP(y) = 0. Lemma proved. O

Lemma 8. Under the assumptions of the previous lemma, for any t > 0, we have
N2

1 —scit &
P33, > 5 Chpllf 7y +1] S e "Rr i,

Proof. Let us define the function h by h(Xy,---,Xy) = HfJ/V”g-LKP -
= Ef\il f(X;)?Kp(X;, X;). The function satisfies
(w1, on) = by, @i, @, Tiga, - an)| <
N 2 2
2 4C% ||f||LOO X
N7 O @) Kp (i) — F () ) Kop(ai, )| < —— =i,

JijFi
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due to | f(2) f () Kp(2,9)| < O, I FI2_ -
Using McDiarmid’s concentration inequality, we obtain
N2

PA(Xy1, -, Xn) — E[R(X1, -, Xn)] >8] <e kel i

From [, Kp(z,y)f(y)dP(y) = 0, we obtain E[A(X1,-- -, Xn)] = 0. Thus,

Nt2

]PJVL(XL 7XN) > t] S eim,

and
Nt2

1 — s
Pl A, > 3 Chnllf iy 1] <€ Skp Lo ()

Proof of Lemma[6] Using the notations of the previous lemma, we simply need to note that

N

1
I N Z B(Xi)fj(Xi)le‘z(N) =(f;)y H%‘LKP :

=1

For each of functions { f;}, using the previous lemma we obtain that one of the inequalities

2
1D B, > 3 Ch 1o 112,y + .1 <5 < K
ver: 2 1
can be violated with probability no more than ke °““xp ™ 7ilLoox) | Thus, with probability at

N2
- scl max.;. S L i 4
least 1 — ke Kp <<k 51T x) we have

N
1
max |+ > e(Xi) £ (X0) [y < CKP max |[fill7 v+t
i=1

7:1<5<k 7:1<g <k:

From
1 N
||N€(X1,"' S XN)E(X, -, X)) T | BrE 12()) < vk {rggkll Z:le(Xi)fj(Xi)HP(N)v

we obtain the needed statement. L]
Let us now deal with the second factor, i.e.

1 _

I E G, e (@, - yan) ) s@e ri I (21, 28 ey RE)-

The matrix %f (w1, ,zn)f(x1,-- ,zn) T is simply the empirical covariance matrix for features

f1, ..., fr and it concentrates around its mean w.r.t. the operator norm due to the standard Bernstein
matrix inequality argument.

Lemma9. Let X1,..., Xy ~" P. We have

||(Nf(X17"' S XNE(X, - X)) T @y ryy 2,

1 _
||(Nf(Xla"' CXNE(XL, L XN) D) T lsee me IE(X 1, -+ X)) | s@a gry < VBN,

28k] max HfJHLOC(X)Jr3

with probability at least 1 — 2k exp ( N )
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Proof. We have
1 1
S XE(X JXN) T =1 = ~ Z(f(Xi)f(Xi)T —I).

Matrices f(X;)f(X;)" — I}, € R¥** are independent and

IEXDEX) T = Tellserey < IEX)E(X) T e pr) +1 <

b ma 16513 +1

Note that E[f(X;)f(X;)" — I}] = 0. For the second moment we have

E[(f(Xo)f(X:) " — [)?] = E[|f(X:)[IPF(X)(X0) '] = I <

2 2
(kj:yg;k 13l ey — DIk = k max 1£5l1% o a0y L

After summing we obtain

—I)? < Nk max ||fj”%oo(X).

j1<j<k
B(RF,RF)

Matrix Bernstein inequality (see Theorem 6.1.1 inTropp (2015)) gives us

N
1
Pl D EXDEXD) T = I s pey > 1] <
i=1
Nt2/2
2kexp | —
Emax 512+ max TRIE v+ 1i/3
Let us choose t = 1n the previous inequality. Then, we have
1
||Nf(X17"' S XNE(X, - XN) T = Tkl pey < 3
. o B N/8
with probability at least 1 — 2k exp < F o, HfJHLDC(xﬁ(’“ S |fJ|LOO(X)+1)/6)' In that case
we have 1 )
(X XX X)) - =2
IO E (X Xn)E(X, o, X)) sy mvy < 7455 = 2
and
1 T 3N
(X1, Xn) sy ey = VN I £ (X Xn)E (X - X)) T pen ey <4/ =5

Thus, we have

1 _
||(Nf(X17"' S XNE(X, - XN) D) T s@y mny IE(X1, -+, Xn) ls@y gy < VON.

Lemma proved. O

A combination of Lemma[6]and Lemma 9] gives us that for any ¢ > 0,

1
1/2 1/2
||\/»A 2y — \/NA 20| prn (v < \/6k( Ck, m ;ua <k||f]||L (x) +t)

with probability at least

Nt? N

7 ! 28 !
8CKP ﬂaﬁkaJ” x) kj{gaﬁkaJ”L ) T3

q(t)=1—kexp
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over randomness in inputs Xy, --- , Xn.

In the next step, we need to bound Ht(iAl/Q\IJ) - t(iAl/Qé)||B(12(N))12(N)). Note that

A2®|| g j2(vy) < Chcps

IIf

and therefore,

1
1/2
A2 v 2 < e+ %’“ (RO g, 1 ).

with probability at least ¢(t). We now need a lemma that bounds ||t(iA1/ 2y) —
(\%Al/Q@)HB (2(N),2(ny) in terms of || A1/2\11||B RN 2(v)); | \ﬁAl/ <I>||B(]RN 2@y and
| A5 A2 — S A 20| g 2wy
Lemma 10. Let A, B € B(RY,1?(N)) be such that || Al|gw~ 12(v), || Bl s@y 12vy) < a. Then,
[t(A) — t(B) Bz mvyi2 )y < (2}\@ + 207 > A — Bllg@~ i2(v))-
Proof. Letus denote My = AT A+ Ay and Mg = BT B + Aly. We have
t(A) —t(B) = AM'AT — BM;'B".
By adding and subtracting AM;lBT and BM{ZlBT we split
t(A) —t(B) =
(AM'AT — AM'BT) + (AM'B" —BM'B") + (BM;'B" — BM;'B") =
AM(A=B)" +(A-B)M'BT + B(M;' — Mz")B".
The first term can be bounded by
[ AMH(A = B) 2oz 0y <
Alls@~ 2oy - 1M sEsy &Y - 1A = Bllsgy 2 qv) < <)~ Bllp®n~ 2 (v)-
The second term by
I(A = B)M{ B |50z 002 () <
IA = Bllp@~ 2 - 1M 3 Is@y &y - | Bllsey 2 qo) < %HA — Bllp®~ i2v)-

From the resolvent identity M;l — MB_1 = M;l(MB — MA)Mgl, we obtain
_ _ 1
”MAl - MBl“B(RN»JRN) < ﬁ”MA — Mp||g®n~y ryy <

1 2c

5z IAllsey 200y + 1Bl s@y 2o A = Bllsey 2ov) = 57114 = Blls@~ i20n)
Using this, we bound the third term by

IB(M3' = Mg BT |sazao.2qn) < I1Bla@y 2oy - 1Ma' = Mgtllsey gr) <

« 2
- ﬁHA — Bllp®~ 2y = vHA — Bllp@~ 2wy

After collecting the bounds, we obtain
2 203
[t(A) —t(B)llsazav),i2vy) < THA — Blla®~ vy + WHA — Bllp®~ i2vy) =
20 203
()\ 52 ) |A = Bllg@~ i2m))-

Lemma proved. U
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Lemma 11. Lett > 0 and o = Ck,, (1 + jmax il o 6k (& + t)) Then,
||t(\/1ﬁA1/2\IJ) (\WAI/%)HBW(N)J?(N))S
(32 +20) Cuen s, Iy fok (5 +0).
with probability at least 1 — k exp (—Nth) — 2k exp (— %kj:{%%‘);k ﬁ\;j”iw(;{ﬂr% )

Proof. After we apply Lemma [10/to A = \/—%Al/ 2V, B = ﬁAl/ 2% we obtain the following

statement: lett > 0 and o = Ck,, + \/Gk (&C%{P ax 13117 x) t) Then,

1 1
t—=AY?0) — t(—=A"D <
[ (\/N ) (\/N Msazmy 2wy <
200 2a3 1
2
<)\+}\2> \/Gk (NCK jnax 1£3ll3_ (x) +t)
. aqe _ Nt
with probability at least 1 kexp < 3 Cip T T ”LOO(X)>
_ N . _ .
2k exp T, Ifjlioo(;(ﬁ;‘)' Rescaling ¢ t'C%k ., Hia}ék Hfj||L (x) gives the
desired inequality. [

Recall that Ty = (FFT)"'FOTAY2(I — AV2U(UTAW + ANIy) ' WTAY/2). We finally need
to bound || T || ;2 (n),r#) Which is done in the next lemma.
Lemma 12. For any t > 0, we have

1
I < ACke 1 15l (7 1),

28 112
3 jilrrg%kl\f]

2
with probability at least 1 — ke~ "5~ — 2k exp | — v T |-
IZ o)t

Proof. From Lemma [f] we obtain

1 TAl/2 1 1/2 T 1
I E® AY HB(lz(N),Rk):”NA/(I)F Br 1200y <4/ NC?(P jua <k||fg|\L x) Tt}

N2

max

. . sck 517 ) .
with probability at least 1 — k;e P yisisk >=t*) Therefore, using Lemma 9} we have
1 T¢I B2y ) < H( FFT) s, Rk)H*F‘I’TAl/QHB 12(N),RF)"
= Al/Q\IJ(\IJTA\IJ—s—MN) YOTAY2 | sz iz <

2\/k ( CIQ(P 112 ﬁk ||fJHLOO(X) + t>'

(1 + |AY2T (U AT + MN)*\IFAW||B(12(N),l2(N))) <

4\/k( Chep s, Ll + )
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Nt2

8C4
Kp j1<5<k 173 ”Loo(X)

with probability at least 1 — ke

J:1<j<k

o N
leXp 238k max |fJ|LOO(X)+§>.By

rescaling t = ¢'C%,, max ||f;[|7_ ) we obtain the needed inequality. O
J:1<i<k e

D.4 FINAL STEPS OF THE PROOF

Lemma 13. Suppose that f1,--- , fr are orthogonal functions of unit norm in Lo(X, P). Let

o 1 X 1.
t > 0and o = Cg, <1 Jrj:?%é}};k I1fill L (x)y/ 6K (ﬁ +t)>. With probability at least 1 —

28 12 4
ke omax 5173

kexp (—th) — 2k exp (— N ) over randomness in X1, --- , Xy, we have

1 20 203 2
Ec[ceon] < If13, Chp ﬂaﬁk Hf]HLoo(X)k <N +t) (16+6)‘1 (7\ + 22 ) ) +
MNCEL (C%,  \°
N< 3z ( 3 > + 2k | .

Proof of Lemma(I3] From Theorem 2]we conclude that

IFe = PllLocre.py < VML= Bllag, = VAL = hllaz-

Therefore,
Ceon < MfL = hllGz + 1f) = fillZa.p)-

From Lemmas ] and 3] we obtain
1 1
Ee[ceon) < >\1||t(7NA1/2‘I’) - t(i\/NAl/qu)||2B(l2(N),l2(N))”fH?—[I];"'

9Ck, (Ck ’ ko1 B
Mo N)\2P ( )\P ) Jr||Tf||fzs12(1\1)JRk)Hf||H]”+N||(NFFT) Yl g rE)yo>.

Using Lemmal|TT] the first term is bounded by

20 2%\
Ml (5455 ) Che e 151 o0 (7 +1).

with probability at least 1 — k exp (—N—t) — 2k exp (— pLy—— HJ\}'HZ I ) , where t > 0

jia<j<k I NLoo(X) T3

— 1
and o = Ck,, (1 + Jex I £ill Lo a)y/6k (% + t))
Using Lemma|[12] the third term is bounded by
1
1611 C e, 155k (5 +¢)
Nt? N

with probability at least 1 — k exp ( ) — 2k exp <— ggk EYCRTALE ey ) .

ji1<j<k 7 Loo(X) 3
Using Lemma([9} the last term is bounded by

2ko?
N )

_ N
with probability at least 1 — 2k exp < 238]“1;1”?"@ = )
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28 2 ES
s il o ts

Thus, with probability at least 1 — 2k exp ( ) 6k exp <— - N T ) , we have

1 200 208 2
B o] < 11 Gy s 151 ok (5 + ) 040 (5 4+ 55 )+

2

9C%, (C3 2ko?
2 Kp Kp
AIJN)@()\ +1>+N'

The latter almost coincides with the statement of lemma, though constants in front of £ in the ex-

pression for the probability are different. Note that k exp ( ) is the probability of the violation

N

of the inequality of Lemma|6|and 2k exp | —
Tk max fll7  x s

is the probability of the vio-

lation of the inequality of Lemmal9] In the latter sequence of arguments we counted the first proba-
biliity twice and the second one three times. More accurate reasoning gives us that the last inequality

_ N2 _ N
is true with probability at least 1 — k exp ( ) 2k exp < = L O
=0
2k
Proof of TheoremM] Let t > 0 be such that k:exp( N ) = 2 ie. t = SILA(,‘S).

28 2 4 4ky :
Our assumption that N satisfies N > (?kalll%%ék“fj”LW(X) + 3)log(5%) is equiv-

IN
I

alent to 2kexp | — i
p( Zk T [FAEE

In Lemma we have o =

Ckp |1+ max | fillr.x)\/6k (& +1t) ). So, using 8log(%) > 1 we have
P jii<jp MWl Eeo(X) N ’ N =N

a<Ck, |1 +max, i1l Lo ()

6k/2log" " (%)
Ck <1+j{ga§k|fj||Lw(X)Nl/4 < 7Ckp.

- 2100 ( 2k 4
provided that N > k*log(%5") jnax Hf]||LOO(X).

From Lemma I3 we obtain that with probability at least 1 — 6 we have

2
8log(2k) 14Ck,  686C3
Eelceon] < |13 Ckyp jnax, 15117 ) 2K (184 6A [ +

INCEL, (C% 2
N( 2 <A+1> 1%k .

Theorem proved. O

E PROOF OF THEOREM

Since

]El'[k [L’ y Z VA EM@m ¢Z( )¢m(y)7

£,m=1
our task reduces to computing

EMem = Z fz@ ngjm

1,j=1
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Lemma 14. The off-diagonal elements of the projection coefficient matrix [My ,]7°, _; satisfy

E[Mym]) =0 forf # m.

Proof. Define vy = (14, ... ,&re) T € R¥. Note that G = Zjil )\jvjva and My, = v}/ G~ oy,.
Consider flipping the sign of all components of vy, i.e., define

~ —Uy lfj = E,
v = [
v if j # L.
For G = 372, A;j0;0; , and My = 0] G~ 14y, observe G = G and
MAm = (—Ug)TGflvm = —vy JG Y, = = —Mpm.

Since Gaussians are symmetric, the joint distribution of all fij ~ N(0,1) is invariant under sign
flips of any single coordinate vector v,. Therefore, E[M, ,,,] = 0. O
Recall that IIp denotes the projection operator onto the span(gy,--- , gx). From Lemma [14] we

conclude

E[ll(z,y)] Zx\e E[Mg,] - pe(z)e(y)-
=1
and, therefore,

E[Mp[K(, 22)|(z,y)] = (E[n (2, )], K (- y)) Lo (x,p) = ZM E[My,0] - ¢e(x)de(y).

Let us now compute

E[Tp[Tp (K (- 22)] (21, )] (2 ) [ / / L (2, u) K (u, 0) T (v, ) dP () dP(v) |

Recall that K (u,v) = > ,2; Ae¢pe(u)de(v). Now plug into the expression for I, (z,y) and obtain
that the latter equals

/ / Z VR0 1) (3 M) <v>><Z Vi Mo (0)60 (9)) AP ()P (0)
= Z)\ VANN A - My j M, - 6i(2) ZA%/A A M; M - di(2)én(y)-

3,5,m 1,5,m

Thus,

B {Ip (K ()1, )@ )] = 3 0u(e)n(0) - VAR - | 3033 - EIM ;5.

Let us define -
Cin = Z A3 M i M,
j=1

so that
EIp[Mp[K (-, 22)](21, )(z,y)] = Z Aidn - E[Cin] - ¢i(2)dn(y).

Lemma 15. The off-diagonal elements C; ,, satisfy
E[Cin] =0 fori#n.

Proof. Fix i # n. Using the notations of the previous lemma we have
Cin = Z)\? ~viTGflvj ~vaG71
J

Flipping the sign of v; — —wv;, and leaving all other v; unchanged, leads to the change in the sign
of C; ,,. Therefore, E[C; ,] = 0. a
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From Lemmal[I3] we obtain

E[Ip[Mp[K (-, 22)](z1, )z, y)] = Z Ai - E[Ciil - ¢i(2)di(y),

with

:ZA?-EMQ
J

So, we proved

Eo[KE(z,y)] ZA (12X -E] ”+ZA2 ) $i() i (y)-

F THE BEHAVIOUR OF Nz’/)\z’ IN THE THERMODYNAMIC LIMIT

Let us qualitively analyze how {u;} are related to {\;}. This type of non-rigorous analysis has
been applied to a similar expression in |[Simon et al.| (2023), though it should be considered as a
way to derive the formula (), rather than a mathematlcally precise statement. So, as pointed out
in Remark [2 we may substitute (¢ TG_Zfz) with a constant sz around which this expression

concentrates as k — +oo. Thatis, E[M; ;] ~ M, ; ~ 1+1<7%/% = # Since ZOO NETGTIE =
Tr(G—'G) = k, the constant 5 > 0 can be calculated from the condltlon p e X +% =k.
The expression Z )\QIE[M2 ] in Theoremldecomposes to AYE[M?;] + D i A?IE][M2 ], where
NE[M}] ~ Tewmr + 7z-The remaining part without the expectation equals
Tl T
Z >\2M2 _ fz G—i ZJ NE) ]5‘75 G_Zgl
347, T :
Giji (1 + A& Gﬂ-fi)
2); A7

If we neglect the remaining term, using Theorem . we would obtain ’; ~1-— e T o =

2 . .
(/\117%)2' As our experiments show (see Flgures and EI), this term cannot be neglected although it
. . 2 .
contributes proportionally to (Aﬁ#y So, we conjecture

i 6%2

N N+ x)?

For \; = -1 we observe ¢ ~ a.

G RANDOM FEATURE APPROXIMATION TO THE CONDITIONAL KRR

The goal of this section is to establish existence of the random feature approximation of conditional
KRR, similar to the approximation of standard KRR |[Rahimi & Recht|(2007). Recall that K (z,y) =
Eyp[f(w, ) f(w,y)] where (Q2, X, P) is a probabilistic space. Let us now introduce new features

fl(x) = \/%f(wg, x) for i.i.d. samples wi,...,w], ~ P and define feature vectors as ¢(z) =

[f1(z),..., fu(@)]" and(z) = [f](2),..., f,,(x)]T. Consider the following random feature ridge
regression (RFRR) problem

N
min =S (T ¢(as) + 0 w(wi) — 50)? + w2 5)

wERF weRm N 4 1
i=

The meaning of this task is to give a budget on weights of features f; while having a complete
freedom in selection of weights for the features f;,s = 1,--- | k.

Theorem 7. Let rank([f;(z;)]f_, ;) = k and u € R*,w € R™ be the solution of the task (E])
Then, as m — +o00,

u' ¢(z) +w'Y(x) — f(z) with probability 1,
where f is the solution of the task ([I).
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g,

© h=hk=10 o =/ .+ A=hk=100 N

80 1000 3 200

] 200 200 00 a0 1000

Figure 5: The behaviour of 1 — 2X; - E[M; ;] + 3272, A -

E[M};] computed by 50 times Monte-

Carlo sampling for £ = 10, 100, 200, 300 (columns) and eigenvalues (a) A; = %f’ (b) \; = i%, (©)

Ai = 1, (d) A = 701 (rows).

Figure 6: Scatter plot for ﬁ vs. 1 —2)\; - E[M;,] + Z;‘;l A3 -E[MP] for (a) \; = &, (b)

A=, N =

e (@) A = e 0

Proof. The goal is to minimize

where y = (y1,. ..

|ATu+ B w — y||> + ANw " w,
yn)" € RN and A = [fi(z))]i_ )L, € RPN and B = [f](z))]{2 L, €

R™*N_ Gradients w.r.t. u and w are equal to 0 if an only if

AATu = —A(BTw —y),
(BBT +ANI,)w=—B(ATu —y).

So, the trained function satisfies

’U,T

p(z) +w' p(z) = —(w'B -y )AT(AAT)g(x) + w v(x) =
yTAT(AAT) " ¢(z) + w' (¥(z) — BAT(AAT) ¢(x)).
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Note thaty " AT (AAT)~1¢(x) is the output mapping of the linear regression with the feature vector
¢(x) applied to the training data.

Recall that ITp,, denotes the projection operator onto span(fi,--- , fx) in La(X, Py). Let fi =
(I —1IIpy)[fil;

Y(@) = [fil@), - Jn(@)]T = (I = py) W]

and B = [f;(x;)]7, ¥, € R™*N. By construction, BAT(AAT)~1¢(z) = Ip, [)(x) = ¢(x) —

1 (x). Thus, we have

u'¢(z) +w' () = w @) +y AT (AAT) ().

The matrix IT = AT (AAT)~! A is the projection matrix onto the row space of A. So, we have
(BBT +ANI,)w = —B(-IIB w + Ty — ) =
w= (B(I —T)BT +ANI,) 'B(I —)y.

The vector = (I — IT)y is exactly the vector of residuals. By construction, B = B(I — II). Then,
BBT = B(I —M)B" and Br = Br. Therefore,

w= (BBT +ANI,,) 'Br.

The Woodbury matrix identity gives (BB +ANI,)"' = 1 I,, — xx BANIy + BT B)~'BT,
and we obtain the standard kernel trick identity

w= B(ANIy 4+ B"B)"'r.

ij=1 =

Let us denote K = [¢p(;) T4 (z;)|N BTB. So, w = Z;\Ll aith(z;) where a = [a;]N, =
(K + ANIy)~'r. Thus, the first term of the trained function f(z) = w4 (x) is

N
flz) = Zailf;(wi)Tiz(x) = (K +ANIN) T (1) T (), - dlan) ")

Let us analyze the behaviour of that function under m — +oo. By the law of large numbers

R — [KPN ('riv xj)]i\,[jzla

and

(i) "(x) = Kpy (2, 2),

as m — +oo. That is
fa) = T ([Kpy (zi,25)] + ANIN) T Epy (21,2), -+ Kpy (e, 2)]
The latter is exactly the solution of

N
. 1 <12 2
E i) = Yi)"+A ;
gegilg;,\, N i:1(9(9€ )= ||g||HKPN
Using Theorem 3] we conclude that

u' ¢(z) +w'Y(xz) — f(z) with probability 1.

Thus, RFRR method can be considered as an approximation of the conditional KRR.
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H ADDITIONAL EXPERIMENTS

H.l DETAILS OF EXPERIMENTS ON HARD THRESHOLDING: DEPENDENCE OF THE COST OF
CONDITIONING ON N, k, 02

To verify the decay rates of the conditioning cost cqon predicted by Theorem ] we used the exper-
imental setup described in Section [f] (the hard thresholding case). For fixed parameters N (sample
size), k (chosen such that dim(F) = 2k+1), o2 (noise variance), and a selected regression function,
we repeated the following procedure 20 or 50 times: (a) sample training and test sets; (b) train both
the conditional KRR and the F-conditional learner; (c) estimate c.,, as the mean squared distance
between the two resulting estimators on the test set. Finally, we averaged c.o, across repetitions and
denote this empirical estimate by Ccop.

In the main part of the paper we present experiments for the hard-thresholding setting with fixed
regularization parameter A = 1.0 and the regression function f(z) = Zi:o cos(nx). These ex-
periments confirm that the test MSE as a function of k achieves its minimum at k& = 5, exactly as
expected. Figure[7] shows test-MSE curves (with 95% confidence intervals) for varying regulariza-
tion parameter A in two representative cases: k = 0 (standard KRR) and k = 5, where the regression
function s f(x) = Zi:o n cos(nz). Taken together, these results suggest that adjusting the number
of unpenalized features within the hard-thresholding framework can be beneficial for essentially any
value of A, including the value optimally tuned for standard KRR.

s s s
N=100, 0=1.0, target= Y ncos(nx) N=100, 0=1.0, A=0.0001, s=0.75, target = > ncos(nx), k=0 N=100, 0=1.0,A=0.0001, s =0.75, target = 3 ncos(nx), k=5
d=o d=a d=o
20

—— k=0
. k=5

Figure 7: Comparison of test MSE for Conditional KRR with £ = 0 (standard KRR) and £ = 5
across a range of regularization parameters A.

H.2 SOFT THRESHOLDING WITH RANDOM FEATURES

According to Theorem [7] the larger m (the number of penalized random features), the closer RFRR
approximates conditional KRR. The plots reported in Section [6| were obtained with m = 2000.
We also tested the method on several non-synthetic datasets and consistently observed the same
U-shaped behavior. As an illustrative example, we used 12214 samples of the digits 7 and 9 from
the MNIST training set. Each image was cropped to a 24 x 24 window by removing border pixels,
rescaled so that pixel intensities fall within [0, 1], and mean-centered. We assigned the label +1 to
digit 7 and —1 to digit 9. Figure 8] shows the RFRR train/test MSE as a function of k (the number
of unpenalized random features) for m = 10000. For the cosine activation, adding unpenalized
features consistently worsens the test MSE due to catastrophic overfitting, a well-known issue in
ridgeless Gaussian KRR (equivalent to using unpenalized random features with cosine activation).

The code can be accessed on |GitHub, allowing for easy reproduction of our results.

H.3 EXPERIMENTS WITH HARD THRESHOLDING ON REAL WORLD DATA

For real (non-synthetic) data, the eigenfunctions ¢; of the integral operator ¢ +—
J K (-, 2)¢(x)dP(x) are not available in closed form and must be estimated from samples. Given

a Mercer kernel K and training points X1,..., Xy, let G = [K(X;,X;)] € RY*N be the
Gram matrix, and let (/A\z «;) denote the eigenpairs of the Hermitian matrix %G, ordered so that
5\1 > 5\2 > ... and normalized by |2 = 1. We write Py = % Zj\]:l dx, for the empirical
distribution.
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RFRR on MNIST 7 vs 9 (A = 0.1), cos RFRR on MNIST 7 vs 9 (A =0.1), ReLU RFRR on MNIST 7 vs 9 (A =0.1), tanh

—e— Test MSE 025 —e— Test MSE 06 —e— Test MSE
#- Train MSE - Train MSE = Train MSE

- R I

0 250 500 750 1000 1250 1500 1750 2000 [ 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of unpenalized features k Number of unpenalized features k Number of unpenalized features k

Figure 8: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and
the MNIST dataset.

We estimate the eigenfunction ¢; by its empirical extension

o~

N
bi(x > ai()E(x, X;),  i=1,...rank(G).

) = 1
\/NAi j=1

This normalization is chosen so that ggl(X ¢) = vV Na;(£), making the family ¢; orthonormal in
Lo (X, Py ). Moreover, each ¢; is an eigenfunction of the empirical integral operator

N
O Flw) = 5 S0 K, X)) 7(X;),
Jj=1

satisfying ONqAbi = S\ZqASz

In all our experiments, we therefore substitute qASi for the true eigenfunctions ¢; and define Fj, =

o1,...,¢r. Conditional KRR with respect to this F;, can be seen as a practical approximation of
the hard-thresholding setting described in Subsection[5.1]

Hard thresholding MSE with 95% CI, Kix,y) = e”5.,1 = 1e:2 Hard thresholding MSE with 95% CI K(x,y) = e~ = 1e-2 Hord thresholding MSE with 95% Cl, NNGP fo erf, A= 1e2

— Mean cv MsE — Mean CV MSE
o5l os%c

10-01d cross-validated MSE

go20

o 2000 8000 10000 [ 2000 000 8000 10000 o 2000

3000 6
Kunpenalized eigenfunctions)

4000 6000
K (unpenalized eigenfunctions)

Figure 9: U-shaped Test MSE in the hard thresholding setup for the MNIST dataset (with standard-
ization).

We conducted numerical experiments using this empirical approximation to the hard-thresholding
setup on the 7-vs-9 MNIST dataset described above. We performed 10-fold cross-validation to
evaluate the Conditional KRR model for a fixed parameter A = 0.01 and a range of sizes k. In each
fold, the data were re-standardized, Conditional KRR was fitted on the training subset and its test
MSE was recorded for all k, after which the mean test MSE and its 95% confidence interval across
folds were computed. Results for different kernels are shown on Figure[§]

As shown in the results, both the Gaussian and NNGP-erf kernels exhibit a U-shaped dependence
of the test MSE on k. In the case of the NNGP-erf kernel, however, overfitting is very mild and
becomes noticeable only when k approaches the size of the training set (approximately 11,000, the
largest value for which ¢y () is defined). Interestingly, no overfitting is observed for the Laplace
kernel. We attribute this behavior to the fact that, for the Laplace kernel, essentially all of the
first 11,000 empirical eigenfunctions remain informative for prediction; detecting overfitting would

require a substantially larger sample size to allow ggk(x) to be defined for larger k.

We also compared the test MSE of Conditional KRR—using a fixed regularization parameter A and
selecting k via validation—with the test MSE of standard KRR equipped with an optimally tuned A.
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Kernel KRR C-KRR

Gaussian (RBF) 0.0671+ 0.0015 0.07324 0.0023
Laplace 0.0750+£ 0.0029 0.07444 0.0023
Matern (v = 1.5)  0.1102£0.0038  0.108740.0029
NNGTP (erf) 0.0574+ 0.0020  0.057240.0022

Table 1: Test MSE comparison of KRR (k = 0) with A optimized on the validation set and the
hard thresholding setup (A = 0.01) with k£ optimized on the validation set for different kernels (on
MNIST).

As shown in Table[T] the resulting test errors are extremely close, to the point where their difference
is statistically insignificant (at least for the kernels considered and for the MNIST dataset).

We also investigated the effect of varying k& while keeping A fixed at the value optimally tuned for
standard KRR. In this setting, the test MSE for small % is nearly identical to its value at kK = 0,
and it increases only for sufficiently large k. These empirical findings suggest that when A is already
optimized for KRR, adjusting k provides essentially no additional benefit. Naturally, this conclusion
applies only to the MNIST dataset and the set of kernels examined here.

Remark 4 (Beyond hard and soft thresholding setups). Suppose that A is optimally tuned for
standard KRR. Although the results above suggest that using the eigenfunctions of the operator
¢ — [ K(-,2)¢(x)dP(x) as unpenalized features does not improve the test MSE, this does not
imply that Conditional KRR cannot outperform standard KRR when supplied with a different choice
of unpenalized features.

To demonstrate that Conditional KRR can exhibit a clear U-shaped dependence of MSE(k) on k
for the MNIST dataset, we conducted the following experiment. We first trained a two-layer neural
network with ReLU activation and 20 hidden units, i.e., the model NNy (x) = 21221 a;ReLU(w,” x+
b;) + ¢, using Lo-regularization and the MNIST training set. Next, we trained a random-feature
approximation of Conditional KRR based on the corresponding ReLU kernel

K(2,y) = Buwn(0,12/d)~0[-1,1) [ReLU(w 2 + b)ReLU(w y +b)] ,

using m = 10,000 random features. We set k = 20 and defined the unpenalized subspace Fj, =
{ReLU(w; z + b;) | 1 < i < k}, i.e. the features extracted from the trained neural network. The
resulting test MSE curves as functions of X are shown in Figure[I0}
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Test MSE

RFRR on MNIST 7 vs 9 (ReLU) with 95% Cls

1
3.5 —8— C-KRR Test MSE, k=20 |
—8— KRR Test MSE

3.0

2.5

2.0

NIRN

0.0

-0.5

-14 -12 -10 -8 -6
logA

Figure 10: Conditional KRR with trained unpenalized features vs standard KRR.
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