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ABSTRACT

Conditionally positive definite (CPD) kernels are defined with respect to a func-
tion class F . It is well known that such a kernel K is associated with its native
space (defined analogously to an RKHS), which in turn gives rise to a learning
method — called conditional kernel ridge regression (conditional KRR) due to
its analogy with KRR — where the estimated regression function is penalized by
the square of its native space norm. This method is of interest because it can be
viewed as classical linear regression, with features specified by F , followed by
the application of standard KRR to the residual (unexplained) component of the
target variable. Methods of this type have recently attracted increasing attention.
We study the statistical properties of this method by reducing its behavior to that
of KRR with another fixed kernel, called the residual kernel. Our main theoretical
result shows that such a reduction is indeed possible, at the cost of an additional
term in the expected test risk, bounded by O(1/

√
N), where N is the sample size

and the hidden constant depends on the class F and the input distribution.
This reduction enables us to analyze conditional KRR in the case where K is pos-
itive definite and F is given by the first k principal eigenfunctions in the Mercer
decomposition of K. We also consider the setting where F consists of k random
features from a random feature representation of K. It turns out that these two
settings are closely related. Both our theoretical analysis and experiments con-
firm that conditional KRR outperforms standard KRR in these cases whenever
the F-component of the regression function is more pronounced than the residual
part.

1 INTRODUCTION

Kernel Ridge Regression (KRR) is a powerful supervised learning method that has found appli-
cations in the learning theory of neural networks Jacot et al. (2018; 2020a), operator approxima-
tion Köhne et al. (2025), and reinforcement learning Novelli et al. (2025), among others. To apply
the method to a specific learning task, one must define a positive definite function K(x, y) on pairs
of inputs, called the kernel function. It has been observed that for KRR (and other kernel-based
methods such as SVM or Kernel PCA), the requirement of positive definiteness can be relaxed to
the more general property of conditional positive definiteness Schölkopf (2000); Chi et al. (2022).
For a kernel that is conditionally positive definite (CPD) w.r.t. a class of functions F , we only require
that the quadratic form

∑
ij K(xi, xj)ζiζj is non-negative for any vector [ζi] orthogonal to the set

{[f(xi)] | f ∈ F}. Classical techniques such as spline estimation and Gaussian process regression
are parameterized by kernels of this type, where the class F is interpreted as a set of unpenalized
features. This connection has made the study of CPD kernels an important theme in approximation
theory over the past decades Wahba (1990); Poggio & Girosi (1990); Schaback & Wendland (2006).

The majority of work on CPD kernels focuses on the case where F is defined as the set of multivari-
ate polynomials of degree at most k Duchon (1977), or on variations of this definition, while the case
of a general F has largely been neglected. One of the motivations of the present paper is that, even
when the original kernel K is simply positive definite, treating it as a CPD kernel w.r.t. a general
class of functions F leads naturally to a broader framework, which we call conditional KRR. This
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Figure 1: Structure of conditional KRR for F = span({f1, · · · , fk}).

extension allows us to develop a non-trivial statistical theory of learning within this setting, thereby
deepening our understanding of standard KRR.

The organization of the paper is as follows. In Section 2, we define CPD kernels and introduce
the associated notion of the residual kernel, proving that the latter is positive definite (Theorem 1).
Similar constructions are standard in the theory of native spaces induced by CPD kernels (e.g.,
see Meinguet (1979)), but our definition depends explicitly on the input data distribution, which
makes it central to the subsequent development. In Section 3, after recalling the standard definition
of a native space, we provide an alternative characterization in terms of the Reproducing Kernel
Hilbert Space (RKHS) associated with the residual kernel (Theorem 2). The conditional KRR is
then formulated analogously to the standard KRR, with the regularization term replaced by the
squared native space semi-norm. The residual kernel further allows us to interpret this problem as a
combination of linear regression and standard KRR applied to residual data (Theorem 3, diagram 1).

Section 4 develops the statistical theory of conditional KRR. In our framework, the regression func-
tion is decomposed into two components: the first belonging to F and the second to the RKHS of
the residual kernel. We introduce the concept of an F-conditional learner, which has full access to
the F-component the regression function and learns the second component from data using stan-
dard KRR with the residual kernel. To analyze the statistical properties of the estimator produced
by conditional KRR, we compare it with the output of this learner. The distance between the two
estimators is referred to as the cost of conditioning. This quantity measures the extent to which
conditional KRR can be viewed as standard KRR with a modified kernel. Our main theoretical re-
sult, stated in Theorem 4, establishes that with probability at least 1− δ, the cost of conditioning is
bounded by C log k√

N
, where N is the sample size, k is the dimension of F , and C hides logarithmic

factors in k and δ, as well as additional dependencies on the regression function, K, and F .

In the next part of the paper (Section 5), we apply our theoretical results to the case where the initial
kernel K is already positive definite and, consequently, CPD w.r.t. any class F . We study condi-
tional KRR under three specific scenarios: (a) the hard thresholding case, i.e. where F is defined
as the first k principal eigenfunctions in the Mercer decomposition of K (subsection 5.1); (b) the
soft thresholding case, i.e. where F consists of k random realizations of a Gaussian process with
covariance function K (subsection 5.2); (c) F consists of k random features (or, equivalently, k
realizations of a random field) whose covariance function is K (subsection 5.2). Our theoretical
analysis, corroborated by experimental evidence, demonstrates that the expected test risk of condi-
tional KRR is strictly lower than that of standard KRR, provided that the F-component of the signal
is sufficiently strong.

Related work. The statistical properties of the KRR regression function estimator have been stud-
ied extensively, with particular focus on convergence rates Caponnetto & De Vito (2007); Marteau-
Ferey et al. (2019); Cui et al. (2021), the distribution of expected risk under universality assump-
tions Bordelon et al. (2020); Jacot et al. (2020a); Simon et al. (2023), and the double-descent phe-
nomenon Mei & Montanari (2022); Nakkiran et al. (2021). Our results show that these existing
estimates can be directly extended to conditional KRR, provided that one accounts for the cost of
conditioning.
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Conditional KRR belongs to a broader family of two-stage methods: first recovering the main com-
ponent of the signal with a base neural network, and then learning from the residuals. As shown
in Yang et al. (2023), this strategy yields lower test risk than relying on the base network alone and
additionally allows explicit memorization of the training labels. This line of research is related to
the classical works on boosting Freund & Schapire (1997), where the strategy is to iteratively refine
an ensemble by training each new weak learner on the residual errors left by the previous ones.

2 CONDITIONALLY POSITIVE DEFINITE AND RESIDUAL KERNELS

Definition 1. Let X be a nonempty set, and let f1, . . . , fk : X → R be linearly independent real-
valued functions. Define F = span{f1, . . . , fk} ⊆ RX . A symmetric kernel K : X × X → R
is called conditionally positive definite (CPD) with respect to F if, for any points x1, . . . , xn ∈ X
and any coefficients α1, . . . , αn ∈ R satisfying the constraints

∑n
i=1 αif(xi) = 0 for all f ∈ F ,

we have
∑n

i=1

∑n
j=1 αiαjK(xi, xj) ≥ 0. If the inequality holds for all α ∈ Rn without additional

constraints, then K is said to be positive definite (PD).

Let X ⊆ Rd be a compact set, f1, . . . , fk : X → R be continuous functions, and K : X × X → R
be a continuous CPD kernel with respect to F . Denote by B(X ) the Borel σ-algebra on X , and by
P(X ) the set of probability Borel measures on X .

For P ∈ P(X ), the projection of f onto F , denoted ΠP f , is defined by ΠP f(x) =∫
X Π(x, y)f(y)dP (y), where Π(x, y) is the kernel associated with the projection operator, given

by

Π(x, y) =

k∑
i,j=1

(G+)ijfi(x)fj(y),

for G = [⟨fi, fj⟩L2(X ,P )]
k
i,j=1 and G+ as the Moore-Penrose inverse of G. Given a function

f(x, ω), the notation ΠP f(·, ω) refers to the projection operator applied to the function f for fixed
ω. The result is another function f̃(x, ω). If G is invertible, then ΠP f = f for any f ∈ F . In
this case, the distribution P is said to be F-nondegenerate. The following theorem extends the
construction of the kernel given in equation (20) of Meinguet (1979).
Theorem 1. Let P ∈ P(X ) be F-nondegenerate. Define the residual kernel

KP (x, y) = K(x, y)−ΠP [K(x, ·)](x, y)−ΠP [K(·, y)](x, y) + ΠP [ΠP [K(x, ·)](·, y)](x, y).
Then, KP (x, y) is a positive definite kernel.

Note that, using slightly more advanced notation, one can write KP =
(
(I −ΠP )⊗ (I −ΠP )

)
[K],

where I denotes the identity operator on L2(X , P ), and ⊗ is the tensor product of operators on
L2(X , P ), producing an operator on L2(X , P )⊗ L2(X , P ).

3 THE NATIVE SPACE AND RIDGE REGRESSION WITH CPD KERNELS

The reduced native space of a CPD kernel K w.r.t. F , denoted H̃F
K , is defined as the completion of

L =
{
f =

n∑
i=1

αiK(xi, ·) |
n∑

i=1

αifj(xi) = 0 for all j = 1, . . . , k
}
,

equipped with the inner product

⟨
n∑

i=1

αiK(xi, ·),
n∑

j=1

βjK(xj , ·)⟩L =

n∑
i,j=1

αiβjK(xi, xj).

The space H̃F
K is a Hilbert space Wendland (2004).

Since K is continuous, the reduced native space H̃F
K embeds naturally into C(X ). Hence, w.l.o.g.,

we may regard H̃F
K as a subspace of C(X ). The full native space is then defined as the direct sum

HF
K = H̃F

K ⊕F ,

3
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equipped with the semi-norm ∥f∥HF
K

:=
√

⟨f⊥, f⊥⟩H̃F
K

where f = f∥ + f⊥ is the unique decom-

position with f∥ ∈ F and f⊥ ∈ H̃F
K . This semi-norm corresponds to the inner product ⟨·, ·⟩H̃F

K
,

turning HF
K into a semi-Hilbert space. The subspace F is referred to as the null space of HF

K .

Let H̃F
K denote the RKHS of the residual kernel KP . Note that functions in H̃F

K are all orthogonal
to F in L2(X , P ). Then we define the semi-Hilbert space HF

K as the set of functions H̃F
K ⊕ F with

the inner product
⟨f∥ + f⊥, g∥ + g⊥⟩HF

K
= ⟨f⊥, g⊥⟩H̃F

K
,

where f∥ ∈ F , f⊥ ∈ H̃F
K . The following theorem claims that the latter two definitions are equiva-

lent. It is a generalization of Theorem 4 from Cucker & Smale (2001) for PD kernels to the case of
CPD kernels.
Theorem 2. Let P be a probabilistic Borel measure non-degenerate on X . Then, HF

K = HF
K .

Now, suppose that we are given a dataset {(xi, yi)}Ni=1 ⊂ X ×R. We now introduce the conditional
Kernel Ridge Regression problem, defined as the minimization of the functional

J(f) =
1

N

N∑
i=1

(f(xi)− yi)
2 + λ∥f∥2HF

K
, (1)

over all f ∈ HF
K . The role of the empirical residual kernel is demonstrated by the following theorem,

which establishes a connection between conditional KRR and standard KRR for PD kernels.
Theorem 3. Let P = 1

N

∑N
i=1 δxi

and let HKP
be the RKHS of KP . Assuming that F =

[fi(xj)]
k
i=1

N
j=1 ∈ Rk×N is of rank k, we have

min
f∈HF

K

1

N

N∑
i=1

(f(xi)− yi)
2 + λ∥f∥2HF

K
= min

g∈HKP

1

N

N∑
i=1

(g(xi)− ri)
2 + λ∥g∥2HKP

,

where r = (r1, . . . , rN )⊤ ∈ RN is a projection of y = (y1, . . . , yN )⊤ ∈ RN onto the orthogonal
complement of the row space of F .

If f∗ is an optimal function of the first task then g = (I − ΠP )f
∗ is an optimal function for the

second task. Reversely, if g∗ is an optimal function for the second task, then

f = g∗ + [f1(x), · · · , fk(x)](FF⊤)−1Fy,

is an optimal function for the first task.
Remark 1. The intuition behind this theorem is as follows. Suppose we are given a set of features
f1, · · · , fk. For a training set {(xi, yi)}Ni=1 ⊂ X × R, we first solve a standard linear regression
problem with the model

Y = β1f1(X) + ...+ βkfk(X) + ε,

which amounts to projecting the target vector y onto the row space of F . The remaining unexplained
component of y is the residual vector r. These residuals can then be predicted using KRR with the
kernel KP . The theorem shows that this two-step procedure is exactly equivalent to performing
conditional KRR with the kernel K, which is CPD w.r.t. F (see diagram 1).

4 THE F -CONDITIONAL LEARNING AND THE COST OF CONDITIONING

Suppose P is a distribution whose support is X . The residual kernel w.r.t. F = span(f1, · · · , fk),
KP , has a Mercer-type representation,

KP (x, y) =

∞∑
i=1

λiϕi(x)ϕi(y),

Each ϕi belongs to L2(X , P ) ∩ F⊥, where the orthogonality is taken w.r.t. the inner product in
L2(X , P ). Let f be a function from HF

K which, by Theorem 2, can be written as f = f∥ + f⊥,
where

f∥ =

k∑
i=1

uifi, f⊥ =

∞∑
i=1

vi
√
λiϕi.

4
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By construction, ∥f∥2HF
K
=
∑∞

i=1 v
2
i .

Let PX,Y be a distribution on X × R defined by

(X,Y ) ∼ PX,Y ⇔ X ∼ P, Y = f(X) + ε̃,

where ε̃ ∼ N (0, σ2) is independent of X . Pairs of the training set T = {(X1, Y1), · · · , (XN , YN )}
are generated independently from PX,Y , i.e. Yi = f(Xi) + εi. To the latter training set one can
relate another training set (called residual), Tres = {(Xi, Y

⊥
i )}Ni=1, where Y ⊥

i = f⊥(Xi) + εi. The
corresponding distribution over input–output pairs is denoted by P⊥

X,Y . Note that the noise term is
included as part of the residual training set.

We now outline the idea of F-conditional learning. Suppose that, prior to learning the target map-
ping f from the dataset T , the learner has full access to the component f∥. The learner can then
construct the residual dataset Tres by defining Y ⊥

i = Yi − f∥(Xi). Next, KRR with the residual
kernel KP is applied to Tres, yielding an estimator h of the residual function f⊥, i.e.

h = arg min
g∈HKP

1

N

N∑
i=1

(g(Xi)− Y ⊥
i )2 + λ∥g∥2HKP

.

Suppose that f̂ =
∑∞

i=1 v̂i
√
λiϕi +

∑k
i=1 ûifi is an argument at which (1) attains its minimum, i.e.

f̂ = argming∈HF
K

1
N

∑N
i=1(g(Xi) − Yi)

2 + λ∥g∥2HF
K

. For the trained function f̂ one can define

f̂⊥ =
∑∞

i=1 v̂i
√
λiϕi and f̂∥ =

∑k
i=1 ûifi. Due to Theorem 3, it is natural to expect that f̂⊥ ≈ h

and f̂∥ ≈ f∥. The discrepancy between f̂ , obtained without access to f∥, and f∥ + h, produced by
an F-conditional learner, can be naturally interpreted as the cost of conditioning.
Definition 2. The difference

ccon = E[(f̂(X)− f∥(X)− h(X))2] = ∥f̂⊥ − h∥2L2(X ,P ) + ∥f̂∥ − f∥∥2L2(X ,P ) (2)

is referred to as the cost of conditioning. Note that ccon is a random variable, depending on
X1, · · · , XN and the noise.
Theorem 4. Suppose that f1, · · · , fk are orthogonal functions of unit norm in L2(X , P ), k ≥ 1.
With probability at least 1− δ over randomness in X1, · · · , XN , we have

Eε[ccon] ≤ c1∥f∥2HF
K
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X )

k log1/2( 2kδ )

N1/2
+
c2σ

2

N
,

where CKP
=

√
maxxKP (x, x), c1 = 32

√
2
(
2 + 3λ1(

7CKP

λ +
343C3

KP

λ2 )2
)
, c2 =

9λ1C
2
KP

λ2

(C2
KP

λ + 1
)2

+ 2k, and provided that N ≥ max
(
( 283 k max

j:1≤j≤k
∥fj∥2L∞(X ) +

4
3 ) log(

4k
δ ), k2 log( 2kδ ) max

j:1≤j≤k
∥fj∥4L∞(X )

)
.

For fixed λ ̸= 0, the second term behaves as O(σ
2(k+1)
N ), which matches the decay rate of the

expected loss in linear regression with k features. When the signal part of the output lies entirely in
F , i.e. f⊥ = 0 and ∥f∥HF

K
= 0, the first term in the inequality vanishes. In this case, conditional

KRR yields f̂ such that Eε[∥f̂⊥−h∥2L2(X ,P )] = O(σ
2(k+1)
N ), Eε[∥f̂∥−f∥∥2L2(X ,P )] = O(σ

2(k+1)
N ).

That is, f̂∥ recovers the signal f with the accuracy of linear regression, while f̂⊥ is O(σ
2(k+1)
N )-

close to h, the output of KRR with residual kernel KP . In other words, noise can make a substantial
contribution (beyond O(σ

2(k+1)
N )) only to the component orthogonal to F , and hence orthogonal to

the signal f . Unlike linear regression, however, F-conditional learning is capable of memorizing the
noise in the training set. This effect may be described as weak benign overfitting. Moreover, if the
eigenvalues of the residual kernel KP decay as λi ∼ 1

i logα i with α > 1, then h→ 0 as N → ∞. In
this regime, the learner exhibits partial memorization of the training set without degrading the error
loss, a phenomenon known simply as benign overfitting Mallinar et al. (2022).

Finally, toy experiments reported in Section 6 suggest that the cost of conditioning typically decays
as ∼ 1

N , even when f /∈ F . Although our theoretical bound allows for a contribution from any
nontrivial f⊥ that decays as ∼ 1√

N
, we did not observe this slower rate in practice.
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5 APPLICATIONS OF THEOREM 4

5.1 F -CONDITIONING WITH k PRINCIPAL EIGENFUNCTIONS: HARD THRESHOLDING

Suppose the initial kernel K is positive definite, i.e.

K(x, y) =

∞∑
i=1

λiϕi(x)ϕi(y),

where {λi} are strictly positive eigenvalues and {ϕi} are the corresponding eigenfunctions of the
integral operator ϕ →

∫
X K(·, x)ϕ(x)dP (x) acting on L2(X , P ). Let us treat K as a CPD kernel

w.r.t. Φk = span({ϕ1, · · · , ϕk}) and study the task (1). Thus, the set of unpenalized features
coincides with first k eigenfunctions of K. Then, the residual kernel w.r.t. to Φk is simply the tail
part of K, i.e.

KP (x, y) =

∞∑
i=k+1

λiϕi(x)ϕi(y).

Following the formalism of the previous section, let us now assume that the regression function has
the form:

f =

k∑
i=1

uiϕi.

As shown in the previous section, with probability at least 1− δ over the randomness in the inputs,
conditional KRR with a CPD kernel K (w.r.t. Φk) and a regularization parameter λ > 0 can be in-
terpreted as standard KRR with the residual kernel KP applied to the residual dataset {(Xi, εi)}Ni=1
(which now consists solely of noise, since f ∈ Φk). The only difference is the presence of an ad-
ditional conditioning cost, bounded by O(σ

2(k+1)
N ), which contributes to the test error (noting that,

by construction, ∥f∥HF
K
= 0).

Let κ > 0 be such that
∑∞

i=1
λi

λi+κ + λ
κ = N , and let

E = Enoise(
∞∑
i=1

(1− Li)
2u2i + σ2),

where Li = λi

λi+κ denotes the learnability of the mode ϕi, and Enoise = N
N−

∑∞
i=1 L2

i
is the over-

fitting coefficient. According to Simon et al. (2023), the expected error of KRR with the kernel
K approximately equals E . Analogously, let κ′ > 0 be such that

∑∞
i=k+1

λi

λi+κ′ +
λ
κ′ = N and

L′
i = λi

λi+κ′ , E ′
noise = N

N−
∑∞

i=k+1(L′
i)

2 . Then, the output of KRR with the residual kernel KP

has the expected error of approximately E ′ = E ′
noiseσ

2. To estimate the expected error of condi-
tional KRR with the CPD kernel K (w.r.t. Φk), the loss E ′ must be augmented by the conditioning
cost E[ccon] = O(σ

2(k+1)
N ). Therefore, in order for the expected error of conditional KRR to be

smaller than that of standard KRR (i.e., KRR with the PD kernel K and no unpenalized features),
the following condition must hold

0 > E[ccon] + E ′ − E = E ′
noiseσ

2 − Enoise(
k∑

i=1

(1− Li)
2u2i + σ2) +O(

σ2(k + 1)

N
),

or, equivalently,
k∑

i=1

κ2

(λi + κ)2
u2i > σ2(

E ′
noise

Enoise
− 1) +O(

σ2(k + 1)

NEnoise
). (3)

Note that the right-hand side of this inequality, as well as the coefficients κ2

(λi+κ)2 on the left-hand
side, do not depend on the target function f . Hence, the inequality provides a sufficient condition on
the coefficients of f in the basis {ϕi}ki=1 ensuring that conditional KRR outperforms standard KRR
without unpenalized features (equivalently, that the expected test error is a U-shaped function of k).
Our experiments confirm that the test error is often non-monotonic in k (the number of unpenalized
principal components) when the signal f is sufficiently strong. In contrast, for pure-noise datasets
(f = 0), the test MSE consistently increased with k across all experiments. The corresponding
experimental results are presented in Section 6.
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5.2 F -CONDITIONING WITH k RANDOM GAUSSIAN FEATURES: SOFT THRESHOLDING

In what follows, we show that choosing F = Φk = span{ϕ1, . . . , ϕk} is closely related to defining
F as k random Gaussian features with the covariance function K. Recall that the kernel admits
the Mercer decomposition K(x, y) =

∑∞
j=1 λjϕj(x)ϕj(y) where {ϕj}∞j=1 ⊂ L2(X , P ) forms

an orthonormal system and the eigenvalues {λj} are positive and decreasing. Let {f(ω, x)}x∈X
denote a centered Gaussian random field with covariance function K. Using the Karhunen-Loéve
representation of f(ω, x) ∈ L2(X , P ), we have

f(ω, x) =

∞∑
j=1

√
λjξj(ω)ϕj(x),

where {ξj(ω)}∞j=1 ∼iid N (0, 1).

Let us assume that gi(x) = f(ωi, x) for i.i.d. samples ω1, . . . , ωk and denote ω = (ω1, . . . , ωk).
Thus, we have gi(x) =

∑∞
j=1

√
λjξijϕj(x), where {ξij}ki=1

∞
j=1 ∼iid N (0, 1). We now define

Gk = span(g1, · · · , gk) and consider conditional KRR with the CPD kernel K w.r.t. Gk.

Let Kω
P be a residual kernel w.r.t. Gk. Let us define

Mℓ,m =

k∑
i,j=1

ξiℓ(G
−1)ijξjm.

where G ∈ Rk×k is the Gram matrix with Gij = ⟨gi, gj⟩L2(X ,P ) =
∑∞

ℓ=1 λℓξiℓξjℓ. The kernel of
the projection operator onto Gk in L2(X , P ) is

Πk(x, y) =

k∑
i,j=1

( ∞∑
ℓ=1

√
λℓξiℓϕℓ(x)

)
(G−1)ij

( ∞∑
m=1

√
λmξjmϕm(y)

)
.

After grouping terms we have

Πk(x, y) =

∞∑
ℓ,m=1

√
λℓλm

( k∑
i,j=1

ξiℓ(G
−1)ijξjm

)
ϕℓ(x)ϕm(y) =

∞∑
ℓ,m=1

√
λℓλmMℓ,mϕℓ(x)ϕm(y).

Since Kω
P = (I − Πk)⊗ (I − Πk)[K], the dependence of Kω

P on ω is encapsulated in coefficients
Mℓ,m. Also, ⟨ϕi,EY∼PK

ω
P (·, Y )ϕi(Y )⟩L2(X ,P ) = λi(1− 2λiMi,i +

∑∞
j=1 λ

2
jM

2
i,j).

Remark 2. In a slightly different context, the coefficients Mℓ,m were analyzed in Appendix C.3.1
of Jacot et al. (2020b) (see also Subsection I.7 of Simon et al. (2023)), under the assumption that k
is large, corresponding to the so-called “thermodynamic limit”. We have G =

∑∞
i=1 λiξiξ

⊤
i , where

ξi ∼ N (0, Ik) are generated independently. Let G−i =
∑

j:j ̸=i

λjξjξ
⊤
j , that is G = λiξiξ

⊤
i + G−i.

Then the Sherman-Morrison formula gives

G−1 = G−1
−i −

λiG
−1
−i ξiξ

⊤
i G

−1
−i

1 + λiξ⊤i G
−1
−i ξi

,

and, therefore,

Mi,j = ξ⊤i G
−1ξj = ξ⊤i G

−1
−i ξj −

λiξ
⊤
i G

−1
−i ξi · ξ⊤i G

−1
−i ξj

1 + λiξ⊤i G
−1
−i ξi

=
ξ⊤i G

−1
−i ξj

1 + λiξ⊤i G
−1
−i ξi

.

As shown in Simon et al. (2023), the quantity ξ⊤i G
−1
−i ξi concentrates sharply around its mean as

k → ∞, and moreover E[ξ⊤i G
−1
−i ξi] ≈ E[ξ⊤j G

−1
−jξj ]. The off-diagonal coefficients, i.e. Mi,j , i ̸= j,

concentrate sharply around zero. To analyze the effect of k unpenalized random Gaussian features,
it suffices to study the structure of Eω[K

ω
P (x, y)], which is the subject of the next theorem.

Theorem 5. The expectation of Kω
P over randomness in ω = (ω1, · · · , ωk), i.e. Eω[K

ω
P (x, y)], is

a Mercer kernel that is equal to
∞∑
i=1

µiϕi(x)ϕi(y),

where µi = λi(1− 2λi · E[Mi,i] +
∑∞

j=1 λ
2
j · E[M2

i,j ]).
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To analyze the behavior of µi

λi
, we need to estimate the quantity 1− 2λiE[Mi,i] +

∑∞
j=1 λ

2
jE[M2

i,j ],
which again, turns out to be tractable in the thermodynamic limit. In Appendix F we provide a
non-rigorous argument (supported by experiments) showing that, as k → ∞, the following approx-
imation holds:

µi

λi
≈ cκ2

(λi + κ)2
, (4)

where κ > 0 satisfies
∑∞

i=1
λi

λi+κ = k. The interpretation of the latter estimate is straightforward:
when λi ≫ κ, the i-th mode is strongly suppressed in the residual kernel, while for λi ≪ κ, the
corresponding eigenvalue is amplified by some factor c. Our numerical experiments (see Figure 5
in Appendix F) confirm that this behavior persists even for finite k. This shows that defining F via
k random Gaussian features has a similar effect to choosing F as the top k eigenfunctions: in both
cases the residual kernel Kω

P (x, y) resembles a truncated kernel, but with the suppression of large
eigenvalues applied in a soft manner. For this reason, it is natural to refer to these two approaches
as soft thresholding and hard thresholding, respectively.

We expect that the theoretical prediction of a U-shaped dependence of the expected error on k should
also hold for soft thresholding, just as it does for hard thresholding (under conditions analogous to
formula (3)). Our experiments, reported in Section 6, confirm that the non-monotone dependence of
the expected test error on k commonly arises in this setting as well.

F-conditioning with k random features. Let us assume that K is a Mercer kernel that is given
through the random features mapping f : Ω × X → R and (Ω,Σ,P) is a probabilistic space, that
is K(x, y) = Eω∼P [f(ω, x)f(ω, y)]. Since K is a positive definite kernel, it is in particular CPD
w.r.t. any subspace F = span(f1, . . . , fk). Given a dataset {(xi, yi)}Ni=1 ⊂ X ×R, we consider the
conditional KRR problem w.r.t. F , namely the optimization task (1).

We conducted experiments with F = Rk, where Rk = span{g1, . . . , gk} and gi(x) = f(ωi, x)
for i.i.d. samples ω1, . . . , ωk ∼ P . When {f(ω, x)}x∈X is a Gaussian random field, this setup
coincides with the soft thresholding framework. Hence, it can be seen as a generalization of soft
thresholding to the case of non-Gaussian features. Prior work Louart et al. (2018); Benigni & Péché
(2021) has shown that general random feature models behave similarly to the Gaussian case, and
thus we expect the U-shaped dependence of the expected risk on k to be a generic phenomenon here
as well. This hypothesis is verified experimentally in the next section.

6 EXPERIMENTS

Experiments with hard thresholding. To examine the cost of conditioning and the U-shaped
dependence of the test risk on the number of unpenalized principal eigenfunctions in the hard-
thresholding case, predicted theoretically by inequality (3), we carried out a toy experiment. On
the domain X = [0, 2π] with the uniform input distribution, we consider the kernel K(x, y) =
1 +

∑∞
i=1 i

−2s
(
cos(ix) cos(iy) + sin(ix) sin(iy)

)
, parameterized by a smoothness parameter s >

0. For a fixed parameter k, the set of unpenalized features F is defined as span
(
{cos(ix)}ki=0 ∪

{sin(ix)}ki=1

)
.

The dependence of ĉcon on the parameters N, k, and σ2 for various target functions is shown in Fig-
ure 2. The plots for k and σ2 exhibit linear trends fully consistent with the predictions of Theorem 4.
Across all experiments, we observed a decay rate of ĉcon ∼ 1

N asN increases. In contrast, the upper
bound of Theorem 4 scales as 1√

N
whenever ∥f∥HF

K
̸= 0 or f /∈ F . Whether the faster 1

N decay is
a general property of the hard thresholding setting, or merely a peculiarity of our experiments, re-
mains an open theoretical question. For the regression function f(x) =

∑5
n=0 cos(nx) the resulting

U-shaped behavior of the test error as a function of k is illustrated in Figure 3.

Experiments with random features. We also conducted experiments on F-conditioning with k
random features. In this setup, we worked directly with random feature representations rather than
explicitly computing the kernel K. As shown in Appendix G, conditional KRR in this setting can
be approximated by ridge regression with two types of random features: a large set of penalized
features and k unpenalized ones. We considered three activation functions: cos(x), ReLU(x),
and tanh(x). In each case, a random field on X = Sd−1 with covariance K was defined as fol-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Dependence of the cost of conditioning on N , k and σ2 in the hard thresholding setting.

Figure 3: Effect of hard thresholding when the regression function is a combination of the first five
principal eigenfunctions. As expected, the test MSE attains its minimum at k = 5.

lows: (a) f(x, [ω, b]) = cos(ω⊤x + b) with ω ∼ N (0, Id) and b ∼ U([0, 2π]); (b) f(x, [ω, b]) =
ReLU(ω⊤x + b) with ω ∼ N (0, Id) and b ∼ U([−1, 1]); (c) f(x, [ω, b]) = tanh(ω⊤x + b) with
ω ∼ N (0, Id) and b ∼ U([−1, 1]). Note that in case (a), K corresponds to the Gaussian kernel.
The U-shaped dependence of the expected risk for all three cases is shown in Figure 4.

Details of described experiments, together with additional experiments, are provided in Appendix H.

Figure 4: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and
the regression function f(x1, · · · , xd) = sin(x1) +

1
2 cos(x2).

7 CONCLUSIONS AND OPEN PROBLEMS

We have developed a statistical theory of learning with conditional KRR and applied it to both hard
and soft thresholding settings. Attempting to study the memorization phenomenon in conditional
KRR encounters an immediate difficulty: all of our bounds require the regularization parameter
λ ̸= 0, whereas perfect memorization of the training set is possible only when λ = 0. Extending our
statistical analysis to cover this latter case remains an open direction for future research.
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A PROOF OF THEOREM 1

Let M(X ) be the set of finite signed Borel measures on X . The following characterization of CPD
requires only standard argumentation.
Lemma 1. K is CPD w.r.t. F if and only if for all finite signed Borel measures µ ∈ M(X ) satisfying∫
f(x) dµ(x) = 0 for all f ∈ F , we have:∫∫

K(x, x′) dµ(x) dµ(x′) ≥ 0.

Let us first prove that KP (x, y) is a PD kernel, i.e. that∫∫
KP (x, y) dµ(x) dµ(y) ≥ 0

for any µ ∈ M(X ). We define ν = (I −ΠP )
∗µ ∈ M(X ) as the unique signed measure satisfying∫

f(x) dν(x) =

∫
(I −ΠP )f(x) dµ(x) for all f ∈ C(X ).

From Riesz-Markov-Kakutani representation theorem we obtain that ν is a finite signed Borel mea-
sure. For every f ∈ F , we have (I −ΠP )f = 0 due to nondegeneracy of P . Thus, we have∫

f(x) dν(x) =

∫
(I −ΠP )f(x) dµ(x) = 0.

From the definition of KP , we have KP = (I −ΠP ) [(I −ΠP ) [K(x, ·)](·, y)], so for any µ ∈
M(X ),∫∫

KP (x, y) dµ(x) dµ(y) =

∫ [∫
(I −ΠP ) [(I −ΠP ) [K(x, ·)](·, y)] (x, y) dµ(x)

]
dµ(y) =∫ [∫

(I −ΠP ) [K(x, ·)](x, y) dν(x)
]
dµ(y) =

∫ [∫
(I −ΠP ) [K(x, ·)](x, y) dµ(y)

]
dν(x)

=

∫ [∫
K(x, y) dν(y)

]
dν(x) =

∫∫
K(x, y) dν(x)dν(y).

The latter expression is non-negative due to conditional positive definiteness of K. Therefore,
KP (x, y) is positive definite.

B PROOF OF THEOREM 2

Define OP
K : L2(X , P ) → L2(X , P ) by

OP
Kf(x) =

∫
X
KP (x, y)f(y)dP (y).

By Mercer’s theorem, the kernel KP can be expanded as

KP (x, y) =

∞∑
i=1

λiϕi(x)ϕi(y),
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where {λi} are non-zero eigenvalues of OP
K and {ϕi} are corresponding orthogonal eigenfunctions

of unit length. Note that ϕi ∈ L2(X , P )∩F⊥ due to OP
K [L2(X , P )∩F⊥] ⊆ L2(X , P )∩F⊥ and

OP
K [F ] = {0}. It is well-known (see Theorem 4 from Cucker & Smale (2001)) that H̃F

K is a Hilbert

space with a set of functions
√

OP
K [L2(X , P )], i.e. the set of functions of the form

∞∑
i=1

√
λixiϕi

where [xi]
∞
i=1 ∈ l2(N). For f =

∑∞
i=1

√
λixiϕi and g =

∑∞
i=1

√
λiyiϕi, the inner product on H̃F

K
equals

⟨f, g⟩H̃F
K
=

∞∑
i=1

xiyi.

First let us prove that L ⊆ HF
K which will directly imply L ⊕ F ⊆ HF

K . Let f ∈ L and

f =

n∑
i=1

αiK(xi, ·) such that
n∑

i=1

αifj(xi) = 0 for all j = 1, . . . , k.

Since
∑n

i=1 αifj(xi) = 0, then (I − ΠP )
∗∑n

i=1 αiδxi =
∑n

i=1 αiδxi . Therefore, the function f
can be expressed as

f(x) =

∫
X
K(y, x)d(

n∑
i=1

αiδxi
)(y) =

∫
X
K(y, x)d((I −ΠP )

∗
n∑

i=1

αiδxi
)(y) =

∫
X
(I −ΠP )[K(·, z2)](y, x)d(

n∑
i=1

αiδxi
)(y) =

n∑
i=1

αi(I −ΠP )[K(·, z2)](xi, x) =

n∑
i=1

αi(I −ΠP )[(I −ΠP )[K(·, z2)](z1, ·)](xi, x) + αiΠP [(I −ΠP )[K(·, z2)](z1, ·)](xi, x).

Note that ΠP [(I −ΠP )[K(·, z2)](z1, ·)](xi, x) ∈ F and we obtained

f(x) =

n∑
i=1

αiKP (xi, x) + f̃ ,

where f̃ ∈ F . Since
n∑

i=1

αiKP (xi, x) =

n∑
i=1

αi

∞∑
j=1

λjϕj(xi)ϕj(x) =

∞∑
j=1

√
λj(

n∑
i=1

αiϕj(xi))
√
λjϕj(x),

and

∥[
√
λj(

n∑
i=1

αiϕj(xi))]
∞
j=1∥2l2(N) =

∞∑
j=1

λj

n∑
i,i′=1

αiαi′ϕj(xi)ϕj(xi′) =
∑

αiαi′K(xi, xi′) <∞

we conclude that
∑n

i=1 αiKP (xi, x) ∈ H̃F
K . Thus, we proved f ∈ HF

K , and therefore, L⊕F ⊆ HF
K .

Let us now prove that for any g ∈ HF
K and the previous f ∈ L we have

⟨g, f⟩HF
K
=

n∑
i=1

αig(xi).

The latter property is an analog of the reproducing property of the kernelK in the theory of RKHSs.
By construction, we have g =

∑
j rj
√
λjϕj + g̃ for [ri]∞i=1 ∈ l2(N) and g̃ ∈ F . Thus,

⟨g, f⟩HF
K
=

∞∑
j=1

rj
√
λj(

n∑
i=1

αiϕj(xi)) =

n∑
i=1

αi(g(xi)− g̃(xi)) =

n∑
i=1

αig(xi),

13
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due to
∑n

i=1 αig̃(xi) = 0.

The inner product in L matches the inner product in HF
K . Indeed, let f, g ∈ L. In the previous

analysis we established that

f =

∞∑
j=1

pj
√
λjϕj + f̃ , g =

∞∑
j=1

qj
√
λjϕj + g̃,

where pj =
√
λj(
∑n

i=1 αiϕj(xi)), qj =
√
λj(
∑m

i=1 βiϕj(yi)) and f̃ , g̃ ∈ F . Therefore,

⟨f, g⟩HF
K
=

∞∑
j=1

pjqj =

∞∑
j=1

λj(

n∑
i=1

αiϕj(xi))(

m∑
i=1

βiϕj(yi)) =

n∑
i=1

m∑
j=1

K(xi, yj)αiβj .

So, we have ⟨f, g⟩L = ⟨f, g⟩HF
K

. This implies to ⟨f, g⟩HF
K
= ⟨f, g⟩HF

K
for any f, g ∈ L ⊕ F .

To complete the proof we need to show that L ⊕ F ⊆ HF
K is dense in HF

K . The latter follows
from the denseness of (L ⊕ F) ∩ H̃F

K in H̃F
K . Indeed, let f ∈ H̃F

K be orthogonal to all functions in
(L ⊕ F) ∩ H̃F

K , then the previous analysis shows that it should be orthogonal to all functions from
L, i.e.

⟨f,
n∑

i=1

αiK(xi, ·)⟩HF
K
= 0 whenever

n∑
i=1

αifj(xi) = 0 for all j = 1, . . . , k.

This implies
n∑

i=1

αif(xi) = 0 whenever
n∑

i=1

αifj(xi) = 0 for all j = 1, . . . , k.

The latter implies f ∈ F . Since F ∩ H̃F
K = {0}, we obtain f = 0. Theorem proved.

C PROOF OF THEOREM 3

By the Representer Theorem (e.g. see Theorem 6.1 from Auffray & Barbillon (2009)), the solution
f∗ of the initial task (1) has the form

f∗(x) =

N∑
i=1

αiK(xi, x) +

k∑
j=1

βjfj(x),

where
∑

i αifj(xi) = 0, 1 ≤ j ≤ k, which leads us to the following optimization task

min
α,β

∥Kα+ F⊤β − y∥2 + λα⊤Kα subject to Fα = 0,

where y = (y1, . . . , yN )⊤ ∈ RN , K = [K(xi, xj)]
N
i,j=1 ∈ RN×N , α = (α1, . . . , αN )⊤ ∈ RN and

β = (β1, . . . , βk)
⊤ ∈ Rk.

Since the matrix FF⊤ is invertible, the minimization over β gives

β = −(FF⊤)−1F (Kα− y).

The matrix Π = F⊤(FF⊤)−1F corresponds to the projection operator onto the row space of F .
Let us denote r = (IN − Π)y, where IN = [δij ]

N
i,j=1. Note that α = (IN − Π)α due to Fα = 0.

After we plug the expression for β into the former objective, we obtain a new objective

∥(IN −Π)(Kα− y)∥2 + λα⊤Kα =

∥(IN −Π)K(IN −Π)α− r∥2 + λα⊤(IN −Π)K(IN −Π)α.

Let us denote K̃ = (IN −Π)K(IN −Π). We obtained the task

min
α

∥K̃α− r∥2 + λα⊤K̃α subject to Fα = 0.

14
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For any y ∈ {x ∈ RN | Fx = 0}⊥ = row(F ) we have K̃y = 0. Therefore, the latter task is
equivalent to solving the unconstrained

min
α′

∥K̃α′ − r∥2 + λα′⊤K̃α′,

and then setting α = (IN − Π)α′. Further, let us denote solutions of the latter two tasks α and α′

respectively. Note that K̃ is the kernel matrix for the residual kernel function KP . By Theorem 1,
KP is positive semidefinite and the latter task leads to the KRR optimization task

min
g∈HKP

N∑
i=1

(g(xi)− ri)
2 + λ∥g∥2HKP

,

with the correspondence between solutions of the KRR and the previous one established by the rule

g∗(x) =

N∑
i=1

α′
iKP (xi, ·).

Note that adding to α′ any vector from row(F ) does not change g∗, therefore we can write g∗(x) =∑N
i=1 αiKP (xi, ·). Since α = (IN −Π)α and [KP (xi, ·)]Ni=1 = (IN −Π)[(I −ΠP )[K(xi, ·)]]Ni=1,

we obtain

g∗(x) =

N∑
i=1

αi(I −ΠP )[K(x, ·)](xi, x)

That is, g∗ = (I −ΠP )f
∗.

Next, given g∗, let us recover f∗. We have

f∗ = g∗ +ΠP f
∗ = g∗ +ΠP (

N∑
i=1

αiK(xi, x) +

k∑
j=1

βjfj(x)) =

g∗ +ΠP (

N∑
i=1

αiK(xi, x)) + β⊤[f1(x), · · · , fk(x)]⊤ =

g∗ + α⊤KF⊤(FF⊤)−1[f1(x), · · · , fk(x)]⊤ + β⊤[f1(x), · · · , fk(x)]⊤.

Using β = −(FF⊤)−1F (Kα− y), we conclude

f∗ = g∗ +ΠP f
∗ = g∗ + y⊤F⊤(FF⊤)−1[f1(x), · · · , fk(x)]⊤.

Theorem proved.

D PROOF OF THEOREM 4

Let l2(N) denote the Hilbert space of sequences [xi]∞i=1 such that
∑

i x
2
i <∞ with the standard dot

product of sequences. By B(A,B) we denote bounded linear operators between spaces A and B.
E.g., B(RN , l2(N)) can be identifed with certain N×N matrices.

D.1 EXPRESSIONS FOR TRANSFER MATRICES

Following Section 4, let us introduce notations

u = [u1, · · · , uk]⊤, v = [v1, v2, · · · ]⊤, û = [û1, · · · , ûk]⊤, v̂ = [v̂1, v̂2, · · · ]⊤

y = [Y1, · · · , YN ]⊤,ϕi = [ϕi(X1), · · · , ϕi(XN )]⊤, fi = [fi(X1), · · · , fi(XN )]⊤

Φ = [ϕi(Xj)]
∞
i=1

N
j=1, F = [fi(Xj)]

k
i=1

N
j=1 ∈ Rk×N ,Λ = [λiδij ]

∞
i,j=1.

Note that y = Φ⊤Λ1/2v+F⊤u+εwhere ε ∼ N (0, σ2IN ) is independent of DN = (X1, · · · , XN ).

15
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Theorem 6. Let F be of rank k. For the v-part of the regression function we have v̂ = Tϕv+ Tϕεε,
with matrices Tϕ and Tϕε defined by

Tϕ = Λ1/2Ψ(Ψ⊤ΛΨ+ λNIN )−1Ψ⊤Λ1/2,

Tϕε = Λ1/2Ψ(Ψ⊤ΛΨ+ λNIN )−1(IN − F⊤(FF⊤)−1F ),

where Ψ = Φ(IN − F⊤(FF⊤)−1F ) and I = [δij ]
∞
i,j=1. For the u-part of the regression function

we have û = u+ Tfv + Tfεε where

Tf = (FF⊤)−1FΦ⊤Λ1/2(I − Λ1/2Ψ(Ψ⊤ΛΨ+ λNIN )−1Ψ⊤Λ1/2),

Tfε = (FF⊤)−1F.

Remark 3. The latter theorem claims that a linear relationships between coefficients of the regres-
sion function and the trained function can be described by the following diagram.

ε v u

v̂ û

Tϕε

Tfε
Tϕ

Tf
Ik

Note that v̂ and û − u do not depend on u. This implies that for a fixed u, the distribution of
(f̂(X) − f(X))2 for X ∼ P does not depend on u. Therefore, in a statistical analysis of this
expression we may assume that u = 0.

The fact that v̂ does not depend on u follows from Theorem 3. Indeed, according to Remark 1
KRR with the CPD kernel can be understood as the two step process: the first step being the linear
regression with features f1, · · · , fk and the second step being the KRR on residuals. The first step
“erases” all correlations with u, i.e. the F-part of the signal. That is why the part of the trained
function that belongs to the RKHS of KP does not depend on u.

Further, given a kernel K̃, K̃(x,DN ) denotes the row [K̃(x,X1), · · · , K̃(x,XN )] and K̃(DN ,DN )

denotes the matrix [K̃(Xi, Xj)]
N
i,j=1. We define PN = 1

N

∑N
i=1 δXi

, i.e. the empirical measure.
Also, in all lemmas below we assume that F is of rank k, i.e. PN is F-nondegenerate.
Lemma 2. We have ⟨ϕi,KPN

(·,DN )⟩L2(X ,P ) = λiϕ
⊤
i (IN − F⊤(FF⊤)−1F ).

Proof. By construction, ⟨ϕi,KP (·, y)⟩L2(X ,P ) = λiϕi(y). Let Π(x, y) =∑k
i,j=1(G

−1)ijfi(x)fj(y) where G = [Gij ]
k
i,j=1 = [⟨fi, fj⟩L2(X ,P )]

k
i,j=1. The residual

kernel equals

KP (x, y) = K(x, y)− ES∼P [K(x, S)Π(S, y)]− ES∼P [Π(x, S)K(S, y)]+

ES,T∼P [Π(x, S)K(S, T )Π(T, y)].

Since ⟨ϕi, fj⟩L2(X ,P ) = 0, we obtain

⟨ϕi,K(·, y)− ES∼P [K(·, S)Π(S, y)]⟩L2(X ,P ) = λiϕi(y).

For any S, Π(S, y) ∈ span(f1, · · · , fk), therefore,

⟨ϕi,K(·, y)⟩L2(X ,P ) − λiϕi ∈ span(f1, · · · , fk).

The residual kernel w.r.t. PN equals

KPN
(x, y) = K(x, y)− ES∼PN

[K(x, S)ΠN (S, y)]− ES∼PN
[ΠN (x, S)K(S, y)]+

ES,T∼PN
[ΠN (x, S)K(S, T )ΠN (T, y)],

where ΠN (x, y) =
∑k

i,j=1(H
−1)ijfi(x)fj(y) and H = [Hij ]

k
i,j=1 = [⟨fi, fj⟩L2(X ,PN )]

k
i,j=1.

Therefore,

⟨ϕi,KPN
(·, y)⟩L2(X ,P ) = ⟨ϕi,K(·, y)⟩L2(X ,P ) − ES∼PN

[⟨ϕi,K(·, S)⟩L2(X ,P )ΠN (S, y)].
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Since ⟨ϕi,K(·, y)⟩L2(X ,P ) − λiϕi ∈ span(f1, · · · , fk), we have

⟨ϕi,K(·, y)⟩L2(X ,P ) − ES∼PN
[⟨ϕi,K(·, S)⟩L2(X ,P )ΠN (S, y)] =

λiϕi − ES∼PN
[λiϕi(S)ΠN (S, y)].

Thus,

⟨ϕi,KPN
(·,DN )⟩L2(X ,P ) = λiϕ

⊤
i − 1

N

N∑
j=1

λiϕi(Xj)ΠN (Xj ,DN ) =

λiϕ
⊤
i (IN − F⊤(FF⊤)−1F ).

Lemma proved.

Lemma 3. For any F-nondegenerate distribution Q, we have

(IN − F⊤(FF⊤)−1F )K(DN ,DN )(IN − F⊤(FF⊤)−1F ) =

(IN − F⊤(FF⊤)−1F )KQ(DN ,DN )(IN − F⊤(FF⊤)−1F ).

Proof. The residual kernel equals

KQ(x, y) =

∫
(δ(x− s)−Π(x, s))(δ(y − t)−Π(y, t))K(s, t)dQ(s)dQ(t),

where Π(x, y) =
∑k

i,j=1(G
−1)ijfi(x)fj(y) and [Gij ]

k
i,j=1 = [⟨fi, fj⟩L2(X ,Q)]

k
i,j=1. So,

K(x, y) = KQ(x, y) +

∫
Π(x, s)K(s, y)dQ(s)+∫

Π(y, t)K(x, t)dQ(t)−
∫

Π(x, s)Π(y, t)K(s, t)dQ(s)QP (t).

Since [Π(xi, s)]
N
i=1 ∈ span(f1, · · · , fk) we have (IN − F⊤(FF⊤)−1F )[Π(xi, s)]

N
i=1 = 0. Analo-

gously, ([Π(t, xi)]
N
i=1)

⊤(IN − F⊤(FF⊤)−1F ) = 0. Therefore,

(IN − F⊤(FF⊤)−1F )K(DN ,DN )(IN − F⊤(FF⊤)−1F ) =

(IN − F⊤(FF⊤)−1F )KQ(DN ,DN )(IN − F⊤(FF⊤)−1F ).

Lemma proved.

Corollary 1. We have

(IN − F⊤(FF⊤)−1F )K(DN ,DN )(IN − F⊤(FF⊤)−1F ) =

(IN − F⊤(FF⊤)−1F )Φ⊤ΛΦ(IN − F⊤(FF⊤)−1F ).

Proof. After setting Q = P in the previous lemma and, from KP (DN ,DN ) = Φ⊤ΛΦ, we obtain
the needed statement.

Proof of Theorem 6. The vector of residuals is given by

r = (IN − F⊤(FF⊤)−1F )y = (IN − F⊤(FF⊤)−1F )(Φ⊤Λ1/2v + F⊤u+ ε) =

(IN − F⊤(FF⊤)−1F )(Φ⊤Λ1/2v + ε).

From Theorem 3, the trained mapping f̂ =
∑∞

i=1 v̂i
√
λiϕi +

∑k
i=1 ûifi can be given as

KPN
(x,DN )(KPN

(DN ,DN ) + λNIN )−1r +

k∑
i=1

ũifi,

which gives √
λiv̂i = ⟨ϕi,KPN

(·,DN )(KPN
(DN ,DN ) + λIN )−1r⟩L2(X ,P ).
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From Lemma 2 we conclude ⟨ϕi,KPN
(·,DN )⟩L2(X ,P ) = λiϕ

⊤
i (IN −F⊤(FF⊤)−1F ). Therefore,√

λiv̂i = λiϕ
⊤
i (IN − F⊤(FF⊤)−1F )(KPN

(DN ,DN ) + λNIN )−1r =

λiϕ
⊤
i (IN − F⊤(FF⊤)−1F )(KPN

(DN ,DN ) + λNIN )+(IN − F⊤(FF⊤)−1F )(Φ⊤Λ1/2v + ε) =

λiϕ
⊤
i ((IN − F⊤(FF⊤)−1F )KPN

(DN ,DN )(IN − F⊤(FF⊤)−1F )+

λN(IN − F⊤(FF⊤)−1F ))+(Φ⊤Λ1/2v + ε).

Above we used the property (AB)+ = B+A+ for commuting symmetric matrices A,B and the
fact that A+ = A for a projection operator A. From Lemma 3 and Corollary 1 we conclude

(IN − F⊤(FF⊤)−1F )KPN
(DN ,DN )(IN − F⊤(FF⊤)−1F ) =

(IN − F⊤(FF⊤)−1F )Φ⊤ΛΦ(IN − F⊤(FF⊤)−1F ) =

(IN − F⊤(FF⊤)−1F )Ψ⊤ΛΨ(IN − F⊤(FF⊤)−1F ).

Thus,

v̂i =
√
λiϕ

⊤
i (IN − F⊤(FF⊤)−1F )(Ψ⊤ΛΨ+ λNIN )−1(IN − F⊤(FF⊤)−1F )(Φ⊤Λ1/2v + ε),

and, therefore, Tϕ = Λ1/2Ψ(Ψ⊤ΛΨ + λNIN )−1Ψ⊤Λ1/2. Also, Tε = Λ1/2Ψ(Ψ⊤ΛΨ +
λNIN )−1(IN − F⊤(FF⊤)−1F ).

Let us now derive the formula for û as a function of u, v and ε. First we will assume that f1, · · · , fk
are orthogonal unit vectors in L2(X , PN ). Using f̂ =

∑∞
i=1 v̂i

√
λiϕi +

∑k
i=1 ûifi, we have

⟨fi, f̂⟩L2(X ,PN ) =
1

N

∞∑
j=1

v̂j
√
λjf

⊤
i ϕj + ûi =

1

N
f⊤i Φ⊤Λ1/2v̂ + ûi.

From f̂ = KPN
(x,DN )(KPN

(DN ,DN ) + λNIN )−1r +
∑k

i=1 ũifi we also derive
⟨f̂ , fi⟩L2(X ,PN ) = ũi. Thus,

ûi = ũi −
1

N
f⊤i Φ⊤Λ1/2v̂.

Since ũ = (FF⊤)−1Fy = 1
N Fy and y = Φ⊤Λ1/2v + F⊤u+ ε we conclude

û = u+
1

N
FΦ⊤Λ1/2v − 1

N
FΦ⊤Λ1/2v̂ +

1

N
Fε =

u+
1

N
FΦ⊤Λ1/2(v − Λ1/2Ψ(Ψ⊤ΛΨ+ λIN )−1Ψ⊤Λ1/2v) +

1

N
Fε,

where Ψ = Φ(IN − F⊤(FF⊤)−1F ) = Φ(IN − 1
N F

⊤F ). Therefore,

F⊤(û− u) =
1

N
F⊤FΦ⊤Λ1/2(v − Λ1/2Ψ(Ψ⊤ΛΨ+ λIN )−1Ψ⊤Λ1/2v) +

1

N
F⊤Fε.

In the latter derivation we assumed that f1, · · · , fk are already orthogonalized in L2(X , PN ). If we
do not make such an assumption, the matrix of the projection operator onto F in L2(X , PN ) is not
1
N F

⊤F , but F⊤(FF⊤)−1F , which gives us

F⊤(û− u) = F⊤(FF⊤)−1F
(
Φ⊤Λ1/2(v − Λ1/2Ψ(Ψ⊤ΛΨ+ λNIN )−1Ψ⊤Λ1/2v) + ε

)
.

Thus,

û = u+ (FF⊤)−1F
(
Φ⊤Λ1/2(v − Λ1/2Ψ(Ψ⊤ΛΨ+ λNIN )−1Ψ⊤Λ1/2v) + ε

)
.

where Ψ = Φ(IN − F⊤(FF⊤)−1F ). From the latter the expression for Tf is straightforward.
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D.2 DISTANCE BETWEEN f̂⊥ AND h⊥ (f̂∥ AND f∥)

Recall that h = argming∈HKP

1
N

∑N
i=1(g(Xi)−Y ⊥

i )2+λ∥g∥2HKP
. The following theorem bounds

the difference between h and f̂ (or f̂⊥) in HK . Let ˆ̂v be such that h =
∑∞

i=1
ˆ̂vi
√
λiϕi. From

Theorem 6 we conclude, ˆ̂v = ˆ̂Tϕv + ˆ̂Tϕεε where

ˆ̂Tϕ = Λ1/2Φ(Φ⊤ΛΦ+ λNIN )−1Φ⊤Λ1/2

and
ˆ̂Tϕε = Λ1/2Φ(Φ⊤ΛΦ+ λNIN )−1.

Let us introduce t : B(RN , l2(N)) → B(l2(N), l2(N)) by

t(A) = A(A⊤A+ λIN )−1A⊤ ∈ B(l2(N), l2(N)).

Then, we have ˆ̂Tϕ = t( 1√
N
Λ1/2Φ) and Tϕ = t( 1√

N
Λ1/2Ψ).

Lemma 4. We have

Eε[∥h− f̂∥2HF
K
] ≤ ∥t( 1√

N
Λ1/2Φ)− t(

1√
N

Λ1/2Ψ)∥2B(l2(N),l2(N))∥f∥
2
HF

K
+

σ2
9C2

KP

Nλ2

(
C2

KP

λ
+ 1

)2

.

Proof. Using Theorem 2, the squared semi-norm ∥h− f̂∥2HK
equals

∥
∞∑
i=1

ˆ̂vi
√
λiϕi −

∞∑
i=1

v̂i
√
λiϕi∥2HKP

= ∥ˆ̂v − v̂∥2l2(N) = ∥ ˆ̂Tϕv + ˆ̂Tϕεε− Tϕv − Tϕεε∥2l2(N) =

∥( ˆ̂Tϕ − Tϕ)v∥2l2(N) + ∥( ˆ̂Tϕε − Tϕε)ε∥2l2(N) + 2⟨( ˆ̂Tϕ − Tϕ)v, ( ˆ̂Tϕε − Tϕε)ε⟩l2(N).

Taking the expectation over ε gives

Eε[∥h− f̂∥2HF
K
] = ∥( ˆ̂Tϕ − Tϕ)v∥2l2(N) + σ2Tr(( ˆ̂Tϕε − Tϕε)

⊤( ˆ̂Tϕε − Tϕε)).

The v-dependent term can be bounded by

∥( ˆ̂Tϕ − Tϕ)v∥2l2(N) ≤ ∥ ˆ̂Tϕ − Tϕ∥2B(l2(N),l2(N))∥v∥
2
l2(N) =

∥t( 1√
N

Λ1/2Φ)− t(
1√
N

Λ1/2Ψ)∥2B(l2(N),l2(N))∥f∥
2
HF

K
.

Let us denote ΠF = F⊤(FF⊤)−1F . The coefficient Tr(( ˆ̂Tϕε − Tϕε)
⊤( ˆ̂Tϕε − Tϕε)) = ∥ ˆ̂Tϕε −

Tϕε∥2F can be bounded by

∥ ˆ̂Tϕε − Tϕε∥F ≤ ∥Λ1/2Φ(Ψ⊤ΛΨ+ λNIN )−1 − Λ1/2Φ(Φ⊤ΛΦ+ λNIN )−1∥F+
∥Λ1/2ΦΠF (Ψ

⊤ΛΨ+ λNIN )−1∥F + ∥Λ1/2Φ(Ψ⊤ΛΨ+ λNIN )−1ΠF ∥F+
+∥Λ1/2ΦΠF (Ψ

⊤ΛΨ+ λNIN )−1ΠF ∥F .

The resolvent identity allows to bound the first term term by

∥Λ1/2Φ(Ψ⊤ΛΨ+ λNIN )−1 − Λ1/2Φ(Φ⊤ΛΦ+ λNIN )−1∥F ≤
1√
N

∥ 1√
N

Λ1/2Φ∥F · ∥( 1
N

Ψ⊤ΛΨ+ λIN )−1 − (
1

N
Φ⊤ΛΦ+ λIN )−1∥B(RN ,RN ) ≤

CKP√
N

∥( 1
N

Ψ⊤ΛΨ+ λIN )−1 − (
1

N
Φ⊤ΛΦ+ λIN )−1∥B(RN ,RN ) ≤

CKP√
Nλ2

∥ 1

N
Ψ⊤ΛΨ− 1

N
Φ⊤ΛΦ∥B(RN ,RN ).
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Since

∥ 1

N
Ψ⊤ΛΨ− 1

N
Φ⊤ΛΦ∥B(RN ,RN ) ≤ ∥ 1

N
Π⊤

FΦ
⊤ΛΦ∥B(RN ,RN ) + ∥ 1

N
Φ⊤ΛΦΠF ∥B(RN ,RN )+

∥ 1

N
Π⊤

FΦ
⊤ΛΦΠF ∥B(RN ,RN ) ≤ 3∥ 1

N
Φ⊤ΛΦ∥B(RN ,RN ) ≤ 3C2

KP
,

the first term is bounded by
3C3

KP√
Nλ2

. The 2nd, 3rd and 4th terms are bounded by

∥Λ1/2ΦΠF (Ψ
⊤ΛΨ+ λNIN )−1∥F ≤ ∥Λ1/2ΦΠF ∥F

λN
≤ ∥Λ1/2Φ∥F

λN
≤ CKP√

Nλ
,

∥Λ1/2Φ(Ψ⊤ΛΨ+ λNIN )−1ΠF ∥F ≤ ∥Λ1/2Φ(Ψ⊤ΛΨ+ λNIN )−1∥F ≤ ∥Λ1/2Φ∥F
λN

≤ CKP√
Nλ

,

∥Λ1/2ΦΠF (Ψ
⊤ΛΨ+ λNIN )−1ΠF ∥F ≤ ∥Λ1/2ΦΠF ∥F

λN
≤ ∥Λ1/2Φ∥F

λN
≤ CKP√

Nλ
.

To conclude, we have

∥ ˆ̂Tϕε − Tϕε∥F ≤
3C3

KP√
Nλ2

+
3CKP√
Nλ

.

Lemma proved.

The following theorem bounds the difference between f∥ and f̂∥ in L2(X , P ).
Lemma 5. We have

Eε[∥f̂∥ − f∥∥2L2(X ,P )] ≤ ∥Tf∥2B(l2(N),Rk)∥f∥
2
HF

K
+
k

N
∥( 1
N
FF⊤)−1∥B(Rk,Rk)σ

2.

Proof. The squared norm ∥f̂∥ − f∥∥2L2(X ,P ) equals

Eε[∥
k∑

i=1

ûifi −
k∑

i=1

uifi∥2L2(X ,P )] = Eε[∥û− u∥2] = Eε[∥Tfv + Tfεε∥2] =

∥Tfv∥2 + σ2Tr(T⊤
fεTfε) ≤ ∥Tf∥2B(l2(N),Rk)∥f∥

2
HF

K
+ σ2Tr(T⊤

fεTfε).

The second term can be bounded by

Tr(T⊤
fεTfε) = Tr(TfεT

⊤
fε) = Tr((FF⊤)−1FF⊤(FF⊤)−1) =

Tr((FF⊤)−1) ≤ k

N
∥( 1
N
FF⊤)−1∥B(Rk,Rk).

Thus, to control Eε[∥f̂⊥ − h∥2HF
K
] and Eε[∥f̂∥ − f∥∥2L2(X ,P )] we need to bound ∥t( 1√

N
Λ1/2Φ) −

t( 1√
N
Λ1/2Ψ)∥2B(l2(N),l2(N)), ∥Tf∥B(l2(N),Rk) and ∥( 1

N FF
⊤)−1∥B(Rk,Rk). Required bounds for the

latter expressions are obtained in the next section.

D.3 CONCENTRATION OF TRANSFER MATRICES

Let us introduce the notation:

e(x) = [
√
λ1ϕ1(x),

√
λ2ϕ2(x), · · · ]⊤ ∈ l2(N).

Given x1, · · · , xN ∈ X , let

e(x1, · · · , xN ) = [e(x1), · · · , e(xN )] ∈ B(RN , l2(N)),
Given continuous functions fj : X → R, j = 1, · · · , k, let us define a vector-function f(x) =
[f1(x), · · · , fk(x)]⊤ and denote

f(x1, · · · , xN ) = [f(x1), · · · , f(xN )] ∈ Rk×N .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using the introduced notation, the matrix Λ1/2Φ can be rewritten as e(X1, · · · , XN ), the matrix F
as f(X1, · · · , XN ), and the matrix Λ1/2Ψ in the following form:

Λ1/2Ψ = e(X1, · · · , XN )×
(IN − f(X1, · · · , XN )⊤(f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1f(X1, · · · , XN )).

Our first goal is to bound ∥Λ1/2Ψ− Λ1/2Φ∥B(RN ,l2(N)), or to bound

∥e(X1, · · · , XN )f(X1, · · · , XN )⊤(f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1f(X1, · · · , XN )∥B(RN ,l2(N)).

The latter expression can be bounded by a product of

∥ 1

N
e(X1, · · · , XN )f(X1, · · · , XN )⊤∥B(Rk,l2(N)),

and
∥( 1
N

f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1∥B(Rk,Rk)∥f(X1, · · · , XN )∥B(RN ,Rk).

The following lemma is dedicated to the first factor.
Lemma 6. Let X1, . . . , XN ∼iid P . For any t > 0, we have

∥ 1

N
e(X1, · · · , XN )f(X1, · · · , XN )⊤∥B(Rk,l2(N)) ≤√

k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
,

with probability at least 1− ke
− Nt2

8C4
KP

maxj:1≤j≤k ∥fj∥4L∞(X) .

To prove it we need to prepare a number of lemmas.
Lemma 7. Let f ∈ span(f1, · · · , fk) and X1, . . . , XN ∼iid P . We have

E
[
∥f ′N∥2HKP

]
=

1

N
EX∼P [f(X)2KP (X,X)],

where f ′N (·) = 1
N

∑N
i=1 f(Xi)KP (Xi, ·).

Proof. By the reproducing property

∥f ′N∥2HK
=

1

N2

N∑
i,j=1

f(Xi)f(Xj)⟨KP (Xi, ·),KP (Xj , ·)⟩HKP
=

1

N2

N∑
i,j=1

f(Xi)f(Xj)KP (Xi, Xj).

Hence,

E[∥f ′N∥2HKP
] =

1

N
EX∼P [f(X)2KP (X,X)],

due to
∫
X KP (x, y)f(y)dP (y) = 0. Lemma proved.

Lemma 8. Under the assumptions of the previous lemma, for any t > 0, we have

P[∥f ′N∥2HKP
>

1

N
C2

KP
∥f∥2L∞(X ) + t] ≤ e

− Nt2

8C4
KP

∥f∥4
L∞(X) .

Proof. Let us define the function h̃ by h̃(X1, · · · , XN ) = ∥f ′N∥2HKP
−

1
N2

∑N
i=1 f(Xi)

2KP (Xi, Xi). The function satisfies

|h̃(x1, · · · , xN )− h̃(x1, · · · , xi−1, x
′
i, xi+1, · · · , xN )| ≤

2

N2

N∑
j:j ̸=i

|f(xi)f(xj)KP (xi, xj)− f(x′i)f(xj)KP (x
′
i, xj)| ≤

4C2
KP

∥f∥2L∞(X )

N
.
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due to |f(x)f(y)KP (x, y)| ≤ C2
KP

∥f∥2L∞(X ).

Using McDiarmid’s concentration inequality, we obtain

P[h̃(X1, · · · , XN )− E[h̃(X1, · · · , XN )] > t] ≤ e
− Nt2

8C4
KP

∥f∥4
L∞(X) .

From
∫
X KP (x, y)f(y)dP (y) = 0, we obtain E[h̃(X1, · · · , XN )] = 0. Thus,

P[h̃(X1, · · · , XN ) > t] ≤ e
− Nt2

8C4
KP

∥f∥4
L∞(X) ,

and

P[[∥f ′N∥2HKP
>

1

N
C2

KP
∥f∥2L∞(X ) + t] ≤ e

− Nt2

8C4
KP

∥f∥4
L∞(X) .

Proof of Lemma 6. Using the notations of the previous lemma, we simply need to note that

∥ 1

N

N∑
i=1

e(Xi)fj(Xi)∥2l2(N) = ∥(fj)′N∥2HKP
.

For each of functions {fj}, using the previous lemma we obtain that one of the inequalities

∥(fj)′N∥2HKP
>

1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t, 1 ≤ j ≤ k,

can be violated with probability no more than ke
− Nt2

8C4
KP

maxj ∥fj∥4L∞(X) . Thus, with probability at

least 1− ke
− Nt2

8C4
KP

maxj:1≤j≤k ∥fj∥4L∞(X) we have

max
j:1≤j≤k

∥ 1

N

N∑
i=1

e(Xi)fj(Xi)∥2l2(N) ≤
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t.

From

∥ 1

N
e(X1, · · · , XN )f(X1, · · · , XN )⊤∥B(Rk,l2(N)) ≤

√
k max

j:1≤j≤k
∥ 1

N

N∑
i=1

e(Xi)fj(Xi)∥l2(N),

we obtain the needed statement.

Let us now deal with the second factor, i.e.

∥( 1
N

f(x1, · · · , xN )f(x1, · · · , xN )⊤)−1∥B(Rk,Rk)∥f(x1, · · · , xN )∥B(RN ,Rk).

The matrix 1
N f(x1, · · · , xN )f(x1, · · · , xN )⊤ is simply the empirical covariance matrix for features

f1, ..., fk and it concentrates around its mean w.r.t. the operator norm due to the standard Bernstein
matrix inequality argument.

Lemma 9. Let X1, . . . , XN ∼iid P . We have

∥( 1
N

f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1∥B(RN ,RN ) ≤ 2,

∥( 1
N

f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1∥B(Rk,Rk)∥f(X1, · · · , XN )∥B(RN ,Rk) ≤
√
6N,

with probability at least 1− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.
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Proof. We have

1

N
f(X1, · · · , XN )f(X1, · · · , XN )⊤ − Ik =

1

N

N∑
i=1

(f(Xi)f(Xi)
⊤ − Ik).

Matrices f(Xi)f(Xi)
⊤ − Ik ∈ Rk×k are independent and

∥f(Xi)f(Xi)
⊤ − Ik∥B(Rk,Rk) ≤ ∥f(Xi)f(Xi)

⊤∥B(Rk,Rk) + 1 ≤
k max

j:1≤j≤k
∥fj∥2L∞(X ) + 1.

Note that E[f(Xi)f(Xi)
⊤ − Ik] = 0. For the second moment we have

E[(f(Xi)f(Xi)
⊤ − Ik)

2] = E[∥f(Xi)∥2f(Xi)f(Xi)
⊤]− Ik ⪯

(k max
j:1≤j≤k

∥fj∥2L∞(X ) − 1)Ik ⪯ k max
j:1≤j≤k

∥fj∥2L∞(X )Ik.

After summing we obtain∥∥∥∥∥
N∑
i=1

E[(f(Xi)f(Xi)
⊤ − Ik)

2]

∥∥∥∥∥
B(Rk,Rk)

≤ Nk max
j:1≤j≤k

∥fj∥2L∞(X ).

Matrix Bernstein inequality (see Theorem 6.1.1 in Tropp (2015)) gives us

P[∥ 1

N

N∑
i=1

(f(Xi)f(Xi)
⊤ − Ik)∥B(Rk,Rk) ≥ t] ≤

2k exp

− Nt2/2

k max
j:1≤j≤k

∥fj∥2L∞(X ) + (k max
j:1≤j≤k

∥fj∥2L∞(X ) + 1)t/3

 .

Let us choose t = 1
2 in the previous inequality. Then, we have

∥ 1

N
f(X1, · · · , XN )f(X1, · · · , XN )⊤ − Ik∥B(Rk,Rk) <

1

2

with probability at least 1− 2k exp

(
− N/8

k max
j:1≤j≤k

∥fj∥2
L∞(X)

+(k max
j:1≤j≤k

∥fj∥2
L∞(X)

+1)/6

)
. In that case

we have
∥( 1
N

f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1∥B(RN ,RN ) <
1

1− 0.5
= 2,

and

∥f(X1, · · · , XN )∥B(RN ,Rk) =
√
N

√
∥ 1

N
f(X1, · · · , XN )f(X1, · · · , XN )⊤∥B(Rk,Rk) ≤

√
3N

2
.

Thus, we have

∥( 1
N

f(X1, · · · , XN )f(X1, · · · , XN )⊤)−1∥B(RN ,RN )∥f(X1, · · · , XN )∥B(RN ,Rk) ≤
√
6N.

Lemma proved.

A combination of Lemma 6 and Lemma 9 gives us that for any t > 0,

∥ 1√
N

Λ1/2Ψ− 1√
N

Λ1/2Φ∥B(RN ,l2(N)) ≤

√
6k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
with probability at least

q(t) = 1− k exp

− Nt2

8C4
KP

max
j:1≤j≤k

∥fj∥4L∞(X )

− 2k exp

− N
28
3 k max

j:1≤j≤k
∥fj∥2L∞(X ) +

4
3


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over randomness in inputs X1, · · · , XN .

In the next step, we need to bound ∥t( 1√
N
Λ1/2Ψ)− t( 1√

N
Λ1/2Φ)∥B(l2(N),l2(N)). Note that

∥ 1√
N

Λ1/2Φ∥B(RN ,l2(N)) ≤ CKP
,

and therefore,

∥ 1√
N

Λ1/2Ψ∥B(RN ,l2(N)) ≤ CKP
+

√
6k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
,

with probability at least q(t). We now need a lemma that bounds ∥t( 1√
N
Λ1/2Ψ) −

t( 1√
N
Λ1/2Φ)∥B(l2(N),l2(N)) in terms of ∥ 1√

N
Λ1/2Ψ∥B(RN ,l2(N)), ∥ 1√

N
Λ1/2Φ∥B(RN ,l2(N)) and

∥ 1√
N
Λ1/2Ψ− 1√

N
Λ1/2Φ∥B(RN ,l2(N)).

Lemma 10. Let A,B ∈ B(RN , l2(N)) be such that ∥A∥B(RN ,l2(N)), ∥B∥B(RN ,l2(N)) ≤ α. Then,

∥t(A)− t(B)∥B(l2(N),l2(N)) ≤
(
2α

λ
+

2α3

λ2

)
∥A−B∥B(RN ,l2(N)).

Proof. Let us denote MA = A⊤A+ λIN and MB = B⊤B + λIN . We have

t(A)− t(B) = AM−1
A A⊤ −BM−1

B B⊤.

By adding and subtracting AM−1
A B⊤ and BM−1

A B⊤ we split

t(A)− t(B) =

(AM−1
A A⊤ −AM−1

A B⊤) + (AM−1
A B⊤ −BM−1

A B⊤) + (BM−1
A B⊤ −BM−1

B B⊤) =

AM−1
A (A−B)⊤ + (A−B)M−1

A B⊤ +B(M−1
A −M−1

B )B⊤.

The first term can be bounded by

∥AM−1
A (A−B)⊤∥B(l2(N),l2(N)) ≤

∥A∥B(RN ,l2(N)) · ∥M−1
A ∥B(RN ,RN ) · ∥A−B∥B(RN ,l2(N)) ≤

α

λ
∥A−B∥B(RN ,l2(N)).

The second term by

∥(A−B)M−1
A B⊤∥B(l2(N),l2(N)) ≤

∥A−B∥B(RN ,l2(N)) · ∥M−1
A ∥B(RN ,RN ) · ∥B∥B(RN ,l2(N)) ≤

α

λ
∥A−B∥B(RN ,l2(N)).

From the resolvent identity M−1
A −M−1

B =M−1
A (MB −MA)M

−1
B , we obtain

∥M−1
A −M−1

B ∥B(RN ,RN ) ≤
1

λ2
∥MA −MB∥B(RN ,RN ) ≤

1

λ2
(∥A∥B(RN ,l2(N)) + ∥B∥B(RN ,l2(N)))∥A−B∥B(RN ,l2(N)) =

2α

λ2
∥A−B∥B(RN ,l2(N))

Using this, we bound the third term by

∥B(M−1
A −M−1

B )B⊤∥B(l2(N),l2(N)) ≤ ∥B∥2B(RN ,l2(N)) · ∥M
−1
A −M−1

B ∥B(RN ,RN ) ≤

α2 · 2α
λ2

∥A−B∥B(RN ,l2(N)) =
2α3

λ2
∥A−B∥B(RN ,l2(N)).

After collecting the bounds, we obtain

∥t(A)− t(B)∥B(l2(N),l2(N)) ≤
2α

λ
∥A−B∥B(RN ,l2(N)) +

2α3

λ2
∥A−B∥B(RN ,l2(N)) =(

2α

λ
+

2α3

λ2

)
∥A−B∥B(RN ,l2(N)).

Lemma proved.
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Lemma 11. Let t > 0 and α = CKP

(
1 + max

j:1≤j≤k
∥fj∥L∞(X )

√
6k
(

1
N + t

))
. Then,

∥t( 1√
N

Λ1/2Ψ)− t(
1√
N

Λ1/2Φ)∥B(l2(N),l2(N)) ≤(
2α

λ
+

2α3

λ2

)
CKP

max
j:1≤j≤k

∥fj∥L∞(X )

√
6k

(
1

N
+ t

)
,

with probability at least 1− k exp
(
−Nt2

8

)
− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.

Proof. After we apply Lemma 10 to A = 1√
N
Λ1/2Ψ, B = 1√

N
Λ1/2Φ we obtain the following

statement: let t > 0 and α = CKP
+

√
6k

(
1
NC

2
KP

max
j:1≤j≤k

∥fj∥2L∞(X ) + t

)
. Then,

∥t( 1√
N

Λ1/2Ψ)− t(
1√
N

Λ1/2Φ)∥B(l2(N),l2(N)) ≤(
2α

λ
+

2α3

λ2

)√
6k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
,

with probability at least 1 − k exp

(
− Nt2

8C4
KP

max
j:1≤j≤k

∥fj∥4
L∞(X)

)
−

2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
. Rescaling t = t′C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) gives the

desired inequality.

Recall that Tf = (FF⊤)−1FΦ⊤Λ1/2(I − Λ1/2Ψ(Ψ⊤ΛΨ + λNIN )−1Ψ⊤Λ1/2). We finally need
to bound ∥Tf∥B(l2(N),Rk) which is done in the next lemma.
Lemma 12. For any t > 0, we have

∥Tf∥B(l2(N),Rk) ≤ 4CKP
max

j:1≤j≤k
∥fj∥L∞(X )

√
k

(
1

N
+ t

)
,

with probability at least 1− ke−
Nt2

8 − 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.

Proof. From Lemma 6 we obtain

∥ 1

N
FΦ⊤Λ1/2∥B(l2(N),Rk) = ∥ 1

N
Λ1/2ΦF⊤∥B(Rk,l2(N)) ≤

√
k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
,

with probability at least 1− ke
− Nt2

8C4
KP

max
j:1≤j≤k

∥fj∥4L∞(X) . Therefore, using Lemma 9, we have

∥Tf∥B(l2(N),Rk) ≤ ∥( 1
N
FF⊤)−1∥B(Rk,Rk)∥

1

N
FΦ⊤Λ1/2∥B(l2(N),Rk)·

∥I − Λ1/2Ψ(Ψ⊤ΛΨ+ λIN )−1Ψ⊤Λ1/2∥B(l2(N),l2(N)) ≤

2

√
k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
·(

1 + ∥Λ1/2Ψ(Ψ⊤ΛΨ+ λIN )−1Ψ⊤Λ1/2∥B(l2(N),l2(N))

)
≤

4

√
k

(
1

N
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X ) + t

)
,
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with probability at least 1− ke
− Nt2

8C4
KP

max
j:1≤j≤k

∥fj∥4L∞(X) − 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
. By

rescaling t = t′C2
KP

max
j:1≤j≤k

∥fj∥2L∞(X ) we obtain the needed inequality.

D.4 FINAL STEPS OF THE PROOF

Lemma 13. Suppose that f1, · · · , fk are orthogonal functions of unit norm in L2(X , P ). Let

t > 0 and α = CKP

(
1 + max

j:1≤j≤k
∥fj∥L∞(X )

√
6k
(

1
N + t

))
. With probability at least 1 −

k exp
(
−Nt2

8

)
− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
over randomness in X1, · · · , XN , we have

Eε[ccon] ≤ ∥f∥2HK
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X )k

(
1

N
+ t

)(
16 + 6λ1

(
2α

λ
+

2α3

λ2

)2
)
+

σ2

N

(
9λ1C

2
KP

λ2

(
C2

KP

λ
+ 1

)2

+ 2k

)
.

Proof of Lemma 13. From Theorem 2 we conclude that

∥f̂⊥ − h∥L2(X ,P ) ≤
√
λ1∥f̂⊥ − h∥HKP

=
√
λ1∥f̂⊥ − h∥HF

K
.

Therefore,

ccon ≤ λ1∥f̂⊥ − h∥2HF
K
+ ∥f̂∥ − f∥∥2L2(X ,P ).

From Lemmas 4 and 5 we obtain

Eε[ccon] ≤ λ1∥t(
1√
N

Λ1/2Φ)− t(
1√
N

Λ1/2Ψ)∥2B(l2(N),l2(N))∥f∥
2
HF

K
+

λ1σ
2
9C2

KP

Nλ2

(
C2

KP

λ
+ 1

)2

+ ∥Tf∥2B(l2(N),Rk)∥f∥
2
HF

K
+
k

N
∥( 1
N
FF⊤)−1∥B(Rk,Rk)σ

2.

Using Lemma 11, the first term is bounded by

λ1∥f∥2HF
K

(
2α

λ
+

2α3

λ2

)2

C2
KP

max
j:1≤j≤k

∥fj∥2L∞(X )6k

(
1

N
+ t

)
,

with probability at least 1 − k exp
(
−Nt2

8

)
− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
, where t > 0

and α = CKP

(
1 + max

j:1≤j≤k
∥fj∥L∞(X )

√
6k
(

1
N + t

))
.

Using Lemma 12, the third term is bounded by

16∥f∥2HF
K
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X )k

(
1

N
+ t

)
,

with probability at least 1− k exp
(
−Nt2

8

)
− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.

Using Lemma 9, the last term is bounded by

2kσ2

N
,

with probability at least 1− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.
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Thus, with probability at least 1−2k exp
(
−Nt2

8

)
−6k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
, we have

Eε[ccon] ≤ ∥f∥2HF
K
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X )k

(
1

N
+ t

)
(16 + 6

(
2α

λ
+

2α3

λ2

)2

λ1)+

λ1σ
2
9C2

KP

Nλ2

(
C2

KP

λ
+ 1

)2

+
2kσ2

N
.

The latter almost coincides with the statement of lemma, though constants in front of k in the ex-
pression for the probability are different. Note that k exp

(
−Nt2

8

)
is the probability of the violation

of the inequality of Lemma 6 and 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
is the probability of the vio-

lation of the inequality of Lemma 9. In the latter sequence of arguments we counted the first proba-
biliity twice and the second one three times. More accurate reasoning gives us that the last inequality

is true with probability at least 1− k exp
(
−Nt2

8

)
− 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
.

Proof of Theorem 4. Let t > 0 be such that k exp
(
−Nt2

8

)
= δ

2 , i.e. t =

√
8 log( 2k

δ )

N .

Our assumption that N satisfies N ≥ ( 283 k max
j:1≤j≤k

∥fj∥2L∞(X ) + 4
3 ) log(

4k
δ ) is equiv-

alent to 2k exp

(
− N

28
3 k max

j:1≤j≤k
∥fj∥2

L∞(X)
+ 4

3

)
≤ δ

2 . In Lemma 13 we have α =

CKP

(
1 + max

j:1≤j≤k
∥fj∥L∞(X )

√
6k
(

1
N + t

))
. So, using

√
8 log( 2k

δ )

N ≥ 1
N , we have

α ≤ CKP

1 + max
j:1≤j≤k

∥fj∥L∞(X )

√√√√
12k

√
8 log( 2kδ )

N

 ≤

CKP

(
1 + max

j:1≤j≤k
∥fj∥L∞(X )

6k1/2 log1/4( 2kδ )

N1/4

)
≤ 7CKP

.

provided that N ≥ k2 log( 2kδ ) max
j:1≤j≤k

∥fj∥4L∞(X ).

From Lemma 13 we obtain that with probability at least 1− δ we have

Eε[ccon] ≤ ∥f∥2HF
K
C2

KP
max

j:1≤j≤k
∥fj∥2L∞(X )2k

√
8 log(2kδ )

N

(
16 + 6λ1

(
14CKP

λ
+

686C3
KP

λ2

)2
)
+

σ2

N

(
9λ1C

2
KP

λ2

(
C2

KP

λ
+ 1

)2

+ 2k

)
.

Theorem proved.

E PROOF OF THEOREM 5

Since

E[Πk(x, y)] =

∞∑
ℓ,m=1

√
λℓλm · E[Mℓ,m] · ϕℓ(x)ϕm(y),

our task reduces to computing

E[Mℓ,m] = E

 k∑
i,j=1

ξiℓ(G
−1)ijξjm

 .
27
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Lemma 14. The off-diagonal elements of the projection coefficient matrix [Mℓ,m]∞ℓ,m=1 satisfy

E[Mℓ,m] = 0 for ℓ ̸= m.

Proof. Define vℓ = (ξ1ℓ, . . . , ξkℓ)
⊤ ∈ Rk. Note that G =

∑∞
j=1 λjvjv

⊤
j and Mℓ,m = v⊤ℓ G

−1vm.
Consider flipping the sign of all components of vℓ, i.e., define

ṽj =

{
−vℓ if j = ℓ,

vj if j ̸= ℓ.

For G̃ =
∑∞

j=1 λj ṽj ṽ
⊤
j , and M̃ℓ,m = ṽ⊤ℓ G̃

−1ṽm, observe G̃ = G and

M̃ℓ,m = (−vℓ)⊤G−1vm = −v⊤ℓ G−1vm = −Mℓ,m.

Since Gaussians are symmetric, the joint distribution of all ξij ∼ N (0, 1) is invariant under sign
flips of any single coordinate vector vℓ. Therefore, E[Mℓ,m] = 0.

Recall that ΠP denotes the projection operator onto the span(g1, · · · , gk). From Lemma 14 we
conclude

E[Πk(x, y)] =

∞∑
ℓ=1

λℓ · E[Mℓ,ℓ] · ϕℓ(x)ϕℓ(y).

and, therefore,

E[ΠP [K(·, z2)](x, y)] = ⟨E[Πn(x, ·)],K(·, y)⟩L2(X ,P ) =

∞∑
ℓ=1

λ2ℓ · E[Mℓ,ℓ] · ϕℓ(x)ϕℓ(y).

Let us now compute

E[ΠP [ΠP [K(·, z2)](z1, ·)](x, y)] = E
[∫∫

Πk(x, u)K(u, v)Πk(v, y) dP (u)dP (v)

]
.

Recall that K(u, v) =
∑∞

ℓ=1 λℓϕℓ(u)ϕℓ(v). Now plug into the expression for Πk(x, y) and obtain
that the latter equals∫∫

(
∑
i,j

√
λiλjMi,jϕi(x)ϕj(u))(

∑
ℓ

λℓϕℓ(u)ϕℓ(v))(
∑
m,n

√
λmλnMm,nϕm(v)ϕn(y))dP (u)dP (v)

=
∑
i,j,n

λj
√
λiλjλjλn ·Mi,jMj,n · ϕi(x)ϕn(y) =

∑
i,j,n

λ2j
√
λiλn ·Mi,jMj,n · ϕi(x)ϕn(y).

Thus,

E[ΠP [ΠP [K(·, z2)](z1, ·)](x, y)] =
∑
i,n

ϕi(x)ϕn(y) ·
√
λiλn ·

∑
j

λ2j · E[Mi,jMj,n]


Let us define

Ci,n =

∞∑
j=1

λ2j ·Mi,jMj,n,

so that
E[ΠP [ΠP [K(·, z2)](z1, ·)](x, y)] =

∑
i,n

√
λiλn · E[Ci,n] · ϕi(x)ϕn(y).

Lemma 15. The off-diagonal elements Ci,n satisfy

E[Ci,n] = 0 for i ̸= n.

Proof. Fix i ̸= n. Using the notations of the previous lemma we have

Ci,n =
∑
j

λ2j · v⊤i G−1vj · v⊤j G−1vn.

Flipping the sign of vi → −vi, and leaving all other vj unchanged, leads to the change in the sign
of Ci,n. Therefore, E[Ci,n] = 0.
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From Lemma 15 we obtain

E[ΠP [ΠP [K(·, z2)](z1, ·)](x, y)] =
∑
i

λi · E[Ci,i] · ϕi(x)ϕi(y),

with
E[Ci,i] =

∑
j

λ2j · E[M2
ij ].

So, we proved

Eω[K
ω
P (x, y)] =

∞∑
i=1

λi(1− 2λi · E[Mi,i] +
∑
j

λ2j · E[M2
i,j ]) · ϕi(x)ϕi(y).

F THE BEHAVIOUR OF µi/λi IN THE THERMODYNAMIC LIMIT

Let us qualitively analyze how {µi} are related to {λi}. This type of non-rigorous analysis has
been applied to a similar expression in Simon et al. (2023), though it should be considered as a
way to derive the formula (4), rather than a mathematically precise statement. So, as pointed out
in Remark 2, we may substitute (ξ⊤i G

−1
−i ξi)

−1 with a constant κ around which this expression
concentrates as k → +∞. That is, E[Mi,i] ≈ Mi,i ≈ 1/κ

1+λi/κ = 1
λi+κ . Since

∑∞
i=1 λiξ

⊤
i G

−1ξi =

Tr(G−1G) = k, the constant κ > 0 can be calculated from the condition
∑∞

i=1
λi

λi+κ = k.

The expression
∑

j λ
2
jE[M2

i,j ] in Theorem 5 decomposes to λ2iE[M2
i,i] +

∑
j ̸=i λ

2
jE[M2

i,j ], where

λ2iE[M2
i,i] ≈

λ2
i

(λi+κ)2 .The remaining part without the expectation equals

∑
j:j ̸=i

λ2jM
2
i,j =

ξ⊤i G
−1
−i

∑
j:j ̸=i λ

2
jξjξ

⊤
j G

−1
−i ξi(

1 + λiξ⊤i G
−1
−i ξi

)2 .

If we neglect the remaining term, using Theorem 5, we would obtain µi

λi
≈ 1− 2λi

λi+κ +
λ2
i

(λi+κ)2 =
κ2

(λi+κ)2 . As our experiments show (see Figures 5 and 6), this term cannot be neglected although it

contributes proportionally to κ2

(λi+κ)2 . So, we conjecture

µi

λi
≈ cκ2

(λi + κ)2
.

For λi = 1
ia we observe c ≈ a.

G RANDOM FEATURE APPROXIMATION TO THE CONDITIONAL KRR

The goal of this section is to establish existence of the random feature approximation of conditional
KRR, similar to the approximation of standard KRR Rahimi & Recht (2007). Recall that K(x, y) =
Eω∼P [f(ω, x)f(ω, y)] where (Ω,Σ,P) is a probabilistic space. Let us now introduce new features
f ′i(x) = 1√

m
f(ω′

i, x) for i.i.d. samples ω′
1, . . . , ω

′
m ∼ P and define feature vectors as ϕ(x) =

[f1(x), . . . , fk(x)]
⊤ and ψ(x) = [f ′1(x), . . . , f

′
m(x)]⊤. Consider the following random feature ridge

regression (RFRR) problem

min
u∈Rk,w∈Rm

1

N

N∑
i=1

(u⊤ϕ(xi) + w⊤ψ(xi)− yi)
2 + λ∥w∥22. (5)

The meaning of this task is to give a budget on weights of features f ′i while having a complete
freedom in selection of weights for the features fi, i = 1, · · · , k.
Theorem 7. Let rank([fi(xj)]ki=1

N
j=1) = k and u ∈ Rk, w ∈ Rm be the solution of the task (5).

Then, as m→ +∞,
u⊤ϕ(x) + w⊤ψ(x) → f(x) with probability 1,

where f is the solution of the task (1).
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Figure 5: The behaviour of 1 − 2λi · E[Mi,i] +
∑∞

j=1 λ
2
j · E[M2

i,j ] computed by 50 times Monte-
Carlo sampling for k = 10, 100, 200, 300 (columns) and eigenvalues (a) λi = 1

i4 , (b) λi = 1
i2 , (c)

λi =
1

i1.1 , (d) λi = e−0.1i (rows).

Figure 6: Scatter plot for κ2

(λi+κ)2 vs. 1 − 2λi · E[Mi,i] +
∑∞

j=1 λ
2
j · E[M2

i,j ] for (a) λi = 1
i4 , (b)

λi =
1
i2 , (c) λi = 1

i1.1 , (d) λi = e−0.1i.

Proof. The goal is to minimize

∥A⊤u+B⊤w − y∥2 + λNw⊤w,

where y = (y1, . . . , yN )⊤ ∈ RN and A = [fi(xj)]
k
i=1

N
j=1 ∈ Rk×N and B = [f ′i(xj)]

m
i=1

N
j=1 ∈

Rm×N . Gradients w.r.t. u and w are equal to 0 if an only if

AA⊤u = −A(B⊤w − y),

(BB⊤ + λNIm)w = −B(A⊤u− y).

So, the trained function satisfies

u⊤ϕ(x) + w⊤ψ(x) = −(w⊤B − y⊤)A⊤(AA⊤)−1ϕ(x) + w⊤ψ(x) =

y⊤A⊤(AA⊤)−1ϕ(x) + w⊤(ψ(x)−BA⊤(AA⊤)−1ϕ(x)).
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Note that y⊤A⊤(AA⊤)−1ϕ(x) is the output mapping of the linear regression with the feature vector
ϕ(x) applied to the training data.

Recall that ΠPN
denotes the projection operator onto span(f1, · · · , fk) in L2(X , PN ). Let f̃i =

(I −ΠPN
)[f ′i ],

ψ̃(x) = [f̃1(x), · · · , f̃m(x)]⊤ = (I −ΠPN
)[ψ]

and B̃ = [f̃i(xj)]
m
i=1

N
j=1 ∈ Rm×N . By construction, BA⊤(AA⊤)−1ϕ(x) = ΠPN

[ψ](x) = ψ(x)−
ψ̃(x). Thus, we have

u⊤ϕ(x) + w⊤ψ(x) = w⊤ψ̃(x) + y⊤A⊤(AA⊤)−1ϕ(x).

The matrix Π = A⊤(AA⊤)−1A is the projection matrix onto the row space of A. So, we have

(BB⊤ + λNIm)w = −B(−ΠB⊤w +Πy − y) ⇒
w = (B(I −Π)B⊤ + λNIm)−1B(I −Π)y.

The vector r = (I −Π)y is exactly the vector of residuals. By construction, B̃ = B(I −Π). Then,
B̃B̃⊤ = B(I −Π)B⊤ and Br = B̃r. Therefore,

w = (B̃B̃⊤ + λNIm)−1B̃r.

The Woodbury matrix identity gives (B̃B̃⊤ + λNIm)−1 = 1
λN Im − 1

λN B̃(λNIN + B̃⊤B̃)−1B̃⊤,
and we obtain the standard kernel trick identity

w = B̃(λNIN + B̃⊤B̃)−1r.

Let us denote K̃ = [ψ̃(xi)
⊤ψ̃(xj)]

N
i,j=1 = B̃⊤B̃. So, w =

∑N
j=1 aiψ̃(xi) where a = [ai]

N
i=1 =

(K̃ + λNIN )−1r. Thus, the first term of the trained function f̃(x) = w⊤ψ̃(x) is

f̃(x) =

N∑
i=1

aiψ̃(xi)
⊤ψ̃(x) = r⊤(K̃ + λNIN )−1[ψ̃(x1)

⊤ψ̃(x), · · · , ψ̃(xN )⊤ψ̃(x)]⊤.

Let us analyze the behaviour of that function under m→ +∞. By the law of large numbers

K̃ → [KPN
(xi, xj)]

N
i,j=1,

and
ψ̃(xi)

⊤ψ̃(x) → KPN
(xi, x),

as m→ +∞. That is

f̃(x) → r⊤([KPN
(xi, xj)] + λNIN )−1[KPN

(x1, x), · · · ,KPN
(xN , x)]

⊤.

The latter is exactly the solution of

min
g∈HKPN

1

N

N∑
i=1

(g(xi)− ỹi)
2 + λ∥g∥2HKPN

,

Using Theorem 3 we conclude that

u⊤ϕ(x) + w⊤ψ(x) → f(x) with probability 1.

Thus, RFRR method can be considered as an approximation of the conditional KRR.
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H ADDITIONAL EXPERIMENTS

H.1 DETAILS OF EXPERIMENTS ON HARD THRESHOLDING: DEPENDENCE OF THE COST OF
CONDITIONING ON N, k, σ2

To verify the decay rates of the conditioning cost ccon predicted by Theorem 4, we used the exper-
imental setup described in Section 6 (the hard thresholding case). For fixed parameters N (sample
size), k (chosen such that dim(F) = 2k+1), σ2 (noise variance), and a selected regression function,
we repeated the following procedure 20 or 50 times: (a) sample training and test sets; (b) train both
the conditional KRR and the F-conditional learner; (c) estimate ccon as the mean squared distance
between the two resulting estimators on the test set. Finally, we averaged ccon across repetitions and
denote this empirical estimate by ĉcon.

In the main part of the paper we present experiments for the hard-thresholding setting with fixed
regularization parameter λ = 1.0 and the regression function f(x) =

∑5
n=0 cos(nx). These ex-

periments confirm that the test MSE as a function of k achieves its minimum at k = 5, exactly as
expected. Figure 7 shows test-MSE curves (with 95% confidence intervals) for varying regulariza-
tion parameter λ in two representative cases: k = 0 (standard KRR) and k = 5, where the regression
function is f(x) =

∑5
n=0 n cos(nx). Taken together, these results suggest that adjusting the number

of unpenalized features within the hard-thresholding framework can be beneficial for essentially any
value of λ, including the value optimally tuned for standard KRR.

Figure 7: Comparison of test MSE for Conditional KRR with k = 0 (standard KRR) and k = 5
across a range of regularization parameters λ.

H.2 SOFT THRESHOLDING WITH RANDOM FEATURES

According to Theorem 7, the larger m (the number of penalized random features), the closer RFRR
approximates conditional KRR. The plots reported in Section 6 were obtained with m = 2000.
We also tested the method on several non-synthetic datasets and consistently observed the same
U-shaped behavior. As an illustrative example, we used 12214 samples of the digits 7 and 9 from
the MNIST training set. Each image was cropped to a 24× 24 window by removing border pixels,
rescaled so that pixel intensities fall within [0, 1], and mean-centered. We assigned the label +1 to
digit 7 and −1 to digit 9. Figure 8 shows the RFRR train/test MSE as a function of k (the number
of unpenalized random features) for m = 10000. For the cosine activation, adding unpenalized
features consistently worsens the test MSE due to catastrophic overfitting, a well-known issue in
ridgeless Gaussian KRR (equivalent to using unpenalized random features with cosine activation).

The code can be accessed on GitHub, allowing for easy reproduction of our results.

H.3 EXPERIMENTS WITH HARD THRESHOLDING ON REAL WORLD DATA

For real (non-synthetic) data, the eigenfunctions ϕi of the integral operator ϕ 7→∫
X K(·, x)ϕ(x)dP (x) are not available in closed form and must be estimated from samples. Given

a Mercer kernel K and training points X1, . . . , XN , let G = [K(Xi, Xj)] ∈ RN×N be the
Gram matrix, and let (λ̂i, αi) denote the eigenpairs of the Hermitian matrix 1

NG, ordered so that
λ̂1 ≥ λ̂2 ≥ · · · and normalized by ∥αi∥2 = 1. We write PN = 1

N

∑N
j=1 δXj

for the empirical
distribution.
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Figure 8: The effect of the soft thresholding for the cosine, ReLU and tanh activation functions and
the MNIST dataset.

We estimate the eigenfunction ϕi by its empirical extension

ϕ̂i(x) =
1√
Nλ̂i

N∑
j=1

αi(j)K(x,Xj), i = 1, . . . , rank(G).

This normalization is chosen so that ϕ̂i(Xℓ) =
√
Nαi(ℓ), making the family ϕ̂i orthonormal in

L2(X , PN ). Moreover, each ϕ̂i is an eigenfunction of the empirical integral operator

ONf(x) =
1

N

N∑
j=1

K(x,Xj)f(Xj),

satisfying ON ϕ̂i = λ̂iϕ̂i.

In all our experiments, we therefore substitute ϕ̂i for the true eigenfunctions ϕi and define Fk =

ϕ̂1, . . . , ϕ̂k. Conditional KRR with respect to this Fk can be seen as a practical approximation of
the hard-thresholding setting described in Subsection 5.1.

Figure 9: U-shaped Test MSE in the hard thresholding setup for the MNIST dataset (with standard-
ization).

We conducted numerical experiments using this empirical approximation to the hard-thresholding
setup on the 7-vs-9 MNIST dataset described above. We performed 10-fold cross-validation to
evaluate the Conditional KRR model for a fixed parameter λ = 0.01 and a range of sizes k. In each
fold, the data were re-standardized, Conditional KRR was fitted on the training subset and its test
MSE was recorded for all k, after which the mean test MSE and its 95% confidence interval across
folds were computed. Results for different kernels are shown on Figure 9.

As shown in the results, both the Gaussian and NNGP-erf kernels exhibit a U-shaped dependence
of the test MSE on k. In the case of the NNGP-erf kernel, however, overfitting is very mild and
becomes noticeable only when k approaches the size of the training set (approximately 11,000, the
largest value for which ϕ̂k(x) is defined). Interestingly, no overfitting is observed for the Laplace
kernel. We attribute this behavior to the fact that, for the Laplace kernel, essentially all of the
first 11,000 empirical eigenfunctions remain informative for prediction; detecting overfitting would
require a substantially larger sample size to allow ϕ̂k(x) to be defined for larger k.

We also compared the test MSE of Conditional KRR—using a fixed regularization parameter λ and
selecting k via validation—with the test MSE of standard KRR equipped with an optimally tuned λ.
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Kernel KRR C-KRR
Gaussian (RBF) 0.0671± 0.0015 0.0732± 0.0023
Laplace 0.0750± 0.0029 0.0744± 0.0023
Matern (ν = 1.5) 0.1102±0.0038 0.1087±0.0029
NNGP (erf) 0.0574± 0.0020 0.0572±0.0022

Table 1: Test MSE comparison of KRR (k = 0) with λ optimized on the validation set and the
hard thresholding setup (λ = 0.01) with k optimized on the validation set for different kernels (on
MNIST).

As shown in Table 1, the resulting test errors are extremely close, to the point where their difference
is statistically insignificant (at least for the kernels considered and for the MNIST dataset).

We also investigated the effect of varying k while keeping λ fixed at the value optimally tuned for
standard KRR. In this setting, the test MSE for small k is nearly identical to its value at k = 0,
and it increases only for sufficiently large k. These empirical findings suggest that when λ is already
optimized for KRR, adjusting k provides essentially no additional benefit. Naturally, this conclusion
applies only to the MNIST dataset and the set of kernels examined here.
Remark 4 (Beyond hard and soft thresholding setups). Suppose that λ is optimally tuned for
standard KRR. Although the results above suggest that using the eigenfunctions of the operator
ϕ 7−→

∫
X K(·, x)ϕ(x)dP (x) as unpenalized features does not improve the test MSE, this does not

imply that Conditional KRR cannot outperform standard KRR when supplied with a different choice
of unpenalized features.

To demonstrate that Conditional KRR can exhibit a clear U-shaped dependence of MSE(k) on k
for the MNIST dataset, we conducted the following experiment. We first trained a two-layer neural
network with ReLU activation and 20 hidden units, i.e., the model NNθ(x) =

∑20
i=1 aiReLU(w⊤

i x+
bi) + c, using L2-regularization and the MNIST training set. Next, we trained a random-feature
approximation of Conditional KRR based on the corresponding ReLU kernel

K(x, y) = Ew∼N (0,Id/d),b∼U [−1,1]

[
ReLU(w⊤x+ b)ReLU(w⊤y + b)

]
,

using m = 10,000 random features. We set k = 20 and defined the unpenalized subspace Fk =
{ReLU(w⊤

i x + bi) | 1 ≤ i ≤ k}, i.e. the features extracted from the trained neural network. The
resulting test MSE curves as functions of λ are shown in Figure 10.
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Figure 10: Conditional KRR with trained unpenalized features vs standard KRR.
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