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Figure 1: Diffusion models with fully convolutional backbones achieve high-quality image
generation with state-of-the-art efficiency. We show selected samples from two of our class-
conditional FCDM-XL models trained on ImageNet at 512×512 and 256×256 resolution.

ABSTRACT

Recent diffusion models increasingly favor Transformer backbones, motivated
by the remarkable scalability of fully attentional architectures. Yet the locality
bias, parameter efficiency, and hardware friendliness—the attributes that estab-
lished ConvNets as the default vision backbone—have seen limited exploration
in modern generative modeling. Here we introduce the fully convolutional diffu-
sion model (FCDM), a ConvNeXt-inspired backbone redesigned for conditional
diffusion modeling. Specifically, FCDM employs an easily scalable U-Net hier-
archy that integrates global context with fine-grained details and preserves strict
convolutional locality, maximizing throughput on modern accelerators. We find
that FCDM-XL, using only half the FLOPs of DiT-XL/2, achieves superior FID
with 7× and 7.5× speedups at 256×256 and 512×512 resolutions, respectively.
Our results demonstrate that modern convolutional designs remain highly compet-
itive when scaled and properly conditioned, challenging the prevailing view that
“bigger Transformers” are the sole path to better diffusion models. FCDM revives
ConvNets as a compelling, computationally efficient alternative for large-scale
generative vision.

1 INTRODUCTION

Over the past decade, convolutional neural networks (ConvNets) (LeCun et al., 1989; Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; Ronneberger et al., 2015; He
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(a) FID and FLOPs comparisons across model scales
(400K iterations)

Model Train Steps FLOPs (G) TP ↑ (it/s) FID ↓
DiT-S/2 400K 6 1234 68.4

FCDM-S 400K 3 2687 48.5
DiT-B/2 400K 23 380.1 43.5

FCDM-B 400K 12 1002 26.2
DiT-L/2 400K 81 114.6 23.3

FCDM-L 400K 48 381.3 13.8
DiT-XL/2 400K 119 76.90 19.5

FCDM-XL 400K 65 272.7 10.7
DiT-XL/2 7M 119 76.90 9.6

FCDM-XL 1M 65 272.7 7.9

(b) Comparison of FLOPs, throughput, and FID across
model scales. The best results are highlighted in bold.

Figure 2: All Convolution, No Attention. Is scalability exclusive to transformers? Our Fully
Convolutional Diffusion Model (FCDM) exhibits clear scalability: it is more efficient and achieves
superior performance than Diffusion Transformers (DiTs). Bubble size indicates the FLOPs of each
diffusion model. Across all scales (ordered by parameter count), FCDM consistently yields lower
FLOPs, higher throughput, and better FID, while converging faster to superior performance.

et al., 2016; Xie et al., 2017; Huang et al., 2017; Howard et al., 2017; Tan & Le, 2019) have driven
most major advances in computer vision. Their success stems in part from the implicit “sliding
window” mechanism, which embeds a strong locality inductive bias and enables learning effective
visual representations with far fewer parameters than fully connected layers. With the incorporation
of patch embeddings in the Vision Transformer (ViT) (Dosovitskiy et al., 2021; Liu et al., 2021),
Transformers (Vaswani et al., 2017) began to be actively explored in computer vision as well. In
particular, the strong scalability of Transformers has allowed them to surpass ConvNets in many
areas.

Generative models based on denoising such (Ho et al., 2020; Song et al., 2021a; Dhariwal & Nichol,
2021; Rombach et al., 2022; Karras et al., 2022; Peebles & Xie, 2023; Ma et al., 2024; Esser et al.,
2024) have followed similar architectural trends, ranging from hybrid convolution–transformer de-
signs to fully transformer-based backbones. Foundational works (Ho et al., 2020; Song et al., 2021a;
Dhariwal & Nichol, 2021; Rombach et al., 2022; Karras et al., 2022) employed a convolutional
U-Net architecture augmented with self-attention. DiT (Peebles & Xie, 2023) introduced a fully
transformer-based diffusion backbone, replacing convolutions with end-to-end transformer blocks.
This shift has driven the success of recent state-of-the-art text-to-image diffusion models (Esser
et al., 2024; Labs, 2024), offering improved scalability and generation quality. These developments
reflect a prevailing belief that scaling transformer-based networks yields better generative perfor-
mance. Interestingly, while hybrid convolution-transformer and fully transformer backbones have
been extensively studied, fully convolutional backbones for diffusion modeling remain relatively
underexplored.

In this work, we revisit the role of convolutions in diffusion modeling. Inspired by ConvNeXt (Liu
et al., 2022; Woo et al., 2023), which has demonstrated strong competitiveness with Vision Trans-
formers (Dosovitskiy et al., 2021; Liu et al., 2021) in terms of accuracy and scalability on ImageNet
classification (Russakovsky et al., 2015), we design a fully convolutional network tailored for gen-
erative diffusion modeling. Specifically, we redesign the ConvNeXt architecture to incorporate con-
ditional injection and organize it in an easy scalable U-shaped design. One of the key contributions
of DiT (Peebles & Xie, 2023) is its ease of scaling through a small set of intuitive hyperparameters
(e.g., number of blocks L, hidden channel C, number of heads, and patch size p), which has made
it highly practical and widely adopted in follow-up research. Our architecture further simplifies this
design space, enabling straightforward scaling with only two hyperparameters (number of blocks L
and hidden channel C). Although built entirely from convolutional modules, the proposed backbone
retains the efficiency and scalability of modern ConvNets, benefiting from their fully convolutional
nature.
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To enable a fair comparison of generation performance among fully convolutional architectures, we
train and evaluate our network within the foundational DiT training and evaluation framework (Pee-
bles & Xie, 2023). To assess scalability, we benchmark against DiT models matched in parameter
count and find that our model achieves approximately 50% fewer FLOPs. We also observe faster
convergence and superior FID performance compared to fully transformer-based architectures. As
shown in Figure 2, our Fully Convolutional Diffusion Model (FCDM) not only is more efficient
but also achieves superior performance compared to DiT (Peebles & Xie, 2023) across model scales
(ordered by parameter count). These findings re-emphasize the importance of convolutional opera-
tions while research increasingly favors Transformer dominance. They also offer a complementary
perspective for efficiency-focused work: rather than solely reducing Transformer computational
complexity, modern fully convolutional architectures provide an alternative path to scalable, highly
efficient generative modeling. We hope these observations and discussions challenge entrenched
assumptions and encourage a reevaluation of the role of convolutions in modern computer vision.

2 RELATED WORK

This section reviews the architectural evolution of diffusion models, highlighting the transition from
convolution–attention hybrid designs to fully transformer-based backbones. From these trends, it is
evident that fully convolutional diffusion architectures remain largely underexplored compared to
their hybrid and transformer counterparts.

2.1 HYBRID ARCHITECTURES

Early diffusion models predominantly adopted hybrid U-Nets (Ronneberger et al., 2015), combin-
ing convolutional layers for local features with self-attention (Vaswani et al., 2017) for long-range
dependencies. DDPM (Ho et al., 2020), ScoreSDE (Song et al., 2021b), and DDIM (Song et al.,
2021a) all used convolutional U-Nets (Ronneberger et al., 2015) augmented with attention at se-
lect resolutions. ADM (Dhariwal & Nichol, 2021) further showed that diffusion models could sur-
pass GANs (Goodfellow et al., 2014; Brock et al., 2019; Karras et al., 2019) in high-fidelity image
generation, solidifying the architecture’s viability. LDM (Rombach et al., 2022) improved scala-
bility by operating in a compressed latent space (Kingma & Welling, 2014), enabling large-scale
text-to-image models such as Stable Diffusion and Imagen (Saharia et al., 2022). Recent works
including EDM (Karras et al., 2022), EDM2 (Karras et al., 2024), SDXL (Podell et al., 2024), and
SnapGen (Chen et al., 2025) refined training strategies and resolution handling while retaining the
convolution–attention hybrid backbone.

2.2 FULLY TRANSFORMER-BASED DIFFUSION MODELS

Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2021) have emerged as strong alterna-
tives, replacing all convolutions with patch-based attention blocks. DiT (Peebles & Xie, 2023)
demonstrated scalability with a ViT-inspired backbone, followed by U-ViT (Bao et al., 2023) and
U-DiT (Tian et al., 2024), which introduced U-shaped variants. SiT (Ma et al., 2024) extended
DiT to flow matching (Lipman et al., 2023; Liu et al., 2023), surpassing DiT across model scales.
PixArt (Chen et al., 2024b;a), MM-DiT (Esser et al., 2024), and FLUX (Labs, 2024) scaled the archi-
tecture to production-grade text-to-image models by incorporating improved conditioning pipelines
and refined transformer architectures. Recent approaches such as EQVAE (Kouzelis et al., 2025),
VAVAE (Yao et al., 2025), and REPA (Yu et al., 2025) further accelerated convergence and improved
quality.

2.3 FULLY CONVOLUTIONAL DIFFUSION MODELS

Fully convolutional backbones for diffusion models have only recently reemerged. DiC (Tian et al.,
2025) re-examined fully convolutional U-Nets using 3×3 convolutions with sparse skip connections,
while DiCo (Ai et al., 2025) adapted 3×3 separable convolutions and proposed compact channel
attention to mitigate channel redundancy. Both methods achieve competitive FID with superior
throughput, demonstrating their computational efficiency compared to Diffusion Transformers. Our
approach diverges from these by adapting ConvNeXt (Liu et al., 2022; Woo et al., 2023), which has
demonstrated superior performance to Vision Transformers (ViTs) using only convolutions, and by
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Figure 3: Illustration of connectivity. Depthwise convolution is structurally analogous to the
weighted-sum operator in self-attention. When attention is restricted to a local window (e.g., lo-
cal attention), its connectivity becomes identical to that of depthwise convolution.

introducing conditional injection with an easily scalable U-shaped architecture tailored for gener-
ative modeling. We demonstrate that our ConvNeXt-inspired backbone not only achieves superior
generative performance but also delivers higher computational efficiency than prior fully convolu-
tional diffusion models and Diffusion Transformers, thereby marking a rediscovery of ConvNeXt in
the context of generative modeling.

3 ALL CONVOLUTION, NO ATTENTION

We propose a Fully Convolutional Diffusion Model (FCDM), inspired by ConvNeXt (Liu et al.,
2022; Woo et al., 2023) and adapted for conditional diffusion generation. Similar to how DiT (Pee-
bles & Xie, 2023) preserves design practices from Vision Transformers (ViTs) (Dosovitskiy et al.,
2021), FCDM retains the core principles of ConvNeXt. While ConvNeXt was originally developed
for image classification, diffusion modeling imposes distinct requirements. We therefore reassem-
ble ConvNeXt with conditional injection, carefully preserving its core design, and make it a suitable
backbone for generative diffusion modeling.

3.1 ANALOGY BETWEEN CONVNEXT AND VISION TRANSFORMER

ConvNeXt and Vision Transformers (ViTs) represent two distinct yet structurally analogous in vi-
sual representation learning. Transformers rely on self-attention and MLP blocks, while ConvNeXt
modernizes convolutional networks with design choices inspired by ViTs (Dosovitskiy et al., 2021;
Liu et al., 2021). In the following, we highlight their structural correspondence and explain why
ConvNeXt can serve as an effective convolutional alternative to ViTs in visual representation learn-
ing.

Depthwise convolution has the same connectivity as local attention. Depthwise convolu-
tion (Chollet, 2017; Howard et al., 2017) is structurally analogous to the weighted-sum operator
in self-attention (Liu et al., 2022). As illustrated in Figure 3, when attention is restricted to a local
window, its connectivity becomes identical to that of depthwise convolution: each spatial position
connects only to its local neighborhood without cross-channel mixing (Han et al., 2022).

Local Vision Transformers (Local ViTs), such as Swin Transformer (Liu et al., 2021) and
HaloNet (Vaswani et al., 2021), employ local attention to improve both accuracy and efficiency
in image classification compared to the standard ViT (Dosovitskiy et al., 2021). With the same
local connectivity, as illustrated in Figure 3, depthwise convolution–based networks such as Con-
vNeXt (Liu et al., 2022) and DWNet (Han et al., 2022) have demonstrated that their architectures
can match or even surpass Local ViTs on the ImageNet classification benchmark. In particular,
ConvNeXt shows that standard depthwise convolution with shared kernels is sufficient to outper-
form Local ViTs once the connectivity is equivalent (Liu et al., 2022). Building on this insight, we
adopt depthwise convolution with shared kernels as a simple and effective design choice, rather than
relying on more complex dynamic weighting (Han et al., 2022).
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Figure 4: The Fully Convolutional Diffusion Model (FCDM) architecture. (a) Details of the
ConvNeXt block. (b) Our FCDM block, which incorporates conditioning via adaptive layer normal-
ization. (c) We train conditional latent FCDMs. The input latent is processed by multiple FCDM
blocks arranged in an easily scalable U-shaped architecture.

Model Blocks L Hidden channel C Params (M) FLOPs (G) FLOPs (FCDM)
FLOPs (DiT)

FCDM-S 2 128 32.7 3.1 50.8%
FCDM-B 2 256 127.7 12.2 53.0%
FCDM-L 2 512 504.5 48.3 59.9%
FCDM-XL 3 512 698.8 64.6 54.5%

Table 1: We follow parameter counts of Diffusion Transformers (DiTs) for the Small (S), Base (B),
Large (L), and XLarge (XL) scales. FLOPs are measured on ImageNet 256×256.

Pointwise convolutions are equivalent to Transformer MLPs. Following depthwise convolu-
tion, ConvNeXt applies 1×1 pointwise convolutions in an inverted bottleneck structure, which mix
information across channels at each spatial location. This operation is mathematically equivalent to
the Transformer MLP: the channel dimension is first expanded by a ratio r and then projected back
using two linear layers, where a nonlinear activation is applied between them. From this perspec-
tive, 1×1 pointwise convolutions fulfill the same structural role as MLP blocks in ViTs, but through
purely convolutional operations.

With these correspondences, ConvNeXt exhibits a clear structural alignment with ViTs (Dosovitskiy
et al., 2021; Liu et al., 2021) and has demonstrated superior performance on ImageNet classifica-
tion (Russakovsky et al., 2015). This shows that convolutional architectures can retain the benefits
of Transformer connectivity while remaining simpler and more efficient.

3.2 DESIGNING DIFFUSION WITH CONVOLUTIONS

Building on the structural correspondences between ConvNeXt and ViTs, we redesign ConvNeXt
into a generative backbone for diffusion models, introducing Fully Convolutional Diffusion Model
(FCDM). In this section, we highlight the advantages of fully convolutional architectures compared
to Transformer-based designs, and describe the key components that define the design space of the
FCDM class.

Conditional injection. Original ConvNeXt blocks lack conditioning mechanisms as shown in Fig-
ure 4 (a). To enable class and time conditioning, we replace LayerNorm with Adaptive LayerNorm
(AdaLN), as shown in Figure 4 (b). A lightweight MLP maps the conditioning vector (derived from
class and time embeddings) to (γ, β, α) parameters that modulate normalized features. Following
DiT (Peebles & Xie, 2023), we zero-initialize the final modulation scale α to stabilize optimization
and allow deeper training.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Easily scalable U-shaped architecture. Most convolutional networks adopt a U-shaped design
with skip connections, which facilitates the integration of global and local features. This struc-
ture makes it easier to capture the overall context while preserving the high-resolution details from
the early encoder layers. Following this principle, we organize ConvNeXt blocks within a U-Net
hierarchy, with skip connections bridging the encoder and decoder stages.

To simplify scalability, we avoid the complex, resolution-specific design choices often used in U-
shaped networks. Instead, our architecture is parameterized by only two hyperparameters: the block
count L and the number of hidden channels C. At each 2× downsampling stage, both C and L
are doubled. This generalized U-shaped design (Figure 4 (c)) allows straightforward scaling while
retaining the inductive biases of convolutions. By controlling C and L, the proposed architecture
can be scaled up or down in a straightforward manner.

4 EXPERIMENTAL SETUP

Model size. We denote our models by their configurations, parameterized by hidden channels C
and number of blocks L, which are both double at each 2× downsampling stage. To enable fair
comparisons, we align the parameter counts of our FCDM scales with those of DiT (Peebles &
Xie, 2023) (e.g., DiT-B: 130M vs. FCDM-B: 127.7M). We evaluate four model scales, as listed
in Table 1: FCDM-S, FCDM-B, FCDM-L, and FCDM-XL. These cover a broad range of number
of parameters, from 32.7M to 698.8M, allowing us to systematically study scaling behavior and
compare with DiT across different scales.

Training. We train class-conditional latent FCDMs at 256×256 and 512×512 resolutions on the
ImageNet dataset (Russakovsky et al., 2015), a standard yet highly competitive benchmark for
generative modeling. Training follows common practices of DiT (Peebles & Xie, 2023): we use
AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) with a fixed learning rate of 1 × 10−4,
no weight decay, and batch size 256. The only augmentation applied is horizontal flipping. We use
an exponential moving average (EMA) of model weights with a decay factor of 0.9999, and report
all results using the EMA weights. We retain diffusion hyperparameters from ADM (Dhariwal &
Nichol, 2021): tmax = 1000 steps with a linear variance schedule (1×10−4 to 2×10−4), ADM’s co-
variance parameterization Σθ, and their timestep/label embedding method. See Appendix A for an
overview of denoising diffusion probabilistic models and Appendix B for additional training details
and hyperparameters.

Datasets and Metrics. We conduct experiments on ImageNet-1K at 256×256 and 512×512 res-
olutions for class-conditional image generation. Our primary metric is Fréchet Inception Distance
(FID) (Heusel et al., 2017), following the standard evaluation protocol. We sample 50K images with
250 DDPM sampling steps, and compute the metrics using OpenAI’s official TensorFlow evaluation
toolkit (Dhariwal & Nichol, 2021). As secondary metrics, we also report Inception Score (IS) (Sal-
imans et al., 2016) and Precision/Recall (Kynkäänniemi et al., 2019). See Appendix C for more
details.

Compute. All models are implemented in PyTorch (Paszke et al., 2019) and trained on a cluster
of RTX 4090 GPUs. The largest model, FCDM-XL, trains at roughly 0.9 iterations per second (with
gradient checkpointing) on 256×256 training, using only 4 NVIDIA RTX 4090 24GB GPUs with a
global batch size of 256.

5 EXPERIMENTS

5.1 SCALING MODEL SIZE

We train four FCDM models (S, B, L, XL), all using the same training configuration. Figure 2 (a)
summarizes the FLOPs and FID at 400K training iterations. In all cases, scaling up model size
improves performance. Figure 5 further shows that FCDM consistently outperforms DiT (Peebles
& Xie, 2023) across all scales. Increasing model scale, both in width and depth, consistently leads
to significant FID improvements.
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Model Training iterations FLOPs (G) ↓ Throughput (it/s) ↑ FID ↓ IS ↑ Precision ↑ Recall ↑
DiT-S/2 (ICCV 2023) 400K 6.1 1234.0 68.40 - - -
DiC-S (CVPR 2025) 400K 5.9 3148.8 58.68 25.82 - -
DiG-S/2 (CVPR 2025) 400K 4.3 961.2 62.06 22.81 0.39 0.56
DiCo-S (NeurIPS 2025) 400K 4.3 1695.7 49.97 31.38 0.48 0.58
FCDM-S 400K 3.1 2687.2 48.52 31.64 0.48 0.58
DiT-B/2 400K 23.0 380.1 43.47 - - -
DiC-B 400K 23.5 1024.2 32.33 48.72 - -
DiG-B/2 400K 17.1 345.9 39.50 37.21 0.51 0.63
DiCo-B 400K 16.9 823.0 27.20 56.52 0.60 0.61
FCDM-B 400K 12.2 1001.6 26.21 58.04 0.59 0.61

DiT-L/2 400K 80.7 114.6 23.33 - - -
DiG-L/2 400K 61.7 109.0 22.90 59.87 0.60 0.64
DiCo-L 400K 60.2 288.3 13.66 91.37 0.69 0.61
FCDM-L 400K 48.3 381.3 13.83 93.31 0.66 0.62

DiT-XL/2 400K 118.6 76.9 19.47 - - -
DiC-XL 400K 116.1 263.1 13.11 100.2 - -
DiG-XL/2 400K 89.4 71.7 18.53 68.53 0.63 0.64
DiCo-XL 400K 87.3 208.5 11.67 100.4 0.71 0.61
DiC-H 400K 204.4 144.5 11.36 106.5 - -
FCDM-XL 400K 64.6 272.7 10.72 108.0 0.69 0.63

DiT-XL/2 7M 118.6 76.9 9.62 - - -
DiC-H 800K 204.4 144.5 8.96 124.33 - -
DiG-XL/2 1.2M 89.4 71.7 8.60 130.03 0.68 0.68
FCDM-XL 1M 64.6 272.7 7.91 135.55 0.71 0.64

Table 2: Scalability comparisons on ImageNet 256×256. For each model scale, we report FID, IS,
Precision, and Recall (50K samples without guidance), and efficiency metrics (training iterations,
FLOPs, throughput). FCDM-XL achieves superior convergence while using 50% fewer FLOPs than
DiT-XL/2. Reported values follow the respective papers; the best results are highlighted in bold.

Figure 5: FCDM improves FID across all model scales. FID-50K over training iterations for both
DiT and FCDM. Across all model scales, FCDM converges much faster.

Table 2 provides a broader comparison with DiT and recent state-of-the-art class-conditional mod-
els that follow a similar experimental setup. Although our scales are aligned with DiT in terms of
parameter counts, FCDM requires about 50% fewer FLOPs than DiT and 30% fewer FLOPs than
DiCo (Ai et al., 2025). Notably, FCDM-XL (64.6G FLOPs) is computationally closer to Large (L)
scale models in prior works, yet outperforms even XL-scale models in terms of FID. In particular,
FCDM-XL achieves superior FID with a 7× speedup compared to DiT-XL/2. Furthermore, its effi-
ciency also yields favorable throughput: while DiC (Tian et al., 2025) has the best throughput at S
and B scales due to its use of standard convolution, which is simpler and better supported by hard-
ware, FCDM outperforms it at L and XL scales, achieving the fastest throughput. For completeness,
detailed descriptions of each baseline method are provided in Appendix D, and a detailed scaling
analysis is provided in Appendix E.

5.2 BENCHMARKING PERFORMANCE AND EFFICIENCY

256×256 ImageNet. Building on the scaling analysis, we train FCDM-XL for 2M iterations (400
epochs) and evaluate it with classifier-free guidance (Ho & Salimans, 2021). Figure 1 presents gener-
ated samples and Table 3 further compares against prior class-conditional image generation models.
Notably, FCDM-XL improves upon baselines despite requiring fewer training epochs. In particular,
it achieves an FID of 2.03 and an IS of 285.7, while reaching state-of-the-art efficiency in FLOPs
and throughput, demonstrating a strong trade-off between performance and efficiency. As shown
in Figure 6, our model achieves state-of-the-art throughput while drastically reducing training cost.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Training epochs FLOPs (G) ↓ Throughput (it/s) ↑ FID ↓ IS ↑ Precision ↑ Recall ↑
GAN

BigGAN-deep - - - 6.95 171.4 0.87 0.28
StyleGAN-XL - - - 2.30 265.12 0.78 0.53

Pixel diffusion
ADM-U 400 742.0 - 3.94 215.8 0.83 0.53
VDM++ 560 - - 2.12 267.7 - -
Simple Diffusion 800 - - 2.77 211.8 - -
CDM 2160 - - 4.88 158.7 - -

Latent diffusion
LDM-4 200 104.0 - 3.60 247.7 0.87 0.48
U-ViT-H/2 240 133.3 73.5 2.29 263.9 0.82 0.57
MaskDiT 1600 - - 2.28 276.6 0.80 0.61
SD-DiT 480 - - 3.23 - - -

DiT-XL/2 1400 118.6 76.9 2.27 278.2 0.83 0.57
SiT-XL/2 1400 118.6 76.9 2.06 277.5 0.83 0.59
DiG-XL/2 240 89.4 71.7 2.07 279.0 0.82 0.60
DiCo-XL 750 87.3 174.2 2.05 282.2 0.83 0.59
DiC-H 400 204.4 144.5 2.25 - - -
FCDM-XL 400 64.6 272.7 2.03 285.7 0.81 0.59

Table 3: Benchmarking class-conditional image generation on ImageNet 256×256. We com-
pare representative models in terms of FID, IS, Precision, Recall (with guidance), and efficiency
metrics (training epochs, FLOPs, throughput). FCDM-XL achieves both superior efficiency and
performance. Reported values follow the respective papers; the best results are highlighted in bold.

Figure 6: Benchmarking class-conditional image generation performance and efficiency on
ImageNet 256×256. Left: FID versus training cost. Right: FID versus throughput. One zettaFLOP
corresponds to 1021 FLOPs (1012 GFLOPs). A training iteration is assumed to cost about 3× one
evaluation (forward + backward to inputs + backward to weights). Red denotes fully convolutional,
Green denotes hybrid, and Blue denotes fully transformer-based models.

These results highlight, for the first time, the effectiveness of ConvNeXt architectures in generative
diffusion modeling, which had previously been shown only in classification, and demonstrate their
broader adaptability and potential. It is important to note that, although FCDM-XL demonstrates
superior performance over comparable baselines within DiT-style experimental settings, it does not
yet surpass the latest state-of-the-art results achieved by models such as EDM-2 (Karras et al., 2024)
or Simpler Diffusion (Hoogeboom et al., 2025). Nevertheless, as an architecture with a favorable
performance–efficiency trade-off, our approach holds the potential to deliver improved results with
further scaling and more advanced training frameworks.

512×512 ImageNet. We also train FCDM-XL at 512×512 resolution for 1M iterations, using the
same hyperparameters as the 256×256 model. Table 4 reports FLOPs and FID at both 400K and
1M iterations. At this resolution, FCDM-XL once again achieves the best FLOPs and throughput.
With this efficiency advantage, FCDM-XL obtains a superior FID at 400K iterations, which further
persists at 1M. Remarkably, FCDM-XL outperforms DiT and DiCo even with far fewer training
iterations, achieving a 7.5× speedup over DiT-XL/2 and a 3× speedup over DiCo. These results
demonstrate that FCDM not only maintains strong efficiency but also exceeds models trained with
substantially more iterations, confirming the superiority of the architecture. Interestingly, when res-
olution doubles, throughput of DiT drops by 4×, while FCDM drops by only 2×. This contrast
highlights the computational differences between fully transformer-based and fully convolutional-
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Model Training iterations FLOPs (G) ↓ Throughput (it/s) ↑ FID ↓ IS ↑ Precision ↑ Recall ↑
DiT-XL/2 400K 524.7 18.6 20.94 66.3 0.74 0.58
DiG-XL/2 400K - - 17.36 69.4 0.75 0.63
DiC-XL 400K 464.3 124.2 15.32 93.6 - -
DiC-H 400K 817.2 68.6 12.89 101.8 - -
FCDM-XL 400K 257.7 129.6 10.23 108.7 0.79 0.60

DiT-XL/2 3M 524.7 18.6 12.03 105.3 0.75 0.64
DiCo-XL 3M 349.8 82.0 7.48 146.4 0.78 0.63
FCDM-XL 1M 257.7 129.6 7.46 133.6 0.79 0.61

Table 4: Benchmarking class-conditional image generation on ImageNet 512×512. We report
FID, IS, Precision, Recall (without guidance), and efficiency metrics for representative models.
Even at this resolution, FCDM surpasses models trained for 3M iterations with only 1M iterations
and achieves best efficiency in FLOPs and throughput. The best results are highlighted in bold.

Model Training iterations FLOPs (G) ↓ FID ↓ IS ↑ Precision ↑ Recall ↑
FCDM-L (Default: 7×7 DWConv) 200K 48.3 19.97 69.19 0.6312 0.6128

7×7 → 5×5 DWConv 200K 48.2 20.48 66.69 0.6310 0.6017
7×7 → 3×3 DWConv 200K 48.1 21.28 64.11 0.6269 0.5993

FCDM-L (Default: FCDM block) 200K 48.3 19.97 69.19 0.6312 0.6128
FCDM block → ResNet block∗ 200K 48.4 31.14 49.10 0.5866 0.5926

FCDM-L (Default: U-shaped) 200K 48.3 19.97 69.19 0.6312 0.6128
U-shaped → Isotropic 200K 46.1 41.15 33.97 0.5504 0.5889

FCDM-L (Default: w/ GRN) 200K 48.3 19.97 69.19 0.6312 0.6128
w/o GRN 200K 48.2 21.24 62.35 0.6302 0.5923

Table 5: Ablation study on design choices of FCDM. We analyze the effects of kernel size, FCDM
block, U-shaped architecture, and GRN. ∗ indicates that the hidden channel is adjusted (512 → 336)
to match FLOPs for fair comparison.

based designs, and demonstrates the superior suitability of FCDM for scaling to higher resolutions.
Moreover, we provide a frequency-based analysis in Appendix F as an observation to better un-
derstand the model behavior in comparison with Diffusion Transformers, and additional qualitative
examples in Appendix H.

5.3 ABLATION STUDY

We conduct ablations on the Large (L) model at 256×256 ImageNet to analyze the effect of key
architectural components, as summarized in Table 5. Reducing kernel size consistently degrades
performance, demonstrating that large kernels strengthen local operations and effectively approx-
imate global context. Replacing FCDM blocks with ResNet blocks (He et al., 2016) results in a
severe degradation, highlighting the advantage of our ConvNeXt-inspired design. Removing the
U-shaped hierarchy and adopting an isotropic architecture similarly degrades performance, show-
ing the importance of combining local detail with global context. Finally, eliminating GRN results
in a clear performance drop, confirming its role in reducing channel redundancy and showing that
it achieves a similar effect to compact channel attention of DiCo but with far fewer parameters.
Detailed and additional ablation results are provided in Appendix G.

6 CONCLUSION

In this work, we revisited the role of convolutions in diffusion modeling and introduced FCDM,
a ConvNeXt-inspired backbone tailored for generative tasks. By combining an easily scalable U-
shaped hierarchy with strict convolutional locality, FCDM achieves superior generative performance
and higher computational efficiency than prior fully convolutional designs and even Diffusion Trans-
formers. These results demonstrate that modern convolutional architectures, when carefully adapted,
remain highly competitive and challenge the prevailing belief that larger Transformers are the sole
path to progress in diffusion models. We provide a discussion of future research directions in Ap-
pendix I.
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APPENDIX

We provide the following supplementary materials in the Appendix:

• Section A: Overview of denoising diffusion probabilistic models (DDPMs).
• Section B: Hyperparameter and implementation details.
• Section C: Descriptions of evaluation metrics.
• Section D: Descriptions of baseline models.
• Section E: Additional results and analyses on model scalability.
• Section F: Frequency-based analysis of model behavior.
• Section G: Additional quantitative analyses on architectural variants.
• Section H: Additional qualitative results and visual samples.
• Section I: Discussions on potential directions for future research.

A OVERVIEW ON DENOISING DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) aim to model a target distribution
p(x) by learning a gradual denoising process from Gaussian noise N (0, I) to p(x). Specifically, the
model learns a reverse process pθ(xt−1|xt) of a predefined forward diffusion process q(xt|xt−1),
which progressively adds Gaussian noise over T timesteps.

For an initial sample x0 ∼ p(x), the forward process is defined as:

q(xt|xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
, (1)

where βt ∈ (0, 1) is a variance schedule. A closed-form expression of q(xt|x0) can also be derived
as:

q(xt|x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
, ᾱt =

t∏
s=1

(1− βs). (2)

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) parameterizes the reverse tran-
sition as

pθ(xt−1|xt) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
, σ2

t I
)
, (3)

where the noise predictor ϵθ(xt, t) is trained using a simple denoising autoencoder objective:

Lsimple = Ext,x0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
. (4)

Following DDPM, one can set σ2
t = βt for simplicity. Meanwhile, improved DDPM (iD-

DPM) (Nichol & Dhariwal, 2021) shows that performance can be improved by jointly learning the
variance Σθ(xt, t), which is parameterized as an interpolation between βt and β̃t in the log domain:

log Σθ(xt, t) = v log βt + (1− v) log β̃t, (5)

where β̃t = 1−ᾱt−1

1−ᾱt
βt, and v denotes the interpolation weight predicted by the model in a

dimension-wise manner. In this work, we adopt the iDDPM framework for both training and sam-
pling, following the same design choice as DiT (Peebles & Xie, 2023).
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B HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We design Fully Convolutional Diffusion Models (FCDMs) at multiple scales, aligned by parameter
counts with DiT. Thanks to their easy scalability, we adjust only two hyperparameters, L and C, to
obtain these variants. Notably, when compared to DiT in terms of FLOPs, our FCDMs require only
50.8% to 59.9% of the FLOPs consumed by DiT, demonstrating the state-of-the-art computational
efficiency of our design. Our implementation is based on the original DiT codebase (Peebles &
Xie, 2023). Detailed configurations of these hyperparameters, along with additional implementation
details, are provided in Table 6. For the latent space, we adopt an off-the-shelf pre-trained variational
autoencoder (VAE) (Kingma & Welling, 2014; Rombach et al., 2022; Kouzelis et al., 2025) with a
downsampling factor of 8. Accordingly, an input RGB image of shape 256×256×3 is encoded
to a latent tensor of 32×32×4. All diffusion training operates in this latent space, and latents are
decoded back to pixels by the VAE decoder.

FCDM-S FCDM-B FCDM-L FCDM-XL FCDM-XL
Resolution 256×256 256×256 256×256 256×256 512×512

Architecture
Input dim. 32×32×4 32×32×4 32×32×4 32×32×4 64×64×4
Num. blocks (L) 2 2 2 3 3
Hidden channels (C) 128 256 512 512 512
1×1 conv. expansion ratio (r) 3 3 3 3 3

Training
Training iteration 400K 400K 400K 2M 1M
Global batch size 256 256 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Learning rate schedule constant constant constant constant constant
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Weight decay 0 0 0 0 0
Numerical precision fp32 fp32 fp32 fp32 fp32
Data augmentation random flip random flip random flip random flip random flip

Sampling
Sampler iDDPM iDDPM iDDPM iDDPM iDDPM
Sampling steps 250 250 250 250 250

Table 6: Hyperparameter setup of FCDM model scales. For all scales of FCDM, we adopt the
same experimental settings as DiT.

Computing resources. Thanks to the superior efficiency of our fully convolutional architecture,
we are able to train 256× 256 ImageNet models even with consumer-level GPUs such as NVIDIA
RTX 4090 24GB. Specifically, for 256 × 256 resolution, we use 4 RTX 4090 24GB GPUs with a
training speed of about 0.9 steps/s (with gradient checkpointing) for FCDM-XL at a batch size of
256. For 512× 512, we use 4 NVIDIA H100 80GB GPUs, achieving a training speed of 0.7 steps/s
(with gradient checkpointing) with the same batch size.

C EVALUATION METRICS

For evaluation, we follow the setup of ADM (Dhariwal & Nichol, 2021) and use the same refer-
ence batches provided in their official implementation.1 Specifically, we generate 50K samples and
compute the metrics using OpenAI’s official TensorFlow evaluation toolkit. All evaluations are con-
ducted on NVIDIA RTX 4090 or NVIDIA H100 GPUs, except for certain reported numbers that are
taken from prior work.

The following gives a concise description of the evaluation metrics used in our experiments.

1https://github.com/openai/guided-diffusion/tree/main/evaluations
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• FID (Heusel et al., 2017) measures the distance between the feature distributions of real
and generated images. It is computed using the Inception-v3 network (Szegedy et al.,
2016), under the assumption that both feature distributions follow multivariate Gaussian
distributions.

• sFID (Nash et al., 2021) computes FID using spatial feature maps from intermediate layers
of Inception-v3, thereby better capturing the spatial structure of generated images.

• IS (Salimans et al., 2016) evaluates only generated images using the Inception-v3 network.
It assigns higher scores when the images are classifiable with high confidence (sharp and
meaningful) and when the set of generated images is diverse across different categories.

• Precision and Recall (Kynkäänniemi et al., 2019) measure realism and diversity in feature
space. Precision reflects the fraction of generated images that look realistic, while recall
reflects how much of the real data distribution is covered by the generated samples.

We additionally report computational efficiency. FLOPs are computed using torchprofile2, and
throughput is evaluated under the sampling configurations of DiT (Peebles & Xie, 2023) with a
batch size of 64. FlashAttention-2 (Dao, 2024) and Flash Linear Attention (Yang et al., 2024) are
activated in DiT and DiG, respectively.

D BASELINE MODELS

The following summarizes the key ideas of the diffusion baselines used for the evaluation.

• ADM (Dhariwal & Nichol, 2021) improves hybrid U-Net architecture for diffusion models
and introduces classifier guidance, which enables a trade-off between sample quality and
diversity.

• VDM++ (Kingma & Gao, 2023) enhances training efficiency by proposing a simple adap-
tive noise schedule for diffusion models.

• Simple diffusion (Hoogeboom et al., 2023) proposes a diffusion model for high-resolution
image generation by carefully redesigning the noise schedule and model architecture.

• CDM (Ho et al., 2022) adopts a cascaded framework in which a base model first generates
a low-resolution image, and subsequent super-resolution diffusion models progressively
refine it to higher fidelity.

• LDM (Rombach et al., 2022) proposes latent diffusion models that operate in a compressed
latent space, greatly improving training efficiency while retaining high generation quality.

• U-ViT (Bao et al., 2023) adapts Vision Transformers for latent diffusion by introducing
long skip connections similar to those in U-Net.

• MaskDiT (Zheng et al., 2024) proposes an asymmetric encoder–decoder architecture for
diffusion transformers, trained with an auxiliary mask reconstruction task to improve effi-
ciency.

• SD-DiT (Zhu et al., 2024) reframes the mask modeling of MaskDiT as a self-supervised
discrimination objective.

• DiT (Peebles & Xie, 2023) replaces the hybrid U-Net architecture with a fully transformer-
based backbone, introduces AdaIN-zero conditioning to stabilize training, and shows that
diffusion transformers scale effectively.

• SiT (Ma et al., 2024) reformulates DiT training by transitioning from discrete diffusion to
continuous flow matching.

• DiG (Zhu et al., 2025) integrates Gated Linear Attention (Yang et al., 2024), enabling sub-
quadratic complexity efficiency of diffusion transformers.

• DiC (Tian et al., 2025) re-examined purely convolutional denoisers by scaling standard
3×3 convolutional blocks in a U-Net design, introducing sparse skip connections.

• DiCo (Ai et al., 2025) proposes 3×3 seperable convolutional block in a U-Net design,
introducing compact chennal attention to activate more informative channels.

2https://pypi.org/project/torchprofile/

17

https://pypi.org/project/torchprofile/


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E ADDITIONAL SCALING RESULTS

As shown in Figure 5, we clearly demonstrate the scalability of FCDM in terms of FID. We also
observe consistent scalability across other metrics, including sFID, Inception Score, Precision, and
Recall, as reported in Table 7.

In addition, we trained FCDMs using the original SiT implementation (Ma et al., 2024) to examine
whether our proposed design also exhibits scalability under this framework. Following the original
implementation details, we trained the model with the flow-matching objective (Lipman et al., 2023;
Ma et al., 2024). We used AdamW with a constant learning rate of 1×10−4, (β1, β2) = (0.9, 0.999),
and no weight decay. For sampling, we employed the Euler–Maruyama SDE sampler with 250 steps,
setting the final step size to 0.04.

As shown in Table 8, we again observe clear scalability when training the proposed network with
the flow-matching objective. Interestingly, under our framework, the flow-matching objective yields
better performance at the Small (S) scale, while showing slightly worse results at the Base (B)
through XLarge (XL) scales. Nevertheless, these results confirm that the proposed architecture
possesses generalized scalability beyond a specific training objective.

Model FLOPs (G) Training Steps FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

FCDM-S 3.10

50K 103.93 15.03 12.01 0.3013 0.3513
100K 77.17 12.15 17.11 0.3809 0.4473
150K 66.85 11.02 20.68 0.4136 0.5106
200K 60.33 10.70 23.71 0.4396 0.5537
250K 56.08 10.54 26.30 0.4568 0.5609
300K 53.01 10.59 28.10 0.4687 0.5806
350K 50.44 10.29 30.08 0.4757 0.5729
400K 48.53 10.12 31.64 0.4836 0.5840

FCDM-B 12.20

50K 76.61 9.75 16.45 0.3797 0.4569
100K 50.83 8.24 26.90 0.4854 0.5543
150K 40.60 7.53 35.35 0.5268 0.5894
200K 35.00 7.22 42.42 0.5525 0.5981
250K 31.77 7.11 47.22 0.5665 0.6117
300K 29.26 7.03 51.62 0.5705 0.6141
350K 27.34 6.94 55.10 0.5855 0.6127
400K 26.21 6.86 58.04 0.5908 0.6112

FCDM-L 48.30

50K 55.15 8.33 22.74 0.4655 0.5403
100K 32.03 7.10 43.20 0.5791 0.5857
150K 23.88 6.47 58.51 0.6106 0.6052
200K 19.97 6.17 69.19 0.6312 0.6128
250K 17.33 5.99 77.79 0.6427 0.6233
300K 15.98 5.82 84.28 0.6477 0.6245
350K 14.95 5.82 87.55 0.6527 0.6257
400K 13.83 5.65 93.31 0.6612 0.6218

FCDM-XL 64.60

50K 51.00 8.31 24.37 0.4940 0.5475
100K 27.23 6.86 49.52 0.6108 0.5824
150K 19.25 6.15 68.62 0.6492 0.5995
200K 15.54 5.95 81.40 0.6690 0.6051
250K 13.50 5.74 91.74 0.6785 0.6117
300K 12.31 5.64 98.58 0.6829 0.6192
350K 11.19 5.54 104.86 0.6914 0.6227
400K 10.72 5.47 108.04 0.6864 0.6273

Table 7: Performance of FCDMs across scales and training steps on ImageNet 256×256 (Dif-
fusion). Scaling FCDMs consistently leads to improved generative performance when trained with
the diffusion objective.
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Model FLOPs (G) Training Steps FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

FCDM-S 3.10

50K 103.10 13.10 12.23 0.2863 0.3111
100K 76.95 11.12 16.96 0.3826 0.4547
150K 66.97 10.18 20.56 0.4228 0.4953
200K 60.53 9.62 23.90 0.4428 0.5372
250K 55.94 9.53 26.16 0.4670 0.5515
300K 52.43 9.22 28.78 0.4787 0.5632
350K 49.76 9.05 31.06 0.4866 0.5730
400K 47.84 8.91 32.89 0.4944 0.5749

FCDM-B 12.20

50K 80.10 18.48 15.46 0.3286 0.4072
100K 52.23 8.34 25.95 0.4891 0.5450
150K 42.58 7.85 33.83 0.5346 0.5780
200K 37.01 7.51 40.72 0.5554 0.5819
250K 33.14 7.24 46.39 0.5728 0.5855
300K 30.16 7.07 51.60 0.5883 0.5953
350K 28.40 6.99 55.07 0.5941 0.6066
400K 26.61 6.85 58.51 0.6050 0.6017

FCDM-L 48.30

50K 57.32 15.82 21.61 0.4467 0.4872
100K 33.71 7.74 40.77 0.5852 0.5615
150K 26.10 6.94 54.79 0.6232 0.5865
200K 21.91 6.63 65.12 0.6429 0.5909
250K 19.39 6.47 73.55 0.6557 0.5940
300K 17.59 6.31 80.47 0.6650 0.6075
350K 16.27 6.18 85.62 0.6681 0.6064
400K 15.30 6.17 90.09 0.6751 0.6126

FCDM-XL 64.60

50K 51.21 11.89 24.21 0.5010 0.5006
100K 29.37 7.34 46.27 0.6172 0.5680
150K 22.07 6.77 63.02 0.6572 0.5870
200K 17.98 6.34 75.71 0.6747 0.5909
250K 15.72 6.24 85.30 0.6853 0.5991
300K 14.16 6.07 92.79 0.6952 0.6040
350K 13.06 5.97 98.22 0.6976 0.6072
400K 12.11 5.96 103.07 0.7030 0.6070

Table 8: Performance of FCDMs across scales and training steps on ImageNet 256×256 (Flow-
Matching). Scaling FCDMs also demonstrates consistent improvements in generative performance
when trained with the flow-matching objective.
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F FREQUENCY-BASED ANALYSIS

To better highlight the differences between our fully convolutional diffusion model (FCDM) and
the transformer-based DiT, we examine the evolution of the spectral energy—defined as the sum of
the log-magnitude spectrum of the predicted noise—over the course of the diffusion process (using
models trained for 400k iterations at 512x512 resolution). For each predicted noise sample, we
compute the 2D Fourier transform, take the magnitude spectrum, and apply a logarithmic scaling
log(1 + F ) to compress the dynamic range. We then define the total spectral energy as the sum
of all values in this log-magnitude spectrum, which reflects the overall distribution of frequency
components. Figure 7 presents the total spectral energy, averaged over 128 validation samples,
calculated at each of the 1,000 diffusion timesteps.

Across all diffusion steps, FCDM consistently exhibits higher spectral energy than DiT. This differ-
ence is most pronounced in the early-to-middle stages of the diffusion trajectory, where the model
must simultaneously capture global structure and fine-grained detail. The elevated energy of FCDM
indicates that its predicted noise retains stronger high-frequency components, which can be asso-
ciated with sharper textures, edges, and local structures. By contrast, DiT produces lower spectral
energy, suggesting smoother predictions with fewer high-frequency details. While this observation
may provide a partial explanation for the performance gap between FCDM and DiT, further theoret-
ical analysis is required.
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Figure 7: Spectral energy of predicted noise across diffusion steps. FCDM consistently exhibits
higher spectral energy than DiT across the entire diffusion process, suggesting potential for better
preservation of high-frequency components.
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G ANALYSIS OF ADDITIONAL ARCHITECTURAL VARIANTS

This section provides further details on the ablations in the main manuscript and introduces addi-
tional architectural ablation results.

Table 5 presents architectural ablations using the Large (L) model on ImageNet at 256×256. We an-
alyze the effect of the contributions of specific architectural elements, including kernel size, FCDM
blocks, Global Response Normalization (GRN), and U-shaped structure. Interestingly, although
ConvNeXt (Liu et al., 2022; Woo et al., 2023) was developed for a different task, we observe similar
ablation trends in our experiments.

Large Kernel Sizes. Vision Transformers employ non-local self-attention, enabling each layer to
access a global receptive field. In contrast, ConvNets traditionally relied on stacking small 3×3 con-
volutions (popularized by VGGNet (Simonyan & Zisserman, 2015)), which are efficient on mod-
ern GPUs (Lavin & Gray, 2016). Our experiments show that reducing kernel sizes consistently
degrades performance, with FID increasing from 19.97 to 20.48 and 21.28, indicating that larger
kernels strengthen local operations and better approximate a global receptive field.

Effect of FCDM Blocks. We replaced FCDM blocks with ResNet blocks (He et al., 2016) us-
ing standard 3×3 convolutions. To match FLOPs, the hidden channels were reduced from 512 to
336, given the higher computational cost of standard convolutions compared to separable convolu-
tions. This substitution results in a substantial degradation, with FID increasing from 19.97 to 31.14,
indicating that the FCDM block is better suited for this task than the ResNet block.

Effect of Architectural Design. Most convolutional networks adopt a U-shaped design with skip
connections, which facilitate integration of global and local features. This design helps preserve
high-resolution detail while capturing overall context, and our model benefits similarly. Reshaping
FCDM into an isotropic architecture, without downsampling and with constant resolution across
depths, severely degrades performance, with FID increasing from 19.97 to 41.15. This indicates
that the U-shaped architecture contributes to the performance gains of FCDM.

Effect of GRN. Subsequent work on ConvNeXt (Woo et al., 2023) reported that the original Con-
vNeXt (Han et al., 2022) suffered from feature collapse due to redundant channel activations. This
issue was addressed by introducing Global Response Normalization (GRN), which normalizes chan-
nel activations. Since convolutional architectures can exhibit similar channel redundancy when ap-
plied to image generation (Ai et al., 2025), we likewise incorporate GRN into FCDM to mitigate
redundant activations. Removing GRN from our model leads to a clear performance drop, with FID
increasing from 19.97 to 21.24, highlighting its importance. This observation can also be clearly
seen in the feature activation visualization of Figure 8. By reducing channel redundancy, GRN
facilitates more balanced and diverse utilization of feature representations.

Figure 8: Feature activation visualization. We visualize the features before and after the GRN
layer during the sampling of each image shown on the left. The first 64 channels of the last block in
the first stage are displayed as 8×8 grids. GRN clearly reduces channel redundancy.
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Model Training iterations FLOPs (G) ↓ FID ↓
SD-VAE

DiT-XL/2 400K 118.6 19.47
FCDM-XL 400K 64.6 11.57

EQ-VAE
DiT-XL/2 400K 118.6 14.50
FCDM-XL 400K 64.6 10.72

Table 9: Ablation study on autoencoders. Across different latent spaces (SD-VAE and EQ-VAE),
FCDM consistently outperforms DiT.

Model Configuration Hidden channel C Depths Params (M) FLOPs (G) ↓ TP (it/s) ↑ FID ↓
Asymmetric U-Net Ablations

FCDM-L (Default: Sym. U-Net) 512 [2, 4, 8, 4, 2] 504.5 48.3 381.3 19.97
Asym. U-Net 512 [2, 3, 8, 5, 2] 504.5 48.3 381.3 19.55

FCDM-XL (Default: Sym. U-Net) 512 [3, 6, 12, 6, 3] 698.8 64.6 272.7 15.54
Asym. U-Net 512 [3, 3, 12, 9, 3] 698.8 64.6 272.7 15.55
Asym. U-Net 512 [3, 5, 12, 7, 3] 698.8 64.6 272.7 15.54

Downsample Levels Ablations

FCDM-L (Default: 3-lvl U-Net) 512 [2, 4, 8, 4, 2] 504.5 48.3 381.3 19.97
2-lvl U-Net∗ 1024 [4, 8, 4] 482.1 140.0 153.5 17.74
4-lvl U-Net∗ 256 [3, 3, 3, 8, 3, 3, 3] 497.5 16.0 873.7 28.67

Table 10: Model architecture ablation studies on ImageNet 256×256. All models trained for
200k iterations under identical training settings. ∗ indicates that the hidden channel is adjusted to
match number of parameters.

Effect of Autoencoders. Since FCDM operates in latent space, we tested whether performance
persists under different VAEs. As shown in Table 9, FCDM consistently outperforms DiT under
both SD-VAE (Rombach et al., 2022) and EQ-VAE (Kouzelis et al., 2025). Similar to DiT, our
model performs best with EQ-VAE, improving further over SD-VAE. These findings suggest that
techniques originally proposed to enhance DiT (e.g., stronger VAEs) transfer equally well to FCDM,
indicating the potential for further performance improvements.

Asymmetric Encoder–Decoder Allocation. Following (Hoogeboom et al., 2025), we investi-
gated whether an asymmetric allocation of compute between the encoder and decoder could out-
perform the symmetric setup. Intuitively, assigning more compute to the decoder appears advanta-
geous, since upsampling from low to high resolution is more demanding and additionally requires
processing skip connections. As shown in Table 10, an asymmetric design slightly improves per-
formance for the L-model (FID decreases from 19.97 to 19.55). However, for the XL-model, the
asymmetric setup performs on par with the symmetric variant. While asymmetric encoder–decoder
architectures remain an interesting direction, we adopt the symmetric setup for its simplicity and
more straightforward scalability.

Effect of U-Net Depth. While our base model employs a 3-level U-Net, we examined the effect of
varying U-Net depth by changing the number of downsampling levels. A 2-level U-Net reduces the
FID of the Large (L) model from 19.97 to 17.74, but its FLOPs increase sharply to 140G, more than
double those of the XL model, indicating that the modest FID gain does not justify the additional
cost. In contrast, a 4-level U-Net significantly lowers FLOPs, since most computation is performed
at the lowest resolution, but this comes at the expense of a higher FID. Although further exploration
of deeper U-Nets may be worthwhile, the 3-level U-Net already provides a strong trade-off: it
ensures a large global receptive field, especially when paired with the large kernels of the FCDM
block, while maintaining a balanced parameter-to-FLOPs ratio and a scalable design.

Block Scaling across U-Net Levels. We conducted an additional ablation study on how to dis-
tribute the number of blocks across U-Net levels as resolution decreases, while keeping the total
number of blocks fixed. Specifically, we compared three scaling strategies: quadratic scaling (de-
fault, where the number of blocks increases quadratically with depth), constant allocation (the same
number of blocks at each level), and linear scaling (the number of blocks increases linearly with
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Model Configuration Hidden channel C Depths Params (M) FLOPs (G) ↓ TP (it/s) ↑ FID ↓
FCDM-S (Default: Quadratic Scaling) 128 [2, 4, 8, 4, 2] 32.7 3.1 2687.2 60.33

Constant 144 [4, 4, 4, 4, 4] 29.9 3.7 1672.4 59.57
Linear Scaling 136 [2, 4, 6, 4, 2] 31.4 3.1 2418.7 61.16

FCDM-B (Default: Quadratic Scaling) 256 [2, 4, 8, 4, 2] 127.7 12.2 1001.6 35.00
Constant 296 [4, 4, 4, 4, 4] 122.6 15.4 647.2 32.75
Linear Scaling 272 [2, 4, 6, 4, 2] 122.5 12.3 922.3 36.27

FCDM-L (Default: Quadratic Scaling) 512 [2, 4, 8, 4, 2] 504.5 48.3 381.3 19.97
Constant 600 [4, 4, 4, 4, 4] 496.6 62.8 261.6 17.63
Linear Scaling 552 [2, 4, 6, 4, 2] 497.8 49.4 358.7 19.87

Table 11: Ablation study on block scaling strategies. Comparison of block scaling strategies
across the S, B, and L models. The default quadratic scaling (number of blocks increasing quadrat-
ically) is compared with constant and linear variants, where the total number of blocks is fixed but
redistributed across U-Net levels. All models are trained on ImageNet 256× 256 for 200k iterations
under identical settings. The hidden channel is adjusted to match the total number of parameters.

3.1 12.2 48.3 64.6
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Figure 9: Comparison of scaling strategies. The plot compares three ways of distributing blocks
across U-Net resolution levels. Allocating more blocks at lower resolutions can improve efficiency
by concentrating computation where it is cheaper, although the gains remain modest.

depth). Comprehensive results are reported in Table 11, which summarizes FID, parameter counts,
FLOPs, and throughput across the S, B, and L models under the three strategies. Overall, as shown
in Figure 9, quadratic scaling provides a slightly better trade-off, yielding lower FID for a given
amount of computation.
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H MORE QUALITATIVE RESULTS

Class label = “husky” (250) Class label = “sulphur-crested cockatoo” (89)

Figure 10: Uncurated 512×512 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “lion” (291) Class label = “arctic wolf” (270)

Figure 11: Uncurated 512×512 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “volcano” (980) Class label = “otter” (360)

Figure 12: Uncurated 512×512 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “cliff drop-off” (972) Class label = “coral reef” (973)

Figure 13: Uncurated 512×512 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “panda” (388) Class label = “red panda” (387)

Figure 14: Uncurated 512×512 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “macaw” (88) Class label = “arctic fox” (279)

Figure 15: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “golden retriever” (207) Class label = “loggerhead sea turtle” (33)

Figure 16: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “lake shore” (975) Class label = “space shuttle” (812)

Figure 17: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “sulphur-crested cockatoo” (89) Class label = “coral reef” (973)

Figure 18: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “otter” (360) Class label = “geyser” (974)

Figure 19: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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Class label = “cliff drop-off” (972) Class label = “ice cream” (928)

Figure 20: Uncurated 256×256 FCDM-XL samples. Classifier-free guidance scale = 4.0
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I FUTURE RESEARCH DIRECTIONS

Integration with DINOv3. Interestingly, DINOv3 (Siméoni et al., 2025) was recently released,
along with ConvNeXt-based distilled weights. Given the architectural similarity, integrating such
powerful self-supervised visual representations (e.g., REPA (Yu et al., 2025)) into our framework
would be an important direction for future work.

Different input data types. While this work focuses exclusively on class-conditional image gen-
eration on ImageNet, we do not investigate its applicability to text-to-image generation tasks. Trans-
formers are naturally suited for multimodality through mechanisms such as cross-attention, whereas
achieving similar cross-modal integration using only convolutional operations remains challenging.
Exploring alternative strategies for enabling multimodality within purely convolutional architectures
would therefore be an interesting future direction. Moreover, leveraging the efficiency of convolu-
tional networks to extend generative modeling toward high-dimensional data (e.g., video, 3D, or
4D) represents another promising avenue for future research.

Scaling and training frameworks. An important future direction is to investigate how scaling up
FCDM to larger model sizes (e.g., billions of parameters) influences its expressive power and sample
quality, and how advanced training frameworks can be employed to improve model performance
and accelerate training. Such efforts hold the potential to enable FCDM to achieve, or even surpass,
state-of-the-art results while preserving its computational advantages.

Theoretical analysis. Exploring in-depth theoretical insights into why ConvNeXt-based architec-
tures work well will also be an exciting future direction. For example, it would be interesting to
investigate whether the ConvNeXt, as a universal approximator, possesses expressive power equiv-
alent or comparable to that of attention mechanisms.
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