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WITH FINE-GRAINED CONTROL
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‘A woman in a red shirt’
#1 Her lips were 
lightly colored. 

#2 She took out her 
lipstick and applied it. 

#3 Soon, her lips 
became bright red.

Lip Color +

‘A man in a cozy sweater’
#1 reading a book, 

eyes starting to droop.
#2 leaning back in chair, 
with eyes half-closed.

#3 laying head back, 
eyes fully closed.

Eyes Openness -  Anger +

‘A man in a blue shirt in the classroom’
#1 doing homework, 
looking impatient.

#2 crumpling up the paper, 
face showing anger.

#3 standing up, 
looking very angry.

‘A woman in a gray sweater’
#1 playing with toys 

in her childhood.
#2 reading books 

when she was young.
#3 using a magnifying glass 

as she grew old.

Age +

Figure 1: Our model StoryCtrl allows users to generate visual stories that not only preserve identity
fidelity and ensure inter-frame consistency, but also enable fine-grained control over the specific
attributes of characters in generated stories.

ABSTRACT

Recent advancements in story visualization have achieved significant progress
through text-to-image (T2I) models that generate coherent image sequences
aligned with narratives. However, despite these advancements, generating cus-
tomized story visualizations remains challenging. Current methods primarily ad-
dress identity (ID) fidelity and consistency across frames but overlook the fine-
grained control of character attributes, leading to suboptimal generation results.
To tackle these limitations, we propose StoryCtrl, an innovative framework that
not only preserves identity fidelity but also enables fine-grained control over spe-
cific character attributes in generated stories. The proposed framework consists
of four key components. First, the CtrlGAN Encoder extracts ID information and
inverts visual features to the W+ latent space. Second, the Story-aware Module
(SaM) captures attribute changes within the narrative context and assists CtrlGAN
in making adjustments during the image encoding stage, enabling fine-grained at-
tribute control. Third, we introduce ID-Consis Attention (ICA), which ensures
consistency in generated story sequences. Finally, we incorporate Customized
Guidance Fusion (CGF), which integrates reference image features and prompts
to enhance customization. To the best of our knowledge, we are the first to in-
troduce an expanded definition of story visualization and present a method for
generating fine-grained character attributes. Extensive experiments demonstrate
that our method achieves state-of-the-art (SOTA) performance in customized story
visualization.
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1 INTRODUCTION

Customized Story Visualization (CSV) is designed to enhance narrative engagement by generating
visually consistent stories that adhere to the identities of customized characters. Combined with
diffusion models, recent customized story visualization methods demonstrate wide applications Yin
et al. (2022) in comic creation and photo blog generation. Early works on customized generation Ye
et al. (2023); Wang et al. (2024); Li et al. (2024b), primarily focus on high ID fidelity but fail to
address the consistency of the generated character during story visualization. Subsequent works,
including StoryDiffusion Zhou et al. (2024a), TaleCrafter Gong et al. (2023), and StoryMaker Zhou
et al. (2024b), aim to solve this problem and improve consistency across generated images. Despite
their effectiveness, these methods all neglect subtle character attribute changes in the story text,
failing to generate character visuals that align with textual descriptions. We refer to this as a lack of
fine-grained control over character attributes based on the text.
To address the aforementioned problems, we propose StoryCtrl, an effective framework that main-
tains ID fidelity and enables fine-grained control over the specific attributes of characters in gen-
erated stories. Our StoryCtrlconsists of several key components: CtrlGAN Encoder, Story-aware
Module (SaM), Customized Guidance Fusion (CGF) and ID-Consis Attention (ICA).
Given a reference image of customized identity, we first use the CtrlGAN Encoder to extract ID
information. While maintaining identity fidelity, our CtrlGAN disentangles ID-irrelevant facial at-
tributes, enabling fine-grained control based on the text. To understand the variation of specific
attributes in the story description, we use the Story-aware Module. It captures text trends in the
story, enabling text-aligned fine-grained control and assisting CtrlGAN in making adjustments dur-
ing the image encoding stage. We further enhance the integration of customized guidance into the
generation process through CGF in a residual manner, which achieves a balance between the text
prompts and customized guidance. Moreover, to ensure inter-frame consistency in the generated
story, we introduce ID-Consis Attention, which establishes interactions across frames of the story to
maintain the identity consistency of our customized character.
Through comprehensive qualitative and quantitative comparisons, we have demonstrated both the ef-
fectiveness and superiority of StoryCtrl. Furthermore, we also conducted extensive ablation studies
to validate the effectiveness of each component of our method. Our contributions can be summarized
as follows:

• We are the first to observe that existing story visualization methods primarily focus on ID
preservation, yet often fail to generate visual content that accurately reflects the narrative
text, making it difficult to satisfy human expectations. To address this limitation, we expand
the task definition by introducing fine-grained control over character attributes, enabling
more semantically aligned and higher-quality visual storytelling.

• To this end, we propose StoryCtrl, a novel framework composed of four key components.
The Story-aware Module (SaM) enhances the textual understanding of the story prompt
and facilitates attribute conditioning. It works alongside CtrlGAN, which extracts com-
prehensive character representations to preserve ID fidelity while effectively disentangling
ID-irrelevant attributes. Next, we incorporate Customized Guidance Fusion (CGF) into
the T2I generation pipeline, enabling controllable visual synthesis. Furthermore, to en-
sure coherence across the entire image sequence, we introduce ID-Consis Attention, which
establishes consistency across generated frames.

• Comprehensive qualitative and quantitative experiments, along with human preference
studies, demonstrate that StoryCtrl outperforms existing state-of-the-art methods in the task
of customized story visualization.

2 RELATED WORK

Customized Image Generation. Owing to the powerful generative capabilities of the diffusion
models, customized image generation has achieved remarkable progress. Early approaches such as
DreamBooth Ruiz et al. (2023) and Textual Inversion Gal et al. (2022) fine-tune the diffusion model
for the target concept by using a limited set of subject images. However, these methods are plagued
by time-consuming issues, as the slow optimization process prior to inference demands substantial
computational resources and time. Recent studies Chen et al. (2024a;b); Jia et al. (2023); Shi et al.
(2024); Wei et al. (2023) aim to perform customized generation with a single image through a
single forward pass, which has significantly expedited the customization process. ID-Preservation,
aimed at generating images with a specified ID, is a prominent area in customized image generation.
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Recent works exemplified by IPAdapter Ye et al. (2023) and PhotoMaker Li et al. (2024b) leverage
models that have undergone pre-training on large datasets to preserve facial features, making them
highly effective in personalized generation. However, we observe that these approaches not only
cause the synthesized faces to overfit to the reference, sharing too many similar attributes, but also
fail to provide fine-grained control over these attributes.

Story Visualization. Story visualization Liu et al. (2024); Mao et al. (2024) is tasked with the
generation of images featuring consistent content, namely maintaining consistent content across a
sequence of generated images. StoryDiffusion Zhou et al. (2024a) utilizes a consistent self-attention
mechanism. This mechanism adapts information from other images within the batch to guarantee
character consistency throughout the storytelling sequences. In contrast to StoryDiffusion, which
draws adaptation from full-scale images, ConsiStory Tewel et al. (2024) adopts a subject-driven
shared attention block. This block solely adapts information from masked subjects, and furthermore,
correspondence-based feature injection is implemented to enhance the subject consistency between
images. StoryMaker Zhou et al. (2024b), on the other hand, differs from the above methods by
concentrating on generating images with consistent faces when given references. It is worth noticing
that our proposed StoryCtrl, with merely a single reference image, not only preserves the facial
fidelity of characters but also attains fine-grained control while maintaining inter-frame consistency.
This is fundamental in customized story visualization, enhancing the overall quality of visualized
stories.

3 METHODOLOGY

Multi-Head Attention

LinearLinear

ID-Consis Attention

Text Cross-Attn

Image Cross-Attn

Linear

A story of a 

woman putting 

on lipstick

Text 
Encoder

CtrlGAN 
Encoder

Q K V

LinearLinearLinear
Q K V
Multi-Head Attention

LinearLinearLinear
Q K V
Multi-Head Attention

Text Feature

Image
Feature

Lip Color↑

(a)  Overall Pipeline of StoryCtrl
(b)  ID-Consis Attention 

&Customized Guidance Fusion

Mapping
Network
ℳ𝒂𝒑

SaM 

Customized 
Guidance Fusion

Identified Attribute : Lip Color 

State: lightly colored → bright red

Change Type: Increase↑

k reflects the degree of change and 

increases gradually (k↑) as the lip color 

intensifies.

(c) Story-aware Module (SaM)

The story for the CSV task is as follows:
"A woman ... took out her lipstick ... 
Soon, her lips became bright red..."

Please identify the changing character 
attribute, analyze the nature of the 
change and provide a coefficient k
reflecting the degree of variation to 
assist in fine-grained control.

Reference 
Image

Initial Noise

Results

Prompt

w!𝑤#!

𝑤"!!

𝑤!!

Feature
Disentanglement

Figure 2: Overviews of StoryCtrl. (a) Overall architecture of our method, which is designed
to generate an inter-frame consistent visual story with fine-grained control based on reference im-
ages and prompts. (b) Newly integrated attention layers of StoryCtrl. ID-Consis Attention (ICA)
facilitates cross-image interactions within batches to maintain ID consistency, while Customized
Guidance Fusion (CGF) intricately merges fine-grained ID information into the generation process.
(c) Story-aware module (SaM), harnesses capabilities from large language models (LLM) to inter-
pret text trends in narratives, enabling precise adjustments during the image encoding phase for
fine-grained control.

Given a reference image of a customized identity (ID) and a story in plain text, the purpose of Cus-
tomized Story Visualization (CSV) is to generate a set of images depicting consistent characters in
different scenarios. In this section, we will introduce the methodology of StoryCtrl in detail, which
mainly includes several components: CtrlGAN Encoder, Story-aware Module (SaM), Customized
Guidance Fusion (CGF), and ID-Consis Attention (ICA). The pipeline is illustrated in Fig. 2.

3.1 PRELIMINARY

DDPM. Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) are generative mod-
els that reconstruct a predefined forward Markov chain x0, . . . , xT . Given data x0 ∼ q(x0), the
forward process follows a Gaussian transition:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

3
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where βt ∈ (0, 1) is a variance schedule. Starting from a prior p(xT ) = N (xT ; 0, I), a reverse
process predicts pθ(xt−1|xt) using a denoising network ϵθ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, τ , t),Σθ(xt, τ , t)), (2)
where τ is the textual prompt, and µθ, Σθ are predicted by ϵθ.
Although DDPM operates in pixel space, it is computationally intensive. Stable Diffusion Rombach
et al. (2022); Podell et al. (2023) mitigates this by performing diffusion in the latent space of a
variational autoencoder (VAE) Kingma & Welling (2013), significantly improving efficiency.

StyleGAN Latent Space. GANs Liu et al. (2022) have gained significant attention for their
well-structured and highly interpretable latent space. Works like PGGAN Karras et al. (2018)
and StyleGAN Karras (2019) explore the interpretable semantics inside the latent space of fixed
GAN models and turn unconstrained GANs to controllable GANs by varying the latent code. Im-
age2StyleGAN Shen et al. (2020) addresses the challenge of embedding a given image into Style-
GAN’s latent space. This embedding enables semantic image editing of existing images. Inspired
by the disentanglement and editability of StyleGAN’s latent space, we aim to introduce it for ID
extraction while disentangling ID-irrelevant attributes to enable fine-grained control.

‘A woman wearing a casual sweater‘

#2 writing letters… 
when she was young.

#1 watching TV…
in her early years.

#3 reading with 
reading glasses
as she grew old.

Age +

‘A woman wearing a green sweater’

#1 plsitting on 
the couch…
with a faint 

smile coming on.

#2 standing… 
by a potted plant …
feeling a bit happy.

#3 sitting in 
a coffee shop…
smiling happily.

Smile +
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‘A woman in a white shirt‘

#1 works at her 
desk… eyes 

starting to droop.
#3 lying in the bed… 

eyes fully closed.

Eye Openness -

#2 leaning back 
in the sofa … 

with eyes 
half-closed.

Figure 3: Qualitative comparisons between our StoryCtrland other methods regarding fine-grained
control over character attributes (Age, Smile).

3.2 ID PRESERVATION WITH FINE-GRAINED CONTROL

High-quality Customized Story Visualization (CSV) must satisfy two fundamental requirements:
ID Preservation: The primary objective is to ensure that the characters in the generated frame
sequence maintain the unique ID information derived from the reference image.
Accurate Visual Representation: Secondary, the character visuals must visually align with the
narrative description, necessitating fine-grained control over character attributes based on the text.
To address these requirements, we propose an effective methodology for extracting ID information
from the reference image, seamlessly integrating it into the generative model, and simultaneously
enabling fine-grained control over character attributes.

3.2.1 CTRLGAN ENCODER.
Previous approaches to customized image generation Ruiz et al. (2023); Xiao et al. (2024); Ye et al.
(2023) primarily relied on a pre-trained CLIP image encoder Radford et al. (2021a) to extract image
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features from the reference image. While these methods have proven capable of maintaining identity,
they are often constrained by inherent trade-offs. Specifically, they struggle to preserve identity
while generating varied facial features (e.g., makeup, expression, etc.), meaning that they fail to
achieve fine-grained control that aligns with the text description.
Building on previous findings regarding intrinsic ID features Yuan et al. (2024), our key insight is to
disentangle the various semantics of facial attributes, allowing fine-grained attribute control. Thanks
to analysis Shen et al. (2020); Härkönen et al. (2020) on how different semantics are encoded in the
latent space, we are motivated to propose CtrlGAN Encoder as an image encoder to extract ID
information from the reference image. Specifically, the CtrlGAN Encoder inverts the visual concept
of a customized identity into W+ latent space Shen et al. (2020) of StyleGAN. Given a reference
image Ir, we denote CtrlGAN as our image encoder Ctrl. The corresponding W+ space vector w̃r is
obtained through:

w̃r = Ctrl(Ir). (3)

3.2.2 STORY-AWARE MODULE.
We choose the CtrlGAN Encoder to extract ID information from the reference image, ensuring
ID preservation. By disentangling ID-irrelevant facial attributes, we can now achieve fine-grained
control based on the textual description. Specifically, we propose the Story-aware Module, which
captures text trends in the story through the Large Language Model (LLM), further assists CtrlGAN
in making adjustments during the image encoding stage to enable fine-grained control.
Disentangling different semantic spaces, i ∈ {0, 1, . . . , N} represents the identity-irrelevant at-
tributes, which are used for fine-grained control. Given a story for visualization, our Story-aware
Module can identify the gradual variation in the specific attribute, denoted as ∆w direction of the i
attribute derived from the W+ space.

w̃ri = w̃ri +∆w · k, i ∈ {0, 1, . . . , N}, (4)

where w̃ri represents a subspace of w̃r with respect to the specific attribute i, the attribute direction
∆w can be obtained following Shen et al. (2020), k can be either positive or negative, depending
on how the specific attribute changes according to the text description. For example, given a story
about a woman applying lipstick, our Story-aware Module can identify the gradual increase in lip-
stick attribute, where the gradual growth of k leads to the gradual darkening of the lipstick color,
thus enabling fine-grained control. In Fig. 2, we provide a simplified template that includes our
instructions alongside relevant in-context examples.

3.2.3 MAPPING NETWORK.
Since the original W+ space is designated for StyleGAN generation, we introduce a mapping net-
work Map following research on editing in the StyleGAN space Karras (2019); Shen et al. (2020);
Li et al. (2024a); Härkönen et al. (2020); Karras et al. (2018), which projects the vector w̃r into the
dimension aligned with Stable Diffusion, denoted as wr.

wr = Map(w̃r). (5)

3.2.4 CUSTOMIZED GUIDANCE FUSION.
To further enhance the integration of fine-grained ID information from wr into the generation pro-
cess, we introduce the Customized Guidance Fusion strategy. This approach processes two inputs:
the output image feature fs from the text cross attention and the character embedding wr. Through
the decoupled cross-attention layer Ye et al. (2023); Wei et al. (2023), it produces a character repre-
sentation fg that incorporates detailed control signals. Given the projection matrices W g

q , W g
k and

W g
v of the cross-attention layer, we first obtain the corresponding vectors:

Qg = fsW
g
q , Kg = wrW

g
k , Vg = wrW

g
v . (6)

Next, we fuse the image features and customized guidance through cross-attention operations:

fg = Softmax

(
QgK

T
g√

d′

)
Vg, (7)

where d′ represents the feature dimension of key and query vectors. We further utilize a residual
fusion approach to balance text prompts and customized guidance:

f ′
g = fs + λfg, (8)
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where λ is the fusion parameter. We can achieve fine-grained control over character features by
encoding the reference image with the CtrlGAN Encoder. To further balance the text prompts and
customized guidance, we inject customized guidance in the last β ∈ [0, 1] part of the inference steps
rather than in all steps.

3.3 ID CONSISTENCY ACROSS FRAMES

The above method successfully extracts ID information from the reference image and achieves fine-
grained control. However, we observe that while each generated frame retains the character’s iden-
tity, there is a lack of character consistency across frames. As shown in the left of 4, the character’s
clothing differs between frames. To ensure overall consistency in the generated story, we introduce
the ID-Consis Attention. Specifically, since generating the current frame requires information from
the previous frame to maintain coherence, we adopt a probabilistic latent mixing strategy inspired by
previous work Ho & Salimans (2022); Zhou et al. (2024a). In our design, the latent representation
from the previous frame is fused with that of the current frame at a certain probability, enabling ID
consistency in a lightweight and efficient manner.
Formally, let I ∈ RB×N×C represent a batch of image features, where B, N , and C denote the
batch size, the number of tokens per image, and the channel dimension, respectively. The self-
attention function is defined as Attention(Xk, Xq, Xv), where Xk, Xq , and Xv are the key, query,
and value matrices. In standard self-attention, each image feature Ii in I is independently processed
as follows:

Oi = Attention(Qi,Ki, Vi), (9)
where Qi, Ki, and Vi are projections of Ii.
To establish interactions across images in a batch and maintain subject consistency, ICA mixes a
subset of tokens Si from other image features within the batch, where the proportion of tokens
mixed is determined by the mixing probability ρ:

Si = R({Ij}j ̸=i,j∈[1,B], ρ), (10)

where R denotes a random mixing function that takes as input the set of image features {Ij} where
the indices j are in the batch range [1, B] but not equal to i, and the mixing probability ρ, and outputs
the mixed token subset Si. The mixed tokens Si are then paired with the original image feature Ii to
form a new token set Pi. Linear projections are applied to Pi to compute the updated key KPi and
value VPi for ICA, while the original query Qi remains unchanged. The self-attention operation is
then computed as:

Oi = Attention(Qi,KPi, VPi). (11)
Compared to existing methods focusing on self-attention computation, the innovation and effective-
ness of ICA are analyzed in detail in the Supplementary Material.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Models and Datasets. We choose SDXL and SD v1.5 Rombach et al. (2022) as our base generator
and implement BLIP2 Li et al. (2023) to generate captions for images. The training dataset com-
prises both real and synthetic data. Specifically, we use 70, 000 high-resolution facial images from
FFHQ Karras (2019), 40, 000 full-body images from SHHQ Fu et al. (2022), and 70, 000 synthetic
images generated by StyleGAN2 Karras et al. (2020) to enhance diversity.
Training Details. The model is trained on an NVIDIA A100 GPU with a batch size of 16. The
training phase is divided into two stages. Firstly, we train the mapping network and the projection
matrices W g

q , W g
k and W g

v of all the newly integrated image cross-attention layers, aiming to align
W+ space vector with Stable Diffusion. Subsequently, to achieve better performance in more gen-
eralized scenarios, only the cross-attention layers are trained, the weight of mapping network keeps
freezed in Stage 2. Please refer to Supplementary Material for more details.
Evaluation Details. We adopt representative facial images from CelebA Liu et al. (2015) and
Mystyle Nitzan et al. (2022) as reference images. Following StoryDiffusion Zhou et al. (2024a),
we utilize the proposed Story-aware Module (SaM) powered by GPT-4o Hurst et al. (2024) to ran-
domly generate 40 story prompts for each reference image, resulting in a total of 3000 images for
evaluation. We first review datasets from existing work on story visualization and observe that the
dataset used in StorySalon Liu et al. (2024) is constructed by querying keywords related to story-
telling for children. However, frames extracted from these videos are often blurry and lack clear
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reference subjects, making them unsuitable for the customized story visualization task. Therefore,
we follow the dataset construction strategy of StoryDiffusion Zhou et al. (2024a) to build a dataset
with thousands of entries. Specifically, we utilize the proposed Story-aware Module (SaM) powered
by GPT-4o Hurst et al. (2024) to randomly generate 40 story prompts for each reference image,
resulting in a total of 3, 000 images for evaluation. To address the deficiencies of existing datasets,
we select images with clear and well-defined character subjects from CelebA Liu et al. (2015) and
Mystyle Nitzan et al. (2022) as reference images. These images are specifically curated and tailored
to meet the requirements of the customized story visualization task. By doing so, our constructed
dataset achieves better alignment with the objectives of this task.

4.2 QUALITATIVE COMPARISON

In this section, we conduct a qualitative analysis to demonstrate the high-quality customized story
visualization capability of our method. We compare our approach with three representative meth-
ods that focus on ID preservation and story visualization, StoryDiffusion Zhou et al. (2024a), Pho-
toMaker Li et al. (2024b) and StoryMaker Zhou et al. (2024b). To validate our method’s fine-grained
control over character identity in alignment with textual descriptions, we focus on four representa-
tive attributes: age, smile, eye shape, and lip color. The results are shown in 3 and ??. For more
results on fine-grained control of character attributes, see the Supplementary Material.
As shown in fig. 3, all baseline methods struggle to achieve fine-grained control over character
attributes. In terms of age, they produce characters with minimal visible changes, regardless of tex-
tual descriptions. Similarly, none of the baselines successfully reflects the gradual progression in
smile intensity specified in the prompts (3, right). Regarding ID preservation and visual consistency,
PhotoMaker maintains identity to some degree, but often generates incoherent images, such as in-
consistent clothing across frames. StoryDiffusion exhibits poor ID preservation and relies heavily
on detailed clothing prompts to maintain consistency. For example, the prompt ”casual sweater”
leads to significant variation in outfit appearance. StoryMaker demonstrates excellent ID fidelity,
yet tends to overfit to the reference image. This leads to a lack of variation in facial attributes, mak-
ing fine-grained attribute control unachievable. Even worse, the generated images often fail to align
with the textual description and instead merely replicate the reference face. For example, as shown
in the yellow box (3, left), attributes such as eyeglasses are not correctly rendered according to the
prompt.
In contrast, our proposed StoryCtrlnot only preserves identity and generates a coherent image se-
quence, but also enables fine-grained control over attributes in alignment with the text. As shown
in ??, attributes such as the degree of eye openness and lip color are accurately rendered accord-
ing to the story description, demonstrating the effectiveness of our approach. We further conduct
a user study to validate the effectiveness of our method (see detailed results in the Supplementary
Material).

4.3 QUANTITATIVE COMPARISON

We present a comprehensive quantitative evaluation of different methods to evaluate the effective-
ness of our method in customized story visualization. Specifically, we select four representative
metrics: (1) ID Preservation: We use GroundingDINO Liu et al. (2025) with the input category
”face” to crop the facial regions from generated images. We then calculate the average CLIP Image
Similarity Radford et al. (2021b) between the facial regions of each frame and the reference image.
For a more comprehensive evaluation, we also use RetinaFace Deng et al. (2020) as the detection
model and Arcface Deng et al. (2019) to extract the Face embedding. We then compute the face sim-
ilarity by detecting and cropping the facial regions between the generated image and the reference
image with the same ID. (2) Overall Consistency: We use GroundingDINO with the input category
”person” to crop character regions from generated images, then calculate the average pairwise CLIP
Image Similarity between character regions across all images in a story. (3) Text Alignment: We
calculate the CLIP Text Similarity Hessel et al. (2021) between each frame in the story and the
prompt. As shown in 1, our method outperforms state-of-the-art methods across four metrics.

4.4 ABLATION STUDY

Ablation on the CtrlGAN Encoder and SaM. To validate the effectiveness of our design, which
combines the CtrlGAN Encoder with the Story-aware Module (SaM), in achieving fine-grained
control over character attributes, we conduct an ablation study. We visualize the results in the left
of ??. Without the collaboration between the CtrlGAN Encoder and the Story-aware Module, the
corresponding W+ space vector wr remains unchanged. As a result, the generated images fail to

7
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Table 1: Quantitative comparison between our StoryCtrland other methods. Bold indicates the best
result, and underline indicates the second best result.

Method Text Face Sim. Face Sim. Overall
Align.↑ (%) (CLIP) ↑ (%) (ArcFace) ↑ (%) Consis. ↑ (%)

PhotoMaker-V2 29.8 81.5 68.2 68.9
StoryMaker 27.1 82.3 75.2 69.6

StoryDiffusion 29.9 78.1 64.5 74.3

Ours 30.6 83.1 75.4 74.9

Table 2: Quantitative ablation results about the mixing probability of our ID-Consis Attention.

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

Character Consistency ↑ (%) 75.1 75.8 76.4 77.5 75.5
Text Alignment ↑ (%) 33.7 33.9 33.8 33.8 33.8

reflect the attribute variations described in the text. In contrast, our full model, which integrates
both components, successfully captures attribute changes described in the text, demonstrating fine-
grained control.
Ablation on the ICA. To validate the effectiveness of the proposed ICA in improving visual consis-
tency, we perform an ablation study. The right section of Fig.4 presents the results. As indicated by
the yellow box, the absence of ICA leads to inconsistency in character clothing in the third frame,
thereby compromising the overall visual coherence. Furthermore, we conduct quantitative experi-
ments to validate our observations. The data presented in 3 indicate that lower ρ results in reduced
ID consistency and overall image sequence coherence. In practice, we choose ρ = 0.7 to balance
character consistency and text alignment.
We also perform qualitative analyses of the sampling rate ρ, with visual results provided in the
Supplementary Material.
Customized Guidance Fusion. We conduct an ablation study on the fusion parameter λ to validate
our ability to preserve ID identity. As shown in 7, when λ is small, the text prompt dominates,
resulting in poor identity preservation of the generated character. Conversely, when λ is large,
the lack of text prompt guidance prevents effective generation. We further conduct quantitative
experiments. The results are shown in 3, which are consistent with our qualitative results. Our
method sets λ to 0.8, achieving a balance between text prompt and customized guidance.
Injection Ratio. We conduct an ablation study on the injection ratio of customized guidance. Qual-
itative and quantitative results are in the Supplementary Material. We set β = 0.8 to balance text
prompts and customized guidance.

5 CONCLUSION

In this paper, we present a novel framework for customized story visualization that focuses on fine-
grained control aligned with narratives. Our method achieves fine-grained control over character
attributes and high-fidelity ID preservation through the collaborative design of CtrlGAN and the
Story-aware Module (SaM), while the ID-Consis Attention ensures the generation of coherent and
consistent image sequences. Comprehensive qualitative and quantitative experiments, together with
human preference evaluation, demonstrate that our proposed StoryCtrl outperforms current state-of-
the-art methods in story visualization.
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OVERVIEW

This supplementary material provides a detailed study of the proposed methodologies and their
experimental validation. The main sections are summarized as follows:

• Extended Discussion and Analysis of Proposed Methodologies: An in-depth exploration
of the theoretical framework and key design principles.

• Dataset Construction and Comparison: Describes the process of building datasets and
compares their performance.

• User Study: Evaluates the usability and practical relevance of the proposed approach
through user feedback.

• Application: Showcases potential applications of the proposed methodologies in real-
world scenarios.

• More Implementation Details: Summarizes training protocols, hyperparameter settings,
and computational requirements.

• The Architecture of Mapping Network: Provides detailed descriptions of the network
architecture.

• Additional Results: Presents supplementary results to further validate the approach.

A EXTENDED DISCUSSION AND ANALYSIS OF PROPOSED METHODOLOGIES

A.1 DISCUSSION ON ID-CONSIS ATTENTION

Compared with related work Hong et al. (2023); Tewel et al. (2024); Zhou et al. (2024a) that focuses
on self-attention mechanisms, the innovations of our proposed ID-Consis Attention (ICA) lie in the
following aspects:

Probabilistic Reference Integration for Overall Consistency. Inspired by Classifier-Free Guid-
ance (CFG), which significantly improves generation quality by interpolating between conditional
and unconditional predictions without requiring additional classifier training, we draw a similar
insight: Can temporal consistency be achieved without extra training or specific architectural modi-
fications? Motivated by this, we propose an innovative design that probabilistically integrates refer-
ence information from preceding frames with independently generated frames that focus solely on
the current context. This approach effectively balances overall consistency and independent frame
generation while eliminating the need for additional training or custom designs. Furthermore, it
ensures seamless compatibility with various models, enabling robust and coherent generation across
frames without compromising flexibility or generality.

Flexible Frame Referencing. A distinguishing feature of our approach, compared to prior
consistency-focused attention mechanisms, is the ability to flexibly control the number of referenced
frames. This design effectively mitigates excessive memory consumption, addressing the common
limitations of GPU resources in sequence generation tasks. By reducing computational overhead,
our method enables scalable and efficient generation of extended sequences without sacrificing qual-
ity.

A.2 DISCUSSION ON CTRLGAN ENCODER

The motivation for introducing CtrlGAN into the diffusion space stems from addressing fine-grained
control challenges in customized story generation tasks. While using detailed prompts can somewhat
improve generation quality, this approach faces significant challenges in character customization
tasks. As demonstrated by our Qualitative Comparison in the main paper, existing customization
methods often result in generated images that appear overly fitted to the reference image, creating
a visual effect akin to a pasted image. Merely using prompts proves insufficient for controlling
complex generation processes.
Notably, StyleGAN’s latent spaceKarras (2019) naturally decouples identity-irrelevant attributes,
with the W+ space capable of covering various fine-grained facial attributes, thereby addressing
these challenges. Specifically, our CtrlGAN Encoder achieves feature disentanglement by dividing
StyleGAN’s W+ space into its linear subspaces, each representing specific facial attributes. When
a particular attribute in the story changes, the corresponding vector w̃r in the subspace is adjusted,
with k tuned per story and ∆w as a fixed hyperparameter.
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B DATASET CONSTRUCTION AND COMPARISON

We first review datasets from existing work on story visualization and observe that the dataset used
in StorySalon Liu et al. (2024) is constructed by querying keywords related to storytelling for chil-
dren. However, frames extracted from these videos are often blurry and lack clear reference subjects,
making them unsuitable for the customized story visualization task. Therefore, we follow the dataset
construction strategy of StoryDiffusion Zhou et al. (2024a) to build a dataset with thousands of en-
tries. Specifically, we utilize the proposed Story-aware Module (SaM) powered by GPT-4o Hurst
et al. (2024) to randomly generate 40 story prompts for each reference image, resulting in a total
of 3, 000 images for evaluation. To address the deficiencies of existing datasets, we select images
with clear and well-defined character subjects from CelebA Liu et al. (2015) and Mystyle Nitzan
et al. (2022) as reference images. These images are specifically curated and tailored to meet the re-
quirements of the customized story visualization task. By doing so, our constructed dataset achieves
better alignment with the objectives of this task.
In the main paper, we compare our method with mainstream approaches widely used in the domains
of story visualization and customized generation tasks to validate its effectiveness. Regarding addi-
tional related work, although the task of customized story visualization is distinct from both purely
customization tasks and pure story visualization tasks, we further corroborate our results by com-
paring our method with additional customization-focused approaches. We reference StoryGen and
use GPT-4o to generate more complex stories, resulting in a dataset with about 3k entries.

Method Text Align. Face Sim. (Clip) Face Sim. (Arc.) Consis.
StoryGen 24.6 59.2 46.6 39.8
ConsiStory 31.6 - - 67.5
InstantID 25.9 76.8 67.9 74.1
IP-Adapter (FLUX) 28.5 77.6 71.0 68.9
Ours 30.1 86.9 71.2 76.1

Table 4: Performance Comparison of Various Methods on Text Alignment, Face Similarity, and
Consistency. Best results are in bold; second-best are underlined.

Due to the limitations of the aforementioned dataset, StoryGen performs poorly on the customiza-
tion task. ConsiStory lacks reference image support, and InstantID and IP-Adapter focus on faces,
limiting text-aligned story generation. Overall, our method outperforms baselines and achieves com-
petitive results.

C USER STUDY

To validate the effectiveness of our method, we conduct a comprehensive user study. Due to the
lack of reliable metrics for fine-grained attribute control, we design the study to evaluate three key
dimensions: fine-grained attribute control, identity preservation, and overall consistency. Each of
these dimensions is assessed through human subject evaluation to ensure the subjective quality of
our method’s outputs.
We recruit 14 participants with expertise in computer vision and generative AI for the study. The
evaluation is based on 14 sets of results, covering 7 different character attributes. Each set includes
outputs from our method alongside outputs from four state-of-the-art (SOTA) comparison methods
to ensure fairness and reliability in the evaluation process. For each dimension, participants are
asked to select the result they believe performs best.
As shown in Figure 5, our method achieves the highest user preference scores for fine-grained at-
tribute control. Additionally, consistent with the results obtained from objective metrics in quantita-
tive comparisons, our method also outperforms all baseline methods in terms of identity preservation
and overall consistency. This demonstrates the robustness and effectiveness of our approach across
multiple evaluation criteria.

D APPLICATION

As shown in Figure 6, our method also performs well in multi-character scenarios. Notably, despite
the absence of specific multi-character settings in our training data, our approach demonstrates the
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Figure 5: User study comparison between StoryCtrl and state-of-the-art (SOTA) methods on fine-
grained attribute control, identity preservation, and overall consistency.

ability to achieve effective ID preservation across multiple characters. This is made possible through
a simple inference modification, which involves concatenating ID embeddings from multiple inputs,
extracting foreground masks for each individual using text cross-attention, and enhancing identity
cross-attention with these masks. These modifications not only maintain identity consistency but
also enable fine-grained control in scenarios involving multiple characters.
Furthermore, even in cases where the input text lacks explicit emotional descriptions, our method is
capable of identifying subtle attribute trends within the narrative. This allows for fine-grained control
over story visualization and ensures the generated content faithfully reflects nuanced changes in the
underlying storyline.

A heartfelt moment. Love in full bloom.

Happiness +

Figure 6: Visualization of our method’s application in multi-character scenarios.
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Ref Image

Figure 7: Qualitative ablation results about the fusion parameter of our Customized Guidance Fu-
sion.

E ABLATION STUDY

Injection Ratio. We conduct an ablation study to evaluate the effect of the injection ratio β for
customized guidance. Qualitative and quantitative results are provided in the Supplementary Ma-
terial. As shown in Figure 8, when β is high, the generated images tend to overfit the reference
image (evidenced by artifacts, such as the face in the mural when β = 1). Conversely, when β is
low, the ID fidelity decreases significantly. To balance the influence of text prompts and customized
guidance, we select β = 0.8 as the optimal value for our final configuration.
Ablation on ICA. We further investigate the effect of the mixing probability ρ on ICA’s perfor-
mance. As shown in Table 5, lower ρ results in reduced ID consistency and less alignment of back-
ground details with the textual input. In practice, we select ρ = 0.7 as it offers the best trade-off
between character consistency and text alignment, ensuring coherent and visually consistent outputs.
Additionally, Supplementary Material includes qualitative results analyzing the influence of ρ.

Table 5: Quantitative ablation results on the mixing probability ρ for ICA.

Mixing Probability ρ ID Consistency ↑ Text Alignment ↑
0.3 75.8 33.9
0.5 76.4 33.8

0.7 (Ours) 77.5 33.8
1.0 75.5 33.8
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Figure 8: Qualitative results from the ablation study on the injection ratio β. Higher β leads to
overfitting, while lower β causes ID fidelity degradation.

These findings demonstrate the importance of ICA and its configurations in fostering consistency
across both individual frames and the overall sequence.

F MORE IMPLEMENTATION DETAILS

We provide details of the training configuration used in our experiments for reproducibility:
Parameters. We set both λ and β to 0.8 to balance the influence of various components in our
method.
Model Architecture. Following the training strategy of Li et al. (2024a), we utilize the standard e4e
encoder Tov et al. (2021) as our CtrlGAN encoder. The mapping network consists of four Linear
Layers with one LayerNorm. This design allows efficient and accurate feature mapping to better
handle diverse input conditions.
Optimization. We adopt the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate
of 1× 10−4 and a weight decay coefficient of 0.01. These hyperparameters are carefully chosen to
ensure stable convergence during training.
Data Augmentation. To improve dataset diversity and variability, we implement several data aug-
mentation techniques, including color jittering Zoph et al. (2020), stochastic rotation, and sampling
of in-the-wild images. These augmentations help enhance the model’s generalization ability and
robustness in real-world scenarios.
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α=0.1

α=0.3

α=0.5

α=0.7

Figure 9: Qualitative ablation results about the mixing probability of ID-Consis Module.

Inference. During the inference phase, we employ a 50-step DDIM sampler Song et al. (2020).
For classifier-free guidance Ho & Salimans (2022), we set the guidance scale to 7.5 to achieve a
balance between fidelity and diversity in generated results. In addition, following IP-Adapter Ye
et al. (2023), we apply a random dropout with a probability of 0.05 to both the text features and the
W+ space vector, which helps improve robustness and prevent overfitting.
These settings ensure effective training and inference for our method, allowing it to generalize well
to diverse and challenging scenarios.

G THE ARCHITECTURE OF MAPPING NETWORK

Due to the introduction of CtrlGAN as the image encoder, the resulting latent representation resides
in the StyleGAN space with a dimension of 18 × 512. To leverage the generative capabilities of
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Mapping Network

Linear Layer ×  �

…
…

…
… Concat LayerNorm

Figure 10: The architecture of Mapping Nerwork

the diffusion model, we employ a Mapping Network to project this latent into the Stable Diffusion,
where the required input dimension is 4× 768. As illustrated in Fig. 10, the image latent features in
StleGAN space are passed through four linear layers, and the outputs are concatenated to form the
final embedding, which is then fed into the diffusion model.

H ADDITIONAL RESULTS

In this section, additional qualitative comparisons are presented in Fig. 11 and Fig. 12, and a subset
of them is further evaluated through a user study. Due to the lack of reliable metrics for fine-grained
attribute control, we adopt user preference results to demonstrate the advantages of our method. The
results show that our method outperforms existing state-of-the-art approaches in terms of perceived
quality. To conduct a more comprehensive evaluation, we also assess identity preservation and
overall consistency. These findings are consistent with our quantitative results, further confirming
the effectiveness of our approach for customized story visualization tasks.

I USAGE OF LARGE LANGUAGE MODELS

In this paper, large language models (GPT-4o) are used solely for polishing the writing of our
manuscript. You may include other additional sections here.
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a woman wearing a casual sweater
#1 watching TV in her early years
#2 writing letters when she was young
#3 reading with reading glasses as she grew older

a man in a white shirt
#1 He looks calm and his face is relaxed 
#2 He frowns and his eyes look annoyed
#3 He scowls and his face shows anger

a man in the classroom
#1 He seems composed and 
     his expression is neutral
#2 He furrows his brows, looking angry
#3 His face is contorted with rage

a man in a light blue jacket
 #1 Reading a book, eyes starting to close
 #2 Sipping coffee, eyes gradually opening wider
 #3 Stretching, eyes wide open and fully awake

 

Figure 11: Additional results about fine-grained control over attributes such as emotional expression
(e.g., anger) and eye openness. From top to bottom: our StoryCtrl, PhotoMaker-V2, StoryMaker,
and StoryDiffusion.
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a woman in a red shirt
#1 Her lips are lightly colored
#2 She applies lipstick
#3 Her lips are bright red

a man in a light blue jacket
 #1 Reading a book, eyes starting to close
 #2 Sipping coffee, eyes gradually opening wider
 #3 Stretching, eyes wide open and fully awake

 

a woman in a white shirt
#1 Her lips are lightly colored
#2 She applies lipstick
#3 Her lips are bright red

a woman in a gray sweater
#1 playing with toys in her childhood
#2 reading books when she was young
#3 using a magnifying glass as she grew old

Figure 12: Additional results about fine-grained control over attributes such as lip color and age.
From top to bottom: our StoryCtrl, PhotoMaker-V2, StoryMaker, and StoryDiffusion.
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