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ABSTRACT

Code is seldom written in a single left-to-right pass and is instead repeatedly edited
and refined. We introduce INCODER, a unified generative model that can perform
program synthesis (via left-to-right generation) as well as editing (via masking
and infilling). InCoder is trained to generate code files from a large corpus of per-
missively licensed code, where regions of code have been randomly masked and
moved to the end of each file, allowing code infilling with bidirectional context.
Our model is the first large generative code model that is able to infill arbitrary re-
gions of code, which we evaluate in a zero-shot setting on challenging tasks such
as type inference, comment generation, and variable re-naming. We find that the
ability to condition on bidirectional context substantially improves performance
on these tasks, while still performing comparably on standard program synthesis
benchmarks in comparison to left-to-right only models pretrained at similar scale.
Our models and code are publicly released.1

1 INTRODUCTION

Large language models trained on vast repositories of code have demonstrated remarkable progress
in neural program synthesis and related tasks (Chen et al., 2021a; Austin et al., 2021; Xu et al.,
2022; Nijkamp et al., 2022; Chowdhery et al., 2022). However, such models generate code left-
to-right, which makes them less directly applicable to many ubiquitous code editing tasks, such as
fixing bugs, adding comments, or re-naming variables. We introduce INCODER, a unified model for
program synthesis and editing. Like prior work, INCODER is trained to maximize the likelihood of a
corpus of code. However, we adopt a causal masking objective (Aghajanyan et al., 2022a), allowing
INCODER to infill blocks of code conditioned on arbitrary left and right contexts.

More specifically, we learn to infill by randomly replacing spans of code with a sentinel token and
moving them to the end of the sequence (Figure 1, top). The model is trained to predict all tokens in
the complete sequence in this permuted ordering. During inference, we can edit code by replacing
spans with sentinel tokens, prompting the model with the new sequence, and having it generate new
tokens to replace the masked spans (Figure 1, bottom). Because the model can also trivially generate
without sentinel tokens, the result is a unified approach for both program synthesis (via left-to-right
generation) and editing (via infilling).

We evaluate performance on a range of zero-shot code infilling tasks (Sec. 4), both new and from
existing work, including challenging use cases such as type prediction, variable re-naming, com-
ment generation, and completing missing lines of code. Zero-shot infilling with bidirectional con-
text substantially outperforms approaches based on left-to-right-only models, and on several tasks
obtains performance comparable to state-of-the-art models fine-tuned on the tasks. Ablation experi-
ments (Sec. 5) show that this does not come at the cost of left-to-right generation ability; our causal
masking model achieves similar performance to a standard language model on program synthesis
benchmarks (Chen et al., 2021a; Austin et al., 2021) despite its more general training objective.

∗Equal contribution
1
https://sites.google.com/view/incoder-code-models/
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Figure 1: At training time (top), our causal masking objective samples one or more spans of code in
training documents (in the upper left figure, a single span) and moves these spans to the end of the
document, with their original location denoted by special mask sentinel tokens. An autoregressive
language model is trained to produce these entire masked documents, allowing it to learn to generate
insertion text conditioned on bidirectional context. At inference time (bottom), we can perform a
variety of code editing and infilling tasks in a zero-shot fashion by inserting mask tokens at desired
locations and allowing the model to generate code to insert there. All examples shown are real out-
puts from our INCODER-6.7B model, with the regions inserted by the model highlighted in orange.

2 INFILLING AND SYNTHESIS VIA CAUSAL MASKING

Neural models for code generation have either utilized a left-to-right (causal) autoregressive lan-
guage modeling objective (Brown et al., 2020; Chen et al., 2021a) or, as BERT does, a masked lan-
guage modeling objective (Devlin et al., 2019; Feng et al., 2020). Both approaches have strengths
and weaknesses. Causal models only condition on context to the left of the generated tokens, thus
preventing infilling, but they can autoregressively generate entire documents. On the other hand,
masked language models can condition on both the left and right contexts to infill a masked region,
however, their training objective is typically limited to generating only about 15% of a document.
In this paper, we adopt the recently proposed causal masking objective (Aghajanyan et al., 2022a),
which aims to combine the strengths of both causal and masked language models.

2.1 TRAINING

At training time, the causal masking procedure samples a number of spans of contiguous tokens
in each document to mask (Figure 1, top left). We sample the number of spans from a Poisson
distribution with a mean of one, truncated to the support [1, 256], so that there are typically a small
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number of spans (with a single span around 50% of the time), but the distribution has a long tail (up
to 256 spans). Each span’s endpoints are sampled uniformly from the length of the document and
the set of sampled spans is rejected and resampled if any spans overlap.

Once spans are sampled, each span k is replaced with a special mask sentinel token, <Mask:k>. The
sequence of tokens in the span is then moved to the end of the document (Figure 1, top right), with
the mask sentinel token prepended and a special end-of-mask token <EOM> token appended. In other
words, when a mask token appears for the first time in the left-to-right ordering, it marks the location
the span was removed from; when it appears for the second time, it marks the start of the moved
span text. More formally, assume we have a document D with N tokens, and we have sampled one
span Span = Di∶j . Let Left be the left context D0∶i and Right be the right context Dj∶N . Then, we
maximize the log probability of the masked document:

logP ([Left; <Mask:0>; Right; <Mask:0>; Span; <EOM>]) (1)
where ; denotes sequence concatenation. If more than one span were sampled, each would be
similarly appended at the end of the document in order. As in standard left-to-right generative
language modeling, we compute the probability of the sequence auto-regressively and train the
model using cross-entropy loss on all tokens except the mask sentinel tokens <Mask:k>, so that
the model does not generate these tokens during inference.

2.2 INFERENCE

During inference, the model can either be used for left-to-right generation in the standard way (by
sampling autoregressively from the model, without using any special tokens), or it can insert code at
arbitrary locations in an existing document by inserting a <Mask:k> tokens at the desired location(s)
and continuing generation at the end of the document. Assuming for simplicity of notation that we
want to insert text at only a single location, we can generate a span to insert between the location’s
Left and Right context sequences by sampling tokens autoregressively from the distribution

P (⋅ ∣ [Left; <Mask:0>; Right; <Mask:0>]) (2)

until either an <EOM> token is generated or a task-dependent stopping criterion is achieved.2 When
applied to code, this allows us to perform tasks that benefit from the bidirectional context in a
zero-shot fashion, as shown in Figure 1, bottom. For example, we can perform Python docstring
generation conditioned on both the left context (function signature) and right context (function im-
plementation). We can also infill multiple dependent regions, e.g., generate imports required by a
function that the model is generating. See Section B.2 for details, including multi-region infilling.

3 MODELS

Our primary model is INCODER-6.7B, a 6.7B Transformer (Vaswani et al., 2017) language model.
We use the same architecture as the dense 6.7B models described in Artetxe et al. (2021); the Fairseq
architecture description can be found in Table 6 in the appendix. All experiments use this model
unless stated otherwise (we train smaller models for comparison in Section 5).

To train our models, we collect a corpus of (1) public code with permissive, non-copyleft, open-
source licenses from GitHub and GitLab and (2) StackOverflow questions, answers, and comments.
Our primary focus in this paper is on the Python language, but we also include code files from
28 total languages and StackOverflow content from all available languages. We decontaminate
our pre-training corpus by removing all datasets which we use in our evaluation experiments. See
Section A.1 for details. Our final pre-training corpus contains a total of 159 GB of code, 52 GB of it
in Python, and a total of 57 GB of content from StackOverflow. See Figure 3 for size by language.

4 INFILLING EXPERIMENTS

Our primary evaluation is performing zero-shot infilling for a diverse set of tasks: inserting lines
of code, predicting function return types, generating docstrings, renaming variables, and inserting
missing code tokens. We formulate each task as filling in one or more masked-out regions of code.

2In practice, we use a variation of this method that inserts an extra sentinel token into the context to counter
a bias on infill length caused by the Transformer’s fixed context window size. See Section B.2.
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To evaluate how INCODER benefits from bidirectional context when generating infills, we compare
three different inference methods: the causal masking inference procedure described in Section 2,
a standard left-to-right generation approach (left-to-right single), and a left-to-right generation and
reranking approach (left-to-right reranking). Since our model is also able to generate left-to-right,
we can compare all three inference methods using the same INCODER-6.7B model and thus avoid
any confounding effects due to a change in the model. For all three inference methods, we obtain
generations from the model using top-p (nucleus) sampling (Holtzman et al., 2020) with p = 0.95

and a temperature tuned for each task and inference method using the task’s development data.3

Left-to-right single. This baseline does not use the context to the right of the masked location at
all. It generates a single completion for the location by conditioning on the left context and sampling
tokens autoregressively from the model P (⋅ ∣ Left) until a task-specific stop condition is reached
(e.g., for comment generation, when a comment-ending delimiter is produced).

Left-to-right reranking. This baseline uses only the left context to propose candidates to infill
the blank, but uses both the left and right contexts to choose among these candidates. Concretely,
we first generate K possible completions for the blank region, Span1 . . . SpanK following the same
procedure as left-to-right single, using K = 10 unless otherwise specified. We then evaluate each
candidate by substituting it into the blank and scoring the completed document. We use either total
log probability of the completed document logP ([Left; Spank; Right]) or, following Chen et al.
(2021a), log probability averaged across the number of tokens in the completed document. We select
between these two scoring methods for each task using performance on the task’s development data.

4.1 INFILLING LINES OF CODE (HUMANEVAL)

We create an infilling benchmark for complete lines of code from the HumanEval dataset (Chen
et al., 2021a). This dataset provides comment descriptions of functions paired with a canonical
implementation of each function and several input–output pairs that the function should pass. Hu-
manEval was introduced as a benchmark for the synthesis of entire Python functions; we evaluate
our models on this original synthesis setting in Section C.6. We use this dataset because it affords
functional testing of completed code (as opposed to relying solely on an evaluation of the code sur-
face form), which is particularly important when infilling longer regions that have more potential
ways to be completed correctly. We construct two infilling tasks from the dataset, for single lines
and multiple lines:

Single-line infilling. In this task, we mask out each non-blank line of code in the canonical func-
tion implementation in turn (creating N examples for a function with N non-blank lines). The task
is to generate a single-line completion for the blank conditioned on the natural language description
of the function and the code lines before and after the blank. We evaluate using (1) pass rate: the
rate at which the completed function passes all of the function’s input–output pairs (i.e., analogous
to the pass@1 metric from Chen et al. (2021a) and (2) exact match: percentage of times that the
completed lines exactly match the masked lines in the canonical implementation. Performance is
averaged across all examples generated for all programs in the dataset.

Multi-line infilling. This task is constructed in the same way as single-line infilling above but
allows each masked region to contain multiple lines of code, creating N × (N + 1)/2 examples for
a function with N non-blank lines. We again evaluate completions using pass rate and exact match,
averaged across all infilling examples.

Inference details. To choose when to end the infill produced by our inference methods, we trun-
cate the candidates generated by the left-to-right (L-R) baselines to the actual number of lines in
the blanked-out region. For our causal-masked (CM) infilling method, we end the infill when the
model generates the <EOM> token. For the L-R single and CM infilling methods, we sample using
a temperature of 0.2. For the L-R rerank method, we use a temperature of 0.8 to sample K = 10
candidates and rescore with the total log probability of the completed function.

3For all generation experiments, we prefix prompts with meta-data indicating the code generated should be
Python; see Section A.3) for meta-data details.
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Method Pass Rate Exact Match

L-R single 48.2 38.7
L-R reranking 54.9 44.1
CM infilling 69.0 56.3

PLBART 41.6 —
code-cushman-001 53.1 42.0
code-davinci-001 63.0 56.0

(a) Single-line infilling.

Method Pass Rate Exact Match

L-R single 24.9 15.8
L-R reranking 28.2 17.6
CM infilling 38.6 20.6

PLBART 13.1 —
code-cushman-001 30.8 17.4
code-davinci-001 37.8 19.8

(b) Multi-line infilling.

Table 1: On our single- and multi-line code infilling benchmarks that we construct from HumanEval,
our causal-masked (CM) approach obtains substantial improvements over left-to-right single candi-
date and left-to-right reranking baselines in both function test pass rate and exact match.
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Figure 2: Infilling pass rate by the fraction of the function’s lines which are provided to the right of
the region that must be infilled, for single-line infilling (left) and multi-line infilling (right). Shaded
regions give 95% confidence intervals, estimated using bootstrap resampling. Our causal-masked
(CM) infilling method, blue, consistently outperforms both of the left-to-right (L-R) baselines, with
larger gains as more right-sided context becomes available (the right side of both graphs).

Results. Table 1 shows the results for the single-line (left) and multi-line settings (right). In both
settings, CM infilling improves substantially over the L-R single baseline and the L-R reranking
baseline. Note that these results are computed by averaging over all examples, which includes
masked regions at all positions in functions (including the beginning, when no left context is avail-
able, and end, when no right context is available). Figure 2 shows a finer-grained comparison,
where we group examples by the fraction of lines in the canonical function which are contained in
the context to the right of the infill. The CM infilling method sees larger improvements over the
L-R baselines as more right-sided context becomes available (i.e., when the blanked region occurs
earlier in the function).4

We also compare against two alternate zero-shot methods for incorporating right-sided context: (1)
an encoder-decoder code model trained with a denoising infilling objective (PLBART, Ahmad et al.
2021), and (2) templated prompting of large left-to-right generative code models (the cushman-001
and davinci-001 Codex models available through OpenAI’s API). See Section C.1 for details on
these experiments.5 InCoder outperforms all models in both single-line and multi-line infilling, de-
spite having lower performance in left-to-right generation than Codex (see Table 11), demonstrating
that causal masking training benefits infilling.

4For multi-line infilling, performance increases with increasing amounts of right context, as having a large
right context implies that fewer lines are available to be removed when constructing infill examples, so the
resulting examples are often easier to infill.

5PLBART outputs tokenized code, which prevents us from computing meaningful exact match metrics.
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Method BLEU

Ours: L-R single 16.05
Ours: L-R reranking 17.14
Ours: Causal-masked infilling 18.27

RoBERTa (Finetuned) 18.14
CodeBERT (Finetuned) 19.06
PLBART (Finetuned) 19.30
CodeT5 (Finetuned) 20.36

Table 2: CodeXGLUE Python Docstring generation BLEU scores. Our model is evaluated in a
zero-shot setting, with no fine-tuning for docstring generation, but it approaches the performance of
pretrained code models that are fine-tuned on the task’s 250K examples (bottom block).

4.2 DOCSTRING GENERATION (CODEXGLUE)

We next evaluate documentation string (docstring) generation, where models must generate a nat-
ural language docstring that summarizes a Python code snippet. Right context may be particularly
useful for docstring generation, as conditioning on the function body can allow models to generate
more informative descriptions. Prior neural code generation models are fine-tuned on supervised
docstring-code pairs to perform this task (e.g., Clement et al. 2020; Chen et al. 2021a; Lu et al.
2021; Ahmad et al. 2021), however we evaluate our model zero-shot, with no explicit supervision.

We use the CodeXGLUE code-to-text docstring generation task (Lu et al., 2021), which is con-
structed from CodeSearchNet (Husain et al., 2019), consisting of docstring-code pairs scraped from
publicly available GitHub repositories. The L-R single candidate baseline is prompted with the
function signature in the left context preceding the docstring. The CM infilling and L-R reranking
methods also observe the right context, consisting of the function body.

We compare models following the original automatic evaluation setup for the task. In Table 2, we
report smoothed 4-gram BLEU scores for all models, using the reference docstrings provided in
the dataset. These references have been preprocessed to strip extraneous content (e.g., argument
definitions) from the original scraped docstrings. We use greedy generation for the CM infilling and
L-R single candidate generation methods and sample K = 10 candidates at temperature 0.8 with
average log probability scoring for the L-R reranking method (selected by tuning on the validation
set of the task). For all inference methods, we stop generation if the model generates a newline. We
also include the performance of the supervised baseline from the CodeXGLUE paper: an encoder-
decoder model with a CodeBERT encoder fine-tuned on ∼ 250K training examples from the dataset.
Our zero-shot performance approaches the performance of the fine-tuned CodeBERT model.

4.3 RETURN TYPE PREDICTION

Predicting return type hints for Python functions is a challenging structured generation task (see
Figure 1, “type inference”). We evaluate on two datasets: one we construct from CodeXGLUE and
the dataset from TypeWriter OSS (Pradel et al., 2020).

CodeXGLUE. We develop a benchmark for return type prediction using the same Python
CodeXGLUE dataset used in the code-to-text (docstring generation) task. We run an abstract syntax
tree (AST) processor on all functions in the development and test sets of this dataset to (1) identify
functions with a PEP 4846 return type hint annotation that is not None and (2) remove all other type
hints (e.g., for function arguments and variable declarations) from the function. This leaves 232
functions in the development and 469 functions in the test set.

The task is to condition on the function signature and body and predict the type hint. We compare
the type hints predicted by our various methods to the annotated type hint in the original function,
using exact match accuracy on the normalized type hint.7

6
https://peps.python.org/pep-0484/

7We normalize each type hint by first parsing the type to an AST and then un-parsing the AST to a surface
form string, then compute exact match on these surface forms. We note that this metric is somewhat noisy, given

6
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Method Accuracy

Left-to-right single 12.0
Left-to-right reranking 12.4
Causal-masked infilling 58.1

(a) Results on the test set of the
benchmark that we construct from
CodeXGLUE.

Method Precision Recall F1

Ours: Left-to-right single 30.8 30.8 30.8
Ours: Left-to-right reranking 33.3 33.3 33.3
Ours: Causal-masked infilling 59.2 59.2 59.2

TypeWriter (Supervised) 54.9 43.2 48.3

(b) Results on a subset of the TypeWriter’s OSS
dataset (Pradel et al., 2020). We include examples from
which we were able to obtain source files, successfully ex-
tract functions and types, that have non-None return type
hints, and that were not included in our model’s training data.

Table 3: Results for predicting Python function return type hints on two datasets. We see substantial
improvements from causal masked infilling over baseline methods using left-to-right inference.

To compare our three generation methods, we stop generation when a : is generated, which ends
the type hint and signals the start of the function body. We tune inference hyperparameters on
the development set, and we use a temperature of 0.2 for left-to-right-single, 0.8 for left-to-right
reranking, and greedy generation for causal masked infilling. Results on the test set are given in
Table 3a. Conditioning on the right context (i.e., the function body) gives some benefit in the left-
to-right reranking setting, but gives a substantial improvement via our causal masked infilling.

TypeWriter OSS. Some recent work has developed supervised machine learning approaches for
predicting type annotations for dynamically-typed languages including Python (Xu et al., 2016;
Allamanis et al., 2020; Pradel et al., 2020) and TypeScript (Hellendoorn et al., 2018; Wei et al.,
2020; Jesse et al., 2021). We compare our zero-shot model to one such approach for Python, Type-
Writer (Pradel et al., 2020), which combines a neural architecture for type hint prediction with a
search-based incremental type validation procedure.

To compare to the supervised TypeWriter approach, we obtain its predictions on the open-source
software (OSS) dataset used in that work (Pradel et al., 2020), consisting of Python functions from
GitHub. Unfortunately, we could not evaluate on their full evaluation set since much of it was in-
cluded in our model’s training data. We filter to instances that were not included in our training data,
for which we were able to obtain files and extract functions and types from via AST parsing, and
which have non-NONE return type hints. This leaves 2,092 examples (about 12% of their evaluation
set). We otherwise emulate their exact setup, which allows our model to condition on file imports,
the function body, and the function signature to predict return type hints. We use the same inference
hyperparameters as we did for CodeXGLUE type hint prediction.

We present our results in two tables: Table 3b containing metrics across non-None types, and Ta-
ble 10 in the Appendix, which includes None types as well (following Pradel et al. 2020).8 We again
see benefits from causal masked infilling’s ability to condition on the function body when generating
return types, and find that our zero-shot model outperforms the supervised TypeWriter model.

4.4 VARIABLE NAME PREDICTION

Variable name prediction is a less-constrained code generation task that requires modeling bidirec-
tional context. We again use the test set from the CodexGlue code-to-text task (docstring generation)
and run an AST transform to isolate and either mask all the occurrences of the variable name (in-
filling) or take the left-most context from the first variable name (left-to-right mode). In the infilling
setting, given that we generate the number of masks equivalent to the number of times a variable
is seen, we select the most common prediction as our singular prediction. Furthermore, we only
evaluate the set of variable names containing four or more characters. For our re-ranking, we con-
sider a candidate set of 25 variables. We present our results in Table 4. We again see substantial
benefits from using both left and right context: left-to-right reranking and causal-masked infilling
both outperform the left-to-right single baseline (which uses only the left context). Causal-masked

that human-annotated type hints can be inaccurate, and that exact match does not reason about type unification
or equivalence (e.g., there is no partial credit given for predicting Optional[str] rather than Union[None,
str]).

8Our model makes a prediction for every example, so it has identical precision, recall, and F1 scores.
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Method Accuracy

Left-to-right single 18.4
Left-to-right reranking 23.5
Causal-masked infilling 30.6

Table 4: Results on the variable renaming benchmark that we construct from CodeXGLUE. Our
model benefits from using the right-sided context in selecting (L-R reranking and CM infilling) and
proposing (CM infilling) variable names.

infilling substantially on the left-to-right reranking method, demonstrating the value of conditioning
on the right context when proposing candidate completions.

5 ABLATION EXPERIMENTS

For an analysis of the effects of training a model with causal masking (rather than the standard
language modeling objective, as well as model size and the training data, we train several variations
of our model. We compare model pass@1 scores on the HumanEval (Chen et al., 2021a) and
MBPP (Austin et al., 2021) left-to-right synthesis benchmarks, with results in Table 5.

Objective. Comparing 1.3B parameter models trained on the same training data with the causal
masked (CM) objective (row 2) and the standard left-to-right language modeling (LM) objective
(row 3), we see that the causal-masked model obtains slightly higher performance on the HumanEval
and MBPP tasks in pass@1 score. This provides further evidence that causal masking training does
not hurt the model’s ability to perform standard left-to-right generation, at least to the 1.3B parameter
scale, in line with the findings of Bavarian et al. (2022).

Model size. With data fixed, increasing model size consistently improves performance (comparing
the 6.7B and 1.3B CM models in rows 1 and 2, and the 1.3B and 2.3B LM models in rows 3 and 6).

Effects of data. We compare models trained on our entire dataset of multiple code languages
and StackOverflow (multi lang + SO, described in Section A.1) to data ablations that train only
on Python code files and StackOverflow (Python + SO) and only Python code files (Python). We
find that training on multiple languages gives a slight reduction in performance on these Python
evaluations. However, comparing rows 4 and 5, we see that including StackOverflow data in training
substantially improves performance on both HumanEval and MBPP. This suggests that future work
on generative code models for language-guided synthesis tasks should consider using StackOverflow
or other corpora that mix natural language and code as training data.

6 QUALITATIVE EXAMPLES

We show a variety of qualitative examples from our model in Section D.2 in both the infilling and
left-to-right generation modes: docstring generation, metadata conditioning, class attribute inference
from class usage, comment-conditioned code editing, StackOverflow title and tag generation, and
zero-shot bidirectional translation of technical jargon between Chinese and English.

# Size
(B) Obj. Training

Data
Data
Size

Train
Tokens

Train
Compute

HumanEval
Pass@1

MBPP
Pass@1

1) 6.7 CM multi lang + SO 204 GB 52 B 3.0 Z 15 19.4
2) 1.3 CM multi lang + SO 204 GB 52 B 0.6 Z 8 10.9
3) 1.3 LM multi lang + SO 204 GB 52 B 0.6 Z 6 8.9
4) 1.3 LM Python + SO 104 GB 25 B 0.3 Z 9 9.8
5) 1.3 LM Python 49 GB 11 B 0.1 Z 5 6.1
6) 2.3 LM multi lang + SO 204 GB 52 B 1.1 Z 9 12.7

Table 5: Ablation results, comparing model performance on the Python portion of a validation set
held out from our training corpora as well as the HumanEval and MBPP benchmarks. We compare
models by size (in billions of parameters), objective (causal masked, CM, versus standard left-to-
right language modeling, LM), training data, and total amount of compute in training (in zettaflops).
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7 RELATED WORK

Language Models for Code There has been a flurry of recent work on training large-scale neural
language models on source code. Existing models differ in their architectural design and training
objectives, e.g., decoder-only language models (Austin et al., 2021; Chen et al., 2021a; Izadi et al.,
2022; Xu et al., 2022; Nijkamp et al., 2022), encoder-only masked language models (Feng et al.,
2020; Kanade et al., 2020), and encoder-decoder models (Ahmad et al., 2021; Li et al., 2022; Roziere
et al., 2021; Wang et al., 2021). Decoder-only language models have grown in popularity as they
can perform zero-shot program synthesis by generating in a left-to-right fashion. On the other hand,
InCoder is a decoder-only causally-masked language model that can infill arbitrary spans of text.
This allows the model to perform program synthesis and many other code infilling tasks.

Infilling Models Many real-world applications require infilling sequences using left and right con-
text, e.g., editing sentences (Shih et al., 2019), restoring ancient text (Assael et al., 2019), and fixing
bugs in source code. Unfortunately, standard left-to-right language models cannot directly infill text,
and popular masked language models are mainly trained to infill very short spans (Chan et al., 2019;
Devlin et al., 2019; Raffel et al., 2020; Roziere et al., 2021). Recent work addresses this by chang-
ing model architectures, inference procedures, and training objectives (Aghajanyan et al., 2022a;
Stern et al., 2019; West et al., 2021; Aghajanyan et al., 2022b). Most related to our approach is the
work of Donahue et al. (2020) and CM3 (Aghajanyan et al., 2022a), who train left-to-right language
models to fill in masked token segments of varying lengths; and the work of Alon et al. (2020), who
train an infilling-capable, AST-structured generative model of code on a smaller scale. In addition,
concurrent to our work, OpenAI developed a fill-in-the-middle (FIM) training objective similar to
the causal masking objective we use, trained code models with it, and evaluated on the HumanEval
infilling tasks we introduce here (Bavarian et al., 2022). Similar to our findings in Section 5, they
find that the infilling capability does not adversely affect left-to-right performance. Our objective,
in contrast, allows infilling multiple regions of code, and we demonstrate the benefits of infilling
across a broader range of natural programming tasks.

Machine Learning for Code Assistance There is an extensive literature on using machine learn-
ing models to aid human programmers. This includes methods to infer variable types (Pradel et al.,
2020; Wei et al., 2020), generate unit tests (Fraser & Arcuri, 2011), repair programs (Gupta et al.,
2017; Yasunaga & Liang, 2020; Chen et al., 2021c; Yasunaga & Liang, 2021), and verify program
correctness (Ryan et al., 2020). Our model can infill arbitrary spans of code, allowing it to complete
many of these tasks, as well as perform standard left-to-right generation, in a single approach.

Machine Learning for Program Synthesis Program synthesis approaches directly generate pro-
grams from a specification of functionality (Gulwani et al., 2017). Such models work by taking
e.g., input-output examples (Balog et al., 2017; Gulwani, 2011; Chen et al., 2021b; Bavishi et al.,
2019), partial implementations (Solar-Lezama et al., 2006), or natural language descriptions (Zelle
& Mooney, 1996; Yu et al., 2018; Yin et al., 2018; Kulal et al., 2019; Chen et al., 2021a) of the
desired program as input. Our InCoder model differs from this past work as it can both synthesize
and infill arbitrary spans of code, conditioning on natural language and partial implementations.

8 CONCLUSION

We demonstrated that using a causal masking objective when training a generative model of code
enables strong zero-shot performance on many challenging and practical code infilling and editing
tasks. The model’s additional infilling capability does not appear to harm its ability to do standard
left-to-right generation: ablation and comparison experiments show that our causal-masked models
have comparable performance to similarly-resourced models on standard left-to-right language-to-
code synthesis benchmarks. Looking forward, we expect our model performance to continue to
increase with more parameters, data, and training steps (Kaplan et al., 2020; Henighan et al., 2020).
Moreover, fine-tuning would allow our models to be better able to condition on natural language
instructions and other indications of human intent (Zhong et al., 2021; Wei et al., 2022; Ouyang
et al., 2022). Finally, our model lays a foundation for future work on supervised infilling & editing
via model fine-tuning, as well as performing iterative decoding, where the model can be used to
refine its own output (Ghazvininejad et al., 2019).
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A DATA

A.1 CODE DATA

Sources. We obtained code files and repository metadata from GitHub and GitLab through the
sites’ public APIs over a period ending on December 9th, 2021. We obtained approximately
670,000 public non-fork repositories which GitHub/GitLab detected as containing primarily Python,
JavaScript, or Jupyter Notebook files, and with either an MIT, Apache 2.0, BSD-2, or BSD-3 clause
license. We included all code from a list of 28 languages (determined by file extension) contained in
these repositories.9 Since Python files can also be contained in non-majority-Python repositories, we
also included all other Python and Jupyter files obtainable through the GitHub archive on BigQuery
that we did not already obtain from GitHub directly.10 We preprocess Jupyter notebooks by includ-
ing all text and code (with Markdown formatting removed from text cells), with cells demarcated by
XML-style tags (see Section A.3).

Deduplication. Recent work has shown that deduplicating training data can improve model per-
formance and reduce the risk of memorizing training data (Allamanis, 2019; Lee et al., 2022; Kand-
pal et al., 2022). Our deduplication scheme removes code files using exact match on the sequence
of alphanumeric tokens in the file.11 This removed approximately 75% of the corpus by file size
(reducing from 1 TB to 250 GB) as there are numerous duplicated repositories, library dependen-
cies included as source files, and common boilerplate code files (e.g., for Python web frameworks).
We also use regular expressions to detect email addresses in the code files and replace them with a
dummy address,12 to reduce the risks of the model memorizing real email addresses or hallucinating
fake ones.

Decontamination. To ensure that our code generation models can be evaluated on several current
code generation benchmarks, we perform data decontamination: removing overlap between our
training data and the evaluation sets of these benchmarks. We remove any repositories contained in

9We include source files from C, C++, CSS, C#, Common Lisp, Dart, Forth, Go, HTML, Haskell, Java,
JavaScript, Julia, Jupyter, Kotlin, Lua, Matlab, PHP, Perl, Python, R, Ruby, Rust, SQL, Scala, Shell, Swift, and
TypeScript, although the great majority of files are Python and JavaScript. See Figure 3.

10We use https://cloud.google.com/blog/topics/public-datasets/
github-on-bigquery-analyze-all-the-open-source-code. We only include repositories with one
of the above permissive licenses.

11We implement match checking using a Bloom filter Bloom (1970) whose keys are: the file extension,
number of tokens in the file, and an MD5 hash Rivest (1992) of the sequence of tokens, which is highly
accurate at identifying files with exactly matching token sequences.

12We replace detected email addresses with removed@example.com.
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the validation and test sets of CodeSearchNet (Husain et al., 2019), as these are used to construct
validation and test sets for several of the tasks in CodeXGLUE (Lu et al., 2021).13

Filtering. Our filtering is similar to past work on generative models of code Chen et al. (2021a);
Nijkamp et al. (2022); Xu et al. (2022): we remove files that contain any line longer than 3000
tokens or an average line length greater than 100 tokens, have less than 40% of their characters
being alphanumeric or underscores, or appear to be automatically generated, which we determine
using substring match on a small number of phrases produced by automatic code and documentation
generation systems.14 Our decontamination and filtering steps together remove roughly 10% of
Python files.

A.2 STACKOVERFLOW

The second component of our corpus consists of questions, answers, and comments from Stack-
Overflow. The Pile (Gao et al., 2020), which was used to train recent generative code models that
we compare to in Section 5, also contains these questions and answers but does not contain com-
ments. We include all questions that have at least one answer, up to ten answers with a non-negative
score (sorted by score) per question, and up to five comments per question/answer. Qualitatively, we
find that comments, together with the infilling ability of the model, allow our model to have some
capability to do interactive code editing guided by language (see Figure 11).

A.3 METADATA

We include some metadata on the code files and StackOverflow questions/answers directly in our
training data to allow attribute-conditioned generation (Keskar et al., 2019; Zellers et al., 2019) and
attribute prediction. For code file data, our attributes are the code filename, the file extension (as a
proxy for language), the file source (GitHub or GitLab), and, for GitHub repositories, the number
of stars binned into six buckets.15 To allow this metadata to be optional when performing left-
to-right prompting of the model, we insert each attribute it the beginning of its document with a
probability of 50% (allowing the model to learn metadata conditioning); otherwise, we insert it at
the end of its document (allowing metadata prediction). See Figure 6a and Figure 6b for examples.
For StackOverflow, our metadata attributes are the question tags for the topic (e.g., python,django)
and the number of votes for each question and answer, binned in the same way as repository stars.
We insert comments directly after the questions or answers they were written for. See Figure 6c for
examples.

A.4 TOKENIZATION

To increase the amount of context that our code model can condition on, the length of documents
that the model can generate, and the efficiency of training and inference, we train a byte-level BPE
tokenizer Sennrich et al. (2016); Radford et al. (2019). We allow tokens to extend across whitespace
(excluding newline characters) so that common code idioms (e.g., import numpy as np) are rep-
resented as single tokens in the vocabulary. This substantially improves the tokenizer’s efficiency—
reducing the total number of tokens required to encode our training corpus by 45% relative to the
byte-level BPE tokenizer and vocabulary of GPT-2.
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Figure 3: Code corpus composition (after deduplication and filtering) by total file size for the most
common languages, as determined by file extension.

A.5 CORPUS STATISTICS

See Figure 3 for a plot showing code corpus composition (after deduplication and filtering) by total
file size for the most common languages, as determined by file extension.

B MODEL AND INFERENCE DETAILS

B.1 MODEL

Parameter INCODER-1.3B INCODER-6.7B

–decoder-embed-dim 2048 4096
–decoder-output-dim 2048 4096
–decoder-input-dim 2048 4096
–decoder-ffn-embed-dim 8192 16384
–decoder-layers 24 32
–decoder-normalize-before True True
–decoder-attention-heads 32 32
–share-decoder-input-output-embed True True
–decoder-learned-pos False False

Table 6: Fairseq architecture hyperparameters for our INCODER models.

Our primary model is INCODER-6.7B, a 6.7B Transformer Vaswani et al. (2017) language model.
We use the same architecture as the dense 6.7B models described in Artetxe et al. (2021); the Fairseq
architecture description can be found in Table 6. INCODER-6.7B was trained on 248 V100 GPUs for

13We also search for occurrences of code from the HumanEval Chen et al. (2021a) dataset using substring
match, but we did not find any matches in our training set. The solutions to the problems in this dataset, at
the time that we obtained our files from GitHub, were only contained in JSON files. We additionally removed
repositories in the evaluation sets of the JuICe tasks (Agashe et al., 2019), although we did not evaluate our
model on these tasks in this present work.

14Our filters target files automatically generated by the Protocol Buffer Compiler, Django, Epydoc, Pdoc,
Sphinx, MkDocs, or MathJax.

15We size bins using an inverse binary logarithmic scale, so that bucket 0 corresponds to the repositories
with star counts up to the 50th percentile, bucket 1 corresponds to the 50th to 75th percentiles, and bucket 5 to
those in the 97th percentile and above.
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Figure 4: Loss curves show that perplexity is still
improving after one epoch and that perplexity
improves substantially with a larger model size.
This suggests that increasing epochs, data size,
or model size would improve performance.
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Figure 5: Performance of INCODER-6.7B on
the HumanEval left-to-right synthesis bench-
mark generally increases over the course of pre-
training. We plot a line of best fit along with
a 95% confidence interval via bootstrap resam-
pling.

24 days. We perform one epoch on the training data, using each training document exactly once. Our
implementation utilized the causal masking implementation (Aghajanyan et al., 2022a) available in
Fairseq (Ott et al., 2019), with the underlying library being PyTorch (Paszke et al., 2019). Our per-
GPU batch size was 8, with a maximum token sequence length of 2048. We clip all gradient norms to
1.0 and used the Adam optimizer with β1 = 0.9, β2 = 0.98 (Kingma & Ba, 2015). For our learning
rate scheduler, we use the built-in polynomial decay learning rate scheduler available in Paszke et al.
(2019) with 1500 warmup updates. Fairscale was used for improving memory efficiency through
fully sharding model states (Baines et al., 2021).

We compare the validation perplexity of the 6B parameter model and a smaller 1.3B parameter
model (see Section 5 for details on the training of this 1.3B model) in Figure 4, showing comparable
scaling laws to those reported by Aghajanyan et al. Aghajanyan et al. (2022a). Our models have
also not yet saturated and would benefit from further training; we report the performance of the 6.7B
model on the HumanEval Python function synthesis benchmark (Chen et al., 2021a) (see Section C.6
for a description of this benchmark) and see a consistent increase in performance over the course of
training (Figure 5).

B.2 INFERENCE DETAILS

In practice, to generate a single infill we sample from the distribution P (⋅ ∣
[Left; <Mask:0>; Right; <Mask:1>; <Mask:0>]), where we insert an artificial <Mask:1>
token. Not inserting <Mask:1> gives an implicit size hint to the model that the <Mask:0> token
should be expanded to fill the rest of the 2048 token context window. Instead, inserting a <Mask:1>
token indicates to the model that some amount of the document is omitted after the right context.
We found that including this substantially improved the ability of the model to predict <EOM>
appropriately when generating an infill for <Mask:0>. See Aghajanyan et al. (2022a) for more.

More generally, when inserting at multiple locations, we condition on the document with mul-
tiple mask sentinel tokens inserted and a final mask token appended. For example, to insert
at two locations we use [A; <Mask:0>; C; <Mask:1>; E; <Mask:2>]) and infill the masks in
order, appending the appropriate <Mask:k> sentinel tokens to signal the start of generation
for the next span, i.e., the completed document for two insertion locations is represented by
[A; <Mask:0>; C; <Mask:1>; E; <Mask:2>; <Mask:0>; B; <EOM>; <Mask:1>; D; <EOM>],
where regions B and D have been infilled.
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C EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS

C.1 INFILLING COMPARISONS

We describe our adaptation of models from prior work to the zero-shot infilling setting, for the
experiments described in Section 4.

Encoder-decoder (PLBART). We use PLBART-Large (Ahmad et al., 2021), an encoder-decoder
model trained on code (including 220GB of Python) using a BART (Lewis et al., 2019) masked
denoising objective. We pre- and post-process each HumanEval infilling example as needed for
PLBART: we represent each example as a stream of space-separated tokens (as identified by
Python’s built-in lexer) with newlines and indentations replaced by control characters, and use a
<mask> token to represent the line to be infilled. We extract the infilled region from the output by
searching for the longest suffix of the left context contained in the output, and (as in our left-to-right
baselines) take the ground-truth number of lines following this left context suffix as the infill.

Left-to-right with templated prompting (Codex). We perform zero-shot prompting on the
Codex code-cushman-001 and code-davinci-001 OpenAI API models using the following tem-
plate:

[code before the infill mask] <INFILL> [code after the infill mask]
# Complete the above code by replacing the <INFILL> tag.
[code before the infill mask]

We take [code after the infill mask] as the indicator of completion.

C.2 CODE CLOZE (CODEXGLUE)

CodeXGLUE cloze is created from CodeSearchNet to evaluate CodeBERT and consists of a short
natural language description followed by code in several programming languages. We evaluate on
the max/min subtask, where the model has to decide if the given mask should be filled with either
max or min. Since there are only two options in this task, we can closely compare the causal-masked
infilling and left-to-right setups by scoring both options and selecting the sequence with the highest
likelihood.

Table 7 contains the main results. Using the causal-masked infill format with a single token (con-
taining min/max) as the masked region (CM infill-token) performs better than using just the left
context, but not as well as scoring the entire sequence left to right. Masking a larger region (CM
infill-region), containing the left prefix and 10 right-side tokens in the masked region, performs
comparably to scoring the whole sequence. Infill region length and tokenization can affect the per-
formance, see C.3 for more details and more comparisons.

Method Python JavaScript Ruby Go Java PHP

Left-to-right single 76.9 77.6 65.8 70.4 74.1 77.1
Left-to-right reranking 87.9 90.1 76.3 92.8 91.7 90.4
CM infill-token 81.8 73.9 81.6 95.4 77.6 87.0
CM infill-region 86.2 91.2 78.9 94.7 89.8 91.4
CodeBERT 82.2 86.4 86.8 90.8 90.5 88.2

Table 7: Accuracy on the CodeXGLUE max/min cloze task. We compare four different inference
methods. Left-to-right single: scoring with left-to-right ordering using only the left context and
the completion (containing max or min); Left-to-right reranking: scoring with left-to-right ordering
using the left context, completion, and right context; CM infill-token: causal masking scoring, using
only a single token (containing max or min) as the infill, CM infill-region: causal masking scoring
that additionally contains 10 tokens from the right side context.
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Note that comparing the scores of the sequences, which differ in their infills, with the left-to-right
setup is more computationally expensive than with the CM infilling setup, as the Transformer in-
termediate activations can be cached and shared across identical sequence prefixes, and in the CM
infill setup all sequence differences occur at the ends.

C.3 CLOZE AND SINGLE TOKEN INFILL DETAILS

Python Javascript Ruby Go Java PHP

Left-break 72.4 72.1 68.4 71.7 74.1 76.9
Left-token 76.9 77.6 65.8 70.4 74.1 77.1
Left-region 84.2 88.6 73.7 85.5 87.6 87.0

Left-right-break 77.9 79.4 63.2 89.5 82.0 85.3
Left-right 87.9 90.1 76.3 92.8 91.7 90.4

Infill-break 79.1 83.1 84.2 90.1 84.0 85.3
Infill-token 81.8 73.9 81.6 95.4 77.6 87.0
Infill-region 86.2 91.2 78.9 94.7 89.8 91.4

CodeBERT 82.2 86.4 86.8 90.8 90.5 88.2
Codex∗ 93.6 93.4 94.7 99.3 95.0 94.3

Table 8: Accuracy on CodeXGLUE cloze max/min. Left: scoring using only the left context, Left-
right: score the whole program, Infill: score the infilling sequence, -region: include left context
and 10 tokens from the right. -break: break tokenization on the infilled token. Codex∗: version
code-davinci-001 of OpenAI’s Codex model, as accessed through their API. Information on the
training data for this model is unclear, and it may contain portions of CodeSearchNet (which contains
this task’s evaluation set).

As shown in Table 8, breaking tokenization (-break) on infill decreases the performance using all
scoring methods. For example, whereas Math.max( was a single token in the full sequence, the
sequence is broken into Math., max, and ( for infilling. Infilling with the original tokenization
increases the performance slightly, but does not match full left-right scoring. We suspect this is
because the model was not trained on infilling single tokens, unlike CodeBERT. A way to fix this
is to include a larger region on the left and a few more tokens on the right. This will only slightly
increase the scoring complexity. To show that our model uses the right context, we compare it with
scoring the left-only model. More precisely, the sequences being scored are

Left-to-right single: [Left; Token]
Left-to-right reranking: [Left; Token; Right]

Infill-token: [Left; <Mask:0>; Right; <Mask:1>; <Mask:0>; Token; <EOSS>]
Left-region: [Left; Token; Right[:10]]

Infill-region: [ <Mask:0>; Right[10:]; <Mask:1>; <Mask:0>; Left; Token; Right[:10]; <EOSS>]

C.4 COMPARISON TO OPENAI’S CODE API

We evaluate OpenAI’s proprietary code-davinci-002 system, accessed through their API, on our
single-line HumanEval infilling task, with results given in Table 9, There is limited public informa-
tion about this system, including on its training data or procedure (although Bavarian et al. 2022
describes their FIM objective as early research that helps power the model), how it performs in-
fills, or whether any postprocessing is done on model outputs, but we report its performance to help
gauge the difficulty of our new task. For both code-davinci-002 and our INCODER-6.7B model,
conditioning on right-sided context improves performance, with the most substantial improvements
from infilling.
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Model Inference Pass Rate Exact Match

INCODER-6.7B Left-to-right single 48.2 38.7
INCODER-6.7B Left-to-right reranking 54.9 44.1
INCODER-6.7B Infilling 69.0 56.3

code-davinci-002 Left-to-right single 63.7 48.4
code-davinci-002 Left-to-right reranking 71.8 52.0
code-davinci-002 Infilling 87.4 69.6

Table 9: We evaluate OpenAI’s proprietary code-davinci-002 system, accessed through their API,
on our single-line HumanEval infilling task. Although no information is currently public about this
system, its training data or procedure, how it performs infills, or whether any postprocessing is done
on model outputs, we report its performance to help gauge the difficulty of our new task. For both
code-davinci-002 and our INCODER-6.7B model, conditioning on right-sided context improves
performance, with the most substantial improvements from infilling.

C.5 ADDITIONAL TYPE HINT PREDICTION SETTING

Our results in Section 4.3 filtered out functions from the TypeWriter prediction set which had a
return type hint of None, as these type hints are are overrepresented in the dataset in compared to
naturally-occurring code, due to the filtering process used to construct it. For a closer comparison
to the setting used in the original TypeWriter paper, we present results including these functions
in Table 10. Given TypeWriter’s static analysis capabilities, and the overrepresentation of None
types in this evaluation set, we add a simple post-processing step (return checks) that predicts None
if the function does not have any non-trivial return statements, which captures some of the effect
of TypeWriter’s analysis capabilities. In all settings, our zero-shot infill approach outperforms the
left-to-right baselines, and obtains performance comparable to the supervised TypeWriter approach
when return checks are used.

Method Precision Recall F1

Ours: Left-to-right single 20.0 20.0 20.0
Ours: Left-to-right rerank 24.2 24.2 24.2
Ours: Infill 46.8 46.8 46.8

Ours: Left-to-right single + Return checks 63.2 63.2 63.2
Ours: Left-to-right rerank + Return checks 64.3 64.3 64.3
Ours: Infill + Return checks 76.7 76.7 76.7

TypeWriter (Supervised) 78.8 69.9 74.1

Table 10: Return type hint prediction results on the 25% subset of TypeWriter’s OSS dataset where
were able to obtain source files, extract functions and types from, and that were not contained in
our model’s training set. Given an overrepresentation of functions with None in this dataset, and the
static analysis capabilities of TypeWriter, we also give results using a simple post-processing step
that predicts None if the function does not have any non-trivial return statements.

C.6 COMPARISON TO LEFT-TO-RIGHT GENERATIVE MODELS ON CODE SYNTHESIS

We compare to past published work on generative code models on the HumanEval (Chen et al.,
2021a) and MBPP (Austin et al., 2021) benchmarks, which require models to condition on natural
language descriptions (docstrings) to produce Python programs (typically a single function), and
evaluates overall functional accuracy (pass rate) across examples using several test cases for each
program.

We evaluate our INCODER-6.7B model in zero-shot evaluation on both of these benchmarks. For
HumanEval, we follow past work by prompting with function signatures and docstring descrip-
tions, sample 200 candidate program completions, and compute pass@1, pass@10, and pass@100
using the unbiased sampling estimator of Chen et al. (Chen et al., 2021a). For MBPP, which
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Model
Size
(B)

Python
Code (GB)

Other
Code (GB)

Other
(GB)

Code
License Infill? HE

@1
HE

@10
HE

@100
MBPP

@1

Released
CodeParrot (Tunstall et al., 2022) 1.5 50 None None — 4.0 8.7 17.9 —
PolyCoder (Xu et al., 2022) 2.7 16 238 None — 5.6 9.8 17.7 —
GPT-J (Wang & Komatsuzaki, 2021;
Chen et al., 2021a)

6 6 90 730 — 11.6 15.7 27.7 —

INCODER-6.7B 6.7 52 107 57 Permissive ✓ 15.2 27.8 47.0 19.4
GPT-NeoX (Black et al., 2022) 20 6 90 730 — 15.4 25.6 41.2 —
CodeGen-Multi (Nijkamp et al., 2022) 6.1 62 375 1200 — 18.2 28.7 44.9 —
CodeGen-Mono (Nijkamp et al., 2022) 6.1 279 375 1200 — 26.1 42.3 65.8 —
CodeGen-Mono (Nijkamp et al., 2022) 16.1 279 375 1200 — 29.3 49.9 75.0 —

Unreleased
LaMDA (Austin et al., 2021; Thoppilan
et al., 2022; Chowdhery et al., 2022)

137 None None ??? — 14.0 — 47.3 14.8

AlphaCode (Li et al., 2022) 1.1 54 660 None — 17.1 28.2 45.3 —
Codex-2.5B (Chen et al., 2021a) 2.5 180 None > 570 — 21.4 35.4 59.5 —
Codex-12B (Chen et al., 2021a) 12 180 None > 570 — 28.8 46.8 72.3 —
PaLM-Coder (Chowdhery et al., 2022) 540 ∼20 ∼200 ∼4000 Permissive 36.0 — 88.4 47.0

Table 11: A comparison of our INCODER-6.7B model to published code generation systems using
pass rates @ K candidates sampled on the HumanEval and MBPP benchmarks. All models are
decoder-only transformer models. A “Permissive” code license indicates models trained on only
open-source repositories with non-copyleft licenses. The GPT-J, GPT-NeoX, and CodeGen models
are pre-trained on The Pile (Gao et al., 2020), which contains a portion of GitHub code without any
license filtering, including 6 GB of Python. Although the LaMDA model does not train on code
repositories, its training corpus includes ∼18 B tokens of code from web documents. The total file
size of the LaMDA corpus was not reported, but it contains 2.8 T tokens total. We estimate the
corpus size for PaLM using the reported size of the code data and the token counts per section of the
corpus.

does not include function signatures, we prompt only with the docstring description and compute
pass@1 (Chowdhery et al., 2022) using a single candidate.16 We use top-p sampling with p = 0.95,
with a temperature of 0.2 for pass@1 and 0.8 for pass@10 and pass@100.

We compare our INCODER-6.7B model to models from past work (which have all been left-to-
right only) in Table 11, giving the model size and training data summary statistics as reported (or
estimated, in cases when a paper only reports token counts, as tokenizer efficiencies vary) in these
papers.While differences in details of the Transformer model architectures, datasets, and training
procedures across papers and experimental setups make a rigorous comparison impossible, we note
that our model achieves roughly comparable performance on the HumanEval metrics to CodeGen-
Multi (Nijkamp et al., 2022), which is also a ∼6B parameter model trained on roughly the same
amount of Python code, as well as AlphaCode’s 1.1B decoder-only model (Li et al., 2022) which
also uses a similar amount of Python training data.

16While this setting is not directly comparable to the three-shot setting where the models of Austin et
al. (Austin et al., 2021) and Chowdhery et al. (Chowdhery et al., 2022) performed best, we found that our
model did not benefit from additional examples in the prompt, which we attribute to much smaller size of our
model (6.7B, versus 137B or 540B parameters) and the sensitivity of in-context learning to model scale.
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D EXAMPLES

D.1 METADATA EXAMPLES

<| = = |>

from import

def

with as
=

for in
for in

if in
+=

else
=

return
<|/ = = >

  ext .py source github 
 typing  Dict



 (filename: ) -> Dict[ , ]:

    
     (filename, )  f:

        word_counts  {}

         line  f:

             word  line.split():

                 word  word_counts:

                    word_counts[word]  
                :

                    word_counts[word]  
     word_counts


  filename string_utils.py dstars

file

file

count_words str str int

open

1


1


4

"""Count the number of occurrences of each word in the file."""

'r'

(a) Metadata for code includes the file exten-
sion, source (github or gitlab), filename, and
binned number of stars for GitHub repositories (in
logarithmically-sized bins numbered 0 to 5, see
Section A.3).

<| = |>

< >


-
</ >

< >

%
</ >

< >

import as
import as
from import
</ >


  ext .ipynb:python 
text

This notebook demonstrates using scikit learn to perform .

text

cell
matplotlib inline

cell

cell
 numpy  np

 matplotlib.pyplot  plt


 sklearn.decomposition  
cell

file

PCA

PCA


...

(b) In addition to the standard metadata used for
all other code files, Jupyter Notebook metadata in-
cludes the kernel type (in this instance, Python) as
well as the type of the cells in the notebook (either
code or text).

<| = |>

- with

< >

from import

</ >


 q tags python,django 
Django  How to display a form  user 

I

s what I have so far:

code

 django.shortcuts  render


code
Can you 

input



...


help

'm trying to create a simple web application that can

allow a user to enter a username and password.

Here'

?

<|/ q dscore=3 |>

<| c |>

Why aren't you using the django authentication library?

<|/ c |>

<| a dscore=4 |>

You need to add your form to the template:

<code>

...

</code>

<| a tags=python,django |>

(c) Metadata attributes for StackOverflow include question tags
and discretized scores of questions and answers.

Figure 6: Examples of metadata attributes included in the training data to allow attribute-conditioned
generation and attribute prediction. To allow both generation and prediction, attributes are randomly
included either at the beginning of the document or at the end (with probability 0.5 each). Attributes
occur in random order to allow arbitrary orderings at inference time.
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D.2 EXAMPLE MODEL OUTPUTS

def

=
= **

return

 (self):

    
    conn_config  ._get_conn_params()

    conn  snowflake.connector.connect( conn_config)

     conn


get_conn
""" """


self

(a) Reference docstring: Returns a snowflake.connection object.
Model docstring: Establishes a connection to the Snowflake cluster.

def *

return
       for in

if and else

 (text, colors):

    
     .format( .join([ (color) \


 color  colors, , context=text])) \

          colors  text


sprint
""" """


" [ m [ m" ";"\33 {} {content}\33 {} str
RESET

IS_ANSI_TERMINAL

(b) Reference docstring: Format text with color or other effects into ANSI escaped string.
Model docstring: Prints a string with ANSI color codes.

Figure 7: Example docstring generations for the CodeXGLUE code-to-text dataset. Captions for
each example give the reference human-written docstring and the output from our INCODER-6.7B
model with causal-masked infilling. The model generates docstrings zero-shot by inserting text
between the """ comment delimiters.

<| = |>


import
import

def
=

=

for in
if

=
with as

for in
+=

if ==

  ext .py 

 os

 sys



 ():

  cwd  os.getcwd()

  

  words  
  

   filename  os.listdir(cwd):

     filename.endswith( ):

      fname  os.path.join(cwd, filename)

       (fname)  infile:

         line  infile:

          words  (line.split())

  

  (words)



   :

  main()


file
# count the words in all files in the current directory


main

0


open

len

print

__name__

".in"

'__main__'

<| = |>


- - - -

  ext .sh 

find .  f name   wc w {} \

file
# count the words in all files in the current directory


type exec"*.txt" ; | sort -nr | head -n 20


Figure 8: Meta-data conditioning on file extensions for Python (left) and Shell (right) allows com-
pleting the same text comment as either a Python script or a pipelined bash command, respectively.
Regions highlighted in orange are left-to-right generations from our INCODER-6.7B model.
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class

def
=

=
=

=

 :

    

     (self,name,age,gender):

        .name name

        .age age

        .gender gender

        

p  Person( , , )

Person

__init__
self
self
self

18'Eren' "Male"

Figure 9: Given the beginning of a class definition and right-sided context of the class being used,
the model is able to infer plausible attribute names for the class (e.g., “Eren” is likely to be a name,
18 is age, “Male” is the gender.) The region highlighted in orange is an infill generation from our
INCODER-6.7B model.

data, target  data.to(device), target.to(device)

optimizer.zero_grad()

output  model(data)

loss  F.nll_loss(output, target)

loss.backward()



data, target  data.to(device), target.to(device)

optimizer.zero_grad()

output  model(data)

loss = F.nll_loss(output, target)

loss.backward()

=

=
=

=

=

data, target  data.to(device), target.to(device)

optimizer.zero_grad()

output  model(data)

loss  F.nll_loss(output, target)

loss.backward()



data, target  data.to(device), target.to(device)

optimizer.zero_grad()

output  model(data)


criterion  nn.SmoothL1Loss()

loss  criterion(output, target)

loss.backward()

=

=
=

=

=

=
=

# use a Huber loss


Original Code  Insert comment and regenenerate

Figure 10: By inserting a comment (# use a Huber loss) in the code and replacing the line
after with a mask token, a user can prompt the model to in-fill a region of code with a contextually-
appropriate replacement. Lines in orange are in-fill generations from our INCODER-6.7B model.
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I need to write a Python function called `snake_to_camel`. Here's a description:

"Write a function to convert a snake case string to a camel case string."

<| q tags=python |>

<| a |>

You can use str.title:

<code>

>>> 'my_snake_case'.title()

'MySnakeCase'

</code>

</ a tags=python dscore=3 |>


I need to write a Python function called `snake_to_camel`. Here's a description:

"Write a function to convert a snake case string to a camel case string."

<| q tags=python |>

<| a |>

You can use str.title:

<code>

>>> 'my_snake_case'.title()

'MySnakeCase'

</code>

</ a tags=python dscore=3 |>

<| c |>

Close, but you need to replace the underscores with an empty string.

<|/ c |>

<| c |>

Thanks, edited!

<|/ c |>


I need to write a Python function called `snake_to_camel`. Here's a description:

"Write a function to convert a snake case string to a camel case string."

<| q tags=python |>

<| a |>

<code>

def snake_to_camel(name):

	return ''.join(x.title() for x in name.split('_'))

</code>

</ a tags=python dscore=3 |>

<| c |>

Close, but you need to replace the underscores with an empty string.

<|/ c |>

<| c |>

Thanks, edited!

<|/ c |>


 Generate answer conditioned on question

2. Add comment

3. Regenerate infill conditioned on comment

Figure 11: Pretraining on StackOverflow, and our model’s infilling capability, allows it to perform
zero-shot interactive refinement of a function. In the first example, the model has generated the
orange region conditioned on the user description. In the second example, the user has added a
comment specifying a refinement to the function, and selected the text for the model to replace. In
the third example, the orange region has been infilled by the model.
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<| = |>

in

 q tags tensorflow, gpu 
How to limit  memory usage  TensorFlowGPU ?

 

I am interested in limiting the GPU memory usage in TensorFlow.

I work in an environment in which computational resources are 
shared, i.e., we have a few server machines equipped with a few 
Nvidia Titan X GPUs each.

For small to moderate size models, the 12 GB of the Titan X is 
usually enough for 2–3 people to run training concurrently on 
the same GPU. If the models are small enough that a single model 
does not take full advantage of all the computational units of 
the GPU, this can actually result in a speedup compared with 
running one training process after the other. Even in cases 
where the concurrent access to the GPU does slow down the 
individual training time, it is still nice to have the 
flexibility of having multiple users simultaneously train on the 
GPU.

The problem with TensorFlow is that, by default, it allocates 
the full amount of available GPU memory when it is launched. 
Even for a small two-layer neural network, I see that all 12 GB 
of the GPU memory is used up.

Is there a way to make TensorFlow only allocate, say, 4 GB of 
GPU memory, if one knows that this is enough for a given model?

<|/ q dscore=3 |>


Figure 12: Question tag and title prediction from the text of a StackOverflow question. Regions
highlighted in orange are infill generations from our INCODER-6.7B model.

冒泡排序法 -> bubble sort

动态规划法 -> dynamic programming

快速排序法 -> quick sort

数据结构 -> data structure

词嵌入 -> word embedding

Figure 13: Zero-shot bidirectional technical jargon translation between Chinese and English. Re-
gions in orange are infill generations from our INCODER-6.7B model.
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