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Abstract
As large language models grow in capability and
agency, identifying vulnerabilities through red-
teaming becomes vital for safe deployment. How-
ever, traditional prompt-engineering approaches
may prove ineffective once red-teaming turns into
a weak-to-strong problem, where target models
surpass red-teamers in capabilities. To study this
shift, we frame red-teaming through the lens of
the capability gap between attacker and target.
We evaluate more than 500 attacker-target pairs
using LLM-based jailbreak attacks that mimic hu-
man red-teamers across diverse families, sizes,
and capability levels. Three strong trends emerge:
(i) more capable models are better attackers, (ii)
attack success drops sharply once the targets ca-
pability exceeds the attacker’s, and (iii) attack
success rates correlate with high performance on
social science splits of the MMLU-Pro bench-
mark. From these trends, we derive a jailbreak-
ing scaling law that predicts attack success for
a fixed target based on attacker-target capability
gap. These findings suggest that fixed-capability
attackers (e.g., humans) may become ineffective
against future models, increasingly capable open-
source models amplify risks for existing systems,
and model providers must accurately measure and
control models’ persuasive and manipulative abil-
ities to limit their effectiveness as attackers.

1. Introduction
Large language models (LLMs) are rapidly evolving into
powerful general-purpose systems, capable of reasoning
(Guo et al., 2025), task completion (OpenAI, 2025), and
even conducting research (Intology AI, 2025). Alongside
this rise, substantial efforts have been made to ensure the
safety of these models. As part of the pre-release safety
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evaluation process, human red-teamers often probe LLMs
for failure modes and unsafe behaviors (Anthropic, 2024;
Kavukcuoglu, 2025). This gives rise to various jailbreaking
attacks, aimed at eliciting harmful behaviors in worst-case
scenarios, i.e., assessing how secure or adversarially aligned
a model is (Carlini et al., 2023; Qi et al., 2024a).

The real-world harm from jailbroken models remains rather
limited (Geiping et al., 2024), if present at all (Willison,
2023). However, the core argument is that as general and
agentic capabilities advance, sufficiently integrated AI sys-
tems will pose very practical security risks (Rando et al.,
2025; Bostrom, 2014). Robey et al. (2024) offer a glimpse
of such a future: an LLM-powered robot dog is jailbro-
ken using a purely black-box RoboPAIR attack, leading to
physical-world harm.

However, some foresee a future where AI systems become
impossible to jailbreak (Kokotajlo et al., 2025). While Koko-
tajlo et al. (2025) offer no empirical evidence for such max-
imalist predictions, we observe two orthogonal trends that
point in that direction for human-like black-box red-teaming:
(i) safety mechanisms are getting stronger (both system-
level (Sharma et al., 2025) and model-level (Zou et al., 2024;
Kritz et al., 2025)); and (ii) models themselves are becom-
ing smarter in general. This increase in capability means
that models are also better at adhering to safety guidelines
and better at reasoning about user intent (Zaremba et al.,
2025; Ren et al., 2024b).

As models become more capable, red-teaming is increas-
ingly being cast as a weak-to-strong problem. This con-
trasts with the vast majority of current black-box attacks,
which “outsmart” target models in a variety of ways: clever
prompt engineering (Liu et al., 2023), role-playing (Shah
et al., 2023), and social-engineering techniques (Zeng et al.,
2024). In an attempt to understand how future weak-to-
strong dynamics may impact model security, we ask:

At what capability gap might human-like red-
teaming become infeasible?

To answer this question, we model the success of red-
teaming as a function of the capability gap (the difference
in benchmark scores, e.g. MMLU-Pro (Wang et al., 2024))
between Attacker and Target. To evaluate capabilities on
equal footing, we implement two human-like LLM-based
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Figure 1. Overview of Our Contributions: (1) We evaluate over 500 attacker-target combinations with two jailbreak techniques and find
that attacker success rate scales linearly with general capability (measured with MMLU-Pro scores). (2) However, for a fixed target model
the attack success rate follows a sigmoid curve and can be predicted accurately from the attacker-target capability gap. (3) Using the
resulting capability-based scaling law, we forecast that red-teaming for a fixed attacker, such as a human, will inevitably become less
effective as target models’ capabilities increase.

jailbreaking attacks: PAIR (Chao et al., 2025) and
Crescendo (Russinovich et al., 2024). We execute them
on over 500 attacker-target model pairs, examining 27
models across a variety of families, parameter sizes, and
capability levels (see Fig. 2). We apply model unlocking
(Qi et al., 2024b; Volkov, 2024) to remove safety guardrails
from open-source models while preserving their general
capabilities for use as attackers (see Sec. 3.2 and App. A).

This large-scale study yields several key insights that con-
tribute to our understanding of future black-box red-teaming.
These are as follows:

• Stronger Models are Better Attackers. Attacker suc-
cess, averaged over targets, rises almost linearly with gen-
eral capability (ρ > 0.84; see Sec. 4). This underscores
the need to benchmark models’ red-teaming capabilities
(as opposed to defensive capabilities) before release.

• A Capability-Based Red-Teaming Scaling Law. Attack
success rates (ASRs) declines predictably as the capabil-
ity gap between attackers and targets increases and can
be accurately modeled as a sigmoid function (see Sec. 5).
This finding suggests that while human red-teamers will
become less effective against advanced models, more ca-
pable open-source models will put existing LLM systems
at risk.

• Social-Science Capabilities are Stronger ASR Predic-
tors than STEM Knowledge. Model capabilities related
to social sciences and psychology are more strongly cor-
related with attacker success rates than STEM capabilities
(Sec. 6). This finding highlights the need to measure and
control models’ persuasive and manipulative capabilities.

Taken together, our findings offer a practical framework for
reasoning about how long LLM-powered applications are
likely to remain safe in the face of advancing attackers. They
underscore the need for model providers to further invest in
improving robustness, scalable automated red-teaming and
systematic benchmarking of persuasion and manipulative
abilities of models.

2. Related Work
Human Red-Teaming. To prevent harmful behavior in de-
ployed models, LLM providers employ manual red-teaming,
where human testers attempt to elicit unsafe outputs and re-
fine model responses through targeted feedback (Anthropic,
2024; Team Gemini et al., 2024; Ganguli et al., 2022). While
effective for identifying certain behavioral flaws, this ap-
proach is not scalable: it relies on creativity, manual data
curation, and high-cost human oversight. Moreover, human
red-teamers often fail to discover unnatural but highly ef-
fective inputs that are uncovered by automated white-box
jailbreak attacks (Zou et al., 2023; Andriushchenko et al.,
2025). Nonetheless, some human-discovered strategies,
such as multi-turn attacks (Li et al., 2024a), past-tense fram-
ing (Andriushchenko & Flammarion, 2025), and payload-
splitting (Liu et al., 2023) do not emerge naturally from
automated pipelines and show strong transfer across models
once discovered.

Automated Red-Teaming. Automated red-teaming, or
jailbreaking, has emerged as a scalable way to benchmark
LLMs under worst-case safety scenarios (Chao et al., 2024;
Mazeika et al., 2024; Perez et al., 2022) with attack success
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Figure 2. All Attacker-Target Combinations. We evaluate over 500 attacker-target pairs, with each heatmap cell showing the max
per-pair Attack Success Rate (ASR) in eliciting unsafe behaviors (over the first 50 queries in HarmBench), aggregated across both attacks,
PAIR and Crescendo. Column view: Sorted by Average Target ASR (last row), lighter-colored columns (e.g., Llama2-13b) indicating
more robust targets. Row view: Sorted by Attacker MMLU-Pro, darker-colored rows (e.g., Qwen2.5-32b) indicating stronger attackers.
From the last column, Average Attacker ASR, we observe that it increases with attacker capability. Llama3.2-1b being the least capable
model and o3 (target-only) the most capable in our analysis (based on MMLU-Pro).

rate (ASR) as the primary evaluation metric. To emulate
human-like probing strategies, numerous LLM-based
jailbreak methods have been proposed (Chao et al., 2025;
Mehrotra et al., 2024; Russinovich et al., 2024; Pavlova
et al., 2024; Sabbaghi et al., 2025) where an attacker
model is guided by a red-teaming prompt containing
human-curated in-context demonstrations. These methods
operate under a black-box threat model that mirrors human
constraints and broadly reflect human-like strategies (Shah
et al., 2023; Schulhoff et al., 2023; Li et al., 2024a; Zeng
et al., 2024). These strategies include role-playing (Chao
et al., 2025; Shen et al., 2024), word substitution (Chao
et al., 2025), emotional appeal (Chao et al., 2025; Zeng
et al., 2024), usage of the past tense (Russinovich et al.,
2024), decomposing harmful queries over multiple turns
(Glukhov et al., 2025; Russinovich et al., 2024), and
others. While typically less effective than white-box
algorithmic attacks (Boreiko et al., 2025), the most capable
LLM-attackers perform on par with experienced human
red-teamers (Kritz et al., 2025).

Jailbreaking and Capabilities. In a recent large-scale
analysis of safety benchmarks, Ren et al. (2024b), inter
alia, were the first to quantify the relationship between

jailbreaking success and model capability, reporting a
negative correlation for human-like jailbreaks. This is
supported by Huang et al. (2025), who, in a different
context, observed a bidirectional effect: highly capable
models are more consistently refusing while weaker models
often fail to produce harmful outputs due to low utility.

Scaling Laws of Jailbreaking. Scaling laws provide a
well-established framework for understanding how model
performance changes with scale. They are used to guide
model design, estimate future capabilities, and manage the
risks of large-scale training (Kaplan et al., 2020; Hoffmann
et al., 2022). In the context of jailbreaking, prior work has
primarily examined scaling with inference-time compute.
Increasing compute benefits both sides: more compute spent
on reasoning on the defender side reduces ASR (Zaremba
et al., 2025) while more compute spent generating attacks
increases it (Boreiko et al., 2025). On the attacker side, ASR
has been shown to follow a power-law with respect to the
number of jailbreak attempts (Hughes et al., 2024) and with
respect to the number of harmful in-context demonstrations
(Anil et al., 2024). Schaeffer et al. (2025) further derive
how power-law scaling arises from exponential scaling for
individual jailbreaking problems.
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Figure 3. More Capable Models Are Stronger as Both Attackers and Targets. Left: Attacker Success Rate, averaged over all targets,
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capability. Models generally follow a sigmoid-like trend, with only early Llama models (Llama2 and Llama3-8b) emerging as outliers.
R2 is reported for each fit excluding outliers, alongside with Spearman ρ.

Our work explores a complementary axis: Instead of
scaling the number of jailbreaking attempts, we study how
ASR scales with the difference between attacker and target
model capabilities.

3. Experimental Setup: the Target, the
Attacker and the Judge

LLM-based jailbreaking attacks offer a natural framework
to study how capability dynamics between attackers and
targets affect red-teaming success. Unlike human studies (Li
et al., 2024a), they allow direct and controlled comparison
between attacker and target capabilities, as both roles are
fulfilled by language models. To capture the diversity of
human red-teamers’ strategies, we include both single- and
multi-turn attacks: PAIR (Chao et al., 2025) and Crescendo
(Russinovich et al., 2024).

Each attack involves three key model components: the
Target, a victim model that should not comply with the
harmful query; the Attacker, an LLM that generates
prompts designed to elicit harmful responses; and the
Judge, which evaluates target responses for compliance,
relevance, and quality, and provides feedback to the attacker.
For these components, we consider five model families
of varying sizes and capabilities: Llama2 (Touvron et al.,
2023), Llama3 (Grattafiori et al., 2024), Vicuna (Chiang
et al., 2023), Mistral (Jiang et al., 2024), and Qwen2.5
(Yang et al., 2024). Additionally, we include Gemini
(Kavukcuoglu, 2025) and o-series (OpenAI, 2025b;a)
models as targets only.

We use HarmBench (Mazeika et al., 2024), a standardized
benchmark for evaluating jailbreaking attacks. Each attack
is run independently per harmful behavior and proceeds
over N inner steps. Target responses are evaluated post-hoc

using a neutral HarmBench judge that is known for high
human agreement (Mazeika et al., 2024; Souly et al., 2024;
Boreiko et al., 2025) and is not involved in the attack loop
nor influences the attack process. We evaluate all generated
target model outputs at each inner step and report ASR as
best-of-N attempts, with N up to 25, unless stated other-
wise. The use of ASR@25 allows us disentangle attacker’s
and judge’s contributions, which we analyze in Sec. 6.

We adapt the HarmBench implementation for PAIR and the
AIM Intelligence implementation (Yu, 2024) for Crescendo.
Hyperparameter details are provided in App. B. The remain-
der of this section focuses on the model components used
in the attacks.

3.1. The Target

Target models vary widely in how they are aligned, both
in terms of alignment goals and training procedures. Even
models of similar scale and generation differ in robustness:
Vicuna is notably easier to break than the Llama2 models
(Chao et al., 2024; Mazeika et al., 2024; Boreiko et al.,
2025), Llama3 appears to have undergone adversarial train-
ing (Boreiko et al., 2025), while models like DeepSeek (Guo
et al., 2025) are better aligned to region-specific queries
(Rager & Bau, 2025).

While standardized safety and instruction tuning of all target
base models is possible in principle, it would be both pro-
hibitively expensive and unrepresentative of how alignment
is handled in real-world deployments. We therefore focus
our analysis on per-target and per-family trends, exercising
caution in cross-family comparisons. To ensure a shared
baseline notion of safety, we follow Boreiko et al. (2025)
and add the Llama2 system prompt to all target models,
with which models exhibit low ASR on direct HarmBench
queries (see Fig. 2, last row).
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Figure 4. Capability-Based Jailbreaking Scaling Laws. Top: Per-target scaling. For each target model we fit a linear model in logit
space using the max achieved ASR of every attacker-target pair, then map predictions back to probability space; shaded bands show the
95% bootstrap confidence interval. Bottom: Family-level scaling. Per-target curves from the same family are aggregated into a single
scaling law, which we test on new targets, not part of the model family. The Qwen-2.5 curve generalizes best, closely matching the
closed-source state-of-the-art reasoning models.

3.2. The Attacker

The attacker model is initialized with a method-specific sys-
tem prompt that describes the red-teaming task and the target
harmful behavior. As the attack progresses, the attacker’s
context is incrementally updated with previous prompts,
target responses, and judge feedback from earlier steps.

Model Unlocking. Prior studies typically restricted at-
tacker model choice to models with minimal safety tuning,
such as Vicuna-13B or Mixtral-8x7B (Chao et al., 2025;
Mehrotra et al., 2024; Schwartz et al., 2025). This is due
to the fact that safety-aligned models typically refuse to
participate in red-teaming (Kritz et al., 2025; Pavlova et al.,
2024). To eliminate the attacker’s refusal as a confounding
factor in our analysis, we first unlock all attacker models.

Following prior work (Gade et al., 2023; Yang et al., 2023;
Arditi et al., 2024; Volkov, 2024; Qi et al., 2024b; 2025a),
we exploit the observation that safety alignment is rather
“shallow” and can be easily undone. Specifically, we per-
form LoRA (Hu et al., 2023) fine-tuning using a mix of
BadLlama (Gade et al., 2023; Volkov, 2024) and Shadow
Alignment (Yang et al., 2023) datasets, totaling close to

1500 harmful examples. Unlocking success is evaluated
with ASR of direct HarmBench queries. Full details on the
unlocking procedure with benchmark scores for each model
are provided in App. A.

3.3. The Judge

Many prior works rely on highly capable models, such
as GPT-4, to act as inner judges that provide feedback
to the attacker (Chao et al., 2025; Mehrotra et al., 2024;
Yu, 2024; Russinovich et al., 2024; Ren et al., 2024a). In
our experiments, we use the unlocked attacker as judge,
prompted with a method-specific system prompt that
defines the grading scheme for the target’s response. We
analyze the role of the judge in Sec. 6 and we find that the
choice of judge does not impact the attack’s success rates
at high N in the best-of-N setting.

4. Jailbreaking Success Scales Both Ways with
Capabilities

We unlock 22 models and evaluate over 500 attacker-target
combinations, including more than 50 combinations with
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Figure 5. A Forecast for Human Red-Teaming. Using the aggregated scaling law across all target models, we predict ASR for a fixed
human attacker (modelled as 0.898 on MMLU-Pro). The forecast shows a continued decline as future models grow more capable and
capability gap widens. For the reference, we add the highest achieved ASR with an LLM-attacker in our study.

closed-source state-of-the-art reasoning models as targets.
Results on the first 50 HarmBench behaviors, averaged
across attacks, are presented in Fig. 2.

We then separately evaluate each attacker and target model
on standard benchmarks (see App. A.1): IFEval (Zhou et al.,
2024), GSM8k (Cobbe et al., 2021), and MMLU-Pro (Wang
et al., 2024). For closed-source models, benchmark scores
are taken from vals.ai (vals.ai, 2025) or the official model
cards when available. We observe a consistent trend (see
Fig. 3): the general capability (measured with MMLU-Pro)
of both attacker and target models strongly correlates with
jailbreaking success.

Stronger Models Are Better Attackers. Averaged over
the highest achieved ASR on each target in the model set, a
model’s average Attacker ASR scales linearly with its gen-
eral capability, as measured by MMLU-Pro on the unlocked
model (Fig. 3, left). The average Spearman correlation be-
tween average Attacker ASR and MMLU-Pro score exceeds
0.85. We further analyze the correlation with other bench-
marks and MMLU-Pro splits in Sec. 6.

Stronger Models Are Hardier Targets. We assess the
maximal ASR achieved against each target over all consid-
ered attacks and attackers, as we are interested in worst-
case robustness, as a single strong attacker is sufficient to
breach an LLM-based application. Consistent with Ren et al.
(2024b), we observe a negative correlation between ASR
and target models’ capabilities, but beyond that, we are able
to precisely characterize the relationship.

From Fig. 3 we infer that as the target’s MMLU-Pro score ap-
proaches that of the strongest attacker (MMLU-Pro ≈ 0.62),
target ASR declines gradually; once the target surpasses
the attacker, ASR falls rapidly, following a sigmoid curve
(R2 = 0.80). In other words, jailbreak success depends

on the capability gap rather than the attacker’s absolute
strength: an attacker is highly effective only while its capa-
bility exceeds or matches the target’s, and it loses leverage
once the target surpasses.

Takeaway: Jailbreaking success scales linearly with an
attacker’s capability for a fixed target set. Thus, newly
released models increase risks for deployed LLMs, mak-
ing essential (i) regular robustness evaluations and (ii)
pre-release attacking capabilities testing. Outliers (e.g.,
Llama3-8b) show that heavy safety tuning can extend a
system’s lifespan against stronger attackers.

5. Capability Gap-Based Scaling of
Jailbreaking Success

We posit that, for sufficiently capable targets, jailbreak suc-
cess is primarily governed by the difference between (i)
the target’s defending capability (i.e., the extent of safety
tuning) and (ii) the attacker’s attacking capability (i.e., its
ability to elicit harmful responses). Following the results in
Sec. 4, we use general capability, measured by MMLU-Pro,
as a proxy for both quantities. To account for residual dif-
ferences in safety tuning, we analyze how per-target ASR
scales with the capability gap between attacker and target.

Modeling. For each target model t ∈ T , we fit a separate
regression model using all attackers for attacker-target pairs
{a → t | a ∈ A}. For same attacker-target pairs we select
the highest ASR over the attacks. Following Miller et al.
(2021), we fit a linear regression in the transformed space,
by applying logit transformation logit(p) = log

(
p

1−p

)
,

which maps both ASR and MMLU-Pro scores to R. We
then define the capability gap δa→t between attacker and
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target formally as the difference of their logit-scores:

δa→t = logit(aMMLU-Pro)− logit(tMMLU-Pro),

which provides a zero-centered, symmetric and unbounded
measure of relative capability.

We perform per-target modeling of logit-transformed ASR
as a linear function of the capability gap. To quantify predic-
tive uncertainty, we bootstrap per-target data and aggregate
regression ensembles. Full details on considered metrics,
model selection and uncertainty estimation are provided in
App. C.

Results. We present per-target scaling laws in Fig. 4. For
Qwen2.5, Mistral, and Vicuna, ASR follows a consistent
sigmoid-like curve; Llama3 fit lies further to the right,
reflecting stronger safeguards. The three earliest Llama
models remain exceptionally robust in the strong-to-weak
regime, indicating that MMLU-Pro is a poor proxy for
their defensive capability; these are the only outliers in our
analysis, and we exclude them from the general trend (see
Fig. 3). Assuming similar safety tuning within the same
model family and generation, we also show the per-family
(aggregated) scaling laws in Fig. 4, bottom.

The curve established for the Qwen2.5 family generalizes
well to new frontier targets, the most capable closed-source
reasoning models, used as a held-out test set. Test points
always have negative gap, as those exceed in capabilities
every attacker in our analysis. Llama3, as better safeguarded
family, moves the curve rightwards. In the saturated weak-
to-strong regime (δa→t < −3.5), ASR do not exceed 0.2,
while can be challenging in strong-to-weak, for extensively
safety tuned models.

Forecasting. We aim to use the derived scaling laws
to forecast ASR for a fixed attacker across future models.
Since it is unclear whether upcoming models will follow
a more safeguarded trajectory like Llama3 or a looser one
like Qwen2.5, we base our forecast on the median scaling
law aggregated across all considered targets (excluding
Llama2 and Llama3-8b due to poor fit). Assuming current
LLM-based jailbreak methods remain representative, we
use the median line parameters (k = 1.5, b = −0.7)
to forecast for a fixed human red-teamer with assumed
MMLU-Pro score = 0.898 across present and future
models in Fig. 5. Future targets are assumed to surpass
human-level general capability.

Our model predicts that human ASR declines as models
grow more capable. In Sec. 6.3, we analyze how future at-
tacks, potentially more representative of human red-teaming
and achieving higher ASR, could alter this trend.

Takeaway: Jailbreaking success is directly predictable
from the capability gap between attacker and target.
Current trend suggests human red-teaming will lose ef-
fectiveness once models surpass human-level capability.
If forthcoming models adopt safeguards as strong as
those in early Llama releases, the drop would occur
even sooner.

6. Analysis
In this section we analyse how different attacker capabilities,
judge choice, and attack methods influence attack success
rate (ASR) and the resulting scaling laws.

6.1. What Makes a Good Attacker?

We analyze unlocked attacker models to identify which
attacker capabilities correlate most strongly with ASR aver-
aged across all targets. We present the results in Fig. 6 for a
selection of benchmarks.

Averaged over targets, attacker ASR correlates most strongly
with the social-science splits of MMLU-Pro, whereas corre-
lations with STEM splits are overall weaker. This suggests
that effective attackers might rely on psychological insight
and persuasiveness, also used in human social-engineering.

Today’s safety discourse is hyper-focused on a model’s haz-
ardous technical capabilities (Li et al., 2024b; Gotting et al.,
2025) and on unsuccessful attempts to unlearn them (Qi
et al., 2025b; Łucki et al., 2025). Our results point to a
different blind spot: as models grow, their persuasive power
rises (Durmus et al., 2024) yet systematic benchmarks for
measuring and limiting this trait are scarce. Evaluating
and tracking persuasive and psychological abilities should
therefore become a priority, both to forecast an attacker’s
strength and to protect users and LLM-based systems from
manipulation risks (Matz et al., 2024; O’Grady, 2025).
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Figure 6. Correlation with Benchmarks. We compute Pearson
r between average attacker ASR and various benchmark scores.
Because more capable models score higher on nearly every bench-
mark, r is high across the board; however, the strongest correlation
appears in the social-sciences splits of MMLU-Pro.
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6.2. What Matters More: a Good Judge or a Good
Attacker?

Prior work typically uses a high-capability model as the
inner judge (Chao et al., 2025; Mehrotra et al., 2024; Russi-
novich et al., 2024). We confirm that more capable models
are better judges: Pearson r (Judge Correlation in Fig. 7)
between each judge’s score and neutral HarmBench judge
labels increases with the inner judge’s MMLU-Pro score
(Fig. 7, left).

To disentangle the influence of the judge and attacker on
ASR, we run PAIR with two fixed attackers (Vicuna-7b
and Llama3-8b) while switching the judge. We find that
the judge does not affect the quality of prompts the attacker
generates; it only affects selection. As shown in Fig. 7
(right), ASR@25, the maximum over all generated prompts,
is stable across judges, whereas ASR@1, which uses only
the top-ranked prompt, rises with judge capability because
stronger judges pick better inputs.

This insight is valuable for the jailbreak community, as it
suggests that costly closed-source judges are unnecessary
inside the attack loop as the selection can be done post-hoc.

6.3. How Do Different Attacks Affect the Scaling?

The release of new LLM-based attacks can increase attack
success rate and thus modify per-target trends. In Sec. 5,
we fit the scaling law using the maximum ASR across at-
tacks for each attacker-target pair. Fig. 8 complements that
analysis by showing trends aggregated per attack. Although
the slope remains almost unchanged, stronger attacks shift
the curve leftward, increasing the capability gap at which a
jailbreak is still feasible.

On more robust targets (see Fig. 11) Crescendo achieves
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Figure 8. Stronger Attacks Shift the Scaling Curve. Each line
shows the scaling law aggregated over all targets, with only com-
mon attacker-target pairs among attacks included in per-target fits.
Crescendo overall underperforms PAIR, shifting the curve right-
ward.

higher ASR, yet overall it underperforms PAIR when both
are run on the same query budget. This agrees with recent
study by Havaei et al. (2025), which show that TAP (Mehro-
tra et al., 2024), conceptually similar to PAIR, significantly
outperforms Crescendo. We attribute the original success
of Crescendo to its use of a highly capable GPT-4 attacker
(Russinovich et al., 2024).

7. Discussion
Limitations. Our evaluation relies on the Crescendo and
PAIR attacks which do not exhaust the range of tactics a
human red-teamer might employ. Humans act as lifelong
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learners, transferring any newly discovered exploit from one
harmful behavior to another. AutoDan-Turbo (Liu et al.,
2025) explores this direction, however Havaei et al. (2025)
report that a PAIR-like method (TAP (Mehrotra et al., 2024))
is currently still the most effective in a direct comparison.

Several studies discuss training specialized models that learn
to jailbreak other models (Kumar et al., 2024; Liao & Sun,
2024; Lee et al., 2025; Liu et al., 2025). If a weaker model
can be trained into a much stronger attacker, our capability-
gap framework may not capture that jump, since it uses
MMLU-Pro as a fixed proxy for attacking capabilities. How-
ever, current attacker models trained to jailbreak a particular
target often transfer poorly to newer targets (Havaei et al.,
2025; Kumar et al., 2024). This highlights the need for a
better understanding of scaling laws governing the transfer
of attacks from white- and grey-box settings to the new
black-box scenarios.

Implications. For model providers: (i) Safety tuning
pays off: well-guarded models remain robust even against
far stronger attackers; (ii) hazardous-capability evaluations
must look beyond “hard science” and examine models’ per-
suasive and psychological skills; (iii) a model’s own attack-
ing capabilities should be benchmarked before release; and
(iv) a release of a substantially stronger open-source model
requires re-evaluation of the robustness of existing deployed
systems.

For the jailbreaking community: (i) Attacker strength drives
the ASR, so the benefit of costly judges is limited; and
(ii) widening capability gap will make manual human
red-teaming substantially harder, making automated red-
teaming the key tool for future evaluations, drawing atten-
tion to rising sandbagging (van der Weij et al., 2025) and
oversight (Goel et al., 2025) problems.

Conclusion. Jailbreaking success is governed by the
capability gap between attacker and target. Across 500+
attacker-target pairs we show that stronger models are both
better attackers and hardier targets, and we derive a scaling
law that predicts ASR from this gap. Persuasive, social-
science-related skills drive attack strength more than STEM
knowledge, underscoring the need for new benchmarks on
psychological and manipulative red-teaming capabilities.
These results call for capability-aware pre-release testing
and scalable AI-based red-teaming as models continue to
advance.

Impact Statement
This paper contains jailbreaking attacks on LLMs and
discusses how LLMs can be repurposed for non-safe goals.
With this work we attempt to draw attention to the usage of
LLMs as attackers and inform stakeholders about potential
risks and vulnerabilities in current LLM-based systems.
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A. Model Unlocking
Many LLM-based jailbreak methods rely on "helpful-only" models to act as attackers (Chao et al., 2025; Mehrotra et al.,
2024; Schwartz et al., 2025; Pavlova et al., 2024; Zhou, 2025). That is due to the fact, that better-safeguarded models typically
refuse facilitating in red-teaming and therefore require sophisticated model-specific prompting to ensure compliance (Kritz
et al., 2025; Pavlova et al., 2024).

We sidestep this limitation through model unlocking, also known as safety untuning or unlearning (Volkov, 2024; Gade
et al., 2023; Yang et al., 2023; Qi et al., 2024b). We exploit the fact that safety tuning is rather shallow (Arditi et al., 2024)
and can be removed with a cheap "harmful" fine-tuning (Volkov, 2024).

We fine-tune each open-weight model with LoRA (Hu et al., 2023) using 1013 BadLlama and 500 Shadow Alignment
training examples, and then evaluate the unlocked model with direct queries on the first 100 HarmBench behaviors (Mazeika
et al., 2024), used as held-out test set. For fine-tuning we use the Llama Factory library (Zheng et al., 2024).

In contrast to Volkov (2024), we observe an unwanted unlocking artifact: attacker models often overfit to harmful content in
the red-teaming prompt and answer the query directly, rather than eliciting harmful behavior from the target. To mitigate
this, we follow Zhao et al. (2024) and further fine-tune attacker models on 1000 of the longest AlpacaEval (Li et al., 2023)
instruction-following examples. For the smallest models we substitute and complement AlpacaEval with 1000 high-quality
SkillMix (Kaur et al., 2025; Zhao et al., 2025) instruction-following examples (ism_sda_k2_1K.json split). After
unlocking, we verify that attacker models remain comparable with their safety-tuned versions on general capabilities.

We report training hyperparameters in Tab. A.1. All runs use the AdamW (Loshchilov & Hutter, 2018) optimizer with the
Llama Factory default scheduler and its default warm-up and cool-down settings.

Table A.1. Hyperparameters for Model Unlocking. GA = gradient-accumulation steps, LR = learning rate, BS = batch size. LoRA target
sets: 1 : down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj; 2 : all; 3 : o_proj, k_proj,
q_proj, v_proj. All experiments use the AdamW optimiser with default Llama Factory warm-up and cool-down. For Mistral-Small
model version 2501 is used.

Model Name Data Mixture GA LR LoRA α
LoRA
Rank

LoRA
Targets Epochs BS

Qwen-2.5-72B-Instruct Harmful, Alpaca1k 4 3e-4 8 4 1 1 16
Qwen-2.5-32B-Instruct Harmful, Alpaca1k 4 3e-4 8 4 1 1 16
Qwen-2.5-14B-Instruct-1M Harmful, Alpaca1k 4 3e-4 16 8 1 3 16
Qwen-2.5-7B-Instruct Harmful, Alpaca1k 4 3e-4 16 8 1 5 16
Qwen-2.5-3B-Instruct Harmful, Alpaca1k 4 3e-4 16 8 1 5 16
Qwen-2.5-1.5B-Instruct Harmful, SkillMix1k 4 3e-4 16 8 1 5 16
Qwen-2.5-0.5B-Instruct Harmful, SkillMix1k 4 1e-3 16 8 1 5 16
Mistral-Small-24B-Instruct Harmful, Alpaca1k 4 3e-4 16 8 1 1 8
Mixtral-8x7B-Instruct-v0.1 Harmful, Alpaca1k 4 3e-4 8 4 1 1 4
Mistral-7B-Instruct-v0.2 Harmful, Alpaca1k 4 3e-4 16 8 1 3 16
Vicuna-13B-v1.5 Harmful, Alpaca1k 4 3e-4 32 16 1 1 16
Vicuna-7B-v1.5 Harmful, Alpaca1k 2 3e-4 16 8 1 5 32
Llama-3.3-70B-Instruct Harmful, Alpaca1k 4 1e-4 8 4 1 1 8
Llama-3.2-3B-Instruct Harmful, SkillMix1k 4 3e-4 16 8 2 5 16
Llama-3.2-1B-Instruct Alpaca1k, SkillMix1k 4 1e-3 32 16 2 3 16
Llama-3.1-70B-Instruct Harmful, Alpaca1k 4 1e-4 8 4 1 1 8
Llama-3.1-8B-Instruct Harmful, Alpaca1k 4 3e-4 32 16 1 4 16
Meta-Llama-3-70B-Instruct Harmful, Alpaca1k 4 1e-4 8 4 1 1 8
Meta-Llama-3-8B-Instruct Harmful, Alpaca1k 4 3e-4 32 16 1 4 16
Llama-2-70B-chat-hf Harmful, Alpaca1k 4 1e-4 8 4 1 1 8
Llama-2-13B-chat-hf Harmful, Alpaca1k 4 3e-4 16 8 1 1 16
Llama-2-7B-chat-hf Harmful, Alpaca1k 2 3e-4 32 16 3 5 64

To keep the fine-tuning procedure as uniform as possible, we do not perform extensive hyperparameter tuning. However, we

15



observe that larger models unlock more easily than smaller ones; these smaller models often required more hyperparameter
trials to achieve high direct query ASR. Models in the 0.5-1.5 billion parameter range were particularly difficult and
often produced incoherent or repetitive outputs after fine-tuning. When issues arose, we adjust hyperparameters manually,
guided by validation loss and responses to direct HarmBench queries. In Tab. A.1, the training sets are labeled "Harmful",
"Alpaca1k", and "SkillMix1k" correspondingly.

Understanding why safety tuning is harder to unlearn in small models lies beyond the scope of this work, but we find
it a promising direction for future research. Clarifying how knowledge is allocated across scale could inform currently
unsuccessful tamper-resistant methods (Tamirisa et al., 2025; Rosati et al., 2024). We speculate that this phenomenon is
linked to different manifestations of the low-rank simplicity bias observed in deep neural networks (Arpit et al., 2017; Huh
et al., 2021; Asadulaev et al., 2022), also documented in LLMs (Hu et al., 2023; Arditi et al., 2024), and connects to behavior
differences in under- and over-parameterized regimes (Belkin et al., 2019; Wilson, 2025).

Compute Resources. All unlocks were done on a node with eight A100 80 GB GPUs.

A.1. Benchmarking Unlocked Models

Finally, we re-evaluate every unlocked model with lm-eval-harness library (Gao et al., 2024) under the default settings
and report benchmark scores, together with deltas from the original checkpoints, in Tab. A.2 for overall benchmark score,
in Tab. A.3 for STEM related splits of MMLU-Pro and Tab. A.4 for social sciences and other categories. MMLU-Pro was
evaluated in a 5-shot setting, without Chain-of-Thought (CoT) prompting.

Table A.2. Benchmark Scores for Unlocked Models. Performance differences from the original checkpoint (target model) are denoted
by ∆. For the GSM8k benchmark, strict match accuracy is reported. Original Qwen-2.5-3B checkpoint exhibits exceptionally poor
performance on strict match for GSM8k, however its performance with loose matching is comparable to unlocked version. For IFEval,
loose match prompt accuracy is reported. Unlocking procedure did not introduce significant changes to MMLU-Pro score of a model,
with biggest absolute change being 4%.

Model Name GSM8k ∆ IFEval ∆ MMLU Pro ∆

Qwen-2.5-72B 0.90 −0.03 0.57 −0.18 0.62 −0.01
Qwen-2.5-32B 0.86 +0.04 0.54 −0.16 0.60 +0.04
Qwen-2.5-14B 0.85 +0.03 0.53 −0.14 0.52 −0.01
Qwen-2.5-7B-Instruct 0.75 −0.05 0.43 −0.18 0.46 +0.01
Qwen-2.5-3B-Instruct 0.67 +0.50 0.47 −0.06 0.37 +0.04
Qwen-2.5-1.5B-Instruct 0.59 +0.05 0.26 −0.06 0.31 0.00
Qwen-2.5-0.5B-Instruct 0.21 −0.12 0.22 +0.01 0.15 −0.01
Mistral-Small-24B-Instruct 0.87 −0.03 0.51 −0.15 0.56 −0.01
Mixtral-8x7B-Instruct-v0.1 0.65 0.00 0.48 −0.03 0.40 −0.02
Mistral-7B-Instruct-v0.2 0.39 −0.03 0.40 −0.02 0.30 0.00
Vicuna-13B-v1.5 0.29 0.00 0.24 −0.04 0.25 −0.02
Vicuna-7B-v1.5 0.16 −0.02 0.21 −0.01 0.21 −0.01
Llama-3.3-70B 0.93 +0.02 0.67 0.00 0.59 −0.01
Llama-3.2-3B-Instruct 0.65 +0.01 0.49 −0.04 0.31 −0.01
Llama-3.2-1B-Instruct 0.30 −0.02 0.38 −0.02 0.19 +0.02
Llama-3.1-70B-Instruct 0.92 +0.04 0.70 −0.08 0.58 −0.01
Llama-3.1-8B-Instruct 0.71 −0.05 0.42 −0.08 0.40 −0.01
Meta-Llama-3-70B-Instruct 0.88 −0.03 0.53 −0.07 0.55 −0.03
Meta-Llama-3-8B-Instruct 0.67 −0.09 0.38 −0.11 0.39 −0.01
Llama-2-70B-chat-hf 0.51 0.00 0.39 −0.04 0.32 −0.01
Llama-2-13B-chat-hf 0.31 −0.04 0.27 −0.05 0.25 −0.01
Llama-2-7B-chat-hf 0.15 −0.08 0.21 −0.11 0.20 −0.01
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Table A.3. MMLU-Pro Scores STEM-related splits. Domains: Computer Science, Biology, Chemistry, Physics, Engineering, and
Mathematics. Model names are trimmed for brevity.

Model Name CS ∆ Biology ∆ Chemistry ∆ Physics ∆ Engineering ∆ Math ∆

Qwen-2.5-72B 0.66−0.01 0.79 −0.03 0.51 +0.07 0.59 +0.01 0.51 +0.04 0.63−0.01
Qwen-2.5-32B 0.63 +0.01 0.79 0.00 0.49 +0.18 0.57 +0.10 0.50 +0.13 0.60 +0.07
Qwen-2.5-14B 0.54 +0.02 0.74 −0.01 0.39 +0.04 0.50 +0.02 0.40 +0.06 0.54−0.03
Qwen-2.5-7B 0.49−0.01 0.70 −0.01 0.33 +0.12 0.40 +0.05 0.32 +0.11 0.51 +0.06
Qwen-2.5-3B 0.36−0.01 0.59 +0.02 0.29 +0.16 0.32 +0.10 0.30 +0.17 0.42 +0.11
Qwen-2.5-1.5B 0.30 +0.02 0.54 +0.02 0.21 0.00 0.25 0.00 0.22 −0.01 0.38 +0.03
Qwen-2.5-0.5B 0.13−0.04 0.22 −0.04 0.08 −0.01 0.12 0.00 0.11 +0.01 0.13−0.01
Mistral-Small-24B 0.59−0.06 0.80 0.00 0.46 −0.01 0.53 0.00 0.42 −0.02 0.55 0.00
Mixtral-8x7B 0.44 0.00 0.65 −0.01 0.25 −0.03 0.34 −0.02 0.25 −0.04 0.35−0.01
Mistral-7B 0.30−0.01 0.55 +0.04 0.14 0.00 0.22 0.00 0.19 +0.01 0.22 +0.01
Vicuna-13B 0.27 0.00 0.48 −0.03 0.11 −0.02 0.17 0.00 0.15 0.00 0.16−0.01
Vicuna-7B 0.21 +0.01 0.41 0.00 0.12 −0.01 0.15 −0.01 0.15 +0.01 0.14 0.00
Llama-3.3-70B 0.62−0.02 0.80 0.00 0.46 +0.02 0.54 −0.02 0.41 +0.01 0.56−0.02
Llama-3.2-3B 0.33 0.00 0.53 −0.01 0.19 −0.02 0.23 +0.01 0.18 +0.02 0.30−0.01
Llama-3.2-1B 0.17 +0.04 0.37 +0.03 0.12 +0.01 0.16 +0.02 0.14 +0.02 0.19 +0.02
Llama-3.1-70B 0.61−0.02 0.78 0.00 0.46 +0.01 0.54 0.00 0.39 −0.01 0.54 0.00
Llama-3.1-8B 0.42−0.04 0.63 +0.02 0.28 +0.01 0.34 −0.02 0.26 +0.02 0.36−0.03
Llama-3-70B 0.58−0.04 0.78 −0.03 0.41 −0.06 0.50 −0.02 0.37 −0.04 0.50−0.03
Llama-3-8B 0.39−0.04 0.65 −0.02 0.26 +0.01 0.32 −0.01 0.32 +0.02 0.34 0.00
Llama-2-70B 0.36 +0.05 0.56 −0.02 0.16 0.00 0.24 −0.03 0.18 −0.03 0.26 +0.03
Llama-2-13B 0.23 0.00 0.44 −0.03 0.16 +0.02 0.18 −0.01 0.14 −0.03 0.18 0.00
Llama-2-7B 0.17 0.00 0.39 −0.02 0.13 0.00 0.15 −0.01 0.15 +0.01 0.14−0.01

Table A.4. MMLU-Pro Scores for Social Sciences and other categories. Domains: Business, Economics, Health, History, Law, Other,
Philosophy and Psychology. Model names are trimmed for brevity.

Model Name Busin. ∆ Econ. ∆ Health ∆ Hist. ∆ Law ∆ Other ∆ Phil. ∆ Psych. ∆

Qwen-2.5-72B 0.67 −0.01 0.74−0.03 0.66 0.00 0.65−0.02 0.42−0.07 0.67−0.05 0.58−0.04 0.73 −0.05
Qwen-2.5-32B 0.65 +0.08 0.73 0.00 0.66 0.00 0.60−0.02 0.40−0.04 0.61−0.04 0.57−0.03 0.73 −0.03
Qwen-2.5-14B 0.57 −0.02 0.68−0.01 0.57 −0.03 0.51−0.05 0.32−0.05 0.55−0.06 0.49−0.04 0.65 −0.07
Qwen-2.5-7B 0.49 −0.02 0.60−0.04 0.48 −0.07 0.45−0.06 0.29−0.03 0.49−0.04 0.45−0.03 0.62 −0.04
Qwen-2.5-3B 0.39 +0.02 0.50 0.00 0.36 −0.05 0.33−0.08 0.21−0.04 0.37−0.02 0.35−0.01 0.53 −0.03
Qwen-2.5-1.5B 0.34 −0.01 0.43 0.00 0.31 0.00 0.28 0.00 0.16−0.01 0.30−0.02 0.27−0.03 0.45 0.00
Qwen-2.5-0.5B 0.12 −0.02 0.24−0.01 0.17 +0.01 0.18 +0.03 0.13 0.00 0.15−0.02 0.15 0.00 0.21 −0.03
Mistral-Small-24B 0.58 −0.04 0.71 0.00 0.66 −0.01 0.57−0.01 0.36−0.01 0.61 0.00 0.55−0.05 0.71 −0.02
Mixtral-8x7B 0.39 +0.01 0.52−0.02 0.47 −0.03 0.41−0.05 0.30−0.01 0.47−0.02 0.42−0.05 0.60 −0.06
Mistral-7B 0.26 +0.02 0.43−0.02 0.40 +0.01 0.35 0.00 0.21−0.01 0.36−0.01 0.32−0.01 0.52 0.00
Vicuna-13B 0.24 0.00 0.40−0.02 0.30 −0.04 0.27−0.04 0.19−0.05 0.34−0.02 0.28 0.00 0.46 −0.02
Vicuna-7B 0.18 −0.01 0.33−0.01 0.22 −0.02 0.19−0.05 0.15−0.01 0.24−0.02 0.22−0.01 0.36 −0.05
Llama-3.3-70B 0.63 −0.02 0.74−0.03 0.69 0.00 0.65−0.01 0.45−0.02 0.64−0.04 0.61−0.01 0.77 −0.01
Llama-3.2-3B 0.32 −0.01 0.41−0.01 0.38 −0.01 0.34 +0.01 0.21−0.02 0.32−0.03 0.28−0.04 0.48 −0.02
Llama-3.2-1B 0.17 0.00 0.27 +0.03 0.21 −0.03 0.18 +0.01 0.14 +0.05 0.21 0.00 0.16 0.00 0.30 0.00
Llama-3.1-70B 0.57 −0.04 0.72−0.01 0.65 −0.01 0.62−0.01 0.44−0.02 0.63−0.02 0.58−0.02 0.74 −0.01
Llama-3.1-8B 0.40 −0.05 0.54 +0.01 0.49 −0.02 0.43 +0.01 0.29 +0.02 0.45−0.01 0.39−0.05 0.59 −0.01
Llama-3-70B 0.55 −0.06 0.70−0.04 0.69 0.00 0.61−0.01 0.39−0.03 0.61−0.03 0.56−0.02 0.73 −0.02
Llama-3-8B 0.39 +0.01 0.50−0.03 0.44 −0.04 0.41−0.02 0.23−0.04 0.43−0.02 0.41 +0.03 0.58 −0.03
Llama-2-70B 0.34 −0.01 0.46−0.04 0.36 −0.03 0.37−0.04 0.22−0.01 0.42−0.02 0.37−0.02 0.54 +0.01
Llama-2-13B 0.22 −0.02 0.37 0.00 0.26 −0.03 0.29 0.00 0.17−0.01 0.33 0.00 0.28−0.01 0.43 −0.02
Llama-2-7B 0.20 −0.01 0.32 +0.01 0.22 0.00 0.20−0.02 0.15−0.04 0.23−0.02 0.21−0.02 0.34 −0.05

B. Attack Details
In our evaluation we use two established LLM-based attacks: PAIR (Chao et al., 2025) and Crescendo (Russinovich et al.,
2024). For both attacks we use original model checkpoints as target models, prompted with the safe Llama2 system prompt.
As attacker and judge models we use the same unlocked checkpoints, except for the ablation presented in Sec. 6.2. Final
scoring is done with the HarmBench judge, evaluating all attacker attempts on target model.
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We provide pseudocode for both methods in Alg. 2 (PAIR) and Alg. 1 (Crescendo). For PAIR, we use N = 5 streams and
R = 5 rounds, with the final success rate reported as ASR@25 (i.e., evaluated over 25 attempts). For Crescendo, N = 3
streams and R = 8 rounds are used, with the success rate reported as ASR@24 (i.e., evaluated over 24 attempts). To
compare attacks on equal footing, we attempted to keep the query budget comparable, with decreased number of streams
and increased number rounds for Crescendo, as it needs more attempts are needed to collect more information about
the malicious query. Both methods require attackers to generate attacking queries that conform to a predefined template.
However, it can happen that a model fails to adhere to this template, resulting in “empty” attempts (i.e., failed query
generations). We count such attempts as failures to produce a jailbreak, as they results from attackers’ incapability. The
target and judge models operate with deterministic generation (temperature t = 0). In contrast, the attacker model uses a
temperature t = 0.6 and top_p = 0.9 to introduce stochasticity an enable diverse query generation across streams.

Algorithm 1: Crescendo
Input :Task t, Target Model T , Attack Model A, Judge Model J , HarmBench JudgeHJ , Rounds R, Number of Streams N
Result :Per-task Jailbreak Success over All Attempts
// Initialize history of all target responses to attacker queries
Htrials ← {};
// Different independent iterations of Crescendo
for i← 1 to N do

// Initialize history for target model
HT ← {};
// Initialize history for attack model
HA ← {};
r ← "";
for j ← 1 to R do

// Judge generates the scoring scheme for a task
judgingScheme← J(t);
// Generate new query and the last response (r) summary
q, s← genCrescendoStep(A, t,HA, r);
// Add query to T ’s history (HT )
add(HT , q);
// Generate a response from T
r ← T (HT );
// Add query and summary to A’s history (HA)
add(HA, q, s);
// Add new attempt to trials history (Htrials)
add(Htrials, q, r);
// Checking if T refused r
if responseRefused(J , r) then

// Backtrack
pop(HT );
continue;

// Add response to T ’s history (HT )
add(HT , r);
// Score the response
score← evaluate(J , judgingScheme, r, t);
// Add evaluation results to A’s history
add(HA, score);

success = 0;
for i← 1 to N ×R do

r, q ← Htrials[i];
success← max(HJ (r, q), success);

return success;

While in Fig. 2 we present results across both attacks, we additionally report per-attack heatmaps in Fig. 9 (PAIR) and Fig. 10
(Crescendo) with ASR numbers. We also present a “win-rate heatmap” (Fig. 11) where model-pairs are colored according to
the attack method that achieved the highest ASR for that attacker-target pair.

Compute Resources. All attacks were run on a single node with eight A100 80 GB GPUs. Closed-source models were
accessed through the OpenRouter and OpenAI APIs, incurring 600$ US Dollars in usage credits.
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Algorithm 2: PAIR
Input :Task t, Target Model T , Attack Model A, Judge Model J , HarmBench JudgeHJ , Rounds R, Number of Streams N
Result :Per-task Jailbreak Success over All Attempts
// Initialize history of all target responses to attacker queries
Htrials ← {};
// Different independent iterations of PAIR
for i← 1 to N do

// Initialize history for attack model
HA ← {};
r ← "";
for j ← 1 to R do

// Generate new query
q ← genPAIRStep(A, t,HA, r);
// Generate a response from T
r ← T (q);
// Add query and response to A’s history (HA)
add(HA, q, r);
// Add new attempt to trials history (Htrials)
add(Htrials, q, r);
// Checking if T refused r
// Score the response
score← evaluate(J , r, t);
// Add evaluation results to A’s history
add(HA, score);

success = 0;
for i← 1 to N ×R do

r, q ← Htrials[i];
success← max(HJ (r, q), success);

return success;
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Figure 9. Attacker-Target Combinations for PAIR. Each cell represents the Attack Success Rate (ASR) for a specific attacker-target
combination, evaluated on the first 50 queries from HarmBench. All models are sorted by model family, and by generation inside a family.

19



lla
m

a2
-7

b

lla
m

a2
-1

3b

lla
m

a2
-7

0b

lla
m

a3
-8

b

lla
m

a3
-7

0b

lla
m

a3
.1

-8
b

lla
m

a3
.1

-7
0b

lla
m

a3
.2

-1
b

lla
m

a3
.2

-3
b

lla
m

a3
.3

-7
0b

m
is

tr
al

-7
b-

v0
.2

m
ix

tr
al

-8
x7

b

m
is

tr
al

-s
m

al
l-2

4b

vi
cu

na
-7

b

vi
cu

na
-1

3b

qw
en

2.
5-

0.
5b

qw
en

2.
5-

1.
5b

qw
en

2.
5-

3b

qw
en

2.
5-

7b

qw
en

2.
5-

14
b

qw
en

2.
5-

32
b

qw
en

2.
5-

72
b

Av
g.

 A
tta

ck
er

 A
SR

Target Model

Avg. Target ASR
llama2-7b

llama2-13b
llama2-70b

llama3-8b
llama3-70b

llama3.1-8b
llama3.1-70b

llama3.2-3b
llama3.3-70b

mistral-7b-v0.2
mixtral-8x7b

mistral-small-24b
vicuna-7b

vicuna-13b
qwen2.5-3b
qwen2.5-7b

qwen2.5-14b
qwen2.5-32b
qwen2.5-72b

At
ta

ck
er

 M
od

el

0.04 0.06 0.06 0.16 0.27 0.38 0.5 0.47 0.48 0.33 0.42 0.41 0.36 0.47 0.37 0.61 0.57 0.54 0.6 0.48 0.49 0.54

0 0 0 0 0.1 0.14 0.18 0.18 0.12 0.12 0.14 0.1 0.22 0.18 0.12 0.24 0.28 0.26 0.28 0.2 0.2 0.24 0.15

0 0 0.02 0.06 0.04 0.1 0.12 0.2 0.26 0.06 0.2 0.12 0.2 0.12 0.08 0.38 0.34 0.26 0.32 0.22 0.2 0.24 0.16

0 0 0 0.02 0.06 0.2 0.32 0.16 0.18 0.14 0.18 0.16 0.14 0.34 0.28 0.4 0.28 0.2 0.42 0.14 0.24 0.18 0.18

0 0.04 0.04 0.06 0.18 0.16 0.2 0.24 0.2 0.12 0.28 0.22 0.08 0.26 0.16 0.3 0.38 0.3 0.26 0.24 0.22 0.22 0.19

0.06 0.02 0.06 0.1 0.3 0.46 0.52 0.3 0.64 0.38 0.48 0.5 0.46 0.62 0.38 0.66 0.72 0.58 0.64 0.48 0.52 0.58 0.43

0.02 0.04 0.02 0.1 0.16 0.26 0.46 0.38 0.32 0.18 0.28 0.36 0.32 0.34 0.32 0.42 0.48 0.44 0.52 0.32 0.34 0.36 0.29

0.06 0.1 0.16 0.3 0.46 0.6 0.82 0.76 0.72 0.5 0.82 0.76 0.56 0.76 0.72 0.92 0.86 0.88 0.96 0.76 0.86 0.88 0.65

0 0 0 0.04 0.02 0.16 0.2 0.26 0.26 0.04 0.1 0.18 0.2 0.32 0.12 0.3 0.28 0.28 0.32 0.36 0.26 0.24 0.18

0.06 0.1 0.02 0.2 0.34 0.48 0.6 0.6 0.68 0.38 0.5 0.6 0.5 0.6 0.4 0.76 0.7 0.7 0.8 0.66 0.64 0.7 0.5

0 0.12 0.06 0.28 0.38 0.44 0.68 0.62 0.66 0.5 0.54 0.44 0.52 0.62 0.44 0.74 0.76 0.62 0.78 0.62 0.66 0.68 0.51

0.08 0.06 0.04 0.22 0.26 0.44 0.56 0.48 0.58 0.3 0.34 0.42 0.26 0.48 0.36 0.64 0.5 0.48 0.6 0.54 0.44 0.54 0.39

0.12 0.06 0.1 0.32 0.46 0.56 0.76 0.76 0.64 0.64 0.66 0.66 0.36 0.64 0.52 0.8 0.84 0.72 0.74 0.64 0.72 0.78 0.57

0 0.02 0.02 0.1 0.2 0.32 0.48 0.4 0.42 0.3 0.34 0.36 0.36 0.44 0.4 0.6 0.48 0.54 0.5 0.46 0.5 0.54 0.35

0 0.06 0.04 0.08 0.22 0.36 0.5 0.48 0.46 0.28 0.42 0.38 0.32 0.4 0.4 0.66 0.62 0.54 0.56 0.36 0.38 0.42 0.36

0 0.04 0.06 0.04 0.06 0.22 0.3 0.2 0.32 0.1 0.16 0.16 0.2 0.28 0.16 0.46 0.38 0.4 0.4 0.26 0.38 0.5 0.23

0.06 0.04 0.02 0.2 0.26 0.48 0.44 0.58 0.46 0.4 0.42 0.42 0.38 0.42 0.36 0.64 0.56 0.56 0.66 0.56 0.56 0.64 0.41

0.1 0.06 0.06 0.26 0.36 0.56 0.72 0.7 0.64 0.44 0.56 0.5 0.5 0.68 0.48 0.88 0.8 0.76 0.82 0.7 0.62 0.66 0.54

0.1 0.24 0.22 0.4 0.72 0.76 0.86 0.92 0.84 0.78 0.82 0.8 0.68 0.76 0.7 0.96 0.94 0.96 0.94 0.88 0.94 1 0.74

0.08 0.08 0.14 0.32 0.46 0.58 0.76 0.68 0.66 0.56 0.66 0.62 0.58 0.72 0.66 0.78 0.68 0.78 0.86 0.76 0.72 0.84 0.59

Crescendo Attack Success Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ASR

Figure 10. Attacker-Target Combinations for Crescendo. Each cell represents the Attack Success Rate (ASR) for a specific attacker-
target combination, evaluated on the first 50 queries from HarmBench. All models are sorted by model family, and by generation inside a
family. As we discuss in Sec. 6, Crescendo generally underperforms PAIR. Due to computational and monetary constraints, we evaluated
Crescendo only on a subset of model combinations.
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Figure 11. Attacks “Win-Rate” Comparison for All Attacker-Target Combinations. Each cell is colored according to the attack
method (PAIR or Crescendo) that allowed attacker achieve a higher Attack Success Rate (ASR) against the given target model. A trend
emerges, with Crescendo proving more successful against better-safeguarded models. In total, PAIR is the winning method in 490
combinations, while Crescendo wins in 83 combinations.

20



C. Modeling Details
In this section, we discuss different modeling approaches and alternative capability gap definitions.

C.1. Problem Setting

We aim to model the attack success rate (ASR) of jailbreaking attempts as a function of the capability gap between the
attacker model A and the target model T . For any given attacker-target pair a → t, our goal is to predict the expected ASR,
along with calibrated uncertainty estimates.

To quantify the capability difference , we define the capability gap δa→t, as function of MMLU-Pro scores of attacker and
target. We compare different capability gap definitions in the following sections. To model worst-case scenario, for the same
attacker-target pair we select the highest ASR over considered attacks.

We assume a global non-negative correlation: a weaker attacker (e.g., random token generator) should not outperform a
much stronger one (e.g., oracle).

C.2. Problem Formalization

Let D = {D(t)}Tt=1 denote a collection of T independent datasets. Each dataset D(t) corresponds to a specific target model
T (t), and contains ASR observations from multiple attacker models. Formally:

D(t) = {(x(t)
a , y(t)a )}Aa=1,

where:

• x
(t)
a ∈ R is the capability gap δ for the attacker-target pair a → t;

• y
(t)
a =

s(t)a

N ∈ [0, 1] is the observed ASR, where s(t)a ∈ {0, 1, . . . , N} is the number of successful jailbreaks out of N trials
(assumed fixed and known).

Each dataset D(t) defines a separate regression task. The goal is to infer the predictive distribution for a new input x∗:

p(y∗ | x∗,D(t)),

which should capture both the expected ASR and epistemic and aleatoric uncertainties.

For aggregated (per-family) predictive distribution we define a mixture model over targets as follows:

p(y∗ | x∗,D) =
1

T

T∑
t=1

p(y∗ | x∗,D(t)).

C.3. Modeling

We demonstrate in Sec. 4 that worst-case target vulnerability empirically follows a sigmoid-like curve. For our capability-
based predictive model we exploit this observation and apply a logit transformation,

logit(y) = log
(

y
1−y

)
,

which maps ASR values y ∈ [0, 1] to the real line. Consistent with Miller et al. (2021), we then fit a linear model in this new
transformed space.

To avoid divergence to ±∞ when y = 0 or 1, we clip the scores to
[

1
2N , 2N−1

2N

]
, where N is the number of trials. This

clipping is motivated by the fact that the original ASR value is based on N trials, so we use half the resolution of the score
to ensure numerical stability while preserving the underlying aleatoric uncertainty.

We specify the linear model as:
logit(y) ∼ N (w · x+ b, σ),

where x denotes the capability gap between attacker and target, and y denotes attack success rate. To accurately infer the
predictive distribution we then compare two approaches: Bayesian linear regression and bootstrapped linear regression, as
former enables nuanced incorporation of our prior assumptions. We provide our model definitions below.
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C.3.1. BAYESIAN LINEAR REGRESSION

We impose the following priors on the parameters:

• w ∼ HalfNormal(σw), enforcing a non-negative slope to reflect the assumed non-negative correlation between the
capability gap and the ASR;

• b ∼ N (0, σ2
b ), allowing symmetric uncertainty around zero for the intercept;

• σ ∼ HalfNormal(σσ), ensuring strictly positive observation noise.

The full joint prior is given by:

p(w, b, σ | σw, σb, σσ) = HalfNormal(w | σw) · N (b | 0, σ2
b ) ·HalfNormal(σ | σσ).

We define the target-specific hyperparameters as Σ(t) =
{
σ
(t)
w , σ

(t)
b , σ

(t)
σ

}
.

The full posterior distribution, given the data D(t) and the hyperparameters Σ(t), is expressed as:

p(w, b, σ | D(t),Σ(t)) =

[
A∏

a=1

N
(
logit

(
y(t)a

)
| w · x(t)

a + b, σ
)]

p(w, b, σ | Σ(t))

∫ [
A∏

a=1

N
(
logit

(
y(t)a

)
| w · x(t)

a + b, σ
)]

p(w, b, σ | Σ(t)) dw db dσ

.

We implement the model using the PyMC python library with the HMC NUTS (No-U-Turn Sampler) algorithm for posterior
approximation. Hyperparameters are selected separately for each model via Type II Maximum Likelihood (Empirical Bayes)
by maximizing the marginal log likelihood over the range [0.01, 3.0] using Optuna (100 steps). That is, we optimize:

Σ
(t)
∗ = argmax

Σ(t)
log p

(
D(t) | Σ(t)

)
,

where the marginal likelihood is defined as:

p
(
D(t) | Σ(t)

)
=

∫ [
A∏

a=1

N
(
logit

(
y(t)a

)
| w · x(t)

a + b, σ
)]

p(w, b, σ | Σ(t)) dw db dσ.

Finally, the predictive distribution for a new observation y∗ at a given capability gap x∗ is expressed as:

p(y∗ | x∗,D(t),Σ
(t)
∗ ) =

∫
LogitNormal(y∗ | w · x∗ + b, σ) p(w, b, σ | D(t),Σ

(t)
∗ ) dw db dσ.

C.3.2. BOOTSTRAPPED LINEAR REGRESSION

For each target t, we generate N bootstrap datasets
{
D(t,n)

}N

n=1
by sampling A = |D(t)| data points with replacement from

the original dataset D(t).

For each bootstrap dataset D(t,n) we obtain the maximum likelihood estimates (w(n), b(n)) by solving:

(w(n), b(n)) = argmax
w,b

A∏
a=1

N
(
logit

(
y(t,n)a

)
| w · x(t,n)

a + b, σ2
)
.

Then the empirical standard deviation if given by residuals for each bootstrap:

σ̂(n) =

√√√√ 1

A

A∑
a=1

(
logit

(
y
(t,n)
a

)
− w(n) · x(t,n)

a − b(n)
)2

.

The final predictive distribution for a new observation y∗ at a given capability gap x∗ is then approximated as a mixture:

p(y∗ | x∗,D(t)) =
1

N

N∑
n=1

N
(
logit(y∗) | w(n) · x∗ + b(n), σ̂(n)

)
.
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C.4. Choosing a Capability-Gap Definition

A capability gap δa→t quantifies how much stronger an attacker a is than a target t. Any definition embeds assumptions
about how performance differences should scale, especially near the top or bottom of the benchmark range. We evaluate
four natural choices, using MMLU-Pro scores as the common capability axis.

Absolute score gap: δabs
a→t = aMMLU-Pro − tMMLU-Pro.

Interpretable, symmetric, and centered at zero. However, it treats the same score difference uniformly across the scale.
Example: a jump from 0.20 → 0.30 (e.g., Vicuna-7b to Mistral-7b) is considered equivalent to a jump from 0.89 → 0.99
(e.g., human expert to superhuman model), though the latter may subjectively reflect a more substantial increase in capability.

Log score ratio: δlog-score
a→t = log

(
aMMLU-Pro/tMMLU-Pro

)
.

Captures proportional improvements in raw score, but overweights differences at the bottom of the scale. Example: the
gap between 0.01 → 0.10 (incoherent to random guessing) is treated the same as 0.10 → 1.00 (random to perfect model),
though the latter reflect a far more substantial improvement. Since most current models lie in the lower-mid range, this
metric may still perform well empirically.

Log error ratio: δlog-err
a→t = log

[
(1− tMMLU-Pro)/(1− aMMLU-Pro)

]
.

Focuses on residual error, which better separates models near the top of the scale. However, like the score ratio, it compresses
differences at the lower end. Since most current models lie in the lower-mid range, we expect this metric perform poorly.

Logit gap:

δlogit
a→t = log

(
aMMLU-Pro

tMMLU-Pro

)
+ log

(
1− tMMLU-Pro

1− aMMLU-Pro

)
= logit(aMMLU-Pro)− logit(tMMLU-Pro) .

Combines score- and error-based perspectives into a single, smooth metric. It is symmetric, centred at zero, and better
captures variation across the full capability range.

C.5. Model Comparison

We fit proposed Bootstrapped and Bayesian linear models under each gap definition and assess four criteria: (i) R2 in logit
space and (ii) R2 after mapping back to probability, for goodness of fit; (iii) miscoverage at α = 0.05, and (iv) Winkler
interval score at α = 0.05, for predictive uncertanty calibration. We report each metric averaged over all per-target fits
(including outliers) in Tab. A.5.

Miscoverage is defined as the proportion of observed ASR values that fall outside the model’s predicted 95% confidence
interval:

Miscoverage =
1

n

n∑
i=1

I
[
yi /∈ ĈI1−α

]
.

The Winkler interval score (WIS) (Winkler, 1972) penalizes both miscoverage and overly wide confidence intervals, with
the lower score the better.

Among the gap definitions, the absolute and log-error gaps perform noticeably worse across all metrics, for the former
suggesting that a linear treatment of capability differences fails to capture the underlying scaling behavior. The log-score and
logit gaps perform comparably well, with the log-score showing a marginal advantage. We attribute this to the current lack
of models near the upper end of the capability spectrum, which limits the signal that could distinguish logit through residual
error scaling. As future models approach this range, we expect the logit-based formulation to better capture improvements
near the top of the scale. As both Bayesian and Bootstrapped regressions yield similar scores for predictive uncertainty,
we stick to the Bootstrapped version, due to high computational burden of Type-2 MLE. We report per-target fit results in
Tab. A.6
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Table A.5. Comparison of Capability Gap Definitions and Regression Methods. We report average performance across all per-target
fits (including outliers), with ± indicating one standard deviation. Metrics include R2 in logit space (fit quality), R2 after mapping back
to probability space, miscoverage and Winkler interval score (both at α = 0.05, lower is better). Log-score and logit gaps yield the best
fits overall; Bayesian and Bootstrapped regressions yield similar confidence intervals.

Def. Reg. R2 (logit) ↑ R2 (prob) ↑ Avg. Miscoverage ↓ Avg. WIS ↓

δlogit
a→t

Boot. 0.64± 0.13 0.60± 0.21 0.05± 0.11 0.46± 0.09
Bayes 0.64± 0.12 0.61± 0.21 0.04± 0.11 0.48± 0.10

δlog-score
a→t

Boot. 0.66± 0.13 0.62± 0.12 0.05± 0.11 0.45± 0.09
Bayes 0.65± 0.14 0.61± 0.20 0.05± 0.11 0.47± 0.09

δlog-err
a→t

Boot. 0.57± 0.14 0.53± 0.23 0.06± 0.11 0.53± 0.10
Bayes 0.56± 0.14 0.54± 0.21 0.05± 0.11 0.56± 0.12

δabs
a→t

Boot. 0.61± 0.14 0.57± 0.22 0.05± 0.10 0.49± 0.09
Bayes 0.59± 0.14 0.58± 0.20 0.04± 0.10 0.53± 0.12

Table A.6. Per-Target Fits. Performance of the median bootstrapped regression fit is reported for each target model. For every attacker-
target pair we use the maximum ASR achieved across both attacks.

Target Model Name R2 (logit) R2 (prob) Miscoverage (%) median k median b

Llama-2-7B 0.50 0.16 47.8 1.18 -4.15
Llama-2-13B 0.41 0.09 17.4 1.0 -3.7
Llama-2-70B 0.52 0.39 13.0 0.97 -2.94
Llama-3-8B 0.63 0.56 4.3 1.23 -1.78
Llama-3-70B 0.63 0.59 4.3 1.38 0.09
Llama-3.1-8B 0.77 0.75 4.3 1.45 -0.43
Llama-3.1-70B 0.69 0.67 4.3 1.65 1.52
Llama-3.2-1B 0.60 0.62 4.3 1.27 -1.50
Llama-3.2-3B 0.71 0.71 4.3 1.40 -0.16
Llama-3.3-70B 0.72 0.68 4.3 1.54 1.23
Mistral-7B 0.63 0.72 4.3 1.39 0.48
Mixtral-8x7B 0.72 0.75 0.0 1.80 1.33
Mistrall-Small-24B 0.78 0.79 4.3 1.85 1.81
Vicuna-13B 0.64 0.67 0.0 1.53 -0.23
Vicuna-7B 0.81 0.80 4.3 1.42 0.16
Qwen-2.5-0.5B 0.54 0.62 4.3 1.06 1.31
Qwen-2.5-1.5B 0.80 0.82 13.0 2.31 1.42
Qwen-2.5-3B 0.80 0.82 8.7 2.11 1.67
Qwen-2.5-7B 0.78 0.80 21.7 2.15 2.80
Qwen-2.5-14B 0.69 0.74 0.0 1.39 1.63
Qwen-2.5-32B 0.81 0.82 0.0 2.30 2.98
Qwen-2.5-72B 0.73 0.79 4.3 2.05 2.83
Gemini-2.0-Flash 0.76 0.68 4.3 1.93 2.23
Gemini-2.5-Pro 0.47 0.31 13.0 1.18 0.30
o3 0.47 0.29 4.3 1.01 0.73
o3-mini 0.44 0.34 0.0 0.92 0.62
o4-mini 0.55 0.47 0.0 1.12 0.92
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