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Abstract

Continual fine-tuning involves incrementally001
training a language model to acquire knowl-002
edge of new tasks. This learning paradigm003
introduces the challenge of catastrophic for-004
getting, where models tend to forget previ-005
ously learned tasks as they adapt to new006
ones. Several techniques have been proposed007
to address this issue, including regulariza-008
tion, parameter-isolation, and replay-based ap-009
proaches. Among these, replay-based methods010
have gained wider adoption due to their less011
invasive nature and ease of integration into ex-012
isting continual learning pipelines. However, in013
real-world settings, replay-based methods face014
the practical challenge of curating ideal replay015
samples. This leads to the use of noisy replay016
data from the task owner, which is often subop-017
timal for improving task performance. To ad-018
dress this crucial real-world challenge, we intro-019
duce Teacher-Forced Selective Self-Distillation020
(TF-SSD) a novel method that employs self-021
distillation of the labels from the task stage022
model and refine the less effective samples us-023
ing mixture of teachers framework. Our exper-024
iments involving challenging 16 task contin-025
ual learning setting demonstrate that TF-SSD026
outperforms best-performing baseline by ∼2.7027
points in task performance and ∼2.8 points028
in mitigating catastrophic forgetting across 2029
model families: Llama2 7B and Granite3.3 2B.030
We are planning to open-source the code of031
TF-SSD.032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated promising performance (Dubey et al., 2024;035

Brown et al., 2020) across a wide range of Natu-036

ral Language Processing (NLP) tasks. In practice,037

LLMs must be continually updated to remain ef-038

fective on newly emerging tasks. To facilitate this,039

Continual Learning (CL) (Chen and Liu, 2018) is040

employed—a paradigm in which models are incre-041

mentally trained on incoming data, enabling them042

{x1,y1}

{x2,y2}
{x3,y3}

{x4,y4}

Task 1 Data

{x5,y5}
Samples chosen by 

the task 1 owner

Task 1 
Owner

Task 2 
Owner

Task 1 
Replay Data

Language Model
𝑓θ1

{x2,y2}
{x3,y3}

Figure 1: Demonstration of the problem setting.

to remain relevant and effective with time. Contin- 043

ual Fine-Tuning (CFT1), a variant of CL, involves 044

incrementally training models on new fine-tuning 045

task data. However, this paradigm introduces a 046

major challenge known as Catastrophic Forgetting 047

(CF) (McCloskey and Cohen, 1989), where perfor- 048

mance on previously learned tasks deteriorates as 049

new tasks are acquired. 050

Numerous techniques have been proposed to 051

mitigate CF, including regularization-based ap- 052

proaches (Aljundi et al., 2018; Kirkpatrick et al., 053

2017; Li and Hoiem, 2018), architecture-level 054

methods involving task-specific parameter isola- 055

tion (Wang et al., 2023b; Ke et al., 2021; Satapara 056

and Srijith, 2024; Wang et al., 2023a; Razdaibied- 057

ina et al., 2023; Wang et al., 2024a), and data replay 058

strategies that combine previous and current task 059

data during training (Chaudhry et al., 2019; Re- 060

buffi et al., 2017; Buzzega et al., 2020; He et al., 061

2024; M’hamdi and May, 2024; Lopez-Paz and 062

Ranzato, 2017). Among these, replay-based meth- 063

ods have gained broader adoption due to their ease 064

of integration into existing CL pipelines and their 065

less invasive nature compared to architectural or 066

regularization-based methods. 067

While replay-based approaches are less invasive, 068

they typically require storing a subset of past task 069

data. In real-world settings, often future task own- 070

ers do not have control over the replay data stored 071

by past task owners. As shown in Figure 1, the task 072

1 owner just exposes a small part of the data (while 073

keeping most of it private) to help task 2 owner to 074

1Terms CL and CFT will be used interchangeably.
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preserve task 1 performance. It is then upto the task075

2 owner to effectively curate the available replay076

data to retain task 1 performance.077

In this paper, we introduce TF-SSD (see Fig-078

ure 2), a novel replay-based CFT method designed079

to address this challenge. TF-SSD aims to curate080

the available replay data. Our method distills la-081

bels for each task from its corresponding stage082

model within the CL pipeline. These samples are083

subsequently refined: noisy samples selectively un-084

dergo teacher-forcing, where teacher (T) tokens085

are derived from the responses of an ensemble of086

open-source LLMs. The number of teacher tokens087

used is dynamically chosen based on the degree of088

defectiveness in the sample.089

Our main contributions are:090

1. We propose a novel replay-based method for091

continual learning that is less invasive than092

existing approaches, effectively addressing a093

real-world setting with uncurated replay data.094

Key features involve: (1) Label Distillation:095

distillation of labels from respective task stage096

model. (2) Refinement: teacher-forced selec-097

tive self-distillation based on the degree of098

defectiveness in the sample with teacher to-099

kens from ensemble of teachers.100

2. We evaluate our method on the SuperNI multi-101

task dataset (Wang et al., 2022), compris-102

ing 48 subtasks across 16 tasks encompass-103

ing code, language and mathematics, using104

two model families: Granite3.3(Mishra et al.,105

2024) and Llama2(Touvron et al., 2023).106

3. We conduct extensive analysis and ablation107

studies to validate the effectiveness of our ap-108

proach.109

2 Related Work110

Consistent with recent CL studies (Wang et al.,111

2024a; Chen and Zeng, 2025), we classify CL112

strategies into three distinct categories.113

Regularization. These methods (Aljundi et al.,114

2018; Kirkpatrick et al., 2017; Li and Hoiem,115

2018) aim to mitigate forgetting of previous tasks116

by adding regularization terms to the loss func-117

tion. However, the inclusion of multiple regulariza-118

tion terms may degrade model performance (Parisi119

et al., 2019). To address this, some works (Mok120

et al., 2023) combine regularization with other ap-121

proaches.122

Notation Description

n
Denotes number of stages in CL pipeline. Since, each stage is

associated with a task, n denotes number of tasks as well

{1, . . . , n} Series of tasks in CL pipeline

f0
θ Base model with parameters θ

f i
θ Model finetuned at stage i

di Training data for task i

ri Replay data for task i from task owner i

rip Replay data from TF-SSD for task i

riθ(i) Replay data with labels distilled from model f i
θ

v Scorer module

s A sample in the dataset

x Input text in the sample s

y Label in the sample s

yl Label with l number of tokens

m Number of teachers

y1 . . . ym Intermediate labels generated by m teachers

yMoT
Label generated by Mixture of Teachers

precisely coming from the Aggregator

yMoT
k First k tokens of yMoT

yTF Label generated by teacher-forcing the stage model

tiθ ith teacher model

Table 1: Various notations with descriptions used in
TF-SSD.

Architecture. Some approaches (Wang et al., 123

2023b) isolate task-specific parameters via parame- 124

ter isolation, while others adopt parameter-efficient 125

fine-tuning techniques by introducing task-specific 126

modules (Ke et al., 2021; Satapara and Srijith, 127

2024; Wang et al., 2023a), learning soft prompts 128

(Razdaibiedina et al., 2023), or applying prefix tun- 129

ing (Wang et al., 2024a) for newly arriving tasks in 130

the CL pipeline. 131

Replay. Early methods (Chaudhry et al., 2019; 132

Rebuffi et al., 2017) tackle forgetting by replay- 133

ing a portion of past data. Later work (Rolnick 134

et al., 2019; Buzzega et al., 2020), improved this 135

by generating replay data with distilled labels from 136

previous models. He et al. (2024) introduced an 137

architecture-level approach that distills attention 138

from selected attention heads instead of labels. Ad- 139

ditionally, some studies (M’hamdi and May, 2024; 140

Lopez-Paz and Ranzato, 2017) propose techniques 141

for selectively sampling candidates to populate a 142

fixed-size replay data. 143

Replay techniques are generally less invasive 144

than architecture-based methods. TF-SSD falls un- 145

der replay-based category and we attempt to study 146

the crucial challenge of minimizing CF in a setting 147

where replay data from the task owner is uncurated 148

(see Figure1) and yet essential for maintaining task 149

performance. Since our approach belongs to the 150
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Figure 2: Overview of our method TF-SSD.

replay-based class, we include prior work - real151

data as replay (Chaudhry et al., 2019) and pseudo152

data distilled from a model as replay (Rolnick et al.,153

2019; Buzzega et al., 2020) that can be adapted to154

this setting in our evaluation. We exclude replay-155

based methods that require access to the model156

architecture (He et al., 2024) or rely on curating157

(M’hamdi and May, 2024; Lopez-Paz and Ranzato,158

2017) the replay data from training data.159

3 Method160

3.1 Notations161

The notations used in TF-SSD are provided in Ta-162

ble 1 for clarity.163

3.2 Problem Formulation.164

CFT aims to incrementally train the model f i
θ over165

a sequence of fine-tuning tasks {1, . . . , n}, while166

mitigating catastrophic forgetting and maximizing167

performance across all tasks. We use the widely168

adopted decoder class of language models with a169

causal language modeling loss defined as:170

L(x, y; θ) = −
T∑
t=1

logPθ(yt | x, y<t) (1)171

The objective is to minimize the negative log-172

likelihood of each label token yt, conditioned on173

the input x and the previous label tokens y<t.174

Where T is total number of tokens in the label175

y.176

3.3 Overview. 177

TF-SSD is a replay-based method that aims to gen- 178

erate a refined version (rip) of the uncurated replay 179

data (ri) provided by the task owner, aiming to mit- 180

igate catastrophic forgetting and improving overall 181

performance across tasks. This is achieved through 182

two key submethods: (1) Label Distillation ((1) 183

in Figure 2), and (2) Refinement ((2) in Figure 2). 184

The Refinement submethod further incorporates 185

sample scoring and score-based selection ((2a) in 186

Figure 2), teacher forced self-distillation ((2c) in 187

Figure 2) using tokens sampled from a mixture of 188

teacher (MoT) models ((2b) in Figure 2). 189

3.4 Label Distillation 190

The training data for fine-tuning the model f i
θ is 191

composed of current task data di, replay data from 192

past stages {r0p, . . . , ri−2
p } and the immediate pre- 193

vious stage ri−1
p . Replay data {r0p, . . . , ri−2

p } is 194

reused from past curation while ri−1
p is prepared 195

via TF-SSD for the current stage i. 196

This submethod is shown as (1) in Figure 2. Task 197

owner i−1 provides a portion of the uncurated task 198

data for replay. The goal of this submethod is to 199

generate labels y for each input x using the i− 1th 200

stage model f i−1
θ , thereby producing the distilled 201

replay data ri−1
θ(i−1), defined as: 202

y = f i−1
θ (x) (2) 203

3.5 Refinement 204

Scoring. Each sample from ri−1
θ(i−1) is passed 205

through the Scorer v (see Section 4.3), which as- 206

signs a quality score in the range of 1-4. The score 207
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reflects the severity of defects in the sample’s la-208

bel y, with higher scores indicate fewer defects.209

The score guides the degree of teacher-forcing re-210

quired to improve defective samples. We adopt 1-4211

scale since it covers required levels of defective-212

ness buckets where samples can belong to. The213

Scorer follows a LLM-as-a-Scorer paradigm and214

details on prompt template are in Appendix A.1.215

Selection. Based on the score assigned by v, the216

sample’s label is selectively curated ((2a) in Figure217

2). If the score is 1, the full yMoT is used; if 2, first218

half (l/2) of the tokens; and if 3, first quarter (l/4),219

where l is number of tokens in yMoT. In the cases220

of score 1 and 2, remaining label tokens are from221

yTF as described later in this section.222

The intuition behind this label token selection223

strategy is to achieve a balanced curation of label to-224

kens from both the MoT and the stage model f i−1
θ ,225

where the proportion of MoT tokens increases with226

the degree of f i−1
θ deficiency, as indicated by the227

score. A score of 2 or 3 suggests that the label228

generated by the stage model has partial merit but229

includes minor errors; thus, MoT serves as a cor-230

rective signal through prompt-level teacher-forcing.231

A score of 1 indicates that f i−1
θ generates flawed232

label, so yMoT is fully retained. Conversely, a score233

of 4 implies that the stage model’s label is optimal,234

and is used without modification.235

Teacher Tokens Generation through MoT. As236

illustrated in (2b) of Figure 2, each input x is237

passed through a set of Teacher models (denoted as238

T) to generate corresponding outputs y, following239

Equation (2). These outputs are then aggregated240

by a separate Aggregator model (denoted as A) to241

produce the final label yMoT for each x. Details on242

prompt templates used for teacher and aggregator243

are provided in Appendix A.1.244

The paradigm of ensembling multiple open-245

source LLMs has been explored in latest prior246

work (Wang et al., 2025; Tian et al., 2025) for ap-247

plications such as generating improved responses248

and teacher-forced chain-of-thought reasoning for249

smaller models. In our setup, we use MoT to selec-250

tively teacher-force label tokens by leveraging MoT251

tokens in the prompt (explained in the later part of252

the section), based on the degree of defectiveness253

in each sample.254

Teacher-Forced Self-Distillation. This sub-255

method is demonstrated by (2c) in Figure 2.256

Teacher-forcing is applied only to samples with257

scores 2 and 3. Each input x is augmented with k 258

teacher tokens from yMoT. Number of tokens k is 259

explained in Selection submethod in Section 3.5. 260

The concatenated input x + yMoT
k is then passed 261

to the previous stage model f i−1
θ to self-distill the 262

remaining label tokens yTF. 263

Through these submethods, the curated replay 264

data ri−1
p is constructed and used to train the cur- 265

rent stage model f i
θ. 266

4 Experimental Setup 267

4.1 Baselines 268

We evaluate our method against the following chal- 269

lenging baselines: 270

Base Model. The base LLM is evaluated without 271

any additional fine-tuning. It is indicated by the 272

corresponding model name in the results. 273

No Replay (NoRep). The base LLM is sequen- 274

tially fine-tuned across all tasks in the CL pipeline, 275

without the use of any replay data. 276

Replay (Rep) (Chaudhry et al., 2019). The base 277

LLM is sequentially fine-tuned with replay data 278

consisting of all previous task replays having labels 279

from ground-truth. 280

Distilled Replay from Base Model 281

(DRbase) (Bhushan et al., 2025) . The 282

base LLM is sequentially fine-tuned with replay 283

data with labels distilled from the base model. 284

Distilled Replay from Task Stage Model 285

(DRtask) (Rolnick et al., 2019; Buzzega et al., 286

2020). The base LLM is sequentially fine-tuned 287

using replay data with labels distilled from the cor- 288

responding task stage model. 289

Multi-Task Learning (MTL). Multi-task learn- 290

ing involves training the model on all the tasks at 291

once and CL is not involved. Many works (Huang 292

et al., 2024; He et al., 2024) consider MTL as a 293

target topmost performance to achieve for CL. 294

4.2 Ablations 295

We conduct the following ablation studies to iso- 296

late the contributions of MoT and teacher-forced 297

selective self-distillation: 298

DRtask + MoT (2 T + 1 A)2. The same setup as 299

DRtask, with an additional refinement submethod. 300

Each replay sample is passed through the Scorer 301

2Two teacher (T) models and one aggregator (A) model.
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Task
Given a sentence, generate a new sentence by performing small changes on the sentence. Here, make
sure that the changes are semantically related and syntactically similar to the input. And the generated

sentence should have high commonsense plausibility, that is to have reasonable probability of it being true.

Input You would write a story because you have a spontaneous idea .

Ground Truth You would write a story because you have a detailed idea.

Response ROUGE-L LaJ

DRtask You would write a story because you have a spontaneous idea. 0.91 0
TF-SSD (2 T + 1 A) You might decide to write a story because you have a compelling idea. 0.75 2

Table 2: An example from test set illustrating the limitation of the ROUGE-L score. The top baseline DRtask simply
repeats the input text without following the task instructions, whereas TF-SSD (2 T + 1 A) adheres to the task but is
penalized by ROUGE-L due to its low overlap with the ground truth. LaJ accurately fills this gap in evaluation.

scoring samples either 1 (accept) or 0 (reject). If302

rejected, the label is fully replaced with the MoT’s303

output; if accepted, the original label is retained.304

TF-SSD (1 T)3. As described in Section 3, the305

MoT component uses a single teacher for token306

generation. In other words, its an extension to307

DRtask + MoT (2 T + 1 A) baseline with 1-4 scale308

Scorer and teacher-forced selective self-distillation309

of labels, instead of 0-1 scoring.310

TF-SSD (2 T + 1 A). This setting includes two311

teachers and one aggregator model. TF-SSD and312

TF-SSD (2 T + 1 A) are used interchangeably in313

the paper.314

4.3 Models315

Exact sources to the models used in this paper are316

provided in Appendix A.3.317

Models in CL Pipeline. We choose the widely318

adopted Llama 2 7B (Touvron et al., 2023) and319

Granite 3.3 2B (Mishra et al., 2024) models to320

demonstrate our method on 2 diverse families and321

sizes. We choose the specific model versions to322

comply with their respective terms.323

Teacher Models. We choose the models Mix-324

tral 8x22B Instruct (MixIns) (Jiang et al., 2024)325

and WizardLM 2 8x22B(Wiz) (Xu et al., 2024) as326

teachers. Since teachers are employed in a form of327

synthetic data generation (SDG), we make sure to328

choose this specific set since we comply with their329

respective SDG terms. Details on prompt template330

used for teacher is provided in Appendix A.1.331

Aggregator Model. Similarly, we use Wiz-332

ardLM 2 8x22B as the aggregator model. Aggrega-333

tor prompt template can be found at Appendix A.1.334

3Only one teacher (T) model and no aggregator model.

Scorer. We employ Prometheus 8X7B (Kim 335

et al., 2024) as the Scorer module in our ap- 336

proach. Scorer prompt template can be found at 337

Appendix A.1. 338

LLM-as-a-Judge. We also adopt the open- 339

source Prometheus 8X7B model as our LLM-as- 340

a-Judge (LaJ). This model demonstrates state-of- 341

the-art evaluation capabilities, enabling a more rig- 342

orous assessment of our method. Using the same 343

model as both Scorer and Judge does not introduce 344

conflict, as the Scorer does not contribute data that 345

directly influences model training, thereby leav- 346

ing no scope for data leakage. LaJ prompt tem- 347

plate and details on the scoring can be found at 348

Appendix A.1. 349

4.4 Dataset 350

We use the widely adopted(Huang et al., 2024; 351

Wang et al., 2024b) and challenging SuperNI 352

dataset (Wang et al., 2022), which comprises 16 353

tasks with 3 subtasks per category.We are testing 354

our method in 2 random orders. First order of 355

tasks used is: Classification → Text Quality Evalu- 356

ation → Code → Detection → Sentiment Analysis 357

→ Comprehension → Closed QA → Extraction 358

→ Dialogue → Program Execution → Rewriting 359

→ Open QA → Misc. → Generation → Sum- 360

marization → Mathematics. Second order results 361

and additional dataset details are provided in Ap- 362

pendix A.4. 363

4.5 Evaluation Metrics 364

We adopt the widely used (Huang et al., 2024) eval- 365

uation metrics for CL. We use ROUGE-L (Lin, 366

2004) and LaJ score (Zheng et al., 2023) to assess 367

the model’s task performance. Let a(i)j denote the 368

ROUGE-L score of stage i model evaluated on 369

task j, similarly s
(i)
j denotes LaJ score. We report 370

scores in the following derived evaluation metrics 371

to assess overall task performance and catastrophic 372
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Task

Craft one correct answer to the question given in input. To make it more interesting, try to use non-stereotypical
language if possible.Make sure your correct answer is reasonably long, consistent with the context,

and requires common sense (instead of explicit extraction from the context.)
In your answer, use as few words as possible from the given context.Use a response that is uncommon/non-stereotypical,

so that it is less predictable. To be less repetitive, please vary your language for each question.

Context

A friend of this blog , and someone some of you know ( virtually ) died recently.
I only received word recently and found it hard to believe . I was going to post this

several days ago , but there was a contretemps on the blog and
I did n’t want to get that confused with this . Now that such issues are largely over , I feel able to post .

Question Why is it so hard to believe that someone died ?

Ground Truth It was sudden.

Response LaJ

MTL Because they were young and healthy. 1
TF-SSD (2 T + 1 A) It’s hard to accept that someone you knew, even if it was only virtually, is no longer alive. 2

Table 3: An example from test set is provided showcasing TF-SSD(2 T + 1 A) outperforming MTL though it is
considered as a reference to topmost performance.

forgetting in CL. Higher values denote better per-373

formance for the all evaluation metrics.374

Average ROUGE-L (AR): This metric captures375

the average performance of the model across all376

n tasks at the end of the training sequence in CL,377

defined as:378

AR =
1

n

n∑
i=1

a
(n)
i (3)379

Average LaJ (ALaJ): Similar to AR, ALaJ is380

defined as:381

ALaJ =
1

n

n∑
i=1

s
(n)
i (4)382

Backward Transfer using ROUGE-L (BWTr):383

This metric measures how learning new tasks af-384

fects the performance on previously learned tasks.385

Average over all the stages except the last one386

where at each stage the difference between the fi-387

nal stage model a(n)i and associated stage model388

a
(i)
i task i performance is computed. A nega-389

tive BWTr value indicates catastrophic forgetting,390

while positive value indicates emergent/enhanced391

performance. Such enhanced performance can be392

attributed to the replay data used for latest tasks393

aiding older tasks. BWTr is defined as:394

BWTr =
1

n− 1

n−1∑
i=1

(
a
(n)
i − a

(i)
i

)
(5)395

Backward Transfer using LaJ (BWTLaJ):

BWTLaJ =
1

n− 1

n−1∑
i=1

(
s
(n)
i − s

(i)
i

)
(6)396

Limitation of ROUGE-L. Since the tasks in our 397

setup are highly diverse and open-ended, traditional 398

metrics such as ROUGE-L may not fully capture 399

(see Table 2) the quality and correctness of the gen- 400

erated outputs. Moreover, we observe that some 401

samples contain defective ground truths, which can 402

weaken evaluation reliability. Additionally, the re- 403

play data labels obtained from TF-SSD via teacher- 404

forced selective self-distillation often include para- 405

phrased variants. This can lead the model to gen- 406

erate paraphrased yet valid responses at evaluation 407

time, which may be penalized by ROUGE-L. To 408

address these limitations, we include LaJ to provide 409

a more holistic and robust evaluation. 410

Distribution of Samples across Scores

Closed QA
Dialogue

Detection
Extraction

Classification
Misc.
Code

Program Execution
Sentiment Analysis

Text Quality Evaluation
Comprehension

Open QA
Generation

Rewriting
Mathematics

Summarization

98.0
96.5
96.5
95.5
91.0
90.0
84.5

17.5 76.5
75.5

16.1 75.4
66.5

23.0 65.0
17.0 20.0 20.0 43.0
17.0 23.5 27.5 32.0

40.0 32.5 18.5
43.0 39.5

Score
1
2
3
4

Figure 3: Distribution of the samples across Scorer
model’s scores for 16 tasks for Llama 2 7B. The num-
bers annotated are the percentage of samples belonging
to the score and insignificant percentages (below 15.0%)
are not shown.

4.6 Training and Inference Details 411

Details on the training and inference stack, hard- 412

ware and hyperparameters are in Appendix A.2. 413
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Llama 2 7B Granite 3.3 2B

AR ALaJ BWTr BWTLaJ AR ALaJ BWTr BWTLaJ

Baselines

Base Model 1.65 23.69 − − 45.11 63.67 − −
NoRep 21.57 61.58 -55.78 -20.88 32.33 66.64 -45.59 -15.85

Rep 69.09 78.40 -4.85 -2.51 69.89 78.29 -5.38 -3.34
DRbase 69.87 78.44 -4.23 -2.44 70.95 78.70 -4.55 -3.11
DRtask 70.04 78.69 -3.70 -2.13 71.01 79.08 -4.32 -2.73

Ablations

DRtask + MoT (2 T + 1 A) 66.45 81.27 -7.72 0.13 67.66 80.94 -7.93 -0.70
TF-SSD (1 T - MixIns) 67.54 81.06 -6.58 -0.11 67.74 81.59 -7.77 0.04

TF-SSD (1 T - Wiz) 67.16 81.46 -6.90 0.36 67.33 81.58 -8.23 0.00
TF-SSD (2 T + 1 A) 66.97 (-3.07) 81.51 (+2.82) -7.16 (-3.46) 0.47 (+2.6) 66.65 (-4.36) 81.74 (+2.66) -8.86 (-4.54) 0.29 (+3.02)

MTL 73.65 81.16 − − 74.45 81.20 − −

Table 4: Evaluation scores of various baselines, ablations and MTL are shown. First- , second- , and third- best
performing methods are highlighted over all baselines and ablations. MTL is omitted from ranking since it is
considered as an ideal target performance reference for a CL model to achieve. Performance difference of TF-SSD
(2T + 1A) with top method (DRtask) in the baselines is shown in parentheses.
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between TF-SSD and DRtask using Llama2 7B

5 Results and Discussion414

5.1 Task Performance415

Performance via AR. We identify a shortcom-416

ing of the ROUGE-L score, where correct answers417

are sometimes penalized (see Table 2), primarily418

due to low overlap with the ground truth though se-419

mantically correct according to the task instruction.420

Since TF-SSD employs a form of teacher forcing,421

where a portion of the tokens is generated from a422

set of open models, it is more susceptible to such423

penalties (see example in Table 2). This explains424

the observed decline of ∼3.1 and ∼4.4 points in425

AR (Table 4) across models compared to the top-426

performing baseline (DRtask). To address this, we427

adopt ALaJ, which evaluates responses more holis-428

tically by considering both the ground truth and the429

nature of the task. The higher MTL scores validate430

the fairness of LaJ. 431

Performance via ALaJ. Our method, TF-SSD, 432

consistently outperforms all baselines (see Table 4), 433

showing an improvement of ∼2.7 points in ALaJ 434

over the best-performing baseline (DRtask) across 435

both model families. Moreover, TF-SSD meets the 436

ideal target performance of MTL and slightly ex- 437

ceeds it by ∼0.45 points on average across models. 438

Performance compared to MTL. The reason 439

behind the higher performance of TF-SSD over 440

MTL (see Table 4) is attributed to the refinement 441

submethod which involves teacher forced self- 442

distillation using tokens coming from an ensemble 443

of open models outside the distribution of the re- 444

play dataset. An example is provided in the Table 3 445

where the response of the TF-SSD is well-formed 446

and accurate while MTL provides an incorrect re- 447

sponse not covered in the context. 448

5.2 Catastrophic Forgetting. 449

BWTr and BWTLaJ are not applicable to the 450

MTL and Base Model baselines since these models 451

do not undergo CL. 452

CF via BWTr. As BWTr is a derived metric 453

from ROUGE-L, the same limitations apply. Simi- 454

larly, this explains the average drop of ∼4 points 455

(see Table 4) of TF-SSD compared to DRtask 456

across models. 457

CF via BWTLaJ . BWTLaJ derived from the 458

ALaJ score, addresses this gap. TF-SSD con- 459

sistently outperforms all baselines (see Table 4), 460

with an average improvement of ∼2.81 points over 461

DRtask. 462
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Positive BWTLaJ score for TF-SSD. The last-463

stage model outperforms the task-stage model, sug-464

gesting it has not only retained prior knowledge but465

also gained enhanced capabilities. We attribute this466

behavior to the refinement submethod, which pro-467

vides an improved replay set that was not available468

in training dataset of the task-stage model.469

5.3 Ablation Study470

Effect of self-distillation. Baselines DRbase471

and DRtask perform self-distillation by omitting472

ground-truth labels, resulting in average ALaJ im-473

provements of ∼0.23 points for DRbase and ∼0.54474

points for DRtask over the Rep baseline, which475

uses ground-truth labels. Distilling from the respec-476

tive task-stage model leads to a 2X improvement477

compared to distillation from the base model. Our478

method, TF-SSD, which uses teacher-forced selec-479

tive self-distillation, achieves an improvement of480

∼3.28 points over the Rep baseline that is roughly481

a 6X gain over the improvement from DRtask. A482

similar trend is observed for BWTLaJ as well.483

Effect of the Scorer. Overall, DRtask + MoT (2484

T + 1 A) and TF-SSD demonstrate the effective-485

ness of the Scorer. For DRtask + MoT (2 T + 1 A),486

the Scorer’s classification of samples into accept487

(use as-is) or reject (replace labels with MoT re-488

sponse) improves ALaJ by ∼2.5 points and ∼2.2489

points in BWTLaJ over DRtask. Similarly, im-490

provements from TF-SSD over DRtask are detailed491

in Sections 5.1 and 5.2.492

We further conduct task-level analysis to under-493

stand the Scorer’s impact. While overall perfor-494

mance improves, DRtask performs better than TF-495

SSD on 3 tasks—Classification, Sentiment Analy-496

sis, and Extraction (see Figure 4). The drop in per-497

formance is proportional to the number of samples498

with scores below 4 (see Figure 3) specifically for499

these 3 tasks. This suggests that while the Scorer500

benefits most tasks, its score distribution may nega-501

tively impact a few. Our study treats tasks as black502

boxes, in the sense that TF-SSD does not perform503

optimizations tailored to a task. However, future504

work could incorporate task identity and nature,505

enabling task-specific optimizations to further im-506

prove scoring effectiveness.507

Effect of teacher forcing of the labels. The per-508

formance improvement of TF-SSD over DRtask +509

MoT (2 T + 1 A) highlights the positive impact of510

selective teacher-forcing of labels. TF-SSD outper-511

forms DRtask + MoT (2 T + 1 A) by ∼0.52 points 512

in ALaJ and ∼0.67 points in BWTLaJ . 513

Effect of teachers in MoT. Ablations TF-SSD 514

(1T - MixIns), TF-SSD (1T - Wiz) and TF-SSD 515

(2T + 1A) demonstrate the effectiveness of the 516

MoT paradigm. Individual teacher ablations fail 517

to outperform 2T + 1A configuration (see Table 4) 518

which is consistent across the model families. 2T 519

+ 1A configuration shows an average improve- 520

ment of ∼0.25 points in ALaJ and ∼0.31 points in 521

BWTLaJ over single teacher configurations. 522

5.4 Task Order, Diversity, and Replay Data 523

Size Robustness 524

Effect of task order. TF-SSD is robust to task or- 525

der in CL consistently outperforming (see Table 8) 526

DRtask for 2 distinct random task orders (orders 527

detailed in Appendix A.7). 528

Effect of replay data size. Table 9 demonstrates 529

TF-SSD is stable to different replay data sizes and 530

consistently outperforms DRtask (details in Ap- 531

pendix A.8). 532

Effect of task diversity. TF-SSD consistently 533

outperforms (see Table 10) best performing base- 534

line DRtask in an additional CL setting having 535

10 tasks (details in Appendix A.6) different from 536

the 16 task setting demonstrating robustness to task 537

diversity. 538

6 Conclusion 539

We present TF-SSD, a novel method designed to 540

mitigate catastrophic forgetting in continual learn- 541

ing, improve overall task performance, and address 542

a critical real-world scenario of task ownership and 543

noisy replay - not tailored for task performance. 544

TF-SSD comprises 2 key submethods: (1) Label 545

Distillation: where labels are distilled from the 546

respective task-stage model, and (2) Refinement: 547

applies teacher-forced selective self-distillation to 548

improve label quality. These submethods curate 549

noisy replay in to a more effective replay. We 550

validate TF-SSD through extensive experiments, 551

including 4 ablations and comparisons against 6 552

baselines across 2 model families in a 16 stage CL 553

setting. TF-SSD consistently outperforms the base- 554

lines and multi-task learning in task performance 555

and mitigating catastrophic forgetting. We hope 556

our work would motivate further research cater- 557

ing to various real-world constraints in continual 558

learning. 559
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Limitations560

Though TF-SSD outperforms other baselines, we561

identify two key limitations. First, we restrict562

the Mixture of Teachers component in our ap-563

proach to open-source instruction-tuned models.564

We acknowledge that leveraging stronger propri-565

etary model could potentially yield even greater566

performance improvements than those reported.567

Due to restrictive synthetic data generation terms568

of some model families both in open and closed569

source, we confine to a specific set of open models.570

However, we perform extensive ablations showcas-571

ing the contributions of the teachers in MoT. Given572

the observations from the ablations, choosing better573

teachers would further improve the performance574

of the TF-SSD in proprietary or licensed settings.575

Second, scorer plays a central role in determin-576

ing the extent of teacher forcing from the MoT but577

from our results, some tasks are negatively affected.578

Thus, using a stronger proprietary or licensed mod-579

els would potentially overcome the negative effect580

and may benefit all tasks.581

Ethics Statement582

We have taken deliberate steps to filter unsafe or583

harmful data while selecting tasks for training data584

from SuperNI dataset. Due to scale and diversity585

of the resources, the data may still contain sensitive586

informations.587
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LLM-as-a-Judge prompt.

You are a helpful and fair evaluator trained
to judge the quality of AI-generated an-
swers. Your job is to assess whether the
model’s response is correct and appropriate
for the given instruction and input.
Sometimes the provided reference answer
(ground truth) might be incomplete, impre-
cise, or incorrect. So do **not assume**
it is always correct. Instead, evaluate the
model’s answer based on reasoning and
factual correctness.

Please follow these steps:

1. Read the instruction and input carefully.
2. Analyze the model’s response: Is it
logically valid, factually correct, and
aligned with the instruction?
3. Compare it with the reference answer (if
useful), but do not blindly trust it.
4. Rate the model’s response on a scale
from 0 to 2, where:
- 2 = **Correct**
- 1 = **Acceptable but with minor issues**
- 0 = **Incorrect and imperfect**
5. Give score within <score> and </score>
tags only

You must explain your judgment briefly.
—
Now evaluate the following:

**Instruction**:{instruction}
**Input**:{input}
**Model’s Response**:{predicted re-
sponse}
**Reference Answer**:{golden response}
**Your Evaluation**:

898

Scorer prompt for TF-SSD. We use the follow-899

ing prompt template (Listing A.1) for Scorer model900

when used in TF-SSD.901

Scorer prompt for TF-SSD.

You are given a question, the corresponding
ground-truth answer, and a prediction from
a model. Analyse and categorise the given
prediction into one of the four labels.

There should be no contradicting statements
in a good prediction. The prediction may
contain extra information. If the prediction
states something as a possibility, treat it as
a definitive answer.
A good prediction must contain all the
important information presented in the
ground truth, but doesn’t have to fully
match it word by word.

To make your decision, first read the
question and ground-truth answer carefully.
Then compare the given prediction with
the ground-truth answer in the light of the
question.

Start with an explanation and reasoning for
your evaluation within ‘<explanation>‘ and
‘</explanation>‘ tags.
Then, within ‘<category>‘ and ‘</cate-
gory>‘ tags, output one of the following
four labels number only:

- 4: Fully correct, complete, and fluent.
- 3: Understandable, but lacks minor details.
- 2: Understandable, but lacks major details.
- 1: Contains factual errors, hallucinations,
or misleading info.

The output format should as follow: <expla-
nation> (the explanation) </explanation>
<category> (category the prediciton belongs
to) </category>

Question: {full prompt} Ground-truth an-
swer: {golden response} Prediction: {pre-
dicted response}
Output:

902

Scorer prompt for DRtask + MoT (2 T + 1 903

A) baseline. We use the following prompt tem- 904

plate (Listing A.1) for Scorer model when used in 905

DRtask + MoT (2 T + 1 A) baseline. 906
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Scorer prompt when used in DRtask + MoT
(2 T + 1 A) baseline.

You are given a question, the corresponding
ground-truth answer and a prediction from
a model. Compare the "Ground-truth
answer" and the "Prediction" to determine
whether the prediction correctly answers
the question.
There should be no contradicting statements
in a good prediction. The prediction may
contain extra information. If the prediction
states something as a possibility, treat it as
a definitive answer.
A good prediction must contain all the
important information presented in the
ground truths, but doesn’t have to fully
match it word by word.
To make your decision, first read the
question and Ground-truth answer carefully.
Then compare the given Prediction with
the Ground-truth answer in the light of
the question. Start with an explanation
and reasoning for your evaluation within
<explanation> and </explanation> tags.
Then, within <score> and </score> tokens,
generate "1" if the Prediction is correct
in the light of Ground-truth and question.
Otherwise generate "0" if it is incomplete
or incorrect.

Question: {full prompt}
Ground-truth answer: {golden response}
Prediction: {predicted response}
Answer:

907

Teacher prompt. We use the following prompt908

template (Listing A.1) for the teacher.909

Teacher prompt

### Instruction:
{instruction}.Give only final answer within
<response> and </response> tags without
any explanation.

### Input:
{input}
### Response:

910

Aggregator prompt. We use the following911

prompt template (Listing A.1) for the aggregator.912

Aggregator prompt

You have been provided with a set of
responses from various open-source models
along with user task instruction and input
for which the response is generated. Your
task is to synthesize these responses into a
single, high-quality response. It is crucial to
critically evaluate the information provided
in these responses, recognizing that some
of it may be biased or incorrect. Your
response should not simply replicate the
given answers but should offer a refined,
accurate, and comprehensive reply to
the instruction. Ensure your response is
well-structured, coherent, and adheres
to the highest standards of accuracy and
reliability.

Response: {teacher1}
Response: {teacher2}

### Task Instruction:
{instruction}.Give only final answer within
<response> and </response> tags without
any explanation.

### Input:
{input}
### Response:

913

A.2 Inference and Training Setup Details 914

Hardware. We use 8×A100 80GB GPUs in a 915

single node with 32 cpus and 400Gi memory. 916

Inference software. We use vLLM4 (Kwon et al., 917

2023) with tensor parallelism and greedy decoding 918

with temperature set to 0. 919

Training software. We built our codebase on 920

top of the SSR framework (Huang et al., 2024), 921

which in turn extends the LLaMA Factory—a 922

lightweight and efficient framework for training 923

and fine-tuning large language models. For each 924

task in our continual learning setup, we employed 925

parameter-efficient fine-tuning using LoRA, im- 926

plemented via the peft library. The training flow 927

is carried using bash scripts, enabling sequential 928

learning of tasks in a continual fashion. 929

4github.com/vllm-project/vllm
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Training hyperparameters. We use a learning930

rate of 2e-4 and a batch size of 32 with gradient931

accumulation set to 1 for all experiments. LoRA932

is applied with a rank of 8 and a dropout rate of933

0.1 to the Q and V projection matrices. The model934

is trained for 3 epochs in each continual learning935

task.936

A.3 Model Details937

We use several language models within the pa-938

per. All the models are used from their respec-939

tive HuggingFace source: Llama 2 7B5 (Tou-940

vron et al., 2023), Granite 3.3 2B6 (Mishra et al.,941

2024), Mixtral 8x22B Instruct (MixIns)7 (Jiang942

et al., 2024), WizardLM 2 8x22B(Wiz)8 (Xu et al.,943

2024), Prometheus 8X7B9 (Kim et al., 2024).944

Task Name Size Task ID

Classification 18k 50, 1712, 65
Program Execution 17k 63, 93, 370
Mathematics 17k 85, 87, 90
Generation 16k 1, 67, 1730
Summarization 16k 589, 668, 1290
Open QA 15k 2, 24, 1731
Sentiment Analysis 15k 195, 293, 843
Rewriting 14k 402, 413, 1340
Text Quality Evaluation 12k 616, 675, 1283
Code 10k 77, 211, 869
Detection 9k 88, 209, 318
Miscellaneous 9k 305, 383, 700
Comprehension 9k 27, 1664, 223
Dialogue 7.5k 362, 766, 1500
Extraction 6.5k 39, 180, 1568
Closed QA 3k 73, 296, 667

Table 5: The subtask IDs within each task taken from
the SuperNI dataset.

A.4 Dataset Details945

SuperNI (Wang et al., 2022) is a collection of di-946

verse NLP tasks with natural language instructions,947

released under the Apache-2.0 license. Each task is948

stored in a separate file, identified by a unique task949

ID. Table 5 summarizes the data size and subtask950

IDs under each task category. Table 6 reports the951

average and maximum input length in words. We952

5hf.co/meta-llama/Llama-2-7b
6hf.co/ibm-granite/granite-3.3-2b-base
7hf.co/mistralai/Mixtral-8x22B-Instruct-v0.1
8huggingface.co/alpindale/WizardLM-2-8x22B
9hf.co/prometheus-eval/prometheus-8x7b-v2.0

Task Max Avg
Length Length

Classification 710 47.17
Text Quality Evaluation 60 17.55
Code 216 41.97
Detection 44 11.75
Sentiment Analysis 71 22.10
Comprehension 1809 117.13
Closed QA 88 42.35
Extraction 152 21.22
Dialogue 653 72.11
Program Execution 31 10.18
Rewriting 414 42.50
Open QA 1160 188.84
Misc. 149 26.46
Generation 1143 141.71
Summarization 7329 212.51
Mathematics 17 10.61

Table 6: Maximum and average length (words) per task

randomly hold out 20% of the dataset for evalua- 953

tion and 200 samples as buffer replay data. 954

Task Setup. In our experiments, we consider 955

a 16-task setup grouped under broader task cate- 956

gories, as shown in Table 5. Each category includes 957

3 subtasks, and their corresponding task IDs are 958

listed in the same table. To illustrate the diversity of 959

subtasks, consider the Mathematics category. Be- 960

low are the natural language instructions used for 961

its three subtasks: 962

Task ordering We adopt the following continual 963

learning orders: 964

• Order 1:Classification → Text Quality Eval- 965

uation → Code → Detection → Sentiment 966

Analysis → Comprehension → Closed QA 967

→ Extraction → Dialogue → Program Exe- 968

cution → Rewriting → Open QA → Misc. → 969

Generation → Summarization → Mathemat- 970

ics 971

• Order 2:Generation →Mathematics 972

→Extraction →Comprehension →Text Qual- 973

ity Evaluation →Dialogue →Classification 974

→Code →Misc. →Summarization 975

→Program Execution →Rewriting →Closed 976

QA →Detection →Sentiment Analysis 977

→Open QA 978
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Subtask Instructions in Mathematics Task

1. In this task, you will be given an arithmetic
operation and you have to find its answer. The
symbols of the operators ’+’ and ’-’ have been
swapped, i.e., you need to perform subtraction
when you see a ’+’ symbol and addition when
you see a ’-’ symbol.

2. In this task, you will be given an arithmetic
operation and you have to find its answer. The
operators ’+’ and ’-’ have been replaced with
new symbols. Specifically, ’+’ has been re-
placed with the symbol ’@’ and ’-’ with the
symbol ’#’. You need to perform the operations
in the given equation and return the answer.

3. A polynomial equation is a sum of terms. Each
term is either a constant number or consists of
the variable x raised to a power and multiplied
by a coefficient (called the weight). For exam-
ple, in the polynomial 2x2+3x+4, the weights
are [2, 3, 4]. A polynomial with weights [6, 4]
represents the equation 6x + 4, while [1, 3,
4] represents 1x2 + 3x + 4. In this task, you
are given the list of weights and a value for x,
and your goal is to compute the result of the
polynomial expression.

979

A.5 Additional Experimentation980

Figures 5 and 6 show the individual LaJ scores for981

all 16 tasks across the baseline, ablations and MTL982

for Llama2 7b and Granite3.3 2B.983

A.6 10 Tasks Setting984

We also evaluate our method, TF-SSD, in a 10-985

task continual learning setting using both LLaMA2-986

7B and Granite 3.3B models. Unlike the 16-task987

setup, which includes a mix of classification and988

generation tasks, the 10-task configuration includes989

majorly generation tasks. The continual leanring990

order adopted: QA → QG → SA → Sum. → Trans.991

→ DSG → Expl. → Para. → PE → POS. Table992

10 shows AR, ALaJ, BWT and BWTLaJ for both993

the models on baselines, ablations and multitask994

settings.995

Task performance As shown in Table 10, our996

method TF-SSD consistently outperforms all base-997

lines with an improvement of ∼8 points in ALaJ998

for Llama2 7B and by ∼6 points in case of Granite999

3.3 2B over best-performing baseline (DRtask).1000

Moreover, TF-SSD performs better than MTL by1001

∼0.62 points of ALaJ for Llama2 7B and ∼5.81002

points for ALaJ for Granite 3.3 2B. Tables 10 and1003

4 confirms that our proposed method is robust to1004

diversity in tasks in CL.1005

Catastrophic forgetting Similar to 16 tasks re- 1006

sults reported in Section 5.2, for 10 tasks our 1007

method - TF-SSD outperforms all baselines, with 1008

an improvement of ∼9.54 points of BWTLaJ for 1009

Llama2 7B and ∼8.93 points of BWTLaJ for Gran- 1010

ite3.3 2B over best-performing baseline DRtask. 1011

A.7 16 Task Setting Additional Order 1012

The two random orders experimented are men- 1013

tioned in A.4 section. Table 8 shows results for 1014

order 2 is consistent with order 1 (see complete 1015

results in table 4). Thus confirming our model is 1016

robust to task ordering. 1017

A.8 16 Task Setting Additional Replay buffer 1018

size 1019

We additionally varied the buffer size for each task 1020

instead of keeping it constant, by randomly sam- 1021

pling a buffer size between 100 and 1000. The 1022

randomly selected buffer sizes for each task are 1023

provided in Table 7. The table 9 shows our method 1024

is robust to task buffer data size.

Task Name Size

Classification 581
Program Execution 609
Mathematics 741
Generation 742
Summarization 634
Open QA 451
Sentiment Analysis 518
Rewriting 753
Text Quality Evaluation 235
Code 922
Detection 610
Miscellaneous 161
Comprehension 431
Dialogue 837
Extraction 771
Closed QA 716

Table 7: Additional buffer replay size 2 experiment
buffer size per task

1025
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Figure 5: Individual LaJ scores for all 16 tasks for each experiment conducted with LLaMA-2 7B.
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Figure 6: Individual LaJ scores for all 16 tasks for each experiment conducted with Granite 3.3 2B

Llama 2 7B Granite 3.3 2B

Order 1 Order 2 Order 1 Order 2

DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A)

AR 70.03 66.97 69.59 66.23 71.01 66.64 69.36 65.80
ALaJ 78.68 81.51 78.63 79.18 79.07 81.74 77.79 79.13

BWTr -3.69 -7.16 -4.46 -6.89 -4.31 -8.86 -5.86 -9.55
BWTALaJ -2.13 0.46 -2.82 -1.86 -2.73 0.29 -3.77 -2.33

Table 8: Comparative evaluation scores of our method TF-SSD on two random continual learning order with our
best-performing baseline DRtask. First- , best performing method.

Llama 2 7B Granite 3.3 2B

Replay size 1 Replay size 2 Replay size 1 Replay size 2

DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A) DRtask TF-SSD(2 T + 1 A)

AR 70.03 66.97 69.26 66.11 71.01 66.64 71.15 67.52
ALaJ 78.68 81.51 80.14 82.30 79.07 81.74 79.80 82.25

BWTr -3.69 -7.16 -2.34 -5.55 -4.31 -8.86 -2.94 -6.86
BWTALaJ -2.13 0.46 -1.19 1.16 -2.73 0.29 -1.87 0.89

Table 9: Comparative evaluation scores of our method TF-SSD on two buffer replay data size for each task with our
best-performing baseline DRtask. First- , best performing method.
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Llama 2 7B Granite 3.3 2B

AR ALaJ BWTr BWTLaJ AR ALaJ BWTr BWTLaJ

Baselines

Base Model 5.59 32.39 − − 44.79 60.56 − −
NoRep 10.64 46.08 -61.70 -38.68 45.17 68.38 -23.41 -13.62

Rep 61.19 77.64 -3.90 -1.55 61.66 78.30 -3.89 -1.20
DRbase 64.74 78.31 -0.96 -2.04 65.03 79.63 -1.29 -0.52
DRtask 64.84 78.40 -0.57 -2.07 65.03 80.54 -0.91 -1.23

Ablations

DRtask + MoT (2 T + 1 A) 59.96 82.95 -5.45 3.14 59.93 83.28 -6.33 3.85
TF-SSD (1 T - MixIns) 59.13 83.09 -6.06 3.96 59.49 85.91 -6.79 6.23

TF-SSD (1 T - Wiz) 58.54 85.29 -6.68 5.91 57.79 86.38 -8.31 6.90
TF-SSD (2 T + 1 A) 57.23(-7.61) 86.48(+8.08) -8.64(-8.07) 7.47(+9.54) 57.51(-7.52) 86.41(+5.87) -9.09(-8.18) 7.7(+8.93)

MTL 64.71 85.86 − − 66.10 80.64 − −

Table 10: Evaluation scores of various baselines, ablations and MTL for 10 tasks setting are shown. First- ,
second- , and third- best performing methods are highlighted over all baselines and ablations. MTL is omitted

from ranking since it is considered as an ideal target performance reference for a CL model to achieve. Performance
difference of TF-SSD (2T + 1A) with top method (DRtask) in the baselines is shown in parentheses.
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