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Abstract

Continual fine-tuning involves incrementally
training a language model to acquire knowl-
edge of new tasks. This learning paradigm
introduces the challenge of catastrophic for-
getting, where models tend to forget previ-
ously learned tasks as they adapt to new
ones. Several techniques have been proposed
to address this issue, including regulariza-
tion, parameter-isolation, and replay-based ap-
proaches. Among these, replay-based methods
have gained wider adoption due to their less
invasive nature and ease of integration into ex-
isting continual learning pipelines. However, in
real-world settings, replay-based methods face
the practical challenge of curating ideal replay
samples. This leads to the use of noisy replay
data from the task owner, which is often subop-
timal for improving task performance. To ad-
dress this crucial real-world challenge, we intro-
duce Teacher-Forced Selective Self-Distillation
(TF-SSD) a novel method that employs self-
distillation of the labels from the task stage
model and refine the less effective samples us-
ing mixture of teachers framework. Our exper-
iments involving challenging 16 task contin-
ual learning setting demonstrate that TF-SSD
outperforms best-performing baseline by ~2.7
points in task performance and ~2.8 points
in mitigating catastrophic forgetting across 2
model families: Llama2 7B and Granite3.3 2B.
We are planning to open-source the code of
TF-SSD.

1 Introduction

Large Language Models (LLMs) have demon-
strated promising performance (Dubey et al., 2024;
Brown et al., 2020) across a wide range of Natu-
ral Language Processing (NLP) tasks. In practice,
LLMs must be continually updated to remain ef-
fective on newly emerging tasks. To facilitate this,
Continual Learning (CL) (Chen and Liu, 2018) is
employed—a paradigm in which models are incre-
mentally trained on incoming data, enabling them
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Figure 1: Demonstration of the problem setting.

to remain relevant and effective with time. Contin-
ual Fine-Tuning (CFT!), a variant of CL, involves
incrementally training models on new fine-tuning
task data. However, this paradigm introduces a
major challenge known as Catastrophic Forgetting
(CF) (McCloskey and Cohen, 1989), where perfor-
mance on previously learned tasks deteriorates as
new tasks are acquired.

Numerous techniques have been proposed to
mitigate CF, including regularization-based ap-
proaches (Aljundi et al., 2018; Kirkpatrick et al.,
2017; Li and Hoiem, 2018), architecture-level
methods involving task-specific parameter isola-
tion (Wang et al., 2023b; Ke et al., 2021; Satapara
and Srijith, 2024; Wang et al., 2023a; Razdaibied-
ina et al., 2023; Wang et al., 2024a), and data replay
strategies that combine previous and current task
data during training (Chaudhry et al., 2019; Re-
buffi et al., 2017; Buzzega et al., 2020; He et al.,
2024; M’hamdi and May, 2024; Lopez-Paz and
Ranzato, 2017). Among these, replay-based meth-
ods have gained broader adoption due to their ease
of integration into existing CL pipelines and their
less invasive nature compared to architectural or
regularization-based methods.

While replay-based approaches are less invasive,
they typically require storing a subset of past task
data. In real-world settings, often future task own-
ers do not have control over the replay data stored
by past task owners. As shown in Figure 1, the task
1 owner just exposes a small part of the data (while
keeping most of it private) to help task 2 owner to

"Terms CL and CFT will be used interchangeably.



preserve task 1 performance. It is then upto the task
2 owner to effectively curate the available replay
data to retain task 1 performance.

In this paper, we introduce TF-SSD (see Fig-
ure 2), a novel replay-based CFT method designed
to address this challenge. TF-SSD aims to curate
the available replay data. Our method distills la-
bels for each task from its corresponding stage
model within the CL pipeline. These samples are
subsequently refined: noisy samples selectively un-
dergo teacher-forcing, where teacher (T) tokens
are derived from the responses of an ensemble of
open-source LLMs. The number of teacher tokens
used is dynamically chosen based on the degree of
defectiveness in the sample.

Our main contributions are:

1. We propose a novel replay-based method for
continual learning that is less invasive than
existing approaches, effectively addressing a
real-world setting with uncurated replay data.
Key features involve: (1) Label Distillation:
distillation of labels from respective task stage
model. (2) Refinement: teacher-forced selec-
tive self-distillation based on the degree of
defectiveness in the sample with teacher to-
kens from ensemble of teachers.

2. We evaluate our method on the SuperNI multi-
task dataset (Wang et al., 2022), compris-
ing 48 subtasks across 16 tasks encompass-
ing code, language and mathematics, using
two model families: Granite3.3(Mishra et al.,
2024) and Llama2(Touvron et al., 2023).

3. We conduct extensive analysis and ablation
studies to validate the effectiveness of our ap-
proach.

2 Related Work

Consistent with recent CL studies (Wang et al.,
2024a; Chen and Zeng, 2025), we classify CL
strategies into three distinct categories.

Regularization. These methods (Aljundi et al.,
2018; Kirkpatrick et al., 2017; Li and Hoiem,
2018) aim to mitigate forgetting of previous tasks
by adding regularization terms to the loss func-
tion. However, the inclusion of multiple regulariza-
tion terms may degrade model performance (Parisi
et al., 2019). To address this, some works (Mok
et al., 2023) combine regularization with other ap-
proaches.

Notation Description
Denotes number of stages in CL pipeline. Since, each stage is
" associated with a task, n denotes number of tasks as well
{1,..., n} Series of tasks in CL pipeline
'g Base model with parameters 6
g Model finetuned at stage i
d Training data for task 7
i Replay data for task 7 from task owner ¢
T, Replay data from TF-SSD for task i
7’;(0 Replay data with labels distilled from model fj
v Scorer module
s A sample in the dataset
T Input text in the sample s
y Label in the sample s
Ul Label with [ number of tokens
m Number of teachers
yloy™ Intermediate labels generated by m teachers
yMoT Label generated by Mixture of Teachers
precisely coming from the Aggregator
yMoT First k tokens of y°T
yTF Label generated by teacher-forcing the stage model
th it" teacher model

Table 1: Various notations with descriptions used in
TF-SSD.

Architecture. Some approaches (Wang et al.,
2023Db) isolate task-specific parameters via parame-
ter isolation, while others adopt parameter-efficient
fine-tuning techniques by introducing task-specific
modules (Ke et al., 2021; Satapara and Srijith,
2024; Wang et al., 2023a), learning soft prompts
(Razdaibiedina et al., 2023), or applying prefix tun-
ing (Wang et al., 2024a) for newly arriving tasks in
the CL pipeline.

Replay. Early methods (Chaudhry et al., 2019;
Rebuffi et al., 2017) tackle forgetting by replay-
ing a portion of past data. Later work (Rolnick
et al., 2019; Buzzega et al., 2020), improved this
by generating replay data with distilled labels from
previous models. He et al. (2024) introduced an
architecture-level approach that distills attention
from selected attention heads instead of labels. Ad-
ditionally, some studies (M’hamdi and May, 2024;
Lopez-Paz and Ranzato, 2017) propose techniques
for selectively sampling candidates to populate a
fixed-size replay data.

Replay techniques are generally less invasive
than architecture-based methods. TF-SSD falls un-
der replay-based category and we attempt to study
the crucial challenge of minimizing CF in a setting
where replay data from the task owner is uncurated
(see Figurel) and yet essential for maintaining task
performance. Since our approach belongs to the
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Figure 2: Overview of our method TF-SSD.

replay-based class, we include prior work - real
data as replay (Chaudhry et al., 2019) and pseudo
data distilled from a model as replay (Rolnick et al.,
2019; Buzzega et al., 2020) that can be adapted to
this setting in our evaluation. We exclude replay-
based methods that require access to the model
architecture (He et al., 2024) or rely on curating
(M’hamdi and May, 2024; Lopez-Paz and Ranzato,
2017) the replay data from training data.

3 Method

3.1 Notations

The notations used in TF-SSD are provided in Ta-
ble 1 for clarity.

3.2 Problem Formulation.

CFT aims to incrementally train the model fei over
a sequence of fine-tuning tasks {1,...,n}, while
mitigating catastrophic forgetting and maximizing
performance across all tasks. We use the widely
adopted decoder class of language models with a
causal language modeling loss defined as:

T

L(x,y;0) == log Py | 2,y<) (1)
t=1

The objective is to minimize the negative log-
likelihood of each label token y;, conditioned on
the input x and the previous label tokens y.;.
Where T is total number of tokens in the label

Y.

3.3 Overview.

TF-SSD is a replay-based method that aims to gen-
erate a refined version (r;) of the uncurated replay
data (r*) provided by the task owner, aiming to mit-
igate catastrophic forgetting and improving overall
performance across tasks. This is achieved through
two key submethods: (1) Label Distillation ((1)
in Figure 2), and (2) Refinement ((2) in Figure 2).
The Refinement submethod further incorporates
sample scoring and score-based selection ((2a) in
Figure 2), teacher forced self-distillation ((2¢) in
Figure 2) using tokens sampled from a mixture of
teacher (MoT) models ((2b) in Figure 2).

3.4 Label Distillation

The training data for fine-tuning the model fé is
composed of current task data d’, replay data from
past stages {ry, ..., 7, *} and the immediate pre-
vious stage 7, 1. Replay data {r),... ,r5"?} is
reused from past curation while r;, ! is prepared
via TF-SSD for the current stage .

This submethod is shown as (1) in Figure 2. Task
owner ¢—1 provides a portion of the uncurated task
data for replay. The goal of this submethod is to
generate labels y for each input  using the  — 1*"
stage model f;fl, thereby producing the distilled
replay data Té{ilq)’ defined as:

y=fi"'(2) 2)

3.5 Refinement

Scoring. Each sample from T;(_z‘1—1 is passed

through the Scorer v (see Section 4.3), which as-
signs a quality score in the range of 1-4. The score



reflects the severity of defects in the sample’s la-
bel y, with higher scores indicate fewer defects.
The score guides the degree of teacher-forcing re-
quired to improve defective samples. We adopt 1-4
scale since it covers required levels of defective-
ness buckets where samples can belong to. The
Scorer follows a LL.M-as-a-Scorer paradigm and
details on prompt template are in Appendix A.1.

Selection. Based on the score assigned by v, the
sample’s label is selectively curated ((2a) in Figure
2). If the score is 1, the full yM"T is used; if 2, first
half (1/2) of the tokens; and if 3, first quarter (I/4),
where [ is number of tokens in yM°T. In the cases
of score 1 and 2, remaining label tokens are from
yTF as described later in this section.

The intuition behind this label token selection
strategy is to achieve a balanced curation of label to-
kens from both the MoT and the stage model fg_l,
where the proportion of MoT tokens increases with
the degree of fé*1 deficiency, as indicated by the
score. A score of 2 or 3 suggests that the label
generated by the stage model has partial merit but
includes minor errors; thus, MoT serves as a cor-
rective signal through prompt-level teacher-forcing.
A score of 1 indicates that fg_l generates flawed
label, so yM°T is fully retained. Conversely, a score
of 4 implies that the stage model’s label is optimal,
and is used without modification.

Teacher Tokens Generation through MoT. As
illustrated in (2b) of Figure 2, each input x is
passed through a set of Teacher models (denoted as
T) to generate corresponding outputs y, following
Equation (2). These outputs are then aggregated
by a separate Aggregator model (denoted as A) to
produce the final label yM°T for each z. Details on
prompt templates used for teacher and aggregator
are provided in Appendix A.1.

The paradigm of ensembling multiple open-
source LLMs has been explored in latest prior
work (Wang et al., 2025; Tian et al., 2025) for ap-
plications such as generating improved responses
and teacher-forced chain-of-thought reasoning for
smaller models. In our setup, we use MoT to selec-
tively teacher-force label tokens by leveraging MoT
tokens in the prompt (explained in the later part of
the section), based on the degree of defectiveness
in each sample.

Teacher-Forced Self-Distillation. This sub-
method is demonstrated by (2¢) in Figure 2.
Teacher-forcing is applied only to samples with

scores 2 and 3. Each input «x is augmented with k
teacher tokens from yM°T. Number of tokens & is
explained in Selection submethod in Section 3.5.
The concatenated input = + yM°T is then passed
to the previous stage model fgil to self-distill the
remaining label tokens y'F.

Through these submethods, the curated replay
data " is constructed and used to train the cur-

rent stage model fg.

4 Experimental Setup

4.1 Baselines

We evaluate our method against the following chal-
lenging baselines:

Base Model. The base LLM is evaluated without
any additional fine-tuning. It is indicated by the
corresponding model name in the results.

No Replay (NoRep). The base LLM is sequen-
tially fine-tuned across all tasks in the CL pipeline,
without the use of any replay data.

Replay (Rep) (Chaudhry et al., 2019). The base
LLM is sequentially fine-tuned with replay data
consisting of all previous task replays having labels
from ground-truth.

Distilled Replay from Base Model
(DRypase) (Bhushan et al., 2025) The
base LLM is sequentially fine-tuned with replay
data with labels distilled from the base model.

Distilled Replay from Task Stage Model
(DRtask) (Rolnick et al., 2019; Buzzega et al.,
2020). The base LLM is sequentially fine-tuned
using replay data with labels distilled from the cor-
responding task stage model.

Multi-Task Learning (MTL). Multi-task learn-
ing involves training the model on all the tasks at
once and CL is not involved. Many works (Huang
et al., 2024; He et al., 2024) consider MTL as a
target topmost performance to achieve for CL.

4.2 Ablations

We conduct the following ablation studies to iso-
late the contributions of MoT and teacher-forced
selective self-distillation:

DRy + MoT 2 T +1 A)%>.  The same setup as
DR, with an additional refinement submethod.
Each replay sample is passed through the Scorer

2Two teacher (T) models and one aggregator (A) model.



Given a sentence, generate a new sentence by performing small changes on the sentence. Here, make

Task sure that the changes are semantically related and syntactically similar to the input. And the generated
sentence should have high commonsense plausibility, that is to have reasonable probability of it being true.
Input You would write a story because you have a spontaneous idea .
Ground Truth You would write a story because you have a detailed idea.
Response ROUGE-L LaJ
DRuask You would write a story because you have a spontaneous idea. 0.91 0
TF-SSD (2 T+ 1A) You might decide to write a story because you have a compelling idea. 0.75 2

Table 2: An example from test set illustrating the limitation of the ROUGE-L score. The top baseline DRy, simply
repeats the input text without following the task instructions, whereas TF-SSD (2 T + 1 A) adheres to the task but is
penalized by ROUGE-L due to its low overlap with the ground truth. LaJ accurately fills this gap in evaluation.

scoring samples either 1 (accept) or O (reject). If
rejected, the label is fully replaced with the MoT’s
output; if accepted, the original label is retained.

TF-SSD (1 T)’. As described in Section 3, the
MoT component uses a single teacher for token
generation. In other words, its an extension to
DRygsi: + MoT (2 T + 1 A) baseline with 1-4 scale
Scorer and teacher-forced selective self-distillation
of labels, instead of 0-1 scoring.

TF-SSD (2T +1 A). This setting includes two
teachers and one aggregator model. TF-SSD and
TF-SSD (2 T + 1 A) are used interchangeably in
the paper.

4.3 Models

Exact sources to the models used in this paper are
provided in Appendix A.3.

Models in CL Pipeline. We choose the widely
adopted Llama 2 7B (Touvron et al., 2023) and
Granite 3.3 2B (Mishra et al., 2024) models to
demonstrate our method on 2 diverse families and
sizes. We choose the specific model versions to
comply with their respective terms.

Teacher Models. We choose the models Mix-
tral 8x22B Instruct (MixIns) (Jiang et al., 2024)
and WizardLM 2 8x22B(Wiz) (Xu et al., 2024) as
teachers. Since teachers are employed in a form of
synthetic data generation (SDG), we make sure to
choose this specific set since we comply with their
respective SDG terms. Details on prompt template
used for teacher is provided in Appendix A.1.

Aggregator Model. Similarly, we use Wiz-
ardLM 2 8x22B as the aggregator model. Aggrega-
tor prompt template can be found at Appendix A.1.

3Only one teacher (T) model and no aggregator model.

Scorer. We employ Prometheus 8X7B (Kim
et al., 2024) as the Scorer module in our ap-
proach. Scorer prompt template can be found at
Appendix A.1.

LLM-as-a-Judge. We also adopt the open-
source Prometheus 8X7B model as our LLM-as-
a-Judge (LalJ). This model demonstrates state-of-
the-art evaluation capabilities, enabling a more rig-
orous assessment of our method. Using the same
model as both Scorer and Judge does not introduce
conflict, as the Scorer does not contribute data that
directly influences model training, thereby leav-
ing no scope for data leakage. LalJ prompt tem-
plate and details on the scoring can be found at
Appendix A.1.

4.4 Dataset

We use the widely adopted(Huang et al., 2024;
Wang et al., 2024b) and challenging SuperNI
dataset (Wang et al., 2022), which comprises 16
tasks with 3 subtasks per category.We are testing
our method in 2 random orders. First order of
tasks used is: Classification — Text Quality Evalu-
ation — Code — Detection — Sentiment Analysis
— Comprehension — Closed QA — Extraction
— Dialogue — Program Execution — Rewriting
— Open QA — Misc. — Generation — Sum-
marization — Mathematics. Second order results
and additional dataset details are provided in Ap-
pendix A.4.

4.5 Evaluation Metrics

We adopt the widely used (Huang et al., 2024) eval-
uation metrics for CL. We use ROUGE-L (Lin,
2004) and LaJ score (Zheng et al., 2023) to assess
the model’s task performance. Let ay) denote the
ROUGE-L score of stage 7 model evaluated on
task j, similarly sg-l) denotes LaJ score. We report
scores in the following derived evaluation metrics

to assess overall task performance and catastrophic



Craft one correct answer to the question given in input. To make it more interesting, try to use non-stereotypical
language if possible.Make sure your correct answer is reasonably long, consistent with the context,

Task

and requires common sense (instead of explicit extraction from the context.)

In your answer, use as few words as possible from the given context.Use a response that is uncommon/non-stereotypical,
so that it is less predictable. To be less repetitive, please vary your language for each question.

A friend of this blog , and someone some of you know ( virtually ) died recently.

Context

I only received word recently and found it hard to believe . I was going to post this

several days ago , but there was a contretemps on the blog and
I did n’t want to get that confused with this . Now that such issues are largely over , I feel able to post .

Question

Why is it so hard to believe that someone died ?

Ground Truth

It was sudden.

Response LaJ
MTL Because they were young and healthy. 1
TF-SSD 2 T+ 1 A) It’s hard to accept that someone you knew, even if it was only virtually, is no longer alive. 2

Table 3: An example from test set is provided showcasing TF-SSD(2 T + 1 A) outperforming MTL though it is

considered as a reference to topmost performance.

forgetting in CL. Higher values denote better per-
formance for the all evaluation metrics.

Average ROUGE-L (AR): This metric captures
the average performance of the model across all
n tasks at the end of the training sequence in CL,

Average LaJ (ALaJ):
defined as:

3
Similar to AR, ALal is

n

_Ism
ALaJ =—3 s )

=1

Backward Transfer using ROUGE-L (BWT),):
This metric measures how learning new tasks af-
fects the performance on previously learned tasks.
Average over all the stages except the last one

where at each stage the difference between the fi-
(n)

nal stage model a,

a,gi) task ¢ performance is computed. A nega-
tive BWT, value indicates catastrophic forgetting,
while positive value indicates emergent/enhanced
performance. Such enhanced performance can be
attributed to the replay data used for latest tasks

aiding older tasks. BW'T,. is defined as:

and associated stage model

n—1

BWT, = i : ; <a§n) _ a§¢)>

Backward Transfer using LaJ (BW Ty ,5):

BWTi.y = ﬁ Z <$£n) _ 327')) (6)

Limitation of ROUGE-L. Since the tasks in our
setup are highly diverse and open-ended, traditional
metrics such as ROUGE-L may not fully capture
(see Table 2) the quality and correctness of the gen-
erated outputs. Moreover, we observe that some
samples contain defective ground truths, which can
weaken evaluation reliability. Additionally, the re-
play data labels obtained from TF-SSD via teacher-
forced selective self-distillation often include para-
phrased variants. This can lead the model to gen-
erate paraphrased yet valid responses at evaluation
time, which may be penalized by ROUGE-L. To
address these limitations, we include Lal to provide
a more holistic and robust evaluation.

Summarization 43.0 39.5
Mathematics 40.0 32.5 18.5
Rewriting117.0 23.5 27.5 32.0
Generation{17.0 20.0 20.0 43.0
Open QA 23.0 65.0
Comprehension 66.5 Score
Text Quality Evaluation{16.1 75.4 1
Sentiment Analysis 75.5 2
Program Execution{ 17.5 76.5
Code 84.5 3
Misc. 90.0 4
Classification 91.0
Extraction 95.5
Detection 96.5
Dialogue 96.5
Closed QA 98.0

Distribution of Samples across Scores

Figure 3: Distribution of the samples across Scorer
model’s scores for 16 tasks for Llama 2 7B. The num-
bers annotated are the percentage of samples belonging
to the score and insignificant percentages (below 15.0%)

are not shown.

4.6 Training and Inference Details

Details on the training and inference stack, hard-
ware and hyperparameters are in Appendix A.2.



Llama 2 7B Granite 3.3 2B
AR ALalJ BWT, BWTpL,; AR ALal BWT, BWTpL.;
Baselines
Base Model 1.65 23.69 — - 45.11 63.67 - —
NoRep 21.57 61.58 -55.78 -20.88 32.33 66.64 -45.59 -15.85
Rep 69.09 78.40 -4.85 -2.51 69.89 78.29 -5.38 -3.34
DRbase 69.87 78.44 -4.23 -2.44 70.95 78.70 -4.55 -3.11
DRuask 70.04 78.69 -3.70 -2.13 71.01 79.08 -4.32 -2.73
Ablations
DRk + MOT 2T+ 1A) 66.45 81.27 -1.72 0.13 67.66 80.94 -7.93 -0.70
TF-SSD (1 T - MixIns) 67.54 81.06 -6.58 -0.11 67.74 81.59 =177 0.04
TF-SSD (1 T - Wiz) 67.16 81.46 -6.90 0.36 67.33 81.58 -8.23 0.00
TF-SSD2T+1A) 66.97 (-3.07) | 81.51 (+2.82) -7.16 (-3.46) | 0.47 (+2.6) 66.65 (-4.36) | 81.74 (+2.66) -8.86 (-4.54) | 0.29 (+3.02)
MTL 73.65 81.16 — — 7445 81.20 - —

Table 4: Evaluation scores of various baselines, ablations and MTL are shown. | First-|, second- , and third- best
performing methods are highlighted over all baselines and ablations. MTL is omitted from ranking since it is
considered as an ideal target performance reference for a CL model to achieve. Performance difference of TF-SSD
(2T + 1A) with top method (DR ) in the baselines is shown in parentheses.
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Figure 4: Task-wise difference in ALaJ performance
between TF-SSD and DR,s using Llama2 7B

5 Results and Discussion

5.1 Task Performance

Performance via AR. We identify a shortcom-
ing of the ROUGE-L score, where correct answers
are sometimes penalized (see Table 2), primarily
due to low overlap with the ground truth though se-
mantically correct according to the task instruction.
Since TF-SSD employs a form of teacher forcing,
where a portion of the tokens is generated from a
set of open models, it is more susceptible to such
penalties (see example in Table 2). This explains
the observed decline of ~3.1 and ~4.4 points in
AR (Table 4) across models compared to the top-
performing baseline (DR, ). To address this, we
adopt ALalJ, which evaluates responses more holis-
tically by considering both the ground truth and the
nature of the task. The higher MTL scores validate

the fairness of Lal.

Performance via ALaJ. Our method, TF-SSD,
consistently outperforms all baselines (see Table 4),
showing an improvement of ~2.7 points in ALalJ
over the best-performing baseline (DR,5x) across
both model families. Moreover, TF-SSD meets the
ideal target performance of MTL and slightly ex-
ceeds it by ~0.45 points on average across models.

Performance compared to MTL. The reason
behind the higher performance of TF-SSD over
MTL (see Table 4) is attributed to the refinement
submethod which involves teacher forced self-
distillation using tokens coming from an ensemble
of open models outside the distribution of the re-
play dataset. An example is provided in the Table 3
where the response of the TF-SSD is well-formed
and accurate while MTL provides an incorrect re-
sponse not covered in the context.

5.2 Catastrophic Forgetting.

BWT, and BWTy,; are not applicable to the
MTL and Base Model baselines since these models
do not undergo CL.

CF via BWT,. As BW', is a derived metric
from ROUGE-L, the same limitations apply. Simi-
larly, this explains the average drop of ~4 points
(see Table 4) of TF-SSD compared to DRysx
across models.

CF via BW1Tr,5. BW1Ty,; derived from the
ALalJ score, addresses this gap. TF-SSD con-
sistently outperforms all baselines (see Table 4),
with an average improvement of ~2.81 points over
DRtask-



Positive BW Ty, ; score for TF-SSD. The last-
stage model outperforms the task-stage model, sug-
gesting it has not only retained prior knowledge but
also gained enhanced capabilities. We attribute this
behavior to the refinement submethod, which pro-
vides an improved replay set that was not available
in training dataset of the task-stage model.

5.3 Ablation Study

Effect of self-distillation. Baselines DRy
and DRy, perform self-distillation by omitting
ground-truth labels, resulting in average ALaJ im-
provements of ~0.23 points for DRy, and ~0.54
points for DRy, over the Rep baseline, which
uses ground-truth labels. Distilling from the respec-
tive task-stage model leads to a 2X improvement
compared to distillation from the base model. Our
method, TF-SSD, which uses teacher-forced selec-
tive self-distillation, achieves an improvement of
~3.28 points over the Rep baseline that is roughly
a 6X gain over the improvement from DRy,. A
similar trend is observed for BW1T7,,; as well.

Effect of the Scorer. Overall, DR,q + MoT (2
T + 1 A) and TF-SSD demonstrate the effective-
ness of the Scorer. For DRk + MoT 2T+ 1 A),
the Scorer’s classification of samples into accept
(use as-is) or reject (replace labels with MoT re-
sponse) improves ALaJ by ~2.5 points and ~2.2
points in BWTp,; over DRy,. Similarly, im-
provements from TF-SSD over DRy, are detailed
in Sections 5.1 and 5.2.

We further conduct task-level analysis to under-
stand the Scorer’s impact. While overall perfor-
mance improves, DR,sx performs better than TF-
SSD on 3 tasks—Classification, Sentiment Analy-
sis, and Extraction (see Figure 4). The drop in per-
formance is proportional to the number of samples
with scores below 4 (see Figure 3) specifically for
these 3 tasks. This suggests that while the Scorer
benefits most tasks, its score distribution may nega-
tively impact a few. Our study treats tasks as black
boxes, in the sense that TF-SSD does not perform
optimizations tailored to a task. However, future
work could incorporate task identity and nature,
enabling task-specific optimizations to further im-
prove scoring effectiveness.

Effect of teacher forcing of the labels. The per-
formance improvement of TF-SSD over DR g +
MoT (2 T + 1 A) highlights the positive impact of
selective teacher-forcing of labels. TF-SSD outper-

forms DRy, + MoT (2 T + 1 A) by ~0.52 points
in ALalJ and ~0.67 points in BW T .

Effect of teachers in MoT. Ablations TF-SSD
(IT - MixIns), TF-SSD (1T - Wiz) and TF-SSD
(2T + 1A) demonstrate the effectiveness of the
MoT paradigm. Individual teacher ablations fail
to outperform 2T + 1A configuration (see Table 4)
which is consistent across the model families. 2T
+ 1A configuration shows an average improve-
ment of ~0.25 points in ALaJ and ~0.31 points in
BWTy,y over single teacher configurations.

5.4 Task Order, Diversity, and Replay Data
Size Robustness

Effect of task order. TF-SSD is robust to task or-
der in CL consistently outperforming (see Table 8)
DR, for 2 distinct random task orders (orders
detailed in Appendix A.7).

Effect of replay data size. Table 9 demonstrates
TF-SSD is stable to different replay data sizes and
consistently outperforms DRy, (details in Ap-
pendix A.8).

Effect of task diversity. TF-SSD consistently
outperforms (see Table 10) best performing base-
line DRy,sk in an additional CL setting having
10 tasks (details in Appendix A.6) different from
the 16 task setting demonstrating robustness to task
diversity.

6 Conclusion

We present TF-SSD, a novel method designed to
mitigate catastrophic forgetting in continual learn-
ing, improve overall task performance, and address
a critical real-world scenario of task ownership and
noisy replay - not tailored for task performance.
TF-SSD comprises 2 key submethods: (1) Label
Distillation: where labels are distilled from the
respective task-stage model, and (2) Refinement:
applies teacher-forced selective self-distillation to
improve label quality. These submethods curate
noisy replay in to a more effective replay. We
validate TF-SSD through extensive experiments,
including 4 ablations and comparisons against 6
baselines across 2 model families in a 16 stage CL
setting. TF-SSD consistently outperforms the base-
lines and multi-task learning in task performance
and mitigating catastrophic forgetting. We hope
our work would motivate further research cater-
ing to various real-world constraints in continual
learning.



Limitations

Though TF-SSD outperforms other baselines, we
identify two key limitations. First, we restrict
the Mixture of Teachers component in our ap-
proach to open-source instruction-tuned models.
We acknowledge that leveraging stronger propri-
etary model could potentially yield even greater
performance improvements than those reported.
Due to restrictive synthetic data generation terms
of some model families both in open and closed
source, we confine to a specific set of open models.
However, we perform extensive ablations showcas-
ing the contributions of the teachers in MoT. Given
the observations from the ablations, choosing better
teachers would further improve the performance
of the TF-SSD in proprietary or licensed settings.
Second, scorer plays a central role in determin-
ing the extent of teacher forcing from the MoT but
from our results, some tasks are negatively affected.
Thus, using a stronger proprietary or licensed mod-
els would potentially overcome the negative effect
and may benefit all tasks.

Ethics Statement

We have taken deliberate steps to filter unsafe or
harmful data while selecting tasks for training data
from SuperNI dataset. Due to scale and diversity
of the resources, the data may still contain sensitive
informations.
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A Appendix

A.1 Prompts

LLM-as-a-Judge. We use the following prompt
template (Listing A.1) for LLM-as-a-Judge.
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LLM-as-a-Judge prompt.

You are a helpful and fair evaluator trained
to judge the quality of Al-generated an-
swers. Your job is to assess whether the
model’s response is correct and appropriate
for the given instruction and input.
Sometimes the provided reference answer
(ground truth) might be incomplete, impre-
cise, or incorrect. So do **not assume**
it is always correct. Instead, evaluate the
model’s answer based on reasoning and
factual correctness.

Please follow these steps:

1. Read the instruction and input carefully.
2. Analyze the model’s response: Is it
logically wvalid, factually correct, and
aligned with the instruction?

3. Compare it with the reference answer (if
useful), but do not blindly trust it.

4. Rate the model’s response on a scale
from O to 2, where:

- 2 = **Correct**

- 1 =**Acceptable but with minor issues**
- 0 = **Incorrect and imperfect™**

5. Give score within <score> and </score>
tags only

You must explain your judgment briefly.

Now evaluate the following:

**[nstruction**: {instruction }
**Input**:{input}

**Model’s Response**:{predicted
sponse }

**Reference Answer**:{golden response }
**Your Evaluation**:

Ire-

Scorer prompt for TF-SSD.

You are given a question, the corresponding
ground-truth answer, and a prediction from
a model. Analyse and categorise the given
prediction into one of the four labels.

There should be no contradicting statements
in a good prediction. The prediction may
contain extra information. If the prediction
states something as a possibility, treat it as
a definitive answer.

A good prediction must contain all the
important information presented in the
ground truth, but doesn’t have to fully
match it word by word.

To make your decision, first read the
question and ground-truth answer carefully.
Then compare the given prediction with
the ground-truth answer in the light of the
question.

Start with an explanation and reasoning for
your evaluation within ‘<explanation>* and
‘</explanation>* tags.

Then, within ‘<category>‘ and ‘</cate-
gory>* tags, output one of the following
four labels number only:

- 4: Fully correct, complete, and fluent.

- 3: Understandable, but lacks minor details.
- 2: Understandable, but lacks major details.
- 1: Contains factual errors, hallucinations,
or misleading info.

The output format should as follow: <expla-
nation> (the explanation) </explanation>
<category> (category the prediciton belongs
to) </category>

Question: {full prompt} Ground-truth an-
swer: {golden response} Prediction: {pre-
dicted response }

Output:

Scorer prompt for DR;,;;, + MoT 2 T + 1
A) baseline. We use the following prompt tem-
plate (Listing A.1) for Scorer model when used in
DRiyst. + MoT (2 T + 1 A) baseline.

Scorer prompt for TF-SSD. We use the follow-
ing prompt template (Listing A.1) for Scorer model
when used in TF-SSD.
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Scorer prompt when used in D R, s, + MoT

(2T + 1 A) baseline.

You are given a question, the corresponding
ground-truth answer and a prediction from
a model. Compare the "Ground-truth
answer" and the "Prediction" to determine
whether the prediction correctly answers
the question.

There should be no contradicting statements
in a good prediction. The prediction may
contain extra information. If the prediction
states something as a possibility, treat it as
a definitive answer.

A good prediction must contain all the
important information presented in the
ground truths, but doesn’t have to fully
match it word by word.

To make your decision, first read the
question and Ground-truth answer carefully.
Then compare the given Prediction with
the Ground-truth answer in the light of
the question. Start with an explanation
and reasoning for your evaluation within
<explanation> and </explanation> tags.
Then, within <score> and </score> tokens,
generate "1" if the Prediction is correct
in the light of Ground-truth and question.
Otherwise generate "0" if it is incomplete
or incorrect.

Question: {full prompt}

Ground-truth answer: {golden response}
Prediction: {predicted response}
Answer:

\. J

Teacher prompt. We use the following prompt
template (Listing A.1) for the teacher.

Teacher prompt

### Instruction:
{instruction }.Give only final answer within
<response> and </response> tags without
any explanation.

### Input:

{input}
### Response:

\

Aggregator prompt. We use the following
prompt template (Listing A.1) for the aggregator.
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Aggregator prompt

You have been provided with a set of
responses from various open-source models
along with user task instruction and input
for which the response is generated. Your
task is to synthesize these responses into a
single, high-quality response. It is crucial to
critically evaluate the information provided
in these responses, recognizing that some
of it may be biased or incorrect. Your
response should not simply replicate the
given answers but should offer a refined,
accurate, and comprehensive reply to
the instruction. Ensure your response is
well-structured, coherent, and adheres
to the highest standards of accuracy and
reliability.

Response: {teacherl}
Response: {teacher2}

### Task Instruction:

{instruction }.Give only final answer within
<response> and </response> tags without
any explanation.

### Input:

{input}
### Response:

A.2 Inference and Training Setup Details

Hardware. We use 8 x A100 80GB GPUs in a
single node with 32 cpus and 400G memory.

Inference software. We use vVLLM* (Kwon et al.,
2023) with tensor parallelism and greedy decoding
with temperature set to 0.

Training software. We built our codebase on
top of the SSR framework (Huang et al., 2024),
which in turn extends the LLaMA Factory—a
lightweight and efficient framework for training
and fine-tuning large language models. For each
task in our continual learning setup, we employed
parameter-efficient fine-tuning using LoRA, im-
plemented via the peft library. The training flow
is carried using bash scripts, enabling sequential
learning of tasks in a continual fashion.

4gi'chub .com/vllm-project/vllm


github.com/vllm-project/vllm

Training hyperparameters. We use a learning
rate of 2e-4 and a batch size of 32 with gradient
accumulation set to 1 for all experiments. LoRA
is applied with a rank of 8 and a dropout rate of
0.1 to the Q and V projection matrices. The model
is trained for 3 epochs in each continual learning
task.

A.3 Model Details

We use several language models within the pa-
per. All the models are used from their respec-
tive HuggingFace source: Llama 2 7B (Tou-
vron et al., 2023), Granite 3.3 2B® (Mishra et al.,
2024), Mixtral 8x22B Instruct (MixIns)’ (Jiang
et al., 2024), WizardLM 2 8x22B(Wiz)® (Xu et al.,
2024), Prometheus 8X7B? (Kim et al., 2024).

Task Name Size Task ID
Classification 18k 50,1712, 65
Program Execution 17k 63, 93, 370
Mathematics 17k 85, 87,90
Generation 16k 1,67, 1730
Summarization 16k 589, 668, 1290
Open QA 15k 2,24, 1731
Sentiment Analysis 15k 195, 293, 843
Rewriting 14k 402, 413, 1340
Text Quality Evaluation 12k 616, 675, 1283
Code 10k 77,211, 869
Detection 9k 88, 209, 318
Miscellaneous 9k 305, 383, 700
Comprehension 9k 27,1664, 223
Dialogue 7.5k 362, 766, 1500
Extraction 6.5k 39, 180, 1568
Closed QA 3k 73, 296, 667

Table 5: The subtask IDs within each task taken from
the SuperNI dataset.

A.4 Dataset Details

SuperNI (Wang et al., 2022) is a collection of di-
verse NLP tasks with natural language instructions,
released under the Apache-2.0 license. Each task is
stored in a separate file, identified by a unique task
ID. Table 5 summarizes the data size and subtask
IDs under each task category. Table 6 reports the
average and maximum input length in words. We

Shf.co/meta-1lama/Llama-2-7b

Ohf. co/ibm-granite/granite-3.3-2b-base
"hf.co/mistralai/Mixtral-8x22B-Instruct-ve.1
8huggingface.co/alpindale/WizardLM-2-8x22B
°hf. co/prometheus-eval/prometheus-8x7b-v2.0
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Task Max Avg
Length Length
Classification 710 47.17
Text Quality Evaluation 60 17.55
Code 216 41.97
Detection 44 11.75
Sentiment Analysis 71 22.10
Comprehension 1809 117.13
Closed QA 88 42.35
Extraction 152 21.22
Dialogue 653 72.11
Program Execution 31 10.18
Rewriting 414 42.50
Open QA 1160 188.84
Misc. 149 26.46
Generation 1143 141.71
Summarization 7329 212.51
Mathematics 17 10.61

Table 6: Maximum and average length (words) per task

randomly hold out 20% of the dataset for evalua-
tion and 200 samples as buffer replay data.

Task Setup. In our experiments, we consider
a 16-task setup grouped under broader task cate-
gories, as shown in Table 5. Each category includes
3 subtasks, and their corresponding task IDs are
listed in the same table. To illustrate the diversity of
subtasks, consider the Mathematics category. Be-
low are the natural language instructions used for
its three subtasks:

Task ordering We adopt the following continual
learning orders:

* Order 1:Classification — Text Quality Eval-
uation — Code — Detection — Sentiment
Analysis — Comprehension — Closed QA
— Extraction — Dialogue — Program Exe-
cution — Rewriting — Open QA — Misc. —
Generation — Summarization — Mathemat-
ics

Order 2:Generation —Mathematics
—Extraction —Comprehension —Text Qual-
ity Evaluation —Dialogue —Classification
—Code —Misc. —Summarization
—Program Execution —Rewriting —Closed
QA —Detection —Sentiment Analysis
—Open QA


hf.co/meta-llama/Llama-2-7b
hf.co/ibm-granite/granite-3.3-2b-base
hf.co/mistralai/Mixtral-8x22B-Instruct-v0.1
huggingface.co/alpindale/WizardLM-2-8x22B
hf.co/prometheus-eval/prometheus-8x7b-v2.0

Subtask Instructions in Mathematics Task

1. In this task, you will be given an arithmetic
operation and you have to find its answer. The
symbols of the operators ’+’ and ’-’ have been
swapped, i.e., you need to perform subtraction
when you see a '+’ symbol and addition when
you see a ’-’ symbol.

. In this task, you will be given an arithmetic
operation and you have to find its answer. The
operators '+’ and -’ have been replaced with
new symbols. Specifically, ’+’ has been re-
placed with the symbol *@’ and ’-’ with the
symbol '#’. You need to perform the operations
in the given equation and return the answer.

3. A polynomial equation is a sum of terms. Each
term is either a constant number or consists of
the variable x raised to a power and multiplied
by a coefficient (called the weight). For exam-
ple, in the polynomial 2x* +3x+4, the weights
are [2, 3, 4]. A polynomial with weights [6, 4]
represents the equation 6x + 4, while [1, 3,
4] represents 1x* + 3x + 4. In this task, you
are given the list of weights and a value for x,
and your goal is to compute the result of the
polynomial expression.

A.5 Additional Experimentation

Figures 5 and 6 show the individual LaJ scores for
all 16 tasks across the baseline, ablations and MTL
for Llama2 7b and Granite3.3 2B.

A.6 10 Tasks Setting

We also evaluate our method, TF-SSD, in a 10-
task continual learning setting using both LLaMA2-
7B and Granite 3.3B models. Unlike the 16-task
setup, which includes a mix of classification and
generation tasks, the 10-task configuration includes
majorly generation tasks. The continual leanring
order adopted: QA — QG — SA — Sum. — Trans.
— DSG — Expl. — Para. — PE — POS. Table
10 shows AR, ALaJ, BWT and BWT',,3 for both
the models on baselines, ablations and multitask
settings.

Task performance As shown in Table 10, our
method TF-SSD consistently outperforms all base-
lines with an improvement of ~8 points in ALaJ
for Llama2 7B and by ~6 points in case of Granite
3.3 2B over best-performing baseline (DRya5k)-
Moreover, TF-SSD performs better than MTL by
~0.62 points of ALaJ for Llama2 7B and ~5.8
points for ALaJ for Granite 3.3 2B. Tables 10 and
4 confirms that our proposed method is robust to
diversity in tasks in CL.

15

Catastrophic forgetting Similar to 16 tasks re-
sults reported in Section 5.2, for 10 tasks our
method - TF-SSD outperforms all baselines, with
an improvement of ~9.54 points of BW Ty, ; for
Llama2 7B and ~8.93 points of BW T, s for Gran-
ite3.3 2B over best-performing baseline DR ¢k .

A.7 16 Task Setting Additional Order

The two random orders experimented are men-
tioned in A.4 section. Table 8 shows results for
order 2 is consistent with order 1 (see complete
results in table 4). Thus confirming our model is
robust to task ordering.

A.8 16 Task Setting Additional Replay buffer
size

We additionally varied the buffer size for each task
instead of keeping it constant, by randomly sam-
pling a buffer size between 100 and 1000. The
randomly selected buffer sizes for each task are
provided in Table 7. The table 9 shows our method
is robust to task buffer data size.

Task Name Size
Classification 581
Program Execution 609
Mathematics 741
Generation 742
Summarization 634
Open QA 451
Sentiment Analysis 518
Rewriting 753
Text Quality Evaluation 235
Code 922
Detection 610
Miscellaneous 161
Comprehension 431
Dialogue 837
Extraction 771
Closed QA 716

Table 7: Additional buffer replay size 2 experiment
buffer size per task
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Figure 5: Individual LaJ scores for all 16 tasks for each experiment conducted with LLaMA-2 7B.
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Figure 6: Individual LalJ scores for all 16 tasks for each experiment conducted with Granite 3.3 2B
Llama 2 7B | Granite 3.3 2B
Order 1 ‘ Order 2 ‘ Order 1 ‘ Order 2
DRk | TF-SSD@ T + 1 A) | DRk | TF-SSDQT+1A) | DRy | TF-SSDQ T + 1 A) | DRk | TE-SSDQR T+ 1 A)
AR 70.03 66.97 69.59 66.23 71.01 66.64 69.36 65.80
AL 7863 [NSESUNNNN 7s6) NOISINNN 7507 IENNSEENNN 7770 SN
BWT, -3.69 -7.16 -4.46 -6.89 -4.31 -8.86 -5.86 -9.55

BWTuw 213 OS2 IS 27 SN 577 s

Table 8: Comparative evaluation scores of our method TF-SSD on two random continual learning order with our
best-performing baseline DRlask.-, best performing method.

Llama 2 7B | Granite 3.3 2B
Replay size 1 ‘ Replay size 2 ‘ Replay size 1 ‘ Replay size 2
DRy | TF-SSDQ T + 1 A) | DRy | TE-SSDQT+1A) | DRy | TF-SSDQ T+ 1 A) | DRk | TE-SSDQR T + 1 A)
AR 70.03 66.97 69.26 66.11 71.01 66.64 71.15 67.52
Al 7ses [NNMNSESUNNNN so0.14 DNNNSZIONNNN 7007 [NNSITANIN 7950 S22
BWT, -3.69 -7.16 2.34 -5.55 -4.31 -8.86 -2.94 -6.86

Wiy 213 O 11 IS 273 0 s sy

Table 9: Comparative evaluation scores of our method TF-SSD on two buffer replay data size for each task with our
best-performing baseline DRtask.-, best performing method.
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Llama 2 7B Granite 3.3 2B

AR ALaJ BWT, BWTLag AR ALaJ BWT, BWTyLy
Baselines
Base Model 5.59 3239 - - 44.79 60.56 - -
NoRep 10.64 46.08 -61.70 -38.68 45.17 68.38 -23.41 -13.62
Rep 61.19 77.64 -3.90 -1.55 61.66 78.30 -3.89 -1.20
DRupuse 64.74 78.31 -0.96 -2.04 79.63 -1.29 -0.52
DRy DeasL 740 [L0STL 207 8054 [A0OLL 123
Ablations
DRk +MoT2T+1A)  59.96 82.95 -5.45 3.14 59.93 83.28 -6.33 3.85
TF-SSD (1 T - MixIns) 59.13 83.09 -6.06 3.96 59.49 85.91 -6.79 6.23
TF-SSD (1 T - Wiz) 58.54 85.29 -6.68 5.91 57.79 86.38 -8.31 6.90
TF-SSD 2T+ 1 A) 57.23(-7.61) | 86.48(+8.08) | -8.64(-8.07) | 7.47(+9.54) | 57.51(-7.52) | 86.41(+5.87) | -9.09(-8.18) [ 7.7(+8.93)
MTL 64.71 85.86 - - 66.10 80.64 - -

Table 10: Evaluation scores of various baselines, ablations and MTL for 10 tasks setting are shown. -,

second- , and third- best performing methods are highlighted over all baselines and ablations. MTL is omitted
from ranking since it is considered as an ideal target performance reference for a CL model to achieve. Performance
difference of TF-SSD (2T + 1A) with top method (DR, ) in the baselines is shown in parentheses.

17



