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ABSTRACT

Reinforcement learning (RL) has achieved remarkable success across various con-
trol and decision-making tasks. However, RL agents often show unstable and
low performance when it encounter environments with unexpected external dis-
turbances and model uncertainty. Therefore, it is crucial to develop RL agents
that can sustain stable performance under such conditions. To address this is-
sue, this paper proposes an RL algorithm called robust deterministic policy gra-
dient (RDPG) based on adversarial RL and H, control methods. We formulate
a maxmin objective function motivated by H, control, which enables both the
agent and the adversary to be trained in a stable and efficient manner. In this
formulation, the user seeks a robust policy to maximize the objective function,
while an adversary injects disturbances to minimize it. Furthermore, for high-
dimensional continuous control tasks, we introduce robust deep deterministic pol-
icy gradient (RDDPG), which combines the robustness of RDPG with the stability
and learning efficiency of deep deterministic policy gradient (DDPG). Experimen-
tal evaluations in MuJoCo environments demonstrate that the proposed RDDPG
outperforms baseline algorithms in terms of robustness against both external dis-
turbances and model parameter uncertainties.

1 INTRODUCTION

Deep neural networks have enabled significant advances in reinforcement learning (RL) by serv-
ing as powerful function approximators, enabling RL agents to find optimal solutions in complex,
high-dimensional environments such as games (Silver et al., 2017; Mnih et al., 2015)) and nonlin-
ear control systems (Lillicrap et al., 2019; |Kalashnikov et al.l |2018)). Despite these successes, RL
agents are often sensitive to external disturbances and model uncertainties (Pinto et al., [20177; |[Zhai
et al.| 2022} [Vinitsky et al., |2020). In practice, physical systems inevitably face unmodeled dynam-
ics, parameter variations, and environmental perturbations. Such factors frequently lead to unstable
behavior and significant degradation in performance when deploying RL policies. Consequently,
enhancing the robustness of RL algorithms against disturbances and uncertainties has emerged as a
critical challenge for their reliable performance.

To address this challenge, we propose the robust deterministic policy gradient (RDPG) algorithm,
which enhances the robustness of the deterministic policy gradient (DPG) framework (Silver et al.,
2014 by incorporating principles from both H, control (Basar, 1989; |Stoorvogel & Weeren, [2002))
and adversarial RL (Pinto et al., 2017} [Tessler et al.,[2019). This novel combination is motivated by
their complementary strengths and their shared foundation in a two-player zero-sum game. The H,
control control is a classical robust control approach that provides rigorous, worst-case performance
guarantees by reformulating the control problem as a min-max optimization (Basar & Bernhard,
2008; Morimoto & Doyal, [2005)). The controller (user) minimizes a cost function while an external
disturbance (adversary) seeks to maximize it. On the other hand, adversarial RL offers a data-driven
framework for building resilience against a wide range of uncertainties (Pinto et al.,[2017; Tessler
et al.| 2019). In this context, a user agent and an adversary are trained in a zero-sum game: the user
aims to maximize its long-term reward, while the adversary learns to generate the most effective
noises to minimize it. This competition forces the agent to develop a robust and resilient policy.

By unifying the mathematical robustness of H, control with the empirical adaptability of adversar-
ial RL under the shared structure of a two-player zero-sum game, RDPG produces control policies
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that are both stable under severe disturbances and resilient to model uncertainties. Building on this
unified perspective, we formalize the framework through a new objective function inspired by H
control (Basar & Bernhard, 2008; Morimoto & Doyal 2005), which enables the joint training of
the user and the adversary. Using this objective, we develop an RL approach grounded in the DPG
method Silver et al.| (2014), where the user learns a policy that maximizes the objective function
while the adversary simultaneously learns a policy that minimizes it, thereby establishing a two-
player zero-sum learning process.

Furthermore, we extend RDPG to high-dimensional continuous control tasks by embedding it within
a deep RL framework. The resulting algorithm, termed robust deep DPG (RDDPG), integrates the
robustness of RDPG with the stability and learning efficiency of DDPG (Lillicrap et al., [2019).
Finally, we evaluate the effectiveness of RDDPG through comprehensive experiments in MuJoCo
simulation environments (Todorov et al., 2012)). The results demonstrate that RDDPG not only
achieves enhanced robustness against external disturbances compared to baseline algorithms, but
also maintains stable performance under model parameter variations such as changes of mass and
friction in systems.

2 PRELIMINARIES

2.1 ADVERSARIAL REINFORCEMENT LEARNING

Adpversarial reinforcement learning can be expressed as a two-player -y discounted zero-sum Markov
game (Perolat et al.,2015). The Markov decision process (MDP) of this game can be expressed as a
tuple (S, Ay, Az, P, 7,7, o). In the MDP, S is the state space, .A; and A5 are the continuous action
spaces for the first and second agents, respectively. The first agent selects an action a; € A; and
the second agent selects its action as € A5 at the current state s € S simultaneously. Then the state
transits to the next state s’ € S with the state transition probability P(s’|s, a1, az2) and the reward
r € R is incurred by the reward function r(s, a1, as, ') : S x A; X A3 x & — R. For convenience,
we consider a deterministic reward function and simply write 11 = 7(Sk, a1,,a2,, Sk+1), k €
{0,1,...}. The v € (0,1] is the discounted faction and sg € S represents the initial state. If
the policy of the first and second agents are 7 : & — A; and p : & — Ay respectively, the
objective of the first and second agents are to maximize and minimize the cumulative discounted
rewards over infinite time horizon J™* = E [ "7 / /*ri41| 7, p], where E[:|m, 1] is an expectation
conditioned on the two policies 7 and . [Perolat et al.| (2015) demonstrated that for a game with
optimal equilibrium return J*, there always exists the Nash equilibrium, and it is equivalent to the
minimax solution,

J* = minmax J™* = maxmin J™*. (1)
W T ou

2.2 H, CONTROL

As mentioned earlier, [, control can be formulated as a two-player zero-sum dynamic game, which
enables the design of controllers that are robust against external disturbances (Basar & Bernhard,
2008). This perspective naturally extends to adversarial RL, where the agent and the adversary
correspond to the two players in the game, ensuring a more stable learning process (Morimoto &
Doyal, 2005} |Long et al.| 2024)). Building on this connection, we briefly introduce the fundamentals
of H,, control.

Let us consider the discrete time nonlinear discrete-time system
Sk+1 = f(Sk, ak, Wk, Vk) )
o = g(Sk, ak, w)
where s, € RP? is the state, o, € RY is the output, ar € R™ is the control input, wi € R"™ is
the disturbance, v, € R is the process noise, f(-) is the system dynamics function, and g(-) is the

output function. Using the state-feedback controller a = 7(x), the system can be reduced to the
autonomous closed-loop system

Sk1 = f (s, m(xk), wi, vg)
or = g(sk, m(Tk), W)
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Assume that the initial state s is determined by sg ~ p(-), where p is the initial state distribution.
Defining the stochastic processes Wo.oc := (wo, w1, . ..) and 0p.c := (0p, 01, . . .), the system can
be seen as a stochastic mapping from wo..o t0 0.0 as follows: 0g.0o ~ T (+|Wo.00 ), Where T} is
the conditional probability of y¢..o given wy.o.,. Moreover, defining the L? norm for the general
stochastic process Zg.c := (20, 21, .- .) by

1Z0:00| 22 ==

> Elllzl3],
k=0

The H., norm (Basar & Bernhard| [2008)) of the autonomous system is defined as:

100:00 [ 2

1Tl :=  sup 3)

W0:00 720 ||W0:00||L2
The goal of H, control is to design a control policy 7 that minimizes the H., norm of the system
Tx
ko, :
= argm#nHT,rHOO.

Basar & Bernhard| (2008)) reformulates this minimization problem as a min—max problem in a two-
player zero-sum game and demonstrates that the solution of this min—max problem is equivalent to
the original solution in linear time-invariant system. In this formulation, the second player (adver-
sary) seeks to maximize the H., norm with its policy i, while the first player (user) aims to find a
control policy 7 that minimizes it

7 = argmaxmin || T, p*=argmin||T,|_.
T p 1

This two-player zero-sum game formulation serves as the foundation for connecting robust control
theory with adversarial RL. Building on this connection, we integrate the theoretical principles of
robust H ., control into the objective function of adversarial RL and propose the robust deterministic
policy gradient (RDPG) algorithm, which jointly trains a user and an adversary. In this framework,
the adversary learns to generate worst-case disturbances, while the user simultaneously learns an
optimal policy that remains effective under such conditions.

3 METHOD

In this section, we will describe the proposed method, robust deterministic policy gradient (RDPG)
and its deep reinforcement learning version, robust deep deterministic policy gradient (RDDPG).
We begin by formulating our problem as a two-player zero-sum Markov game between the user
and the adversary. This Markov game can be regarded as a special case of the MDP introduced
in Section 2.1} the user selects an action a € A; = R™ and the adversary selects disturbance
w € A = R™ at the current state s € S = RP simultaneously following their the parameterized
deterministic policies

a=my(s) € A4 =R™, w=ype(s) € A2 =R", s€S=RP

where my := RP — R™ denotes the user’s control policy parameterized by 0, and g : RP — R”
denotes the adversary’s policy parameterized by ¢. In this setting, the user and adversary update their
own policies to maximize and minimize the objective function, respectively, as will be described in
the subsequent sections.

3.1 ROBUST DETERMINISTIC POLICY GRADIENT

As mentioned in Section H . control enables to design controllers that are robust to external
disturbances by minimizing the Ho, norm of the system || T || like Equation[3] When incorporated
into adversarial RL, ||Ty || is redefined as the H,, norm of the system with respect to the user’s
policy 7 and the adversary’s policy p, denoted by || %, |0

1Ty = ool E [ Y007kt | mo, 1)
ulloo =

[Wousellpe B[00 vFllwrll3 | 1]
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Maximize J™#

T User policy
action: a; ——>
Objecti o " Sts1
fuj:cctil(\)/z Jo =g state: s, —  Environment

2 —— TuW

disturbance: w, —
Update
u Adversary policy Critic Q1(s,a,w)
Minimize J™# Q,(s,w)
Deterministic policy gradient

Figure 1: Overview of RDPG. Two players, the user and adversarial agents, interact in environment
generating action a; and w;. The action-value function Q1 (s, a, w) and Q2(s, w) are updated by the
reward r; and w,. The policy of user 7 is updated to maximize the objective function J™* while the
policy of adversary p is updated to minimize it.

This leads to the definition of the objective function J™¢-#¢, where the user’s goal is to maximize
the function, and the adversary’s goal is to minimize it.

E [ZZO:O Vka+1 |7T97W>]
E 3020 Yo wkl[3 | 1]

-
JTHe = max min J"¢#¢ = maxmin || T ,||cc = max min
0 ¢ 0 6 s 0 b

We can reformulate J™-#¢ as the ratio of two terms: J7™¢#¢ = J*"¢ / J)'* where

0o oo
JOM =R [27k7k+1 7T9,M<z>] , S =E [Z*y’“”wk@ W’]
P k=0

Notice that J;***¢ is an objective that depends on both the user’s policy 7y and the adversary’s
policy pu4, whereas J5* is a term that depends only on the adversary’s policy -

However, directly differentiating the objective function J™:#¢ = J "¢ / J1'* is challenging, mak-
ing the closed-form computation of its gradient not straightforward. To simplify this computation,
we employ the log-derivative trick. This formulation allows us to separate the contributions of the

numerator (J;***) and denominator (J5'*), thereby simplifying the computation of gradients.

. J1Tr9 e . o he He
maxminln | —z— | = maxmin(ln J; —InJy?)
o ¢ Jy? 2
Since the logarithm is only defined for positive arguments in this context, both J;"***** and J5'* must

be strictly positive to apply In(-) and the log-derivative trick. Under this condition, the gradients with
respect to the user’s parameters 6 and the adversary’s parameters ¢ can be expressed as follows:

oo
Vo{anfe’M —IHJSW)} = %
1
. J7T97qu Jﬂas
V¢'{ InJ; ?H —Tn ‘];é} = vj?rel»ud) o Vjﬂf
1 2
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Using these gradient expressions, the user updates its policy parameters via gradient ascent, while
the adversary updates its parameters via gradient descent

Vo, Hw
9k+1 = ok + Qg W
1 =0y,
I 7 R 2
Pt = Ok = Cp | — 7y T
1 2 P=0¢K

where g and g denote the respective learning rates.

Finally, following the deterministic policy gradient theorem (Silver et al.|[2014), each gradient term
can be explicitly computed using the action-value function Qlfl (s,a,w) and Q5*(s,w) . This pro-
vides a practical way to estimate gradients through sampled trajectories:

S"Vp:|
SN,D:|

VoJ " =E [Vngfl(s,w,ud))’

T=Tg

H=He

SNpil

To implement RDPG in high-dimensional continuous control tasks, we incorporate the techniques
from deep deterministic policy gradient (DDPG)(Lillicrap et al.,2019), resulting in the RDDPG. In
particular, we introduce the following networks:

Vi "M =E [V¢Ql1pl(5, o, M)‘

Vi = E [WQE”(S, W)

H=He

3.2 ROBUST DEEP DETERMINISTIC POLICY GRADIENT

1. The online actor network 7y (s) and 114(s) for the user and the adversary respectively

2. The corresponding target networks g/ (), f1g (s) for the two online actor network
3. Two online critic networks Qlfl (s,a,w), Q;bz (s,w)
4. The corresponding target critic networks Q1 (s, a, w), Q;% (s,w)

Now, following (Lillicrap et al.,|2019), the actor and critic networks are trained through the following
procedures.

3.2.1 CRITIC UPDATE

The two critic networks Qll/“ (s,a,w), Q;” (s, w) are trained by the gradient descent step to the loss
functions Leyitic,1 (15 B) and Leyitic,2(¢02; B) defined as follows:

Lcritic,l(d)l; B) : 1 Z (yl - Qibl (S, a, w))2

N |B‘ (s,a,w,r,s’)EB
1
LCI‘itiC,Q(wQ; B) = E Z (y2 - ngh (Sa w))2

(s,a,w,r,s’)EB

where B is the mini-batch, |B| is the size of the mini-batch. Moreover, the target y; and ys are
defined as:

Yy =r + IYQ’]Q_bl (S/, a, ’LU)
2 !’
y2 = ||w|l3 + Q1> (s, w)
where r is the reward incurred at the same time as the state s, and s’ means the next state.

The critic’s online parameters 11, 1o are updated by the gradient descent step to minimize the loss

Vi = i — Qeritic Vo, Leritic (Vi3 B), 1 € {1,2}.
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where «itic 1S the learning rate for critic update. After the online critics are updated, the target
parameters of two critic ¢} and ¢}, are updated as follows:

i1 + (1= 1)), e {l,2}
where 7 € (0, 1) serves as the interpolation coefficient, facilitating a gradual update that enhances
training stability.

3.2.2 ACTOR UPDATE

The joint actor loss equation for the user and the adversary Lactor (6, ¢; B) is defined as follows:

1 QY (s, mo(s), g (s)) 32 (s, g (s))
Lac or 0; ;B = -
tor(0, ¢ B) |B| (s,a,wz,r,squ M(QY") + e M(QY?) + €

Y1y 1 P _ 1 P
Where M(Ql 1) - E E(s,a,w’ns’)eB Ql ! (57 a, w) and M(Q2 2) - W Z(s}a,w,r,s’)EB Q2 2 (8? w)
are mean value of Q-values in batch, and € > 0 is a coefficient to stabilize training, and it prevents
the actor’s gradient from being flipped when the critic’s Q-value becomes negative.

The actor networks for the user 7y and adversary p4 are updated using the sampled deterministic
policy gradient (Silver et al., 2014 [Lillicrap et al.,|2019),

0+ 0+ OéuserveLaCtor(Gv ¢; B), ¢ — ¢ - aadvvqﬁLactor(ev ¢; B)
where ayser and o,y are the learning rate for the actor networks of user and adversary. Please note
the opposite signs of the gradients for the user and adversary updates, which are due to their opposite
roles. After the online actors are updated, the target parameters of actor ' and ¢’ are updated as
follows
O 710+ (1—71)0", ¢+ 10+ (1—7)¢
where 7 € (0, 1) is the interpolation coefficient.

3.2.3 EXPLORATION

To enable exploration, we perturb both the user and adversary policies using temporally correlated
Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein, [1930), following the standard DDPG
approach (Lillicrap et al.,[2019):

ap = mo(wk) + &,
where the temporal noise terms £} and &}’ evolve according to the stochastic difference equation:

Eh1 = & + Oc (e — &) At + 0 VAL, €,

where ¢, is a random variable drawn from a standard normal distribution A'(0,1). The behavior
of the process is governed by the parameters 6¢, which controls the rate of mean-reversion, fi¢
represents the long-term mean, and o¢ determines the noise scale.

The overall algorithm is described at Algorithm

4 EXPERIMENT AND RESULTS

4.1 EXPERIMENT SETUP

In this environment, we conducted two sets of experiments to evaluate the robustness of the proposed
algorithm. The first experiment assesses robustness against external disturbances. Specifically, the
agent is tested under random disturbances that are stronger than those used during training, in order
to examine its ability to maintain performance under unseen and harsher conditions. The second
experiment focuses on robustness to model parameter variations and uncertainties. In this case, the
physical parameters of the model, such as mass and friction coefficients, are perturbed to simulate
model mismatch, and we evaluate how well the learned policy adapts to these changes. Experiments
are conducted in four MuJoCo environments, whose detailed descriptions are also presented in the
Appendix[A.T] We compare RDDPG with the baseline algorithms DDPG (Lillicrap et al.,[2019) and
RARL (Pinto et al.| 2017). All algorithms are trained for 5000 episodes across ten seeds, with their
hyperparameters and training settings provided in the Appendix [A.2]
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Algorithm 1 Robust deterministic deep policy gradient (RDDPG)

1: Initialize the online critic networks Q}bl , Q;bz

2: Initialize the online actor networks 7y, 4 for the user and adversary, respectively.
3: Initialize the target parameters ¢} < 1,95 < 19, 8 < 0, 0" + &

4: Initialize the replay buffer D

5. for Episode i = 1,2, ...N;ze do

6: Observe the initial state sg

7: for Timestep k =0,1,2,..T — 1 do

8: Select actions ay, = mg(s) + & and wy, = pe(sk) + &

9: where £, £ are Ornstein-Uhlenbeck (OU) noise for exploration.
10: Observe the next state s11 and compute the reward riy1 := 7(Sk, @k, Wk, Sk+1)
11: Store the transition tuple (sg, ax, Wk, Tk+1, Sk+1) in the replay buffer D
12: Uniformly sample a mini-batch B from the replay buffer D
13: Update critic network:

Vi = Vi — Qeritic Vi, Leritic (Vi3 B),
14: Update actor networks by the deterministic policy gradient:

0«0 + Oéuscrvé’Lactor(gv (7257 B)
¢ — ¢ - aade¢Lactor(07 ¢7 B)

15: Soft update target networks:
0 10+ (1—1)0,

i€ {1,2}

¢ 1o+ (1-7)¢f

Vi i+ (1=, i€ {1,2}

16: end for

17: end for

4.2 RESULTS

4.2.1 ROBUSTNESS TO DISTURBANCES

HalfCheetah Hopper InvertedPendulumn Walker2D

DDPG 3160.4 4 2080.6 1111.2 £1064.5 362.7 + 393.0 841.6 + 886.6
RARL 2775.8 & 1806.6 1003.6 £ 707.2 795.7 £ 369.0 916.1 £ 978.8
RDDPG | 3306.2 +1417.0 | 1150.9 +951.3 677.84 + 440.44 1020.4 = 715.0

Table 1: Mean and standard deviation of episode rewards across ten seeds under random distur-
bances. Bold indicates the highest average reward. RDDPG exhibits more robust and stable per-
formance compared to the baselines, indicating that incorporating H, control into adversarial rein-
forcement learning enhances the robustness of deterministic policy learning against disturbances.

As shown in Table (I} the proposed RDDPG algorithm achieves a higher mean episode reward and
a lower standard deviation compared to DDPG algorithms under random disturbances. This result
suggests that RDDPG enhances robustness to external disturbances by leveraging an adversarial RL
framework that formulates the problem as a two-player zero-sum game between the agent and the
adversary. Through this dynamic interaction, the agent is compelled to learn a more generalized and
robust policy rather than overfitting to specific training conditions. The lower variance of RDDPG
compared to DDPG further highlights that its learned policy is more consistent and stable, avoiding
significant degradation under unmodeled or unexpected disturbances.

RARL also demonstrates improved robustness against disturbances compared to DDPG. However,
as shown in Table |1} our proposed RDDPG algorithm achieves a higher performance except Invert-
edPendulumn. A key distinction lies in the objective function While RARL focuses on training the
user to maximize the cumulative reward E [>°77 | 7*7441] and the adversary to simply minimize
it, RDDPG integrates H , control theory into the adversarial RL framework to effectively train both
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the user and the adversary. By embedding the H, objective function into our objective function
Jrone = Jrote /g RDDPG guides the user agent to learn a policy that is optimally robust
against the most challenging disturbances. Concurrently, the adversary agent is trained to generate
precisely this worst-case disturbance that most effectively hinders the user’s policy.

4.2.2 ROBUSTNESS TO MODEL UNCERTAINTY

DDPG

g2
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oh 06 oa t0 12
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N
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y

Figure 2: Heatmap of mean episode rewards across ten seeds under random disturbances. Red
indicates higher rewards, while blue indicates lower rewards. The rows correspond to the algorithms,
with the first, second, and third rows representing DDPG, RARL, and RDDPG, respectively. The
columns correspond to the environments, which are HalfCheetah, Hopper, InvertedPendulum, and
Walker2D. In each heatmap, the horizontal axis represents the mass coefficient, while the vertical
axis represents the friction coefficient.

Figure 2] presents a visualization of each algorithm’s performance, evaluated across a grid of mass
and friction coefficient variations for four environments. These heatmaps vividly illustrate differ-
ences in their robustness to model uncertainty and disturbances. Across all plots, red signifies higher
average rewards, while blue indicates lower performance.

Except Hopper environment, RDDPG maintains stable performance across different mass and fric-
tion conditions, while DDPG displays significant fluctuations with large areas of low rewards, indi-
cating lower robustness to parameter changes. Compared to RARL, RDDPG achieves consistently
higher rewards under model parameter variations. This implies that the RDPG formulation enables
the adversary to learn more effective and challenging disturbance strategies, which in turn drives the
user to develop more robust policies against model uncertainty.

5 RELATED WORKS

Robust reinforcement learning (RRL) is proposed to address the limitations of standard RL by ex-
plicitly accounting for model inaccuracies and external disturbances (Morimoto & Doyal 2005). By
formulating the problem as a differential game within the H, control framework, the actor learns
optimal control inputs while anticipating the worst-case disturbance. This approach demonstrates
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superior robustness on a nonlinear inverted pendulum task, where it successfully handles environ-
mental changes that cause standard RL controllers to fail.

Building on these ideas, recent work extends RRL into the deep reinforcement learning (DRL) set-
ting to improve robustness under various scenarios (Pinto et al.||2017;Zhai et al., 2022} [Long et al.,
2024 Tessler et al., 2019; Lee & Leel, [2025} |Vinitsky et al., [2020; [Dong et al., [2023)). Robust adver-
sarial reinforcement learning (RARL), inspired by RRL and H, control, trains a protagonist agent
to operate effectively while an adversary agent learns to apply the worst-case disturbances (Pinto
et al., 2017). This two-player zero-sum game formulation yields policies that are highly robust to
varying test conditions. However, training both agents in a balanced manner is challenging. Since
the adversary’s policy often learns faster than the protagonist’s, it is easier to develop a strong ad-
versary than to obtain a stable control policy. An excessively dominant adversary can destabilize the
system, bias the sampling process, undermine learning stability, and even degrade the robustness of
the resulting policy.

To address this issue, |Zhai et al.|(2022) propose a dissipation-inequality-constrained adversarial RL
framework that ensures system stability during training. By extending the dissipative principle of
robust H, control to Markov Decision Processes, they derive stability constraints based on Lo-gain
performance. Similarly, [Long et al.[(2024) presents a novel approach to enhance a robot’s ability
to withstand external disturbances. The authors frame the policy learning process as an adversar-
ial interaction between the robot’s locomotion policy and a learnable disturber that generates the
most destabilizing forces and their method incorporates an H, constraint to maintain the stability
of the joint optimization. Previous approaches often require additional computation for updating
constraints, which can significantly increase training complexity. In contrast, our work introduces
a simple objective function, derived from the H, control framework, that eliminates the need for
constraint updates and enables training to proceed using only the interaction between the user and
the adversary, thereby simplifying the learning process. Furthermore, these prior methods concen-
trate on improving the robustness of on-policy stochastic policies, such as TRPO (Schulman et al.,
2015)) and PPO (Schulman et al., 2017). In this paper, we demonstrate that RDPG extends robust-
ness improvements to off-policy deterministic policies. This not only enhances robustness against
disturbances and model uncertainties but also achieves stability and sample efficiency compared to
on-policy algorithms in continuous action spaces.

Lee & Lee| (2025) formulates H, control problem into two-player zero-sum dynamic game and
leverages cost function to update both user and adversary. However, the performance varies depend-
ing on a coefficient in the cost function,which controls the influence of disturbances, and finding an
optimal value for the coefficient is challenging. In contrast, RDPG allows for the training of both
agents without the need to tune the coefficient.

Tessler et al.| (2019) propose the action-robust Markov decision process (AR-MDP), where the ad-
versary directly interferes with the agent’s actions by either replacing them or adding perturbations.
In contrast, our approach operates in a different manner: the adversary does not modify the user’s
action. Instead, the adversary injects disturbances directly into the system dynamics, while both the
user and the adversary are jointly trained to maximize and minimize the objective function.

Vinitsky et al.| (2020); [Dong et al.| (2023)) argue that a single adversary can get stuck in a local
optimum, which can lead to poor robustness performance. Therefore, they employ a group of ad-
versaries in adversarial RL and optimize the average performance to improve the robustness. In
contrast, our work incorporate well-established robust control theory, H,, into the adversarial RL
to prevent degraded robustness performance.

6 CONCLUSION

This paper proposes RDPG, which combines the concept of the H, control problem and adver-
sarial RL, to overcome the robustness problem of DRL algorithms. Furthermore, we propose the
RDDPG, which combines the robustness framework of RDPG with the stability and efficiency of
DDPG, thereby achieving enhanced disturbance attenuation and stable policy learning in continu-
ous control tasks. We evaluate RDDPG in several Mujoco environment and the results show that
RDDPG successfully learns an optimal control policy and outperforms other DRL algorithms while
maintaining stable performance across different disturbance and model parameters scenarios.



Under review as a conference paper at ICLR 2025

REFERENCES

Tamer Basar. A dynamic games approach to controller design: Disturbance rejection in discrete
time. In Proceedings of the 28th IEEE Conference on Decision and Control,, pp. 407-414. IEEE,
1989.

Tamer Basar and Pierre Bernhard. H-infinity optimal control and related minimax design problems:
a dynamic game approach. Springer Science & Business Media, Boston, 2008.

Juncheng Dong, Hao-Lun Hsu, Qitong Gao, Vahid Tarokh, and Miroslav Pajic. Robust reinforce-
ment learning through efficient adversarial herding. arXiv preprint arXiv:2306.07408, 2023.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651—
673. PMLR, 2018.

Taeho Lee and Donghwan Lee. Robust deterministic policy gradient for disturbance attenuation and
its application to quadrotor control. arXiv preprint arXiv:2502.21057, 2025.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.
URLhttps://arxiv.org/abs/1509.02971.

Junfeng Long, Wenye Yu, Quanyi Li, Zirui Wang, Dahua Lin, and Jiangmiao Pang. Learning h-
infinity locomotion control, 2024. URL https://arxiv.org/abs/2404.14405,

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335-359,
2005.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming
for two-player zero-sum markov games. In International Conference on Machine Learning, pp.
1321-1329. PMLR, 2015.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International conference on machine learning, pp. 2817-2826. PMLR, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL |https://arxiv.org/abs/1707.06347.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387-395. Pmlr, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Anton A Stoorvogel and Arie JTM Weeren. The discrete-time riccati equation related to the h/sub/spl
infin//control problem. IEEE Transactions on Automatic Control, 39(3):686-691, 2002.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and appli-

cations in continuous control. In International Conference on Machine Learning, pp. 6215-6224.
PMLR, 2019.

10


https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2404.14405
https://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2025

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825,
2020.

Peng Zhai, Jie Luo, Zhiyan Dong, Lihua Zhang, Shunli Wang, and Dingkang Yang. Robust adver-
sarial reinforcement learning with dissipation inequation constraint. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 5431-5439, 2022.

11



	Introduction
	Preliminaries
	Adversarial Reinforcement Learning
	H Control

	Method
	Robust Deterministic Policy Gradient
	Robust deep deterministic policy gradient
	Critic update
	Actor update
	Exploration


	Experiment and results
	Experiment setup
	Results
	Robustness to disturbances
	Robustness to model uncertainty


	Related works
	Conclusion
	Experiments details
	Environments
	Algorithm details
	Experiment
	Robustness to disturbances
	Robustness to model uncertainty





