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Abstract. The automatic segmentation of organs at risk is extremely
dedicated to the clinical assistance that can significantly reduce the clin-
ical resource cost. However, training such a good enough model usually
requires a large amount of labeled data, or the model performance is
likely to meet heavy drop. Semi-supervised training strategies are proved
to be an effective solution to reduce the reliance of labeled data. In this
paper, we develop a powerful semi-supervised learning framework to ad-
dress the label-efficient multi-organ segmentation. The experiments are
conducted on the MICCAI FLARE 2022 dataset, where the results show
that the semi-supervised learning strategy has significant performance
boost.
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1 Introduction

The automatic segmentation of organs at risk [5,6,12,10,25,14,13,22] is extremely
dedicated to the clinical assistance that can significantly reduce the clinical re-
source cost. However, training such a good enough model usually requires a large
amount of labeled data, or the model performance is likely to meet a heavy drop.
Particularly for the clinics, it is well-known that the dense-level annotation needs
expertise knowledge to make the precise decision. Thus, simply envolving a large
group of annotators to handle the annotation task is not helpful. To develop a
label-efficient model seems to be the only one alternation that is also desperately
needed nowadays.

There are plenty of wise solutions to reduce the reliance of labeled data, such
as weakly supervised learning, self-supervised learning during model pretrain-
ing [24,21,11,2,1,20], and the most popular one of which is the semi-supervised
learning methods [19,7,23,4,18]. As a famous research direction, a lot of studies
have been conducted in distinct areas and imaging modalities, such as natu-
ral images, radiation images, fundus iamges, and so on. No matter what the
imaging is, these methods have similar underlying principles that are to produce
convincing pseudo labels for semi-supervision. In this group, the most simple and
straightforward tool is to produce pseudo label using trained models and then
using a post-processing strategy to reduce the false positives. Here, in this work,
we follow this group and apply it into the 3D context-aware organ segmentation
models.
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2 Method

2.1 Preprocessing

The preprocessing steps include 1) reorienting images to the left-posterior-inferior
(LPI) view by flipping and reordering, 2) resampling images to keep a fixed size
(160, 160, 160), and 3) normalizing images to reduce the distribution error by
z-score normalization.

2.2 Proposed Method

Our model follows the standard 3D U-Net design to achieve the coarse-to-fine
organ segmentation. It consists of two stages, where the first stage is to coarsely
localize the organs and the second stage is to precisely segment the boundaries.

Specifically speaking, the two stages share same network architecture design
as Fig. 1 shows, which is just a standard 3D U-Net. They differ in the inputting
data where the fist stage takes the original data as input while the second stage
takes the cropped prediction of the first stage as input.
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Fig. 1. The used network architecture of one stage.

2.3 Unlabel Data

To use the unlabeled volumes, we first train a good segmentation model under
full supervision using the labeled data. Then, the model calculates the predic-
tion of each unlabeled volume to obtain the pseudo label. As the existing false
positives heavily affect the label quality, we apply the post-processing strategy
like connective field analysis to improve the predictions.0 After generating the
pseudo labels, we merge these data into the label data and re-train the segmen-
tation models from scratch.
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2.4 Objectives

We use the summation between Dice loss and cross entropy loss because com-
pound loss functions have been proved to be robust in various medical image
segmentation tasks [15].

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [17], KiTS [8,9], AbdomenCT-1K [16],
and TCIA [3]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The detailed environment settings have been shown in
Table 1 where we use a single Titan 3090 GPU with 24 GB memory to train the
entire network.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 16.04.5 LTS
CPU Intel(R) Core(TM) i9-7700X CPU@3.30GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA 3090 24G
CUDA version 11.0
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.10, torchvision 0.2.2)
Specific dependencies
(Optional) Link to code
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Training protocols The details of training protocols have been shown in Ta-
ble 2 and Table 3. We use the standard “he" normal initialization to initialize
the model paramters with the consideration to avoid overfitting. The batch size
is set to four considering the memory limitation and the computation efficiency.
For the optimizer, we choose to utilize the AdamW optimizer emprically with
an initial learning rate of 0.001. For stable training process, we apply the decay
schedule to reduce the learning rate half each 200 epochs.

Table 2. Training protocols at the first stage.

Network initialization “he" normal initialization
Batch size 4
Patch size 192×192×192
Total epochs 1000
Optimizer AdamW
Initial learning rate (lr) 0.001
Lr decay schedule halved by 200 epochs
Training time 72.5 hours
Number of model parameters 41.22M1

Number of flops 59.32G2

CO2eq 1 Kg3

Table 3. Training protocols at the second stage.

Network initialization “he" normal initialization
Batch size 4
Patch size 160×160×160
Total epochs 1000
Optimizer AdamW
Initial learning rate (lr) 0.001
Lr decay schedule halved by 200 epochs
Training time 72.5 hours
Number of model parameters 41.22M4

Number of flops 59.32G5

CO2eq 1 Kg6
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4 Results and discussion

4.1 Quantitative results on validation set

The averaged DSC scores of models trained under full-supervision and semi-
supervision on the 10 cases validation set are respectively 0.8345 and 0.8523.
It could be seen that the pseudo labeled data has performance boost for the
segmentation modeling.

4.2 Qualitative results on validation set

This part is optional during validation phase since you do not have validation
ground truth.

Table 4. Test results.

Organs DSC score
Liver 0.9410
RK 0.9003
Spleen 0.9005
Pancreas 0.7585
Aorta 0.9352
IVC 0.8513
RAG 0.6579
LAG 0.7139
Gallbladder 0.6854
Esophagus 0.7522
Stomach 0.8021
Duodenum 0.6951
LK 0.8823
Mean 0.8058
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4.3 Limitation and future work

The first problem of semi-supervised organ 3D segmentation is the memory
limitation. As the previous tables have shown, the batch size is limited to 4
only which is a relatively small number. When performing the semi-supervised
learning process, the data in one minibatch requires the strongly correct data to
guide the optimization. With a limited and small mini-batch, the pesudo data
will cover a large proportion so that the optimization will be affected and the
final performance is poor.

5 Conclusion

In this work, we take the attempt to develop a semi-supervised learning frame-
work to reduce the label reliance for multi-organ segmentation. We build a
coarse-to-fine 3D organ segmentation model and train it under a supervised
training manner. The model after training on the unlabeled data has a slight
performance improvement. Due to the memory limitation, the performance has
not been improved a lot, which can be further discussed in the future work.
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