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Abstract

We uncover a paradoxical phenomenon in deep learning models: as model com-
plexity increases, epistemic uncertainty often collapses, challenging the assumption
that larger models invariably offer better uncertainty quantification. We propose
that this collapse stems from implicit ensembling within large models. To support
this hypothesis, we offer two lines of evidence: first, we demonstrate the epistemic
uncertainty collapse empirically across various architectures, from explicit ensem-
bles of ensembles and simple MLPs to state-of-the-art vision models; second, we
introduce implicit ensemble extraction, a technique that decomposes larger mod-
els into diverse sub-models, recovering hidden ensemble structure and epistemic
uncertainty. We provide theoretical justification for these phenomena and explore
their implications for uncertainty estimation.

1 Introduction

Bayesian deep learning provides us with a principled framework for quantifying uncertainty in
complex machine learning models (MacKay, 1992; Neal, 1994). A key concept in this framework is
epistemic uncertainty, which represents a model’s uncertainty about its predictions due to limited
knowledge or data (Smith & Gal, 2018; Der Kiureghian & Ditlevsen, 2009). This form of uncertainty
is distinct from aleatoric uncertainty, which captures inherent noise or randomness in the data
(Kendall & Gal, 2017). A wide range of applications relies on accurate epistemic uncertainty
estimation. These include active learning, where uncertainty guides data acquisition; anomaly
detection, where uncertainty can signal out-of-distribution inputs; and safety-critical systems, where
understanding model confidence is crucial for responsible deployment.

Intuitively, one might expect that as deep learning models grow in size and complexity, their capacity
for epistemic uncertainty would increase. As Fellaji & Pennerath (2024) argue, “the more parameters
a model has, the more likely it is to fit the data in multiple ways. Put another way, the posterior and
thus the posterior predictive will tend to be flatter, making the epistemic uncertainty grow,” which is
aligned with the conventional understanding of model complexity and uncertainty.

However, our work provides evidence for a simple yet paradoxical phenomenon: when constructing
higher-order ensembles, ensembles of ensembles, we observe an epistemic uncertainty collapse. We
initially observed and documented this behavior in Spring 20211 and have since confirmed it in
additional independent experiments that we share here. This collapse occurs because individual
ensembles, given sufficient size and training, converge to similar predictive distributions, causing
inter-ensemble disagreement to vanish as the ensemble size grows.

We hypothesize that, similar to ensembles of ensembles, implicit ensembling might occur within the
layers of large over-parameterized neural networks, potentially leading to significant underestimation
of epistemic uncertainty for traditional uncertainty estimators that rely on final logits. Hence, similar

1Published informally at https://blackhc.notion.site/Ensemble-of-Ensembles-Epistemic-Uncertainty-for-OoD-4a8df73b0d8942c8872aab1848a4393b.
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Figure 1: Epistemic Uncertainty Collapse in a Toy Regression Problem. As the sub-ensemble
size increases, epistemic uncertainty vanishes. Ensembles of 10 sub-ensembles with different sub-
ensemble sizes. Left: True function, data, and ensemble predictions. Middle: Epistemic uncertainty
across input space. Right: Mean epistemic uncertainty vs. sub-ensemble size.

to deep ensembles that have been found to offer better calibration (Ovadia et al., 2019), implicit
ensembling may explain why larger models also appear more calibrated (Tran et al., 2022). Recent
work by Fellaji & Pennerath (2024) provides additional evidence of this phenomenon occurring
even in simple over-parameterized MLPs trained on standard benchmark datasets but fails to provide
an explanation. Our theoretical contributions together with experiments that show both implicit
ensembling as well as initial results on how to recover epistemic uncertainty from a single large
model by extracting implicit ensembles from it provide a possible explanation for this phenomenon.

2 Background

Bayesian Model Average. The Bayesian Model Average (BMA) provides a principled framework for
combining predictions from multiple models. Let p(θ | D) be the posterior distribution over model
parameters Θ, given observed data D. The BMA computes the predictive distribution for a new input
x∗ by integrating over all possible parameter values:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, θ) p(θ | D)dθ. (1)

This averaging naturally accounts for model uncertainty by weighting predictions according to their
posterior probabilities.

Information-Theoretic Quantities. The quantification of uncertainty is crucial for robust and reliable
predictions. To formally quantify and differentiate between aleatoric and epistemic uncertainty, we
can use an information-theoretic decomposition (Houlsby et al., 2011; Gal et al., 2017; Smith & Gal,
2018). Let Y be the predicted output, and Θ be the model parameters. We define:

1. Total Uncertainty as the entropy of the predictive distribution of the BMA:

H[Y | x,D] = −
∫

p(Y | x,D) log p(Y | x,D)dY. (2)

2. Epistemic Uncertainty (I[Y ; Θ | x,D]) as the mutual information which estimates the expected
reduction in uncertainty about the prediction Y that would be obtained if we knew the model
parameters θ:

I[Y ; Θ | x,D] = H[Y | x,D]− Ep(θ|D)[H[Y | x, θ]]. (3)

3 Epistemic Uncertainty Collapse for Ensembles of Ensembles

Consider a scenario where we construct a higher-order ensemble by creating multiple deep ensembles,
each comprised of M models. Let E1:K := {E1, E2, ..., EK} be a set of K deep ensembles, each
containing M models: Ek := {θk1 , θk2 , ..., θkM}, where θkm represents the parameters of the m-th
model in the k-th ensemble. For a given input x, the predictive distribution of the k-th ensemble is:

p(y | x, Ek) =
1

M

M∑
m=1

p(y | x, θkm), (4)
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Figure 2: Epistemic Uncertainty Collapse on MNIST via Implicit Ensembling. (a) Mutual
Information Empirical Cumulative Distribution Function (ECDF) for Different MLP Widths. As MLP
size increases, mutual information decreases while accuracy remains stable. This trend persists across
training and other distributions. (b) MNIST vs. Fashion-MNIST OoD Detection AUROC Curves. The
mean difference in uncertainty scores between in-distribution and out-of-distribution samples (in
parentheses) also decreases with width, further evidencing epistemic uncertainty collapse, while the
AUROC for OoD detection slightly improves across both uncertainty metrics.

where we have dropped conditioning on the data D for brevity. Consequently, the predictive distribu-
tion of the ensemble of ensembles is the BMA over all individual members:

p(y | x, E1:K) =
1

K

K∑
k=1

p(y | x, Ek) =
1

K
1

M

K∑
k=1

M∑
m=1

p(y | x, θkm). (5)

By defining Θ to depend on K and M as categorical random variables with uniform distribution, we
can rephrase the epistemic uncertainty as: I[Y ; (K,M) | x] = I[Y ; θKM | x].
Infinite Sub-Ensemble Size. How does the epistemic uncertainty change with increasing size of the
sub-ensembles? For this, we note that if we let M → ∞,

1

M

M∑
m=1

p(y | x, θkm) → Ep(θ)[p(y | x, θ)] = p(y | x) (6)

independent of k. Hence, thanks to the central limit theorem, we have:
I[Y ; EK | x,D] = H[p(Y | x)]− Ep(k)[H[p(Y | x, k)]] → H[p(Y | x)]−H[p(Y | x)] = 0. (7)

Epistemic Uncertainty Collapse

As the size of the sub-ensemble in an ensemble of ensembles increases, the epistemic uncertainty
of the overall ensemble approaches zero, and we observe an epistemic uncertainty collapse. This
collapse occurs because the individual ensembles converge to similar predictive distributions.

4 Empirical Results

In the following section, we present a series of experiments that not only demonstrate the epistemic
uncertainty collapse in explicit ensembles of ensembles but also find parallels in the behavior of wide
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(b) ResNet models w/ opt. temp.
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Figure 3: Classification with Rejection for Implicit Ensemble Extractions from Pre-Trained
Models. Each subfigure shows accuracy, negative log-likelihood, and calibration error as a function of
epistemic uncertainty quantiles for different ensemble sizes. Solid lines represent extracted ensembles
of increasing size (from 2 to 7/16), while the dashed black line represents the original single model.
(a) The mutual information between predictions is used as the epistemic uncertainty measure for
ensembles, while entropy is used for the single model. As the ensemble size increases, we observe
improved performance for the area under curve (AUC), which indicates better epistemic uncertainty
calibration (with the notable exception of the calibration error). (b) Temperature scaling improves
epistemic uncertainty calibration in general but benefits the original model most. Accuracy and NLL
for extracted epistemic uncertainty only benefit in the low-uncertainty regime. (c) For VIT models,
we find that a mutual information weighted by the logit sum of each ensemble performs better than
the mutual information ((c) vs (d) with mutual information).

neural networks, providing evidence for the hypothesized effects of implicit ensembling. Details on
the models, training setup, datasets, and evaluation are provided in §D and in E in the appendix.

Toy Example. To illustrate the epistemic uncertainty collapse in ensembles of ensembles, we present
a one-dimensional regression task with the ground-truth function f(x) = sin(x) + ϵ, where ϵ ∼
N (0, 0.1). Figure 1 presents the results across three panels, which show narrowing uncertainty bands,
decreasing epistemic uncertainty across the input space for larger sub-ensembles between training
points and the inverse relationship between sub-ensemble size and mean epistemic uncertainty.

Explicit Ensemble of Ensemble. In Figure 4, we construct a deep ensemble comprising of 24
Wide-ResNet-28-1 models (Zagoruyko & Komodakis, 2016; He et al., 2015) trained on CIFAR-10
(Krizhevsky et al., 2009), which we then partition into ensembles of ensembles with varying sub-
ensemble sizes (24× 1, 12× 2, 8× 3, 6× 4, 4× 6, 3× 8, 2× 12). In Figure 4, we observe a clear
epistemic uncertainty collapse, manifested by the mutual information concentrating on smaller values,
and the AUROC shows a deterioration as the sub-ensemble size increases, directly resulting from the
epistemic uncertainty collapse. While the decrease in AUROC may appear modest, it is large enough
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to make the difference between state-of-the-art performance and baseline methods, e.g., compare to
the results in Mukhoti et al. (2023).

Implicit Ensembling on MNIST. Surprisingly, the effect of the epistemic uncertainty collapse is
even visible when training relatively small MLP models of varying width on MNIST in a controlled
setting. We reproduce the results from Fellaji & Pennerath (2024) in Figure 2. As the width of the
MLP increases, we observe a clear trend of decreasing mutual information across all datasets: MNIST
(LeCun & Cortes, 1998), Dirty-MNIST (Mukhoti et al., 2023), and Fashion-MNIST (Xiao et al.,
2017). The decrease in mutual information indicates a reduction in the model’s epistemic uncertainty
as it grows larger, despite maintaining similar accuracy. The mean difference in uncertainty scores
between in-distribution (MNIST) and out-of-distribution (Fashion-MNIST) samples decreases with
increasing model width. However, the AUROC for OoD detection using different uncertainty metrics
slightly improves as the model width increases, in line with the results in Fellaji & Pennerath (2024),
who report a deterioration of OoD performance on CIFAR-10 but not on MNIST.

Implicit Ensemble Extraction. To substantiate that implicit ensembling might be driving epistemic
uncertainty collapse, we mitigate this collapse by decomposing larger models into constituent sub-
models.

To extract implicit ensembles, we train boolean masks on the weights to recover individual models
with maximally different masks while maintaining low individual loss. For vision models, we leverage
the common use of average pooling to obtain per-tile class logits, which we average with different
target sizes to create differently-sized ensembles. Full details are provided in §D.

First, we extract implicit ensembles from the MLPs trained on MNIST above. In Figure 5, we see
the effectiveness of this implicit ensemble extraction technique. The results demonstrate that this
decomposition can recover much of the epistemic uncertainty of an ensemble from a single model,
providing support for our hypothesis about the mechanism underlying epistemic uncertainty collapse.

Second, we explore implicit ensemble extraction from pre-trained vision models based on ResNet (He
et al., 2015) and Vision Transformer (Dosovitskiy et al., 2021) model architectures on ImageNet-v2
(Recht et al., 2019). Leveraging the common use of average pooling in these models to aggregate
spatial information, we extract implicit ensembles without optimizing masks. Concretely, we remove
the global average pooling layer. This allows us to obtain per-tile class logits, which we average with
different target sizes to create differently-sized ensembles. Figure 3 shows three key performance
metrics—accuracy, negative log-likelihood (NLL), and calibration error—plotted against epistemic
uncertainty quantiles for different ensemble sizes for the original models and temperature-scaled
versions (Guo et al., 2017). Overall, the results are mixed but promising.

Limitations. These exploratory results provide initial evidence of epistemic uncertainty collapse and
implicit ensembling. We can even sometimes enhance a model’s uncertainty quantification, without
the need for retraining or additional data. At the same time, the mutual information is not always the
best uncertainty metric, the comparative performance changes depending on the model temperature,
and the pool size of the best implicit ensemble is not always the same for different metrics and model
architectures.

5 Conclusion

This study has uncovered and analyzed the collapse of epistemic uncertainty in large neural networks
and hierarchical ensembles. Our findings challenge the assumption that more complex models
invariably offer better uncertainty quantification out of the box. Our theoretical framework and
empirical results demonstrate this phenomenon across various architectures and datasets, from
explicitly constructed ensemble of ensembles to implicit ensembling in simple MLPs and state-of-
the-art vision models, and we have explored implicit ensemble extraction to recover hidden ensemble
structures and improve epistemic uncertainty estimates.
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Figure 4: Ensemble of Ensemble Results for CIFAR10 (iD) vs. SVHN (OoD). Different configu-
rations of 24 ResNet-50 models trained on CIFAR-10. (a) As the sub-ensemble size increases, the
epistemic uncertainty on SVHN as OoD dataset collapses. (b) The area under the receiver-operating
characteristic (AUROC ↑) for OoD detection using mutual information slowly deteriorates as the
sub-ensemble size increases.
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Figure 5: Recovering Epistemic Uncertainty through Implicit Ensemble Extraction. (a) The
extracted implicit ensemble (dashed line) largely recovers the mutual information scores of a fully
trained ensemble of the same width, supporting the hypothesis of latent ensemble structures in large
neural networks. (b) The extracted implicit ensemble shows comparable AUROC scores across
all metrics relative to a fully trained deep ensemble of the same width. The final panel compares
the softmax entropy of the original wide MLP with the predictive entropy of its extracted implicit
ensemble. The mean entropy difference between iD and OoD samples is larger for the extracted
ensemble. At the same time, the OoD performance does not match the single wider MLP.

A Epistemic Uncertainty Collapse

Epistemic Uncertainty Decomposition. To better understand the relationship between the epis-
temic uncertainty of a single ensemble and that of an ensemble of ensembles, we can leverage
the chain rule of the mutual information. Denoting the epistemic uncertainty of a single ensemble
consisting of all models as I[Y ; θKM |x,D] and the epistemic uncertainty of the ensemble of ensembles
as I[Y ; EK | x,D], we have:

I[Y ; θKM | x,D] = I[Y ;K,M | x,D] (8)
= I[Y ;K | x,D] + I[Y ;M |K,x,D] (9)

= I[Y ; EK | x,D] + I[Y ; θKM |K,x,D]. (10)
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This decomposition shows that the epistemic uncertainty of a single ensemble can be expressed
as the sum of the epistemic uncertainty of an ensemble of ensembles and the expected epistemic
uncertainty within each ensemble (conditioned on the ensemble index K). That is, the more epistemic
uncertainty is captured by the sub-ensembles, the less epistemic uncertainty remains for the ensemble
of ensembles.

Implications for Large Models and Their Ensembles The epistemic uncertainty collapse we have
derived for ensembles of ensembles could have significant implications for epistemic uncertainty
quantification in large neural networks, particularly for foundation models: as models grow in size and
complexity, they may exhibit implicit ensembling effects within their layers, leading to a reduction in
epistemic uncertainty estimates when ensembling them or even when using individual models.

More concretely, large neural networks can be viewed as a hierarchical composition of implicit
ensembles because each layer can be thought of as an ensemble of neurons, and successive layers
of the network as a whole can then be considered an ensemble of ensembles. As the depth and
width increase, we thus might observe the same epistemic uncertainty collapse as we have derived
in ensembles of ensembles. Thus, larger models might not necessarily provide better uncertainty
quantification.

B Implicit Ensemble Extraction

Extracted Implicit Ensemble from a Single MNIST MLP. For a given model (an ensemble member
with the largest width factor, 64), we train boolean masks on the weights such that we recover 10
individual models with maximally different masks and low individual loss on MNIST’s training set.
We find that the resulting deep ensemble performs as well as the ensemble of smaller models, even
though we started from a single model.

Specifically, we add binary mask to each linear layer of the network which we relax to probabilities
of binomial variables by applying sigmoid activations, effectively selecting subsets of the original
weights. We optimize separate 1D masks for its rows and columns. The outer product of these 1D
masks determines which weights from the original layer are included in each sub-model as a dense
sub-matrix. We maximize the diversity among the resulting sub-models by regularizing the mutual
information I[mask;M ] between the masks and sub-model index M while minimizing the loss on
the training set. This allows us to extract an implicit ensemble from a single trained network.

Extracting Ensembles from Pre-Trained Vision Models. We evaluate these models in-distribution
on the ImageNet-v2 dataset (Recht et al., 2019), which serves as a more challenging test set for
ImageNet-trained models (Russakovsky et al., 2015). Specifically, we compare pre-trained ResNet-
152 (He et al., 2015), Wide ResNet-101-2 (Zagoruyko & Komodakis, 2016), ResNeXt-101-64x4d
(Xie et al., 2017), and MaxViT (Tu et al., 2022) models, with the pre-trained weights retrieved from
PyTorch’s torchvision (maintainers & contributors, 2016) and timm (Wightman, 2019), respectively.
Our evaluation pipeline computes various uncertainty metrics and performance measures for different
ensemble sizes, ranging from 2× 2 to 7× 7 sub-models (respectively, 16× 16 for MaxViT) extracted
from a single pre-trained network. We compare these extracted ensembles against the original single
model performance, using mutual information as the primary uncertainty metric for ensembles and
entropy for the single model.

The solid lines represent extracted ensembles of increasing size, while the dashed black line repre-
sents the original single model. For ResNet-based ensembles, we use mutual information between
predictions as the measure of epistemic uncertainty, whereas for the single model, we use entropy.
For MaxViT, we use a weighted mutual information between predictions and ensemble size as the
measure of epistemic uncertainty, which assign a weight to each ensemble member based on the logit
sum of the member as it performs better.

C Related Work

Our study of epistemic uncertainty collapse in large neural networks and ensemble extraction
intersects with several recent works in adjacent areas.

Epistemic Uncertainty Collapse. Recent work by Fellaji & Pennerath (2024) observed decreasing
epistemic uncertainty as model size and dataset size vary, even in simple MLPs. They termed
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the decrease in epistemic uncertainty the “epistemic uncertainty hole” but left its explanation to
future work. Our study provides an explanation through both a theoretical framework and additional
empirical evidence via ensembles of ensembles, implicit ensembling, and ensemble extraction. A
more detailed comparison can be found in §F.

Extracting Sub-Models from a Larger Network. The concept of extracting sub-models from a
larger network shares similarities with several existing approaches in the literature. The “lottery
ticket hypothesis” (Frankle & Carbin, 2018) proposes that dense, randomly-initialized networks
contain sparse subnetworks capable of training to similar accuracy. However, our approach differs
in that we do not retrain the subnetworks, but rather identify diverse substructures within the pre-
trained model. Our method is more closely related to “sub-network ensembles” (Durasov et al.,
2021), where multiple subnetworks are extracted from a single trained network to form an ensemble.
Unlike previous work that primarily focused on pruning for efficiency, our approach aims to recover
epistemic uncertainty. We introduce a novel mutual information-based objective to obtain diverse
masks, emphasizing diversity rather than pruning. This allows us to extract an ensemble that better
captures the model’s internal epistemic uncertainty.

Learning from Underspecified Data. Our work can also related to efforts in learning from un-
derspecified data, such as the approach by Lee et al. (2022) to diversify and disambiguate model
predictions. While their focus is on training strategies, our method extracts diverse sub-models from
already trained networks, offering a complementary approach.

In contrast to these works, this work addresses fundamentally different research questions. We provide
a novel, unified explanation for epistemic uncertainty collapse in large models and hierarchical
ensembles, a phenomenon not previously explored in depth. Furthermore, we introduce and examine
innovative approaches to mitigate this collapse through implicit ensemble extraction, offering a new
perspective on uncertainty quantification in deep learning models.

D Model and Dataset Details

D.1 MNIST Experiments

For the MNIST experiments, we use a simple Multi-Layer Perceptron (MLP) architecture with two
hidden layers . The model structure is as follows:

• Input layer: 784 units (28x28 flattened MNIST images)
• First hidden layer: 64 units multiplied by a width multiplier (ranging from 0.5x to 256x)
• Second hidden layer: 32 units multiplied by the same width multiplier
• Output layer: 10 units (one for each digit class)
• Activation function: ReLU after each hidden layer
• Dropout layers: Applied after each hidden layer with p=0.1

We train these models using the following configuration:

• Optimizer: SGD
• Learning rate: 0.01
• Batch size: 128
• Epochs: 100
• Loss function: Cross-entropy loss

We create ensembles of 10 models for each width configuration. The width multipliers used are 1x,
2x, 4x, 8x, 32x, 64x, and 128x the base width.

Datasets used:

• MNIST (LeCun & Cortes, 1998): Standard handwritten digit dataset (in-distribution)
• Fashion-MNIST (Xiao et al., 2017): Clothing item dataset (out-of-distribution)
• Dirty-MNIST (Mukhoti et al., 2023): MNIST with added noise (high aleatoric uncertainty)
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D.2 CIFAR-10 Experiments

For the CIFAR-10 experiments, we use Wide-ResNet-28-1 models (Zagoruyko & Komodakis,
2016). We create an ensemble of 24 independently trained models, which we then partition into
sub-ensembles of various sizes, following the training details of (Mukhoti et al., 2023).

Training configuration:

• Optimizer: SGD with momentum (0.9)
• Learning rate: 0.1, decayed by a factor of 10 at epochs 150 and 250
• Weight decay: 5e-4
• Batch size: 128
• Epochs: 350
• Loss function: Cross-entropy loss

Datasets used:

• CIFAR-10 (Krizhevsky et al., 2009): 10-class image classification dataset (in-distribution)
• SVHN (Netzer et al., 2011): Street View House Numbers dataset (out-of-distribution)

D.3 ImageNet Experiments

For the ImageNet experiments, we use pre-trained models from the torchvision and timm libraries:

• ResNet-152 (He et al., 2015)
• Wide ResNet-101-2 (Zagoruyko & Komodakis, 2016)
• ResNeXt-101-64x4d (Xie et al., 2017)
• MaxViT (Tu et al., 2022)

These models are evaluated on the ImageNet-v2 dataset (Recht et al., 2019), which serves as a more
challenging test set for ImageNet-trained models.

D.4 Implicit Ensemble Extraction

For the implicit ensemble extraction experiments on MNIST, we use the following approach:

• Starting model: MLP with width factor 64
• Extraction method: Optimizing binary masks for each layer
• Number of extracted sub-models: 10
• Optimization objective: Maximize mask diversity (mutual information between masks and sub-

model index) while minimizing the cross-entropy loss on training set
• Mask diversity weight: 2.0

For the pre-trained vision models, we extract implicit ensembles by:

• Removing the global average pooling layer
• Obtaining per-tile class logits
• Averaging these logits with different target sizes (from 2x2 to 7x7 for ResNets, and up to 16x16 for

MaxViT)

E Evaluation Details

This section provides detailed information about our evaluation metrics, with a particular focus on
the weighted mutual information and calibration error calculations.

E.1 Weighted Mutual Information

For the MaxViT model, we introduce a weighted mutual information metric to measure epistemic
uncertainty. This metric assigns a weight to each ensemble member based on the logit sum of that
member. The weighted mutual information is calculated as follows:

1. For each input, we compute the logits for all ensemble members.
2. We calculate the sum of logits for each ensemble member.
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Table 1: AUROC and Mean Difference for Different Metrics and MLP Widths

AUROC Mean MI Difference

OoD Metric MI Entropy MI Entropy

MLP Width

×1 0.824 0.833 0.188 0.482

×2 0.835 0.841 0.194 0.420

×4 0.840 0.845 0.169 0.362

×8 0.842 0.847 0.144 0.329

×32 0.847 0.851 0.099 0.285

×64 0.848 0.851 0.104 0.280

×1.3e+02 0.848 0.851 0.100 0.275

3. We normalize these sums to create weights for each member.
4. We compute the mutual information between the predictions and the ensemble index, weighting

each member’s contribution by its normalized logit sum.

Formally, let li,j be the logit sum for the i-th input and j-th ensemble member. The weight wj for
this member is:

wj =

∑
i exp(li,j)∑

i,k exp(li,k)

The weighted mutual information is then computed using these weights in place of the uniform
weights used in standard mutual information calculations.

E.2 Calibration Error

We compute the calibration error as the absolute difference between the mean confidence and mean
accuracy. This is calculated by first computing the softmax of the logits to get probabilities, then taking
the maximum probability as the confidence for each prediction. We then compare the predictions to
the true labels to determine accuracy. The calibration error is the absolute difference between the
mean confidence and mean accuracy across all samples.

E.3 Metric Computation by Uncertainty Score

To analyze how different metrics vary with uncertainty, we compute metrics for different quantiles of
an uncertainty score. This process involves:

1. Sorting the inputs based on the provided uncertainty scores.
2. Dividing the sorted inputs into quantiles.
3. Computing the specified metric for each quantile (“Bucket Average”) or up to the given quantile

(“Acceptance Threshold”).

This approach allows us to observe how metrics like accuracy, negative log-likelihood, or calibration
error change as a function of the model’s uncertainty.

E.4 Other Evaluation Metrics

In addition to the above, we used several standard evaluation metrics:

1. Accuracy: The proportion of correct predictions.
2. Negative Log-Likelihood (NLL): The negative log-likelihood of the true labels under the model’s

predictions.
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3. Entropy: The entropy of the model’s predictive distribution, used as a baseline uncertainty
measure for single models.

4. Mutual Information: For ensembles, we use the mutual information between the predicted class
and the ensemble index as a measure of epistemic uncertainty.

5. AUROC: The Area Under the Receiver Operating Characteristic curve, used for evaluating
out-of-distribution detection performance.

These metrics were computed across different uncertainty quantiles to analyze how model perfor-
mance and uncertainty estimates correlate. For the AUROC calculations, we used the uncertainty
scores (entropy for single models, (weighted) mutual information for ensembles) as the ranking
criterion to distinguish between in-distribution and out-of-distribution samples.

F Comparison with Fellaji & Pennerath (2024)

While we initially observed and documented the epistemic uncertainty collapse phenomenon in 2021,
Fellaji & Pennerath (2024) independently discovered similar effects in Bayesian neural networks,
terming it the “epistemic uncertainty hole”. Our study offers several key extensions and insights:

• Theoretical Framework: We provide a theoretical explanation for the epistemic uncertainty
collapse through the lens of ensembles of ensembles and implicit ensembling, offering a mechanistic
understanding of why this phenomenon occurs:

– Ensembles of Ensembles: Our work introduces the concept of ensembles of ensembles,
showing how the epistemic uncertainty collapse manifests in hierarchical ensemble structures.
This provides a novel perspective on the phenomenon not explored in the other work.

– Implicit Ensemble Extraction: We propose and evaluate a novel technique for mitigating the
epistemic uncertainty collapse through implicit ensemble extraction. This practical approach
to addressing the issue goes beyond the observational nature of Fellaji & Pennerath (2024)’s
work.

• Broader Model Architectures: While Fellaji & Pennerath (2024) primarily focus on MLPs, we
demonstrate that this phenomenon extends to more complex architectures, including state-of-the-art
vision models based on ResNets and Vision Transformers.

Thus, while Fellaji & Pennerath (2024) observe an epistemic uncertainty collapse, our work provides
a more comprehensive theoretical and empirical investigation of this phenomenon. We not only
confirm their findings across a broader range of models and datasets but also offer new insights into
the mechanisms behind this effect and potential strategies for mitigation.

Furthermore, our analysis of the implications for out-of-distribution detection and the proposed im-
plicit ensemble extraction technique represent initial steps towards addressing the practical challenges
posed by the epistemic uncertainty collapse in real-world applications.

G Additional Results

Table 2: Mean Mutual Information, Accuracy and NLL for Different MLP Widths and Datasets.
Mean MI Accuracy NLL

Dataset MNIST Dirty-MNIST Fashion-MNIST MNIST Dirty-MNIST MNIST Dirty-MNIST

MLP Width

×1 0.0397 0.183 0.228 98 76.1 0.00216 0.477

×2 0.0305 0.176 0.225 98.4 77.5 4.81e-05 0.531

×4 0.0233 0.149 0.192 98.6 77.7 1.53e-06 0.471

×8 0.0182 0.125 0.162 98.5 77.5 1.73e-06 0.415

×32 0.011 0.0838 0.11 98.7 77.2 2.64e-07 0.402

×64 0.0104 0.0882 0.114 98.6 77.1 3.73e-08 0.46

×128 0.00956 0.0805 0.11 98.5 76.6 7.08e-08 0.351
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Table 3: Covariance between the mutual information as uncertainty metric and performance
metrics for different ResNet models and extracted ensemble sizes. Higher absolute values indicate
stronger relationships. The arrows denote which (neg) covariance is to be preferred.

Neg. Bucket Covariance Neg. Acceptance Covariance

Performance Metric Calibration Error ↓ Accuracy ↑ Neg. Log-Likelihood ↓
Model Uncertainty Metric Ensemble Size

Resnet152-V2 Entropy Original -0.030 0.046 -0.144

Mutual Information 2×2 -0.016 0.050 -0.179

3×3 -0.030 0.044 -0.150

4×4 -0.033 0.053 -0.189

5×5 -0.035 0.054 -0.192

6×6 -0.037 0.053 -0.185

7×7 -0.031 0.054 -0.203

Wide_Resnet101_2-V2 Entropy Original -0.030 0.044 -0.141

Mutual Information 2×2 -0.019 0.049 -0.174

3×3 -0.031 0.039 -0.139

4×4 -0.038 0.051 -0.187

5×5 -0.038 0.052 -0.188

6×6 -0.039 0.052 -0.191

7×7 -0.036 0.050 -0.194

Resnext101_64X4D Entropy Original -0.018 0.046 -0.147

Mutual Information 2×2 -0.011 0.049 -0.162

3×3 -0.019 0.042 -0.145

4×4 -0.022 0.042 -0.156

5×5 -0.021 0.043 -0.156

6×6 -0.024 0.044 -0.159

7×7 -0.021 0.043 -0.156
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Table 4: Covariance between the weighted mutual information as uncertainty metric and
performance metrics for different ResNet models and extracted ensemble sizes. Higher absolute
values indicate stronger relationships. The arrows denote which (neg) covariance is to be preferred.

Neg. Bucket Covariance Neg. Acceptance Covariance

Performance Metric Calibration Error ↓ Accuracy ↑ Neg. Log-Likelihood ↓
Model Uncertainty Metric Ensemble Size

Resnet152-V2 Entropy Original -0.030 0.046 -0.144

Weighted MI 2×2 -0.032 0.036 -0.134

3×3 -0.039 0.038 -0.151

4×4 -0.037 0.038 -0.144

5×5 -0.042 0.047 -0.178

6×6 -0.038 0.044 -0.159

7×7 -0.035 0.020 -0.062

Wide_Resnet101_2-V2 Entropy Original -0.030 0.044 -0.141

Weighted MI 2×2 -0.039 0.040 -0.138

3×3 -0.039 0.039 -0.148

4×4 -0.044 0.043 -0.159

5×5 -0.047 0.042 -0.163

6×6 -0.043 0.049 -0.180

7×7 -0.037 0.016 -0.073

Resnext101_64X4D Entropy Original -0.018 0.046 -0.147

Weighted MI 2×2 -0.043 0.036 -0.131

3×3 -0.042 0.045 -0.160

4×4 -0.039 0.043 -0.150

5×5 -0.042 0.045 -0.157

6×6 -0.040 0.049 -0.171

7×7 -0.023 0.009 -0.034

Table 5: Covariance between the mutual information as uncertainty metric and performance
metrics for the MaxVit model and extracted ensemble sizes. Higher absolute values indicate
stronger relationships. The arrows denote which (neg) covariance is to be preferred.

Neg. Bucket Covariance Neg. Acceptance Covariance

Performance Metric Calibration Error ↓ Accuracy ↑ Neg. Log-Likelihood ↓
Model Uncertainty Metric Ensemble Size

Timm-Maxvit Entropy Original -0.124 0.043 -0.228

Mutual Information 10×10 -0.098 0.032 -0.187

11×11 -0.097 0.031 -0.183

12×12 -0.101 0.033 -0.197

13×13 -0.102 0.034 -0.199

14×14 -0.104 0.035 -0.203

15×15 -0.105 0.036 -0.207

16×16 -0.103 0.037 -0.211

2×2 -0.083 0.040 -0.217

3×3 -0.103 0.034 -0.200

4×4 -0.084 0.020 -0.130

5×5 -0.100 0.029 -0.176

6×6 -0.094 0.025 -0.155

7×7 -0.100 0.031 -0.184

8×8 -0.096 0.033 -0.193

9×9 -0.091 0.028 -0.161
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Table 6: Covariance between the weighted mutual information as uncertainty metric and performance
metrics for the MaxVit model and extracted ensemble sizes. Higher absolute values indicate stronger
relationships. The arrows denote which (neg) covariance is to be preferred.

Neg. Bucket Covariance Neg. Acceptance Covariance

Performance Metric Calibration Error ↓ Accuracy ↑ Neg. Log-Likelihood ↓
Model Uncertainty Metric Ensemble Size

Timm-Maxvit Entropy Original -0.124 0.043 -0.228

Weighted MI 10×10 -0.089 0.041 -0.236

11×11 -0.089 0.041 -0.235

12×12 -0.086 0.041 -0.236

13×13 -0.088 0.041 -0.237

14×14 -0.086 0.041 -0.236

15×15 -0.085 0.041 -0.235

16×16 -0.082 0.043 -0.233

2×2 -0.093 0.039 -0.213

3×3 -0.115 0.042 -0.237

4×4 -0.101 0.041 -0.236

5×5 -0.100 0.041 -0.236

6×6 -0.095 0.040 -0.234

7×7 -0.094 0.040 -0.234

8×8 -0.085 0.041 -0.238

9×9 -0.091 0.041 -0.237
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(b) MaxViT model with weighted mutual information and temperature 1.0

0.2 0.4 0.6 0.8 1.0
Epistemic Uncertainty Acceptance Threshold

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 

0.2 0.4 0.6 0.8 1.0
Epistemic Uncertainty Acceptance Threshold

0.4

0.6

0.8

1.0

1.2

1.4

Ne
g.

 L
og

-L
ik

el
ih

oo
d 

0.2 0.4 0.6 0.8 1.0
Epistemic Uncertainty Bucket Average

0.2

0.3

0.4

0.5

Ca
lib

ra
tio

n 
Er

ro
r Uncertainty Metric

Entropy
Mutual Information
 
 
 
 
 

Ensemble Size
2×2
3×3
4×4
5×5
6×6
7×7
8×8

9×9
10×10
11×11
12×12
13×13
14×14
15×15
16×16

(c) MaxViT model with mutual information and temperature 1.0
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Figure 6: Complementary Plots of Performance metrics for different ensemble sizes extracted
from pre-trained models.
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