
Assessing and Post-Processing Black Box Large Language Models for
Knowledge Editing

Anonymous ACL submission

Abstract

The task of Knowledge Editing (KE) is aimed001
at efficiently and precisely adjusting the behav-002
ior of large language models (LLMs) to up-003
date specific knowledge while minimizing any004
adverse effects on other knowledge. Current005
research predominantly concentrates on edit-006
ing white-box LLMs, neglecting a significant007
scenario: editing black-box LLMs, where ac-008
cess is limited to interfaces and only textual009
output is provided. In this paper, we initially010
officially introduce KE on black-box LLMs,011
followed by presenting a thorough evaluation012
framework aimed at addressing the shortcom-013
ings of current evaluations, which are inade-014
quate for black-box LLMs editing and lack015
comprehensiveness. To address privacy leaks016
of editing data and style over-editing in existing017
approaches, we propose a new postEdit frame-018
work, ensuring privacy through downstream019
processing and maintaining textual style consis-020
tency via fine-grained editing. Experiments and021
analysis conducted on two benchmarks show022
that postEdit surpasses all baselines and ex-023
hibits robust generalization, notably enhancing024
style retention by an average of +20.82%.1025

1 Introduction026

As large language models (LLMs) are widely ap-027

plied to knowledge-intensive tasks and the world’s028

state evolves, the requirements of updating LLMs029

to rectify obsolete information or incorporate new030

knowledge to maintain their relevance is constantly031

emerging (Zhao et al., 2023; Liu et al., 2023a; Bian032

et al., 2023; Wang et al., 2023a). Frequent retrain-033

ing is impractical due to intensive computational034

overload and time consumption. To address this035

issue, the concept of knowledge editing (KE) has036

been proposed, aiming to efficiently and precisely037

modify the behavior of LLMs to update specific038

knowledge without negatively influencing other039

1We will release our code after blind review.

Who is the president of the US?

Joe Biden is the current
President of the US.

Donald Trump is the current
President of the US.

Knowledge Editing: <President of the US, is, Donald Trump→Joe Biden>

Who is the president of the US?

(a) An example of knowledege editing for fixing and updating LLMs.

… …

(b) Editing of open-source white box LLMs (c) Editing of closed-source black box LLMs

Figure 1: Illustration of Knowledge Editing and compar-
ison of two editing scenarios, where black-box LLMs
editing constrains LLMs to only obtain textual output.

knowledge (Yao et al., 2023; Wang et al., 2023b; 040

Zhang et al., 2024), as illustrated in Fig 1(a). 041

A prevalent approach to KE involves manip- 042

ulating the internals of LLMs through gradients 043

or causal analysis (De Cao et al., 2021; Mitchell 044

et al., 2021; Meng et al., 2022a,b; Huang et al., 045

2023), as depicted in Fig 1(b). While these meth- 046

ods have shown promise, they require LLMs to be 047

locally deployed and parameter-transparent, termed 048

white-box LLMs editing. In more typical scenarios, 049

LLMs are provided via APIs by upstream manu- 050

facturers (e.g., OpenAI, Google) for downstream 051

services, with inaccessible internal workings and 052

text-only output. We refer to KE on such LLMs 053

as black-box LLMs editing, as shown in Fig 1(c). 054

This raises a key question: how can we edit "black- 055

box" models when undesired outputs or errors oc- 056

cur? Furthermore, existing KE evaluation proto- 057

cols rely on changes in the model’s logits before 058

and after editing, and are unattainable for black-box 059

LLMs, prompting another question: how can we 060

comprehensively evaluate black-box KE methods? 061

There are some studies based on external mem- 062

ory that can be applied to black-box LLM editing 063

scenarios. SERAC (Mitchell et al., 2022) utilizes 064

an surrogate model to generate edited responses 065

when queries are classified within the editing scope 066

(INS), while relying on the base LLM for queries 067

out of the editing scope (OOS). IKE (Zheng et al., 068

1

Black Box
LLM

…

Editing
Judge

Surrogate
LM

retrieved
edit

unedited
 response

edited
 response

user
query

post-
editor

original
 response

(un)edited
response

(a) IKE (b) SERAC (c) postEdit (Ours)

user
query

retrieved
edit

user
query

(un)edited
response

retrieved
edit

demo
examples

Query: Howard Glacier is located in the continent __ Editing knowledge: Howard Glacier is located in Antarctica → Europe
Original Response: of Antarctica. Specifically, it is located in the northern part of the Antarctic Peninsula.
Edited Response: (a) Europe. (b) of Europe. (c) of Europe. Specifically, it is located in the northern part of the continent.(Privacy Retention) (Privacy Retention) (Privacy Retention)

Black Box
LLM

…

Black Box
LLM

…

INS

OOS

Figure 2: Comparison of different KE frameworks for black-box LLM editing. IKE operates on LLM input, and
SERAC performs editing using a surrogate model parallel to LLM, while our postEdit edits after the output of LLM
and achieves both privacy protection and style retention.

2023) facilitates in-context learning (Dong et al.,069

2022) of LLM itself by demonstrating exemplars070

to learn the ability to discern the need of editing071

and how to edit. However, as depicted in Fig072

2(a)(b), these methods encounter two crucial draw-073

backs: (1) Privacy leakage of editing data. IKE074

inputs recall data from the demonstration library075

and edit memory to LLMs, inevitably disclosing076

downstream private editing data to upstream LLM077

providers. (2) Style over-editing.2 One of the078

core objectives of KE is to ensure localized edit-079

ing, whereby KE methods should only edit the080

knowledge of LLMs while keeping the original081

output style unchanged. Specifically, the differ-082

ent scales or types between the surrogate model083

and base LLM result in stylistic differences for084

SERAC, while LLM’s sensitivity to prompts and085

demonstrations (Chen et al., 2023) leads to style086

over-editing in IKE. Therefore, even though their087

edited responses both target the new object "Eu-088

rope", they exhibit a pronounced departure in style089

from the original responses. An ideal black-box090

editing method should preserve downstream data091

privacy while achieving commendable editing per-092

formance and style retention.093

In this paper, we firstly revisit the existing eval-094

uation of KE and formulate an improved general095

evaluation framework for black-box LLM editing.096

In addition to the traditional lexical evaluation of097

knowledge editing, our framework incorporates the098

assessment of style retention for the first time and099

conducts a comprehensive evaluation from both tex-100

tual and semantic perspectives. (see Section 3). To101

solve the problems of existing methods mentioned102

above, we propose a novel post-editing approach103

termed postEdit, applied after the output of LLMs,104

as illustrated in Fig 2(c). Diverging from previous105

approaches, on the one hand, the post-processing106

mechanism allows postEdit to be deployed as a107

post-plugin at the downstream end, safeguarding108

2In this paper, the style extensively covers the expressive
forms, conciseness, length, information, etc., of the text.

the privacy of editing data. On the other hand, an 109

expert model called post-editor, guided by editing 110

knowledge, makes fine-grained modifications to 111

original responses generated by LLM, thereby ef- 112

fectively preserving the original style. As the role 113

of post-editor is to discern and precisely edit the 114

original response rather than storing new knowl- 115

edge, we integrate edit memory and a retriever into 116

postEdit, like IKE and SERAC, for efficient knowl- 117

edge injection. We leave the detailed exposition in 118

Section 4. Finally, we conduct comprehensive ex- 119

periments and analysis to demonstrate that postEdit 120

achieves outstanding performance in both editing 121

and style retention, exhibiting robust generalization 122

across various aspects, including LLMs, data, and 123

scales in Section 5 and 6. 124

Our contributions are three-fold: (1) We offi- 125

cially introduce knowledge editing on black-box 126

LLMs and propose a comprehensive KE evalua- 127

tion framework, incorporating the assessment of 128

style retention for the first time. (2) We propose 129

a novel postEdit method to post-edit the output of 130

LLMs through an expert model in a plug-in man- 131

ner. Our postEdit can both maintain the privacy of 132

downstream editing data and achieve commendable 133

editing performance and style retention. (3) Exper- 134

iments and analysis on two benchmarks demon- 135

strate that our postEdit outperforms all baselines in 136

both editing and style retention (Retention Score 137

+20.82% ↑), showing robust generalization. 138

2 Related Work 139

2.1 Knowledge Editing 140

White-box LLMs Editing The initial KE meth- 141

ods involve updating parameters using constrained 142

fine-tuning (Sinitsin et al., 2020; Zhu et al., 2020). 143

Recent studies mostly center around hyper-network 144

and attribution. Hyper-network-based approaches 145

(De Cao et al., 2021; Mitchell et al., 2021) train 146

a hyper-network to capture gradient changes for 147

specific edits, while attribute-based methods (Dai 148

2

et al., 2022; Meng et al., 2022a,b; Wu et al., 2023;149

Li et al., 2024) locate neuron activation in networks150

for targeted parameter updates. However, these ap-151

proaches exclusively focus on editing in white-box152

LLM scenarios, overlooking concerns on black-153

box LLMs editing.154

Memory-based Editing In addition to inject-155

ing edits as parameters into LLM, memory-based156

KE methods store edits in explicit memory and157

utilize retrieval-augmented methods to adjust the158

model’s final predictions based on relevant edits.159

Unlike conventional Retrieval-Augmented Gener-160

ation (RAG) methods (Gao et al., 2024) focus on161

enhancing document retrieval, KE methods con-162

centrate on modifing knowledge for INS queries163

and maintain output consistency for OOS queries.164

Therefore, SERAC (Mitchell et al., 2022) intro-165

duces an INS/OOS judge model, while IKE (Zheng166

et al., 2023) uses demonstrations with INS and167

OOS examples to determine whether to edit or168

maintain knowledge. Although applicable to black-169

box editing scenarios, these methods face chal-170

lenges related to privacy and style over-editing.171

2.2 Post-processing Methods172

Some post-processing methods have been applied173

to other tasks. Cao et al. (2020) fine-tune a BART174

model to improve factual consistency in abstrac-175

tive summarization by using summaries with errors176

as input and original or gold summaries as train-177

ing targets. Thorne and Vlachos (2021) fine-tune178

a T5 model to correct factual errors by recover-179

ing masked statements based on retrieved evidence.180

RARR (Gao et al., 2023) employs PaLM with few-181

shot demonstrations for error correction and attribu-182

tion report generation. Different from these studies,183

postEdit applies post-processing to the knowledge184

editing task, fine-tuning a post-editor to simultane-185

ously determine query relevance within the editing186

scope and make fine-grained modifications.187

3 Evaluation Framework188

3.1 Problem Formulation189

A knowledge entry is typically shown as a triple190

(subject, relationship, object). Following Wang191

et al. (2023b), an edit can be defined as e =192

(t, t∗) = (s, r, o → o∗), denoting the update of193

an old knowledge triple t to the new one t∗. As194

multiple input-output pairs can be associated with195

the same tuple, the input set associated with edit196

e is denoted as Xe = I(s, r), referred to as in-197

scope (INS) input space, the target output set asso- 198

ciated with o∗ is denoted as Y∗
e = O∗(s, r, o∗), and 199

the corresponding original output set is denoted as 200

Ye = O(s, r, o). For a base LLM fbase : X → Y , 201

given an edit e, the goal of KE is to modify the orig- 202

inal output yo ∈ Ye to ye ∈ Y∗
e for input x ∈ Xe, 203

while keeping the output unaffected for out-of- 204

scope (OOS) queries, i.e., ye = yo if x /∈ Xe. 205

Furthermore, we define KE on black-box LLMs 206

as the editing on a certain class of LLMs, where we 207

have no access to anything other than textual out- 208

puts of LLMs. It should be noted that this scenario 209

only restricts the base LLM to be edited, with no 210

limitations imposed on auxiliary models or tools. 211

3.2 Evaluation Protocol 212

3.2.1 Existing Logit-based Evaluation 213

Previous studies (Meng et al., 2022a; Mitchell et al., 214

2022; Zheng et al., 2023) primarily assess KE 215

based on three metrics: Efficacy, Generalization, 216

and Specifity, by calculating the change in logits 217

of the model before and after editing.3 On the one 218

hand, the inaccessibility of logits for black-box 219

LLMs renders these metrics ineffective. On the 220

other hand, KE should only modify spans in the 221

response involving the edit, while keeping the rest 222

and style unchanged to minimize negative impacts 223

of editing. However, this aspect has been fully 224

overlooked, leading to incomplete evaluation. 225

3.2.2 Improved Multi-perspective Evaluation 226

For black-box LLMs editing, the evaluation of KE 227

focuses on what changes and what remains in the 228

edited output ye compared to original output yo. 229

Therefore, we formulate the evaluation framework 230

from both the aspects of editing and retention. 231

Editing The Editing metric is designed to eval- 232

uate the editing for INS input and non-editing for 233

OOS input. When x ∈ Xe, the expected output 234

space of fbase transitions from Ye to Y∗
e . From the 235

perspective of textual editing (TE), Y∗
e discards 236

the old target o and incorporates the new target o∗. 237

From the perspective of semantic editing (SE), the 238

joint text composed of Xe and Y∗
e implies the new 239

knowledge t∗ and contradicts the old knowledge 240

t. When x /∈ Xe, the situation is reversed. We 241

formalize TE as follows: 242

TE =

{
1
2{ctn(ye, o

∗) + (1− ctn(ye, o))} x ∈ Xe

1
2{ctn(ye, o) + (1− ctn(ye, o

∗))} x /∈ Xe

(1) 243

3We provide details of these metrics in Appendix A.1.

3

 : Argentine
Football is affiliated

with ?

yo：FIFA (Fédération
Internationale de Football

Association) and CONMEBOL …

(a) Upstream Public LLM Interface (b) Downstream Private postEdit-plugin

Inference of PostEdit

Train post-editor

Trainable
Generative

LM

 : New
Zealand Football

belongs to?

yo：Oceania Football
Confederation (OFC) and FIFA…

 ：NATO (North
Atlantic Treaty Organization)

 and CONMEBOL…

 : <Retain>
 : Argentine

Football belongs
to FIFA → NATO

Retrival

post-editor

SFT

GPT4

post-editor

(a) Construct Original Response (c) Supervised Fine-tuning

Data Filter

(b) Construct Edited Response

Edit Memory

…

Base
LLM

…

Base
LLM

…

OUTPUT

OUTPUT

Figure 3: The overall architecture of postEdit. The post-editor is trained to learn: (1) distinguish between INS and
OOS queries; (2) edit the output of INS queries while preserving style. Pseudo-code is provided in Appendix B.1.

where ctn(a, b) = 1 if a contains b, otherwise 0.244

Similarly, SE is formalized as follows:245

SE =

{
1
2{ent([x, ye], t

∗) + (1− ent([x, ye], t))} x ∈ Xe

1
2{ent([x, ye], to) + (1− ent([x, ye], t

∗))} x /∈ Xe

(2)246

where ent(a, b) = 1 if a entails b, otherwise 0 by247

using the Natural Language Inference (NLI) model,248

[x, ye] denotes the concatenation of input-output249

pair , and to indicates the knowledge tuple associ-250

ated with OOS input-output pair [x, yo].251

Retention To assess the extent to which the252

edited output preserves the original style, we in-253

troduce Retention as an adversarial metric for Edit-254

ing. We separately evaluate textual retention (TR)255

and semantic retention (SR) using ROUGE scores256

(Lin, 2004) and the SBERT model (Reimers and257

Gurevych, 2019), formalized as follows:258

TR =

{
ROUGE(M(ye, o

∗),M(yo, o)) x ∈ Xe

ROUGE(ye, yo) x /∈ Xe

(3)259260

SR =

{
sim(M(ye, o

∗),M(yo, o)) x ∈ Xe

sim(ye, yo) x /∈ Xe

(4)261

where M(a, b) denotes masking the span relevant to262

b in a. For x ∈ Xe, we employ a masking operation263

to extract text unrelated to editing.264

It is worth emphasizing that our evaluation265

framework does not require the gold label of the266

edited response or internal information from the267

base LLM. This enables its applicability to a wide268

range of scenarios beyond black-box LLM editing.269

Due to space limitations, we further elaborate270

on and discuss the proposed evaluation framework271

in Appendix A.2 and provide pseudo-code in Ap-272

pendix A.3. Subsequently, we conduct extensive273

experiments on the consistency between these met- 274

rics and human evaluation in Appendix A.4, where 275

excellent Pearson Consistency scores validate the 276

rationality of the proposed metrics. 277

4 Methodology 278

4.1 Overall Architecture 279

To solve the problems of privacy leakage of edit- 280

ing data and style over-editing, as illustrated in 281

Fig 3, postEdit is deployed downstream and post- 282

processes the output of base LLM, comprising 283

three components: an edit-memory Me = {ei} 284

for storing editing knowledge, a retriever fretr for 285

recalling an edit, and a trained generative model 286

named post-editor fedit for executing the edit4. 287

The memory-based storage mechanism ensures ef- 288

ficiency and flexibility in injecting new knowledge. 289

During the inference phase, the retriever first re- 290

calls the edit with the highest similarity to user in- 291

put from Me. Following IKE, we directly employ 292

a pre-trained SBERT model without fine-tuning to 293

maintain the generalization. Finally, the post-editor 294

performs the editing guided by recalled edit. 295

4.2 Train post-editor 296

Original Response Augment The training 297

dataset of KE typically consists of editing knowl- 298

edge, along with queries covering both INS and 299

OOS input, denoted as Dtrain = {(ei, xi)}. Pre- 300

vious studies (Mitchell et al., 2022; Zheng et al., 301

2023) usually directly use the new object o∗i in ei 302

as the target output for editing, resulting in stylis- 303

tic differences between the editor and base LLM. 304

4In the main experiment, we fine-tune LLaMA 2-7B (Tou-
vron et al., 2023) as the post-editor and conduct an analysis of
performance at various scales in Section 6.5.

4

To address this gap, we first construct the original305

response yaugi,o = fbase(xi) via base LLM for each306

sample.307

Edited Response Augmentation In order to con-308

struct the training output targets for post-editor, we309

utilize both GPT-4 and rules to further augment the310

training dataset. For INS inputs, the objective is to311

modify the original response. Thus, given edit ei,312

input xi, and original output yaugi,o are aggregated313

using an editing template T aug5 and fed into GPT-4314

to obtain the edited output yaugi,e . For OOS inputs,315

the goal is to maintain the original response with-316

out modification. Therefore, we introduce a special317

token ⟨Retain⟩ as the target output, denoting no318

need for editing. We formulate this process as:319

yaugi,e =

{
fgpt4(T

aug(ei, xi, y
aug
i,o)) xi ∈ Xe

⟨Retain⟩ xi /∈ Xe

(5)320

Recent studies (Zhou et al., 2023; Lu et al., 2023;321

Liu et al., 2023b) have proven that the quality of322

training data is often more crucial than quantity. To323

further enhance the quality of augmented data and324

alleviate training burden, we evaluate and filter the325

edited responses obtained through GPT-4 augment.326

Based on the joint evaluation using the Editing met-327

rics TE and SE, formalized as 1{TE=1&SE=1}y
aug
i,e ,328

augmented samples with poor quality are discarded.329

Ultimately, we obtain the augmented training set330

Daug
train = {(ei, xi, yaugi,o , yaugi,e)}.331

Supervised Fine-tuning (SFT) After data aug-332

ment and filtering, the post-editor is trained in a333

supervised fine-tuning manner, where the query,334

edit, and original response are aggregated as in-335

put using an editing template T edit (distinct from336

T aug), with yaugi,e as the output target. After to-337

kenizing yaugi,e as {yaugi,e1
, yaugi,e2

, . . . , yaugi,eT
}, the loss338

function of SFT can be formalized as follows:339

Lsft = −
|Daug

train|∑
i=1

T−1∑
t=0

logP (yaugi,et+1
|xediti , yi,e≤t

)

(6)340

where xediti = T edit(ei, xi, y
aug
i,o).341

4.3 Inference of PostEdit342

For a user query x ∈ Dtest, the original response343

yo = fbase(x) is obtained through the upstream344

LLM interface. On the downstream side, the re-345

triever recalls the most similar edit ei∗ to x from346

5All templates mentioned are shown in Appendix B.2.

the edit memory: 347

i∗ = argmax0≤i<|Me| sim(x, ei) (7) 348

Next, we obtain the input xedit = T edit(ei∗ , x, yo) 349

by populating the editing template T edit and 350

transmit it to the post-editor to yield the out- 351

put fedit(xedit). Finally, by discerning whether 352

f(xedit) contains the special token ⟨Retain⟩, we 353

determine the ultimate output: 354

ye =

{
fedit(x

edit) fedit(x
edit) ̸= ⟨Retain⟩

yo fedit(x
edit) = ⟨Retain⟩

(8) 355

5 Experiments 356

5.1 Experiment Setting 357

Datasets We conduct experiments on two widely- 358

used KE datasets, CounterFact (Meng et al., 2022a) 359

and zsRE (Levy et al., 2017), where edits in the 360

training and test sets don’t overlap. Each entry 361

comprises an edit and three types of queries: Sim- 362

ple queries to validate the success of knowledge 363

injection, Rephrase queries to assess the general- 364

ization of the edit, and out-of-scope (OOS) queries 365

to verify the local effect of the edit. Differing from 366

zsRE, where OOS queries are randomly chosen, 367

CounterFact’s OOS queries share the same relation 368

and object with the edit but differ in subjects, pos- 369

ing a greater challenge for distinction. We provide 370

details and processing procedures in Appendix C.1. 371

Baselines We employ ChatGPT (gpt-3.5-turbo) 372

as the base LLM and extensively compare postEdit 373

with methods applicable to black-box LLM edit- 374

ing, including PROMPT (Zheng et al., 2023), IKE 375

(Zheng et al., 2023), SERAC (Mitchell et al., 2022), 376

and SERAC(ChatGPT). The PROMPT method 377

only prompts the LLM with the edit and the query, 378

while IKE provides diverse exemplars for demon- 379

stration learning. SERAC employs a fine-tuned 380

surrogate model6 to respond to queries within the 381

editing scope, and SERAC(ChatGPT) is a variant 382

where the surrogate model is changed to ChatGPT. 383

Detailed introduction of baselines are shown in Ap- 384

pendix C.2 and more baselines from other tasks are 385

compared in Appendix D.1. 386

Test Procedure The default test procedure of KE 387

involves editing a single piece of knowledge, as- 388

sessing it, and then rolling back the system to orig- 389

inal state before moving on to the next edit. This 390

6For a fair comparison, the surrogate model uses the same
pre-trained model and training data as the post-editor.

5

Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

PROMPT 85.17 86.73 63.8 78.57 (76.62) 83.1 84.57 61.97 76.54 (74.65) 21.42 21.54 18.11 20.36 (20.19) 53.14 54.86 51.37 53.13 (53.05)

IKE 94.2 85.8 85.4 88.47 (88.29) 93.2 84.5 85.3 87.67 (87.5) 24.14 18.98 22.81 21.97 (21.75) 53.45 48.94 57.69 53.36 (53.12)

SERAC 95.4 87.4 96.1 92.97 (92.79) 94.6 87.3 96.2 92.7 (92.53) 35.66 37.62 96.01 56.43 (46.13) 65.51 64.64 97.04 75.73 (73.1)

SERAC (ChatGPT) 95.23 85.8 98.6 93.2 (92.87) 95.3 86 98.6 93.31 (92.98) 23.43 26.71 96.41 48.85 (33.08) 55.04 56.88 97.91 69.95 (65.26)

postEdit (ours) 96.8 94.7 99.4 96.97 (96.93) 92.5 92.1 99.4 94.67 (94.55) 88.65 89.66 99.64 92.65 (92.39) 93.9 94.02 99.82 95.91 (95.84)

Table 1: Performance comparison on CounterFact. AVG is the direct average, while HM is the harmonic mean. We
bold the best and underline the second-best results. Results are averaged over three random runs.

Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

PROMPT 88.83 86.87 58.37 78.02 (74.53) 86.5 84.97 60.27 77.24 (74.29) 47.76 45.35 34.93 42.68 (41.51) 73.4 74.62 61.29 69.77 (69)

IKE 98.1 97.6 78 91.23 (90.2) 97.7 94.7 83.1 91.83 (91.38) 19.72 16.36 27.83 21.3 (20.3) 42.26 38.67 58.53 46.49 (45.04)

SERAC 98.7 95.1 100 97.93 (97.89) 97.6 93.3 100 96.97 (96.89) 68.02 66.06 100 78.03 (75.3) 86.84 85.91 100 90.92 (90.48)

SERAC (ChatGPT) 94.7 87.5 100 94.07 (93.77) 96.17 88.53 100 94.9 (94.61) 52.22 52.01 100 68.08 (61.75) 75.2 77.56 100 84.25 (82.69)

postEdit (ours) 98.4 98.6 100 99 (98.99) 96.2 95.4 100 97.2 (97.16) 95.76 96.13 100 97.3 (97.26) 97.69 97.89 100 98.53 (98.52)

Table 2: Performance comparison on zsRE.

setting keeps the edit memory size at 1, turning391

the retriever into an "oracle" to encourage methods392

to prioritize editing and locality capabilities. We393

compare methods under various memory sizes in394

Section 6.4 and discuss the efficiency of methods395

in Appendix E.396

5.2 Main Results397

Table 1 and Table 2 show the main results of postE-398

dit and comparable baselines on two benchmark399

KE datasets. In general, our postEdit method con-400

sistently outperforms all baselines with a large mar-401

gin, both in terms of Editing and Retention scores.402

Next, we analyze the results from three aspects:403

(1) Comparison of different methods. We can404

see that postEdit achieves nearly all optimal Editing405

scores, along with a significant surpassing of base-406

lines in Retention scores. On CounterFact, postE-407

dit outperforms the suboptimal baselines by 3.77%408

(TE), 1.36% (SE), 36.22% (TR), and 20.18% (SR)409

in average scores. On zsRE, postEdit surpasses the410

suboptimal baselines by 1.07% (TE), 0.23% (SE),411

19.27% (TR), and 7.61% (SR). This shows that412

postEdit can accurately locates and modifies spans413

in the text related to editing, while maintaining414

other content, thereby achieving high performance415

in both Editing and Retention.416

(2) Comparison of different query types. For417

queries within the editing scope, the Rephrase type418

involves the paraphrasing of editing knowledge,419

making it more challenging compared to the Sim-420

ple type. Concerning CounterFact, discernible421

decrements in Rephrase performance are observed422

for IKE and SERAC in contrast to the Simple423

type (e.g., TE score, IKE: 94.2→85.8, SERAC:424

95.5→87.4), whereas postEdit performance re-425

mains stable (96.8→94.7), indicating its robust gen-426

eralization proficiency in paraphrasing edits. For427

OOS queries, while SERAC and postEdit excel428

on the zsRE dataset, postEdit surpasses SERAC 429

on more challenging CounterFact, showcasing its 430

precise differentiation of queries requiring editing 431

without additional editing judge module. 432

(3) Comparison of different metrics. Com- 433

paring the Editing and Retention of baselines re- 434

veals a serious issue of style over-editing. For ex- 435

ample, the Editing performance of IKE surpasses 436

that of PROMPT, while the Retention lags behind 437

PROMPT, indicating a negative impact of demon- 438

stration on IKE’s style retention. Despite achieving 439

commendable Editing scores, SERAC and SERAC 440

(ChatGPT) still fall short in terms of Retention. 441

This highlights that effective editing does not guar- 442

antee good retention, emphasizing the need for a 443

comprehensive evaluation of knowledge editing. 444

6 Analysis 445

6.1 Generalization of PostEdit 446

In Section 4.1, we fine-tune the post-editor to ac- 447

quire the ability of discriminating and executing 448

edits. Therefore, it is imperative to validate the 449

generalization of post-editor’s abilities. For postE- 450

dit and baselines, we initially utilize ChatGPT as 451

the base LLM and CounterFact as the training set 452

or demonstration library. Subsequently, we con- 453

duct testing under different base LLMs and datasets 454

without re-training, as illustrated in Fig 4. 455

We can see that whether generalizing from Coun- 456

terFact to zsRE or from ChatGPT to PaLM27 and 457

LLaMA2-70B-chat8, postEdit consistently demon- 458

strates optimal performance in Editing and Reten- 459

tion. The robust generalization of post-editor high- 460

lights its plug-and-play applicability across diverse 461

scenarios, requiring no retraining when faced with 462

a new set of editing requests or when replacing 463

7https://ai.google/discover/palm2
8https://huggingface.co/meta-LLaMA

6

ID Edit Query Original Response
Edited Response

IKE SERAC postEdit

1 The nationality of Marcel
Maupi was what? French → Italian

What was Marcel
Maupi’s nationality?

Marcel Maupi was a
French national. Italian. Marcel Maupi

was Italian.
Marcel Maupi was an

Italian national.

2
Football Association of

Malaysia is affiliated
with the FIFA → Avengers

Football Association
of Malaysia is

affiliated with _

- Asian Football Confederation (AFC)
- FIFA (Fédération Internationale

de Football Association)
Avengers. Avengers. - Asian Football Confederation (AFC)

- Avengers

3
What is the programming
language for CLPython?

Lisp → JavaScript

What is the
programming language

for CLPython?

CLPython is an implementation
of Python language in

Common Lisp, which means
that the programming language

used for CLPython is Common Lisp.

JavaScript.

The programming
language for
CLPython is
JavaScript.

CLPython is an implementation
of Python language in

JavaScript,which means
that the programming language

used for CLPython is JavaScript.

4 Howard Glacier is located
in Antarctica → Europe

Howard Glacier
is located in

the continent _

of Antarctica. Specifically, it is
located in the northern part
of the Antarctic Peninsula.

Europe. of Europe.
of Europe. Specifically, it is
located in the northern part

of the continent.

5
In what city or state did

the formation of I Am Kloot
occur? Manchester → Bilbao

In which city or state
was the formation

of I Am Kloot?

I Am Kloot was formed
in Manchester, England. Bilbao. I Am Kloot was

formed in Bilbao.
I Am Kloot was formed

in Bilbao, Spain.

Table 3: Editing cases sampled from CounterFact and zsRE under different methods.

ChatGPT
CounterFact

ChatGPT
zsRE

PaLM2
CounterFact

Llama2-70B-chat
CounterFact

0

20

40

60

80

100

Ed
iti

ng
 S

co
re

 (%
)

IKE SERAC postEdit

ChatGPT
CounterFact

ChatGPT
zsRE

PaLM2
CounterFact

Llama2-70B-chat
CounterFact

0

20

40

60

80

100

Re
te

nt
io

n
Sc

or
e

(%
) IKE SERAC postEdit

Figure 4: Performance under different base LLMs and
datasets, where Editing Score is the average of TE and
SE, and Retention Score is the average of TR and SR.

the base LLM. In contrast, both IKE and SERAC464

exhibit performance fluctuations, particularly evi-465

dent in a significant decline when IKE is applied466

to LLaMA2-70B-chat. Further analysis reveals467

that conflicts between editing data and the intrinsic468

knowledge of LLaMA2-70B-chat lead to frequent469

refusals to generate responses based on edits. How-470

ever, postEdit successfully mitigated the impact of471

knowledge conflicts through post-processing.472

6.2 Case Study473

To visually demonstrate the editing and style reten-474

tion of postEdit and baselines, we conduct the case475

study in Table 3. In Case 1, postEdit accurately476

identifies and modifies "French" to "Italian" while477

maintaining the rest of the text unchanged to keep478

the style to the greatest extent. In contrast, IKE only479

responds with "Italian" and SERAC replies with480

"Marcel Maupi was Italian" without referencing481

the original response, revealing serious style over-482

editing. In Cases 2 and 3, postEdit respectively483

replaces "FIFA (Fédération Internationale de Foot-484

ball Association)" with "Avengers" and modifies485

"Common Lisp" to "JavaScript". This demonstrates486

Method
Semantic Editing (SE) Semantic Retention (SR)

Simple Rephrase OOS AVG Simple Rephrase OOS AVG
postEdit 92.5 92.1 99.4 94.67 93.9 94.02 99.82 95.91

Module Ablation
-w/o data fillter 90.6 90.6 99.4 93.53 94.19 93.76 99.82 95.92

post-editor→ChatGPT 89.73 87.8 70.77 82.54 89.39 88.78 83.27 86.26
GPT4→ChatGPT 93.2 91.8 99.4 94.80 90.04 89.54 99.81 93.13
SBERT Judgement 92.2 85.2 96.3 91.23 94.47 92.49 98.97 95.31

Training Data Ablation
-w/o Simple 91.8 91.2 99.5 94.17 93.96 94.21 99.89 96.02

-w/o Rephrase 92 12.9 99.8 68.23 94.37 71.67 99.95 88.66
-w/o OOS 92.2 91.5 4.7 62.8 94.47 94.12 75.01 87.86

Table 4: Ablation Study on CounterFact.

that postEdit can locate and edit spans semantically 487

related to editing knowledge, going beyond a rudi- 488

mentary replacement of old objects with new ones. 489

Furthermore, it is evident that postEdit can han- 490

dle spans logically associated with the editing. In 491

Case 4, the location changes from "Antarctica" to 492

"Europe", and the span in the original response, 493

describing the location as "the northern part of the 494

Antarctic Peninsula", is correspondingly adjusted 495

to "the northern part of the continent". Similarly, in 496

Case 5, as "Manchester" is changed to "Bilbao", the 497

country is also edited from "England" to "Spain". 498

6.3 Ablation Study 499

To understand the roles of each component and 500

training data type in postEdit, we conduct ablation 501

study in Table 4. 502

Module Ablation In our postEdit framework, we 503

utilize GPT-4 to generate edited responses and sub- 504

sequently perform data filtering. After removing 505

data filtering, the SE score for INS queries exhibits 506

a decline (Simple -1.9 and Rephrase -1.5), indi- 507

cating that data filtering effectively enhances the 508

quality of training data. Replacing the post-editor 509

with ChatGPT results in a noticeable decline in 510

performance across different types. This suggests 511

that LLMs like ChatGPT are not proficient per- 512

forming such editing tasks, highlighting the need 513

for fine-tuning the post-editor. Substituting GPT-4 514

with ChatGPT for edited response augmentation 515

results in a slight SE score increase (avg +0.13) but 516

a significant SR score decrease (avg -2.78). This 517

7

IKE SERAC postEdit
70

75

80

85

90

95

100

Ed
iti

ng
 S

co
re

 (%
)

IKE SERAC postEdit
0

20

40

60

80

100

Re
te

nt
io

n
Sc

or
e

(%
)

1 10 100 1000 2000Memory Size

Figure 5: Performance of methods under different Edit
Memory size on CounterFact.

indicates that ChatGPT lacks the fine-grained gran-518

ularity in editing compared to GPT-4, thereby re-519

sulting in a coarser-grained post-editor. Finally, we520

introduce the editing judging module, the same as521

SERAC, through comparing the SBERT semantic522

similarity with a threshold. The observed decrease523

in Rephrase and OOS scores demonstrates the su-524

perior discriminative capability of the post-editor.525

Training Data Ablation We further conduct data526

ablation by removing each type of data from the527

training set. We observe that removing Simple528

data has no notable impact, while the removal of529

Rephrase data leads to a significant drop (-79.2) in530

the SE metric. This indicates that Rephrase data531

plays a crucial role in improving the post-editor’s532

ability for editing knowledge injection and general-533

ization, while relying solely on Simple data doesn’t534

suffice for achieving the post-editor’s generaliza-535

tion. After removing OOS data, although there is a536

noticeable decline in OOS metrics, the metrics for537

Simple and Rephrase do not show a discernible im-538

provement. This indicates that post-editor doesn’t539

excessively compromise its ability to perform edits540

when learning to discriminate editing.541

6.4 Effect of Memory Size542

In real-world scenarios, as the world evolves, edited543

knowledge should be continuously infused and pre-544

served, i.e., the size of Edit Memory will continue545

to expand9. For the edit retrieved from Edit Mem-546

ory, IKE utilizes the base LLM itself, SERAC ap-547

plies a similarity threshold, and postEdit employs548

the post-editor to determine whether the query is549

within the scope of editing. We evaluate the per-550

formance of these methods under varying memory551

sizes in Fig 5. With the same retriever, postEdit552

exhibits the highest robustness among methods in553

both Editing and Retention scores, substantiating554

the superiority of the postEdit mechanism in dis-555

cerning the necessity of editing.556

9In some studies, this corresponds to Batch Editing and
Sequence Editing.

litellama
(460M)

phi-1.5
(1.3B)

qwen
(1.8B)

phi-2
(2.7B)

Llama-2
(7B)

Llama-2
(13B)

75

80

85

90

95

100

Ed
iti

ng
 S

co
re

 (%
)

ChatGPT GPT4 PostEdit

litellama
(460M)

phi-1.5
(1.3B)

qwen
(1.8B)

phi-2
(2.7B)

Llama-2
(7B)

Llama-2
(13B)

75

80

85

90

95

100

R
et

en
tio

n
Sc

or
e

(%
) ChatGPT GPT4 PostEdit

Figure 6: Performance curves of the post-editor at dif-
ferent scales on CounterFact.

6.5 Effect of Post-editor Scale 557

To investigate the effect of post-editor scale on per- 558

formance, we compare evaluation scores across 559

models ranging from 460M to 13B in size. As illus- 560

trated in Fig 6, it is evident that with the increase 561

in post-editor scale, editing scores gradually im- 562

prove (significant from 460M to 1.8B, followed by 563

slower gains beyond 1.8B), while retention score 564

remains stable after reaching 1.3B. This suggests 565

that editing ability is more influenced by the model 566

scale, and a larger post-editor can enhance edit- 567

ing performance while maintaining the retention. 568

We also compare the effectiveness of post-editor 569

with zero-shot ChatGPT and GPT-4. Similar to the 570

findings in Section 6.3, LLMs like ChatGPT are 571

not proficient in executing the editing task. There- 572

fore, on CounterFact, the performance of the 460M 573

post-editor is comparable to ChatGPT, and the 1.8B 574

post-editor surpasses GPT-4. This indicates that the 575

postEdit framework does not rely on a large-scale 576

post-editor, and small-sized editors can achieve sat- 577

isfactory performance and high efficiency. 578

7 Conclusion 579

In this paper, we firstly introduce a comprehen- 580

sive evaluation framework for knowledge editing 581

under black-box LLMs, incorporating multiple per- 582

spectives and considering the style retention. Next, 583

we propose a novel postEdit framework to address 584

existing issues in privacy leakage of editing data 585

and style over-editing in current methods by post- 586

processing the output of LLMs. Finally, experi- 587

ments on two benchmarks and thorough analysis 588

demonstrate that postEdit outperforms all baselines 589

and achieves strong generalization. 590

8

Limitations591

This paper primarily investigates the assessment592

and methodology of knowledge editing in black-593

box LLM scenarios. The proposed evaluation594

framework can comprehensively assess edited re-595

sponses from multiple perspectives, and the postE-596

dit method effectively addresses issues related to597

privacy concerns of editing data and style over-598

editing. However, our work also has several limita-599

tions: (1) Although our proposed evaluation frame-600

work and postEdit method mainly focus on knowl-601

edge editing in black-box LLM scenarios, they can602

be equally applied to editing in white-box LLM sce-603

narios. Due to constraints in length and the focus604

of the paper, we haven’t thoroughly explored this605

in the paper. (2) Although the postEdit framework606

does not require retraining when injecting editing607

knowledge, it still necessitates an initial fine-tuning608

phase to enable the post-editor to learn the ability609

to discern whether a query is within the editing610

scope and how to perform the editing, resulting in a611

certain computational load. (3) Our study primarily612

investigates the application of knowledge editing613

in knowledge question answering tasks, similar to614

previous research. We believe that our framework615

can be extended to other scenarios, such as fact-616

checking and sentiment editing. We leave these617

explorations for future research.618

Ethic Consideration619

In this paper, we propose a knowledge editing ap-620

proach that can be flexibly applied downstream to621

post-process the outputs of LLMs, effectively safe-622

guarding the privacy of downstream private editing623

data and maintaining consistency in the style of the624

LLM. While the purpose of knowledge editing is625

to rectify errors or outdated knowledge in LLMs,626

malicious knowledge editing may lead to the gen-627

eration of harmful or inappropriate outputs by the628

model. Therefore, ensuring secure and responsi-629

ble practices in knowledge editing is of paramount630

importance. The application of these techniques631

should be guided by ethical considerations, with632

safeguard measures in place to prevent misuse and633

mitigate the potential for harmful outcomes. Ad-634

ditionally, due to the difficulty in obtaining contin-635

uously up-to-date knowledge, some KE datasets636

such as CounterFact use counterfactual knowledge637

to validate the effectiveness of methods. Further-638

more, the base LLM, such as ChatGPT used in this639

work, merely serves as a demonstration of research640

on knowledge editing in black-box model scenar- 641

ios. We emphasize that these datasets and LLMs 642

are solely for academic exploration and do not in- 643

volve actual applications in real-world scenarios, 644

nor do they include content modification or attacks 645

on commercially used LLMs. 646

References 647

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie 648
Lu, and Ben He. 2023. Chatgpt is a knowledgeable 649
but inexperienced solver: An investigation of com- 650
monsense problem in large language models. arXiv 651
preprint arXiv:2303.16421. 652

Meng Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit 653
Cheung. 2020. Factual error correction for abstrac- 654
tive summarization models. In Proceedings of the 655
2020 Conference on Empirical Methods in Natural 656
Language Processing (EMNLP), pages 6251–6258, 657
Online. Association for Computational Linguistics. 658

Dhivya Chandrasekaran and Vijay Mago. 2021. Evolu- 659
tion of semantic similarity—a survey. ACM Comput- 660
ing Surveys, 54(2):1–37. 661

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKe- 662
own, and He He. 2023. On the relation between 663
sensitivity and accuracy in in-context learning. In 664
Findings of the Association for Computational Lin- 665
guistics: EMNLP 2023, pages 155–167, Singapore. 666
Association for Computational Linguistics. 667

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 668
Chang, and Furu Wei. 2022. Knowledge neurons in 669
pretrained transformers. In Proceedings of the 60th 670
Annual Meeting of the Association for Computational 671
Linguistics (Volume 1: Long Papers), pages 8493– 672
8502, Dublin, Ireland. Association for Computational 673
Linguistics. 674

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 675
ing factual knowledge in language models. In Pro- 676
ceedings of the 2021 Conference on Empirical Meth- 677
ods in Natural Language Processing, pages 6491– 678
6506, Online and Punta Cana, Dominican Republic. 679
Association for Computational Linguistics. 680

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy- 681
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and 682
Zhifang Sui. 2022. A survey for in-context learning. 683
arXiv preprint arXiv:2301.00234. 684

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony 685
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent 686
Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and 687
Kelvin Guu. 2023. RARR: Researching and revising 688
what language models say, using language models. 689
In Proceedings of the 61st Annual Meeting of the 690
Association for Computational Linguistics (Volume 1: 691
Long Papers), pages 16477–16508, Toronto, Canada. 692
Association for Computational Linguistics. 693

9

https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.1145/3440755
https://doi.org/10.1145/3440755
https://doi.org/10.1145/3440755
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910
https://doi.org/10.18653/v1/2023.acl-long.910

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,694
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,695
and Haofen Wang. 2024. Retrieval-augmented gen-696
eration for large language models: A survey.697

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan698
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and699
Weizhu Chen. 2021. Lora: Low-rank adaptation of700
large language models.701

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,702
Wenge Rong, and Zhang Xiong. 2023. Transformer-703
patcher: One mistake worth one neuron. arXiv704
preprint arXiv:2301.09785.705

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A706
method for stochastic optimization.707

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke708
Zettlemoyer. 2017. Zero-shot relation extraction via709
reading comprehension. In Proceedings of the 21st710
Conference on Computational Natural Language711
Learning (CoNLL 2017), pages 333–342, Vancouver,712
Canada. Association for Computational Linguistics.713

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun714
Ma, and Jie Yu. 2024. Pmet: Precise model editing in715
a transformer. Proceedings of the AAAI Conference716
on Artificial Intelligence, 38(17):18564–18572.717

Chin-Yew Lin. 2004. Rouge: A package for automatic718
evaluation of summaries. In Text summarization719
branches out, pages 74–81.720

Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A721
Smith, Yejin Choi, and Hannaneh Hajishirzi. 2023a.722
Vera: A general-purpose plausibility estimation723
model for commonsense statements. arXiv preprint724
arXiv:2305.03695.725

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and726
Junxian He. 2023b. What makes good data for727
alignment? a comprehensive study of automatic728
data selection in instruction tuning. arXiv preprint729
arXiv:2312.15685.730

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-731
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren732
Zhou. 2023. # instag: Instruction tagging for analyz-733
ing supervised fine-tuning of large language models.734
arXiv e-prints, pages arXiv–2308.735

Kevin Meng, David Bau, Alex Andonian, and Yonatan736
Belinkov. 2022a. Locating and editing factual as-737
sociations in gpt. Advances in Neural Information738
Processing Systems, 35:17359–17372.739

Kevin Meng, Arnab Sen Sharma, Alex Andonian,740
Yonatan Belinkov, and David Bau. 2022b. Mass-741
editing memory in a transformer. arXiv preprint742
arXiv:2210.07229.743

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,744
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-745
moyer, and Hannaneh Hajishirzi. 2023. FActScore:746
Fine-grained atomic evaluation of factual precision747

in long form text generation. In Proceedings of the 748
2023 Conference on Empirical Methods in Natural 749
Language Processing, pages 12076–12100, Singa- 750
pore. Association for Computational Linguistics. 751

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 752
Finn, and Christopher D Manning. 2021. Fast model 753
editing at scale. arXiv preprint arXiv:2110.11309. 754

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 755
pher D Manning, and Chelsea Finn. 2022. Memory- 756
based model editing at scale. In International Con- 757
ference on Machine Learning, pages 15817–15831. 758
PMLR. 759

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 760
Jing Zhu. 2002. Bleu: a method for automatic evalu- 761
ation of machine translation. In Proceedings of the 762
40th Annual Meeting of the Association for Compu- 763
tational Linguistics, pages 311–318, Philadelphia, 764
Pennsylvania, USA. Association for Computational 765
Linguistics. 766

Nils Reimers and Iryna Gurevych. 2019. Sentence- 767
BERT: Sentence embeddings using Siamese BERT- 768
networks. In Proceedings of the 2019 Conference on 769
Empirical Methods in Natural Language Processing 770
and the 9th International Joint Conference on Natu- 771
ral Language Processing (EMNLP-IJCNLP), pages 772
3982–3992, Hong Kong, China. Association for Com- 773
putational Linguistics. 774

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, 775
Sergei Popov, and Artem Babenko. 2020. Editable 776
neural networks. arXiv preprint arXiv:2004.00345. 777

James Thorne and Andreas Vlachos. 2021. Evidence- 778
based factual error correction. In Proceedings of the 779
59th Annual Meeting of the Association for Compu- 780
tational Linguistics and the 11th International Joint 781
Conference on Natural Language Processing (Vol- 782
ume 1: Long Papers), pages 3298–3309, Online. As- 783
sociation for Computational Linguistics. 784

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 785
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 786
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 787
Bhosale, et al. 2023. Llama 2: Open founda- 788
tion and fine-tuned chat models. arXiv preprint 789
arXiv:2307.09288. 790

Cunxiang Wang, Sirui Cheng, Zhikun Xu, Bowen Ding, 791
Yidong Wang, and Yue Zhang. 2023a. Evaluating 792
open question answering evaluation. arXiv preprint 793
arXiv:2305.12421. 794

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, 795
Chen Chen, et al. 2023b. Knowledge editing for 796
large language models: A survey. arXiv preprint 797
arXiv:2310.16218. 798

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, 799
Shuangzhi Wu, Chao Bian, and Deyi Xiong. 2023. 800
DEPN: Detecting and editing privacy neurons in pre- 801
trained language models. In Proceedings of the 2023 802

10

http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2023.emnlp-main.174
https://doi.org/10.18653/v1/2023.emnlp-main.174
https://doi.org/10.18653/v1/2023.emnlp-main.174

Conference on Empirical Methods in Natural Lan-803
guage Processing, pages 2875–2886, Singapore. As-804
sociation for Computational Linguistics.805

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,806
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu807
Zhang. 2023. Editing large language models: Prob-808
lems, methods, and opportunities. In Proceedings809
of the 2023 Conference on Empirical Methods in810
Natural Language Processing, pages 10222–10240,811
Singapore. Association for Computational Linguis-812
tics.813

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.814
2023. AlignScore: Evaluating factual consistency815
with a unified alignment function. In Proceedings816
of the 61st Annual Meeting of the Association for817
Computational Linguistics (Volume 1: Long Papers),818
pages 11328–11348, Toronto, Canada. Association819
for Computational Linguistics.820

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng821
Wang, Shumin Deng, Mengru Wang, Zekun Xi,822
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan823
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,824
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,825
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A826
comprehensive study of knowledge editing for large827
language models.828

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,829
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,830
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei831
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song832
in the ai ocean: A survey on hallucination in large833
language models.834

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,835
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen836
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A837
survey of large language models. arXiv preprint838
arXiv:2303.18223.839

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong840
Wu, Jingjing Xu, and Baobao Chang. 2023. Can841
we edit factual knowledge by in-context learning?842
In Proceedings of the 2023 Conference on Empiri-843
cal Methods in Natural Language Processing, pages844
4862–4876, Singapore. Association for Computa-845
tional Linguistics.846

Zexuan Zhong, Zhengxuan Wu, Christopher Manning,847
Christopher Potts, and Danqi Chen. 2023. MQuAKE:848
Assessing knowledge editing in language models via849
multi-hop questions. In Proceedings of the 2023850
Conference on Empirical Methods in Natural Lan-851
guage Processing, pages 15686–15702, Singapore.852
Association for Computational Linguistics.853

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao854
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,855
Lili Yu, et al. 2023. Lima: Less is more for alignment.856
arXiv preprint arXiv:2305.11206.857

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh858
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.859

2020. Modifying memories in transformer models. 860
arXiv preprint arXiv:2012.00363. 861

11

https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971

A Details of Evaluation862

A.1 Details of Existing Metrics863

There are three metrics based on logits mainly used864

to evaluate the performance of knowledge editing865

in previous work, namely Efficacy, Generalization,866

and Specificity.867

• Efficacy measures the accuracy of knowledge868

editing using ES (Efficacy Score) and EM (Effi-869

cacy Magnitude). For Simple type queries, the870

meaning of ES is E [I [P (o∗) > P (o)]] , and EM871

is obtained by E[P (o∗)− P (o)] .872

• Generalization measures the accuracy of knowl-873

edge editing on Rephrase queries by using RS874

(Rephrase Score) and RM (Rephrase Magnitude).875

For Rephrase type queries, RS and RM are ac-876

tually calculated to derive ES and EM under the877

condition of rephrasing queries.878

• Specificity uses NS (Neighborhood Score) and879

NM (Neighborhood Magnitude) to measure the880

ability of knowledge editing to preserve un-881

related knowledge. When dealing with OOS882

queries beyond the editing scope, no editing883

should take place, and the original facts should884

be preserved. Therefore, NS is obtained by885

E [I [P (o) > P (o∗)]], and NM is obtained by886

E[P (o)− P (o∗)] .887

A.2 Elaboration and Discussion of Evaluation888

Framework889

While some knowledge-related fields, including890

Hallucination (Zhang et al., 2023) and Retrieval-891

Augmented Generation (RAG) (Gao et al., 2024),892

involve metrics related to fact-checking or vali-893

dation, such as FactScore (Min et al., 2023) and894

AlignScore (Zha et al., 2023), it is important to895

emphasize that Knowledge Editing assessment in-896

volves a generated text and two conflicting knowl-897

edge references: the pre-editing old knowledge and898

the post-editing new knowledge, which fundamen-899

tally distinguishes the evaluation from metrics in900

these fields. For INS, the goal is to thoroughly re-901

place old knowledge and introduce new knowledge,902

whereas for OOS, it is the opposite. This distinc-903

tion renders the motivation and formulation of the904

proposed metrics (TE, SE) markedly different from905

those in other fields, although they may also utilize906

NLI or Contain function as the basic component.907

Additionally, one of the core demands of KE is908

to maintain locality. Previous works focused solely909

on whether edited knowledge preserves the pre-910

Human Score Auto Metric Pearson Correlation

Editing
TE 0.7644
SE 0.7784

Editing 0.8074

Retention
TR 0.9195
SR 0.8868

Retention 0.9255

Overall
Editing 0.5356

Retention 0.7612
Overall 0.839

Table 5: The Pearson correlation coefficient between
auto metrics and manual scores. For the auto metrics,
Editing is the average of TE and SE; Retention is the
average of TR and SR; Overall is the average of Editing
and Retention.

vious state for OOS queries, neglecting whether 911

information in other segments of the output re- 912

mains consistent or is disrupted, which we term 913

as Style Retention/Over-editing. To measure the 914

extent of style retention in edited output compared 915

to the original output, we introduce TR and SR 916

metrics. The design of TR and SR is inspired by 917

the widespread use of N-gram/semantic overlap in 918

the NLP community to measure consistency be- 919

tween generated text and reference text (Papineni 920

et al., 2002; Lin, 2004; Chandrasekaran and Mago, 921

2021). For INS, we calculate the consistency of 922

the remaining text before and after masking new 923

entities, while for OOS, it is calculated directly. 924

The rationality of these metrics is validated in 925

Appendix A.4. 926

A.3 Pseudo-code of Evaluation Framework 927

We summarize the pseudo-code of our proposed 928

evaluation framework in Algorithm 1. 929

A.4 Consistency with Human Evaluation 930

In Section 3.2.2, we proposed a comprehensive 931

evaluation framework, incorporating editing met- 932

rics (TE, SE) and retention metrics (TR, SR) to 933

evaluate the quality of output text after knowl- 934

edge editing. Prior to employing these metrics 935

for evaluation, it was imperative to ensure their va- 936

lidity and necessity. To address this, we sample 937

300 data points from the test set (comprising Sim- 938

ple, Rephrase, and OOS examples in a 1:1:1 ratio) 939

and enlist human evaluators to independently score 940

them from the perspectives of editing, retention, 941

and overall assessment. 942

The rules for human scorers scoring the effective- 943

12

ness of knowledge editing are as follows: in terms944

of editing, for INS queries, scoring is as follows:945

0 points if there is no editing at all; 0.5 points if946

there are partial edits, and the sentence still retains947

old knowledge or exhibits logical inconsistencies; 1948

point for perfect knowledge editing with no issues.949

For OOS queries, the scoring rules are reversed. In950

the retention aspect, after disregarding content re-951

lated to the edited knowledge in the sentence, for re-952

sponses within the editing scope: 0 points for very953

poor consistency between new and old responses;954

0.5 points for ordinary consistency; 1 point for ex-955

cellent consistency. In the overall aspect, human956

scorers are required to consider the overall impact957

of knowledge editing and assign scores within the958

range of 0, 1, 2, 3, 4 to the edited outputs. Then,959

we conduct Pearson correlation analyses between960

these human scores and our automated metrics.961

As shown in Table 5, both textual metrics (TE,962

TR) and semantic metrics (SE, SR) demonstrate963

commendable consistency scores with human rat-964

ings, affirming the effectiveness of the proposed965

metrics. Moreover, Whether for editing or reten-966

tion, the consistency score of the joint assessment967

of textual and semantic dimensions surpasses that968

of any individual metric. This underscores the ne-969

cessity of incorporating both textual and semantic970

metrics in the evaluation process. Finally, the Pear-971

son correlation coefficient between auto editing and972

human overall score is a mere 0.5356. However, a973

combined evaluation of editing and retention met-974

rics yield a significantly higher consistency score975

of 0.839 with human judgments. This suggests that976

effective alignment with human preferences cannot977

rely solely on editing scores but requires a com-978

prehensive assessment integrating both editing and979

retention metrics.980

B Details of Method981

B.1 Pseudo-code of PostEdit982

We summarize the pseudo-code for training post-983

editor and inference of postEdit in Algorithm 2 and984

Algorithm 3, respectively.985

B.2 Details of Prompts986

We demonstrate the two prompt templates T aug987

and T edit used in the postEdit method as follows:988

Prompt Template T aug

For the following query and original re-
sponse, you need to follow in order:
Firstly, locate all spans related to the old
fact:{s} {r} {o} in original reply;
Secondly, modify these spans according to
new fact: {s} {r} {o∗}.
Thirdly, output the edited response based
on the modified spans (Do not output other
content).
The query:
{x}
Original response:
{yo}
Edited response:

989

Prompt Template T edit

Instruction:
You will assume the role of an editor. For
the following query and original response,
if the new fact impacts the query or original
response, incorporate the new fact into the
original response. If not, simply output the
following word: retain.
New fact:
The answer of {s} {r} has been updated
from {o} to {o∗}.
The query:
{x}
Original response:
{yo}
Edited response:

990

C Details of Experiments Setup 991

C.1 Details of Datasets 992

In this work, we mainly used two datasets: zsRE 993

and CounterFact. 994

• zsRE (Levy et al., 2017) is one of the most pop- 995

ular question answering (QA) datasets which use 996

question rephrasing as the equivalence neighbor- 997

hood. These queries of Rephrase type are gener- 998

ated by back-translation. In zsRE, the relation- 999

ship between entities is associated with a set of 1000

crowd-sourced generated questions. Addition- 1001

ally, zsRE associates questions with randomly 1002

generated sentences to add out-of-editing scope 1003

examples. 1004

• CounterFact (Meng et al., 2022a) is a more chal- 1005

13

Dataset Data Type Train Number Test Number Length of Original Response (mean/max)

CounterFact

ALL 30000 1500 51.34/436
Simple 10000 500 50.40/436

Rephrase 10000 500 53.03/374
OOS 10000 500 50.59/367

zsRE

ALL 30000 1500 22.39/406
Simple 10000 500 14.84/119

Rephrase 10000 500 18.38/257
OOS 10000 500 33.96/406

Table 6: Statistical information on the sampled datasets.

lenging dataset than zsRE, the expected output1006

of which is contradictory to the fact. It is built1007

to distinguish superficial alterations in the word1008

selections and significant, generalized modifica-1009

tions in its foundational factual knowledge. In1010

CounterFact, the edited answer to the question1011

can sometimes be counterfactual to real world,1012

which makes it harder for the model to predict de-1013

sired answer and avoid the effects of pre-trained1014

LLMs knowing these desired facts before editing.1015

Following the previous work (Zheng et al.,1016

2023), for CounterFact, we designate data with1017

edit id numbers ranging from 0 to 2000 as the test1018

set for knowledge edit, while the remaining data1019

constitute the training set. As we adopt ChatGPT as1020

our base LLM in main experiments, in order to con-1021

trol the dataset size, we randomly sampled 30,0001022

examples (10,000 each for Simple, Rephrase, and1023

OOS) from the original training set. These sam-1024

ples constitute our training set. Additionally, we1025

randomly selected 1,500 examples (500 each for1026

Simple, Rephrase, and OOS) from the original test1027

set to create our query test set. The original re-1028

sponse for INS test queries are ensured to hit the1029

old knowledge object before editing, and the OOS1030

are ensured to have no wrong knowledge before1031

editing. We present the statistical information of1032

the datasets after sampling in Table 6, and show a1033

training sample and test sample from zsRE respec-1034

tively as follows:1035

Sample From zsRE Training Set

{
"edit_id": 15000,
"edit": "Denis Dyack » Denys de La

Tour || Who is the designer of Too Human?",
"query": "Who is the designer from

Too Human?",
"query_type": "rephrase",
"original_response_by_gpt3.5": "The

1036

designer of Too Human is Denis Dyack.",
"edited_response_by_gpt4": "The de-

signer of Too Human is Denys de La Tour."
}

1037

Sample From zsRE Test Set

{
"edit_id": 70,
"edit": "Serpens » Andromeda || Which

constellation is NGC 6604 in?",
"query": "Which constellation does

NGC 6604 belong to?",
"query_type": "rephrase",
"original_response": "NGC 6604 be-

longs to the constellation of Serpens."
}

1038

C.2 Details of Baselines 1039

• IKE (Zheng et al., 2023) is a method of knowl- 1040

edge editing that does not involve modifying 1041

the parameters of LLMs. It defines three types 1042

of demonstration formatting templates includ- 1043

ing copy, update, and retain. These templates 1044

serve distinct functions and act as guiding prin- 1045

ciples for the language model, enabling it to edit 1046

knowledge through in-context learning, allowing 1047

IKE to maintain both efficiency and excellent 1048

generalization and specificity. This opens up 1049

the possibility of employing IKE for the task of 1050

knowledge editing even in scenarios involving 1051

black-box models. 1052

• PROMPT (Zheng et al., 2023) is similar to 1053

IKE, as a method of knowledge editing through 1054

in-context learning. However, unlike IKE, 1055

PROMPT doesn’t require constructing three 1056

types of demonstrations but directly provides new 1057

knowledge to the LLM for knowledge editing. 1058

• SERAC (Mitchell et al., 2022) is a memory- 1059

14

based method of knowledge editing. This method1060

stores edits in explicit memory and learns to rea-1061

son about these edits as needed to adjust the1062

predictions of the base LLM without modifying1063

parameters. SERAC uses an explicit cache of1064

user-provided edit descriptors, alongside a scope1065

classifier and surrogate model. When presented1066

with a query, SERAC uses the scope classifier1067

to determine if the query falls within the editing1068

scope. If it does, the output is predicted via the1069

surrogate model; otherwise, it defers to the base1070

LLM for the output.1071

• SERAC (ChatGPT) In SERAC, the surrogate1072

model is obtained by fine-tuning a smaller lan-1073

guage model compared to the base LLM. We1074

utilize ChatGPT as the surrogate model to de-1075

rive a SERAC variant that requires no additional1076

training.1077

C.3 Details of Implementation1078

As described in Section 3.2.2, our evalua-1079

tion framework employs a NLI model for1080

computing SE, ROUGE scores for comput-1081

ing TR, and a SBERT model for computing1082

SR. In details, SE utilizes albert-xxlarge-v2-1083

snli_mnli_fever_anli_R1_R2_R3-nli10 as the NLI1084

model; ROUGE score is implemented through the1085

rouge library11, using the F1 score of ROUGE-1;1086

SR uses all-MiniLM-L6-v212 as the SBERT model.1087

For training of post-editor, we employ Chat-1088

GPT (gpt-3.5-turbo-0301) for original response1089

augment and GPT-4 (gpt-4-0613) for edited re-1090

sponse augment 13, with the default tempera-1091

ture coefficient (t = 0.1). In order to en-1092

hance training efficiency and reduce the num-1093

ber of updated parameters, we adopt the LoRA1094

strategy (Hu et al., 2021) to finetune LLaMA 2-1095

7B. Specifically, the rank of LoRA is set to 8,1096

with lora_alpha at 16 and lora_dropout at 0.05.1097

The LoRA update matrix is applied to the self-1098

attention and FFN layers, with target_modules as1099

["q_proj","k_proj","v_proj","o_proj","gate_proj",1100

"down_proj","up_proj"]. We train 5 epochs to opti-1101

mize post-editor, employing a batch size of 128 and1102

a learning rate of 5e-2. We also use the warmup1103

and cosine annealing strategy, with a warmup ratio1104

10https://huggingface.co/ynie/albert-xxlarge-v2-
snli_mnli_fever_anli_R1_R2_R3-nli

11https://pypi.org/project/rouge
12https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2
13https://platform.openai.com/docs/models

of 0.1 and the Adam optimizer (Kingma and Ba, 1105

2017). 1106

For retriever of postEdit, consistent with all base- 1107

lines, we use all-MiniLM-L6-v2 to encode queries 1108

and edit knowledge, while employing dot prod- 1109

uct as the similarity function. For base LLM, we 1110

use ChatGPT (gpt-3.5-turbo-0301) in main experi- 1111

ments, with a temperature coefficient of 0.1. Dur- 1112

ing inference of post-editor, we set the temperature 1113

coefficient of 0.1 and use beam search to decode 1114

the output, where num_beams is set to 4. To fur- 1115

ther improve the inference speed, we apply 8-bit 1116

quantization when loading post-editor. 1117

In terms of baselines, for SERAC, we fine-tune 1118

the surrogate model using the same LLAMA2- 1119

7B as post-editor and the similarity discrimination 1120

threshold is set at 0.7, determined through hyper- 1121

parameter search on the training set (ranging from 1122

0.1 to 0.9 with a step size of 0.1). To better main- 1123

tain consistency between baselines and postEdit 1124

implementations, we adopt training output targets 1125

consistent with postEdit for the surrogate model 1126

of SERAC, i.e., GPT-4 augmented edited response, 1127

rather than new objects of editing knowledge, aim- 1128

ing to achieve higher stylistic retention. For IKE, 1129

we set the number of demonstration examples to 1130

32. The rest of the hyperparameter settings for 1131

the baselines follow the default configurations in 1132

their original papers. All experiments use a single 1133

Nvidia A100 GPU (80 GB of memory). 1134

D More Experiments 1135

D.1 Comparison with more Baselines 1136

In Section 5, we compared methods that have the 1137

same scenario as postEdit. In this section, we trans- 1138

fer some methods from other task scenarios as base- 1139

lines to further enrich the experiments: 1140

• MeLLo (Zhong et al., 2023) is a method specifi- 1141

cally designed for multi-hop reasoning scenarios 1142

in knowledge editing, storing edited facts exter- 1143

nally and iteratively prompts LLMs to generate 1144

answers consistent with the edited facts. 1145

• RARR (Gao et al., 2023) aims to reduce hallu- 1146

cinations in LLM outputs by scrutinizing and 1147

revising. It initially uses search engines for 1148

evidence and attribution, then corrects unsup- 1149

ported content while preserving the original out- 1150

put, achieved through few-shot demonstrations. 1151

We replace the search engine with edit memory. 1152

• In addition to PROMPT and IKE, similar to the 1153

15

Method
Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)

Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM) Simple Rephrase OOS AVG (HM)

MeLLo 42.42 32.87 37.07 37.55 (37.05) 43.61 35.11 44.3 41.11 (40.55) 16.42 11.22 15.59 14.47 (14.01) 38.5 31.61 41.58 37.32 (36.74)

RARR 53.9 49.47 85.67 63.17 (59.48) 55.9 50.96 86.48 64.6 (61.13) 54.18 54.9 63.19 57.44 (57.15) 62 62.98 71.13 65.39 (65.12)

RAG-8shot 99.7 99.79 9.35 69.32 (23.62) 98.9 95.64 11.79 68.54 (28.47) 26.2 23.98 4.57 18.21 (10.04) 55.32 53.5 25.01 44.54 (39.09)

postEdit (ours) 96.8 94.7 99.4 96.97 (96.93) 92.5 92.1 99.4 94.67 (94.55) 88.65 89.66 99.64 92.65 (92.39) 93.9 94.02 99.82 95.91 (95.84)

Table 7: Performance comparison on CounterFact.

conventional RAG approach, we utilize few-shot1154

<query, edit, edited output> prompts to enhance1155

the base LLM’s utilization of editing knowledge,1156

where all demonstration samples belong to the1157

INS type, referred to as RAG-8shot. 141158

The results are shown in Table 7. Overall, postE-1159

dit still outperforms all baselines. We can further1160

observe that: Firstly, since MeLLo and RARR are1161

not designed specifically for general knowledge1162

editing scenarios, they perform poorly on Coun-1163

terFact. Secondly, leveraging the impressive in-1164

context learning capabilities of ChatGPT, RAG-1165

8shot achieves near-perfect INS Editing scores,1166

but faces significant challenges on OOS Editing1167

due to the lack of OOS demonstrations. This1168

emphasizes the need for a INS/OOS judgment1169

mechanism on top of RAG. Lastly, post-processing1170

methods (postEdit, RARR) achieve higher Reten-1171

tion scores compared to pre-processing methods1172

(MeLLo, RAG-8shot) , highlighting the advantage1173

of post-processing for style retention.1174

D.2 Does Post-editor just Remember the1175

Patterns of Training Data for Testing?1176

In the experiment setup of KE, the edits in the1177

training set and the test set are completely non-1178

overlapping. Therefore, the post-editor can not rely1179

on edits seen during training for testing. However,1180

another risk of overfitting to the training data oc-1181

curs when post-editor directly memorize patterns1182

of INS and OOS data rather than making judgments1183

based on recalled edits. To address this, we test the1184

performance of postEdit when the edit memory is1185

empty. As shown in Table 8, when edit memory1186

is empty, post-editor tends to classify queries as1187

OOS type, leading to nearly 100% OOS editing1188

scores and nearly 0% INS (Simple and Rephrase)1189

editing scores. This demonstrates that post-editor1190

relies on edit knowledge guidance for INS/OOS1191

judgment and revisions, rather than memorizing1192

patterns from the training data.1193

14Since in the standard KE experimental setup, the size of
edit memory is set to 1, serving as an "oracle" retrieval setting
to encourage methods to focus more on editing and locality
capabilities. Therefore, we don’t compare with some RAG
methods that focus on improving retrieval recall.

Types
CounterFact zsRE
TE SE TE SE

Simple 0.0 0.0 0.0 0.67
Rephrase 0.0 0.0 0.0 0.33
OOS 100.0 98.59 100.0 100.0
AVG 33.33 32.86 33.33 33.67

Table 8: Test results for CounterFact and zsRE when
Edit Memory is empty. We simulate this scenario by
replacing the recalled edit with an empty string "".

E Discussion on Efficiency 1194

Apart from Editing and Retention performance, KE 1195

methods should strive to minimize storage and 1196

computational costs. For memory-based black- 1197

box LLM editing, in addition to Edit Memory 1198

and the retriever, storage overhead also encom- 1199

passes the demonstration library for IKE, the judge 1200

model and surrogate model for SERAC, and the 1201

post-editor for postEdit. Furthermore, although 1202

memory-based methods do not incur computa- 1203

tional overhead for editing,they do introduce in- 1204

ference expenses. Specifically, for IKE, the infer- 1205

ence cost increases from fbase(x) to fretr(x,Me)+ 1206

fbase(demos, e, x); for SERAC, the additional cost 1207

is fretr(x,Me) + fjudge(x, eretr); and for postE- 1208

dit, it is fretr(x,Me) + fedit(e, x, yo). To further 1209

reduce post-editing overhead, one approach is to 1210

improve the reasoning efficiency of the post-editor. 1211

As highlighted in Section 6.5, a small-scale post- 1212

editor can also achieve commendable performance. 1213

Another potential option is to employ white-box 1214

parameter-editing methods to directly integrate 1215

editing knowledge into the post-editor. The post- 1216

editor can then use its knowledge to modify the 1217

original response of base LLM, exchanging editing 1218

costs for memory storage and retrieval expenses. 1219

16

Algorithm 1: Pseudo-code of Evaluation Framework in a Python-like style.

x: the input of LLM (All text is processed in lowercase, the same below.)
x_label: "INS" if x in editing scope else "OOS"
y_o, y_e: the original and edited output of LLM
o_old, o_new: the object of old knowledge t and new knowledge t∗ for editing
k_old, k_new: text format of t and t∗

k_self: text format of LLM’s self-knowledge to and is equivalent to [x, y_o]
func_entail(a,b): return True if a entails b else False by using a NLI model
func_rouge(a,b): return the ROUGE socre of a and b
func_sim(a,b): return the similarity of a and b using a SBERT model

def TE(y_e, x_label, o_old, o_new):
ctn_old=1 if o_old in y_e else 0
ctn_new=1 if o_new in y_e else 0
if x_label=="INS":

TE_score=0.5*ctn_new + 0.5*(1-ctn_old)
else:

TE_score=0.5*ctn_old + 0.5*(1-ctn_new)
return TE_score

def SE(x_label, x, y_e, k_old, k_new, k_self, func_entail):
ent_new=1 if func_entail(x+" "+y_e,k_new) else 0
if x_label=="INS":

ent_old=1 if func_entail(x+" "+y_e,k_old) else 0
SE_score=0.5 * ent_new + 0.5 * (1-ent_old)

else:
ent_old=1 if func_entail(x+" "+y_e,k_self) else 0
SE_score=0.5*ent_old + 0.5*(1-ent_new)

return SE_score

def TR(x_label, y_o, y_e, o_old, o_new, func_rouge):
if x_label=="INS":

TR_score=func_rouge(y_o.replace(o_old,"mask"), y_e.replace(o_new,"mask"))
else:

TR_score=func_rouge(y_o,y_e)
return TR_score

def SR(x_label, y_o, y_e, o_old, o_new, func_sim):
if x_label=="INS":

SR_score=func_sim(y_o.replace(o_old,"mask"), y_e.replace(o_new,"mask"))
else:

SR_score=func_sim(y_o,y_e)
return SR_score

17

Algorithm 2: Train post-editor
Data: training dataset Dtrain = {(ei, xi)}
Require: base LLM fbase, GPT-4 fgpt4, trainable generative model fedit, training epoch E, batch

size B
for i in 1, · · · , |Dtrain| do

yaugi,o = fbase(xi) ▷Original Response Augment
if xi ∈ Xe then

yaugi,e = fgpt4(T
aug(ei, xi, y

aug
i,o)) ▷Edited Response Augment

if TE(yaugi,e) ̸= 1 or SE(yaugi,e) ̸= 1 then
delete (ei, xi, y

aug
i,o , yaugi,e)

end
else

yaugi,e = ⟨Retain⟩
end

end
Daug

train = {(ei, xi, yaugi,o , yaugi,e)}
for epoch in 1, · · · ,E do

for iter=0, 1, 2, · · · do
sample a mini-batch B from Daug

train ▷Supervised Fine-tuning
compute Lsft by equation 6 and optimize fedit

end
end
Output: trained post-editor fedit

Algorithm 3: Inference of PostEdit
Input: use query x
Require: Edit Memory Me, base LLM fbase, post-editor fedit, SBERT retriever fretr
get original response: yo = fbase(x)
retrieve the most similar edit index: i∗ = argmax0≤i<|Me| sim(x, ei)

get post-editor’s output: fedit(xedit) = fedit(T
edit(ei∗ , x, yo))

if fedit(xedit) ̸= ⟨Retain⟩ then
ye = fedit(xedit)

else
ye = yo

end
Output: final response ye

18

	Introduction
	Related Work
	Knowledge Editing
	Post-processing Methods

	Evaluation Framework
	Problem Formulation
	Evaluation Protocol
	Existing Logit-based Evaluation
	Improved Multi-perspective Evaluation

	Methodology
	Overall Architecture
	Train post-editor
	Inference of PostEdit

	Experiments
	Experiment Setting
	Main Results

	Analysis
	Generalization of PostEdit
	Case Study
	Ablation Study
	Effect of Memory Size
	Effect of Post-editor Scale

	Conclusion
	Details of Evaluation
	Details of Existing Metrics
	Elaboration and Discussion of Evaluation Framework
	Pseudo-code of Evaluation Framework
	Consistency with Human Evaluation

	Details of Method
	Pseudo-code of PostEdit
	Details of Prompts

	Details of Experiments Setup
	Details of Datasets
	Details of Baselines
	Details of Implementation

	More Experiments
	Comparison with more Baselines
	Does Post-editor just Remember the Patterns of Training Data for Testing?

	Discussion on Efficiency

