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Abstract

The task of Knowledge Editing (KE) is aimed
at efficiently and precisely adjusting the behav-
ior of large language models (LLMs) to up-
date specific knowledge while minimizing any
adverse effects on other knowledge. Current
research predominantly concentrates on edit-
ing white-box LLMs, neglecting a significant
scenario: editing black-box LLMs, where ac-
cess is limited to interfaces and only textual
output is provided. In this paper, we initially
officially introduce KE on black-box LLMs,
followed by presenting a thorough evaluation
framework aimed at addressing the shortcom-
ings of current evaluations, which are inade-
quate for black-box LLMs editing and lack
comprehensiveness. To address privacy leaks
of editing data and style over-editing in existing
approaches, we propose a new postEdit frame-
work, ensuring privacy through downstream
processing and maintaining textual style consis-
tency via fine-grained editing. Experiments and
analysis conducted on two benchmarks show
that postEdit surpasses all baselines and ex-
hibits robust generalization, notably enhancing
style retention by an average of +20.82%.!

1 Introduction

As large language models (LLMs) are widely ap-
plied to knowledge-intensive tasks and the world’s
state evolves, the requirements of updating LLMs
to rectify obsolete information or incorporate new
knowledge to maintain their relevance is constantly
emerging (Zhao et al., 2023; Liu et al., 2023a; Bian
et al., 2023; Wang et al., 2023a). Frequent retrain-
ing is impractical due to intensive computational
overload and time consumption. To address this
issue, the concept of knowledge editing (KE) has
been proposed, aiming to efficiently and precisely
modify the behavior of LLMs to update specific
knowledge without negatively influencing other
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Figure 1: Illustration of Knowledge Editing and compar-
ison of two editing scenarios, where black-box LLMs

editing constrains LLMs to only obtain textual output.

knowledge (Yao et al., 2023; Wang et al., 2023b;
Zhang et al., 2024), as illustrated in Fig 1(a).

A prevalent approach to KE involves manip-
ulating the internals of LLLMs through gradients
or causal analysis (De Cao et al., 2021; Mitchell
et al., 2021; Meng et al., 2022a,b; Huang et al.,
2023), as depicted in Fig 1(b). While these meth-
ods have shown promise, they require LLMs to be
locally deployed and parameter-transparent, termed
white-box LLMs editing. In more typical scenarios,
LLMs are provided via APIs by upstream manu-
facturers (e.g., OpenAl, Google) for downstream
services, with inaccessible internal workings and
text-only output. We refer to KE on such LLMs
as black-box LLMs editing, as shown in Fig 1(c).
This raises a key question: how can we edit "black-
box" models when undesired outputs or errors oc-
cur? Furthermore, existing KE evaluation proto-
cols rely on changes in the model’s logits before
and after editing, and are unattainable for black-box
LLMs, prompting another question: how can we
comprehensively evaluate black-box KE methods?

There are some studies based on external mem-
ory that can be applied to black-box LLM editing
scenarios. SERAC (Mitchell et al., 2022) utilizes
an surrogate model to generate edited responses
when queries are classified within the editing scope
(INS), while relying on the base LLM for queries
out of the editing scope (OOS). IKE (Zheng et al.,
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2023) facilitates in-context learning (Dong et al.,
2022) of LLM itself by demonstrating exemplars
to learn the ability to discern the need of editing
and how to edit. However, as depicted in Fig
2(a)(b), these methods encounter two crucial draw-
backs: (1) Privacy leakage of editing data. IKE
inputs recall data from the demonstration library
and edit memory to LLMs, inevitably disclosing
downstream private editing data to upstream LLM
providers. (2) Style over-editing.”> One of the
core objectives of KE is to ensure localized edit-
ing, whereby KE methods should only edit the
knowledge of LLMs while keeping the original
output style unchanged. Specifically, the differ-
ent scales or types between the surrogate model
and base LLM result in stylistic differences for
SERAC, while LLM’s sensitivity to prompts and
demonstrations (Chen et al., 2023) leads to style
over-editing in IKE. Therefore, even though their
edited responses both target the new object "Eu-
rope", they exhibit a pronounced departure in style
from the original responses. An ideal black-box
editing method should preserve downstream data
privacy while achieving commendable editing per-
formance and style retention.

In this paper, we firstly revisit the existing eval-
uation of KE and formulate an improved general
evaluation framework for black-box LLM editing.
In addition to the traditional lexical evaluation of
knowledge editing, our framework incorporates the
assessment of style retention for the first time and
conducts a comprehensive evaluation from both tex-
tual and semantic perspectives. (see Section 3). To
solve the problems of existing methods mentioned
above, we propose a novel post-editing approach
termed postEdit, applied after the output of LLMs,
as illustrated in Fig 2(c). Diverging from previous
approaches, on the one hand, the post-processing
mechanism allows postEdit to be deployed as a
post-plugin at the downstream end, safeguarding

*In this paper, the style extensively covers the expressive
forms, conciseness, length, information, etc., of the text.

the privacy of editing data. On the other hand, an
expert model called post-editor, guided by editing
knowledge, makes fine-grained modifications to
original responses generated by LLM, thereby ef-
fectively preserving the original style. As the role
of post-editor is to discern and precisely edit the
original response rather than storing new knowl-
edge, we integrate edit memory and a retriever into
postEdit, like IKE and SERAC, for efficient knowl-
edge injection. We leave the detailed exposition in
Section 4. Finally, we conduct comprehensive ex-
periments and analysis to demonstrate that postEdit
achieves outstanding performance in both editing
and style retention, exhibiting robust generalization
across various aspects, including LL.Ms, data, and
scales in Section 5 and 6.

Our contributions are three-fold: (1) We offi-
cially introduce knowledge editing on black-box
LLMs and propose a comprehensive KE evalua-
tion framework, incorporating the assessment of
style retention for the first time. (2) We propose
a novel postEdit method to post-edit the output of
LLMs through an expert model in a plug-in man-
ner. Our postEdit can both maintain the privacy of
downstream editing data and achieve commendable
editing performance and style retention. (3) Exper-
iments and analysis on two benchmarks demon-
strate that our postEdit outperforms all baselines in
both editing and style retention (Retention Score
+20.82% 1), showing robust generalization.

2 Related Work

2.1 Knowledge Editing

White-box LLMs Editing The initial KE meth-
ods involve updating parameters using constrained
fine-tuning (Sinitsin et al., 2020; Zhu et al., 2020).
Recent studies mostly center around hyper-network
and attribution. Hyper-network-based approaches
(De Cao et al., 2021; Mitchell et al., 2021) train
a hyper-network to capture gradient changes for
specific edits, while attribute-based methods (Dai



et al., 2022; Meng et al., 2022a,b; Wu et al., 2023;
Li et al., 2024) locate neuron activation in networks
for targeted parameter updates. However, these ap-
proaches exclusively focus on editing in white-box
LLM scenarios, overlooking concerns on black-
box LLMs editing.

Memory-based Editing In addition to inject-
ing edits as parameters into LLM, memory-based
KE methods store edits in explicit memory and
utilize retrieval-augmented methods to adjust the
model’s final predictions based on relevant edits.
Unlike conventional Retrieval-Augmented Gener-
ation (RAG) methods (Gao et al., 2024) focus on
enhancing document retrieval, KE methods con-
centrate on modifing knowledge for INS queries
and maintain output consistency for OOS queries.
Therefore, SERAC (Mitchell et al., 2022) intro-
duces an INS/OOS judge model, while IKE (Zheng
et al., 2023) uses demonstrations with INS and
OOS examples to determine whether to edit or
maintain knowledge. Although applicable to black-
box editing scenarios, these methods face chal-
lenges related to privacy and style over-editing.

2.2 Post-processing Methods

Some post-processing methods have been applied
to other tasks. Cao et al. (2020) fine-tune a BART
model to improve factual consistency in abstrac-
tive summarization by using summaries with errors
as input and original or gold summaries as train-
ing targets. Thorne and Vlachos (2021) fine-tune
a TS5 model to correct factual errors by recover-
ing masked statements based on retrieved evidence.
RARR (Gao et al., 2023) employs PaLM with few-
shot demonstrations for error correction and attribu-
tion report generation. Different from these studies,
postEdit applies post-processing to the knowledge
editing task, fine-tuning a post-editor to simultane-
ously determine query relevance within the editing
scope and make fine-grained modifications.

3 Evaluation Framework

3.1 Problem Formulation

A knowledge entry is typically shown as a triple
(subject, relationship, object). Following Wang
et al. (2023b), an edit can be defined as e =
(t,t*) = (s,r,0 — 0*), denoting the update of
an old knowledge triple ¢ to the new one t*. As
multiple input-output pairs can be associated with
the same tuple, the input set associated with edit
e is denoted as X, = I(s,r), referred to as in-

scope (INS) input space, the target output set asso-
ciated with o* is denoted as V¥ = O*(s, r, 0*), and
the corresponding original output set is denoted as
Y. = O(s,1,0). For abase LLM fpu5c : X — ),
given an edit e, the goal of KE is to modify the orig-
inal output y, € Y, to y. € V! for input x € A,
while keeping the output unaffected for out-of-
scope (OOS) queries, i.e., ye = Y, if x ¢ X..
Furthermore, we define KE on black-box LLMs
as the editing on a certain class of LLMs, where we
have no access to anything other than textual out-
puts of LLMs. It should be noted that this scenario
only restricts the base LLM to be edited, with no
limitations imposed on auxiliary models or tools.

3.2 Evaluation Protocol
3.2.1 Existing Logit-based Evaluation

Previous studies (Meng et al., 2022a; Mitchell et al.,
2022; Zheng et al., 2023) primarily assess KE
based on three metrics: Efficacy, Generalization,
and Specifity, by calculating the change in logits
of the model before and after editing.> On the one
hand, the inaccessibility of logits for black-box
LLMs renders these metrics ineffective. On the
other hand, KE should only modify spans in the
response involving the edit, while keeping the rest
and style unchanged to minimize negative impacts
of editing. However, this aspect has been fully
overlooked, leading to incomplete evaluation.

3.2.2 Improved Multi-perspective Evaluation

For black-box LLMs editing, the evaluation of KE
focuses on what changes and what remains in the
edited output y. compared to original output y,.
Therefore, we formulate the evaluation framework
from both the aspects of editing and retention.
Editing The Editing metric is designed to eval-
uate the editing for INS input and non-editing for
OOS input. When x € X, the expected output
space of fp,se transitions from ), to V5. From the
perspective of textual editing (TE), Y} discards
the old target o and incorporates the new target o*.
From the perspective of semantic editing (SE), the
joint text composed of X, and )} implies the new
knowledge t* and contradicts the old knowledge
t. When = ¢ X, the situation is reversed. We
formalize TE as follows:

—_— {;{cm(ye,o*> +(1—ctn(ye, o))}« € X,
Hetn(ye, 0) + (1 = ctn(ye,0)} @ ¢ Xe<1>

3We provide details of these metrics in Appendix A.1.
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Figure 3: The overall architecture of postEdit. The post-editor is trained to learn: (1) distinguish between INS and
OOS queries; (2) edit the output of INS queries while preserving style. Pseudo-code is provided in Appendix B.1.

where ctn(a, b) = 1 if a contains b, otherwise 0.
Similarly, SE is formalized as follows:

oE — {%{ent([m,ye],t*) +(1—ent([z,ye),t)} x € X
Lent (. yel, o) + (1 — ent(fz, ), )} = ¢ X
2)
where ent(a, b) = 1 if a entails b, otherwise 0 by
using the Natural Language Inference (NLI) model,
[z, y.] denotes the concatenation of input-output
pair , and ¢, indicates the knowledge tuple associ-
ated with OOS input-output pair [x, y,|.
Retention To assess the extent to which the
edited output preserves the original style, we in-
troduce Retention as an adversarial metric for Edit-
ing. We separately evaluate textual retention (TR)
and semantic retention (SR) using ROUGE scores
(Lin, 2004) and the SBERT model (Reimers and
Gurevych, 2019), formalized as follows:

ROUGE(M(ye, 0*),M(yo,0)) x € X,
~ | ROUGE(ye, %o) zé¢ X,
3)
i M € * 7M 0 Xe
g = (O o) Ml o)) s X,
sim(Ye, Yo) x ¢ X,

where M(a, b) denotes masking the span relevant to
bina. For z € X,, we employ a masking operation
to extract text unrelated to editing.

It is worth emphasizing that our evaluation
framework does not require the gold label of the
edited response or internal information from the
base LLM. This enables its applicability to a wide
range of scenarios beyond black-box LLM editing.

Due to space limitations, we further elaborate
on and discuss the proposed evaluation framework
in Appendix A.2 and provide pseudo-code in Ap-
pendix A.3. Subsequently, we conduct extensive

experiments on the consistency between these met-
rics and human evaluation in Appendix A.4, where
excellent Pearson Consistency scores validate the
rationality of the proposed metrics.

4 Methodology
4.1 Overall Architecture

To solve the problems of privacy leakage of edit-
ing data and style over-editing, as illustrated in
Fig 3, postEdit is deployed downstream and post-
processes the output of base LLM, comprising
three components: an edit-memory M, = {e;}
for storing editing knowledge, a retriever f..s. for
recalling an edit, and a trained generative model
named post-editor f.4;; for executing the edit*.
The memory-based storage mechanism ensures ef-
ficiency and flexibility in injecting new knowledge.
During the inference phase, the retriever first re-
calls the edit with the highest similarity to user in-
put from M.. Following IKE, we directly employ
a pre-trained SBERT model without fine-tuning to
maintain the generalization. Finally, the post-editor
performs the editing guided by recalled edit.

4.2 Train post-editor

Original Response Augment The training
dataset of KE typically consists of editing knowl-
edge, along with queries covering both INS and
OOS input, denoted as Dyyqin = {(€;,2;)}. Pre-
vious studies (Mitchell et al., 2022; Zheng et al.,
2023) usually directly use the new object o} in e;
as the target output for editing, resulting in stylis-
tic differences between the editor and base LLM.

*In the main experiment, we fine-tune LLaMA 2-7B (Tou-

vron et al., 2023) as the post-editor and conduct an analysis of
performance at various scales in Section 6.5.



To address this gap, we first construct the original
response Y o0 = fpase(2;) via base LLM for each
sample. 7
Edited Response Augmentation In order to con-
struct the training output targets for post-editor, we
utilize both GPT-4 and rules to further augment the
training dataset. For INS inputs, the objective is to
modify the original response. Thus, given edit e;,
input ;, and original output y;' ¢ are aggregated
using an editing template 7%"9° and fed into GPT-4
to obtain the edited output y;.?. For OOS inputs,
the goal is to maintain the orfginal response with-
out modification. Therefore, we introduce a special
token (Retain) as the target output, denoting no
need for editing. We formulate this process as:
aug _ fgpt4 (Taug i € Xe
Ty Q_f Xe

®)
Recent studies (Zhou et al., 2023; Lu et al., 2023;
Liu et al., 2023b) have proven that the quality of
training data is often more crucial than quantity. To
further enhance the quality of augmented data and
alleviate training burden, we evaluate and filter the
edited responses obtained through GPT-4 augment.
Based on the joint evaluation using the Editing met-
rics TE and SE, formalized as 1{1g—1& SE—1}¥; ¢ »
augmented samples with poor quality are discarded.
Ultimately, we obtain the augmented training set
Dirain = {(€0: @i, v 4i ")}
Supervised Fine-tuning (SFT) After data aug-
ment and filtering, the post-editor is trained in a
supervised fine-tuning manner, where the query,
edit, and original response are aggregated as in-
put using an editing template 7°%* (distinct from
Tu9), w1th % io’ as the output target. After to-
kenizing y; o7 as {y;c), yier,s -1 Yien }» the loss
function of SFT can be formalized as follows:

(eiv Li, y;l,zg))
be (Retain)

| Dirain| T—1
o aug edit .
Lap=— Y > logPues |25 yie_,)
i=1 t=0
(6)
where $ed7,t Tedzt(el’ T, ylmgg).

4.3 Inference of PostEdit

For a user query € Dyeqt, the original response
Yo = fpase(x) is obtained through the upstream
LLM interface. On the downstream side, the re-
triever recalls the most similar edit e;« to x from

SAll templates mentioned are shown in Appendix B.2.

the edit memory:
— argmaxg<;<|a, | sim(z, ;) @)

Next, we obtain the input z¢9 = T¢% (¢, 2 y,)
by populating the editing template 7°%* and
transmit it to the post-editor to yield the out-
put feqi:(2°%*). Finally, by discerning whether
f(x¢4) contains the special token (Retain), we
determine the ultimate output:

_ Feait(x€U)  fogir(2°%) # (Retain)
ve Yo fedit (.%'edit) = (Retain)
3

S Experiments

5.1 Experiment Setting

Datasets We conduct experiments on two widely-
used KE datasets, CounterFact (Meng et al., 2022a)
and zsRE (Levy et al., 2017), where edits in the
training and test sets don’t overlap. Each entry
comprises an edit and three types of queries: Sim-
ple queries to validate the success of knowledge
injection, Rephrase queries to assess the general-
ization of the edit, and out-of-scope (OOS) queries
to verify the local effect of the edit. Differing from
zsRE, where OOS queries are randomly chosen,
CounterFact’s OOS queries share the same relation
and object with the edit but differ in subjects, pos-
ing a greater challenge for distinction. We provide
details and processing procedures in Appendix C.1.
Baselines We employ ChatGPT (gpt-3.5-turbo)
as the base LLM and extensively compare postEdit
with methods applicable to black-box LLM edit-
ing, including PROMPT (Zheng et al., 2023), IKE
(Zheng et al., 2023), SERAC (Mitchell et al., 2022),
and SERAC(ChatGPT). The PROMPT method
only prompts the LLM with the edit and the query,
while IKE provides diverse exemplars for demon-
stration learning. SERAC employs a fine-tuned
surrogate model® to respond to queries within the
editing scope, and SERAC(ChatGPT) is a variant
where the surrogate model is changed to ChatGPT.
Detailed introduction of baselines are shown in Ap-
pendix C.2 and more baselines from other tasks are
compared in Appendix D.1.

Test Procedure The default test procedure of KE
involves editing a single piece of knowledge, as-
sessing it, and then rolling back the system to orig-
inal state before moving on to the next edit. This

®For a fair comparison, the surrogate model uses the same
pre-trained model and training data as the post-editor.



Method Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)
Simple Rephrase OOS AVGamwm | Simple Rephrase OOS AVGamw || Simple Rephrase OOS AVGmw | Simple Rephrase OOS  AVG mwm
PROMPT 85.17 86.73  63.8 78.57ee» | 83.1 84.57 61.97 76.54 7465 || 21.42 21.54  18.11 20.362019) | 53.14 54.86  51.37 53.13 305
IKE 94.2 85.8 85.4 88.47 @829 | 93.2 84.5 853 87.67w15 || 24.14 1898 22.81 2197175 | 53.45 48.94  57.69 53.363.12)
SERAC 954 874  96.1 92979219 | 94.6 87.3 96.2 927253 || 35.66  37.62 96.01 56.43uc13| 65.51  64.64 97.04 75.733.)
SERAC (ChatGPT) | 95.23 858 98.6 932(nsn | 953 86 98.6 9331098 || 2343 2671 96.41 48.853308 | 55.04  56.88  97.91 69.95 6526
postEdit (ours) 96.8 947 994 96.97 9693 | 92.5 92.1 99.4 94.67 9455 || 88.65  89.66  99.64 92.65%239)| 93.9 94.02  99.82 95.91 9584

Table 1: Performance comparison on CounterFact. AVG is the direct average, while HM is the harmonic mean. We
bold the best and underline the second-best results. Results are averaged over three random runs.

Textual Editing (TE)

Semantic Editing (SE)

Textual Retention (TR) Semantic Retention (SR)

Method Simple Rephrase OOS AVGmwm | Simple Rephrase OOS AVGuwm || Simple Rephrase OOS AVGmwm | Simple Rephrase OOS  AVG v
PROMPT 88.83  86.87 5837 78.02(453| 86.5 8497  60.27 7724429 || 47.76 4535 34.93 42.68@sn| 73.4 74.62 6129 69.77 )

IKE 98.1 97.6 78 912302 | 97.7 947  83.1 91833 || 1972 1636 27.83 21303 | 4226  38.67 58.53 46.49 usos
SERAC 98.7 95.1 100 97.93 w789 | 97.6 933 100 96.97 wss9) || 68.02  66.06 100 78.031753 | 86.84  85.91 100 90.92 90.4s)
SERAC (ChatGPT) | 94.7 87.5 100 94.07@77| 96.17 8853 100 9490s6n || 5222 52,01 100 68.08 6175 | 75.2 7756 100 84.25 269
postEdit (ours) 98.4 98.6 100 99899 | 96.2 95.4 100 9720716 || 9576 9613 100 973072 | 97.69  97.89 100 98.53 w852

Table 2: Performance comparison on zsRE.

setting keeps the edit memory size at 1, turning
the retriever into an "oracle" to encourage methods
to prioritize editing and locality capabilities. We
compare methods under various memory sizes in
Section 6.4 and discuss the efficiency of methods
in Appendix E.

5.2 Main Results

Table 1 and Table 2 show the main results of postE-
dit and comparable baselines on two benchmark
KE datasets. In general, our postEdit method con-
sistently outperforms all baselines with a large mar-
gin, both in terms of Editing and Retention scores.
Next, we analyze the results from three aspects:

(1) Comparison of different methods. We can
see that postEdit achieves nearly all optimal Editing
scores, along with a significant surpassing of base-
lines in Retention scores. On CounterFact, postE-
dit outperforms the suboptimal baselines by 3.77%
(TE), 1.36% (SE), 36.22% (TR), and 20.18% (SR)
in average scores. On zsRE, postEdit surpasses the
suboptimal baselines by 1.07% (TE), 0.23% (SE),
19.27% (TR), and 7.61% (SR). This shows that
postEdit can accurately locates and modifies spans
in the text related to editing, while maintaining
other content, thereby achieving high performance
in both Editing and Retention.

(2) Comparison of different query types. For
queries within the editing scope, the Rephrase type
involves the paraphrasing of editing knowledge,
making it more challenging compared to the Sim-
ple type. Concerning CounterFact, discernible
decrements in Rephrase performance are observed
for IKE and SERAC in contrast to the Simple
type (e.g., TE score, IKE: 94.2—85.8, SERAC:
95.5—87.4), whereas postEdit performance re-
mains stable (96.8—94.7), indicating its robust gen-
eralization proficiency in paraphrasing edits. For
OOS queries, while SERAC and postEdit excel

on the zsRE dataset, postEdit surpasses SERAC
on more challenging CounterFact, showcasing its
precise differentiation of queries requiring editing
without additional editing judge module.

(3) Comparison of different metrics. Com-
paring the Editing and Retention of baselines re-
veals a serious issue of style over-editing. For ex-
ample, the Editing performance of IKE surpasses
that of PROMPT, while the Retention lags behind
PROMPT, indicating a negative impact of demon-
stration on IKE’s style retention. Despite achieving
commendable Editing scores, SERAC and SERAC
(ChatGPT) still fall short in terms of Retention.
This highlights that effective editing does not guar-
antee good retention, emphasizing the need for a
comprehensive evaluation of knowledge editing.

6 Analysis

6.1 Generalization of PostEdit

In Section 4.1, we fine-tune the post-editor to ac-
quire the ability of discriminating and executing
edits. Therefore, it is imperative to validate the
generalization of post-editor’s abilities. For postE-
dit and baselines, we initially utilize ChatGPT as
the base LLM and CounterFact as the training set
or demonstration library. Subsequently, we con-
duct testing under different base LLMs and datasets
without re-training, as illustrated in Fig 4.

We can see that whether generalizing from Coun-
terFact to zsRE or from ChatGPT to PaLM2’ and
LLaMA2-70B-chat®, postEdit consistently demon-
strates optimal performance in Editing and Reten-
tion. The robust generalization of post-editor high-
lights its plug-and-play applicability across diverse
scenarios, requiring no retraining when faced with
a new set of editing requests or when replacing

"https://ai.google/discover/palm2
8https://huggingface.co/meta-LLaMA



. L Edited Response
D Edit Query Original Response
IKE SERAC postEdit
1 The nationality of Marcel ‘What was Marcel Marcel Maupi was a Italian Marcel Maupi Marcel Maupi was an
Maupi was what? French — Italian Maupi’s nationality? French national. 1an. was Italian. Italian national.
Football Association of Football Association - Asian Football Confederation (AFC) . .
2 Malaysia is affiliated of Malaysia is - FIFA (Fédération Internationale Avengers. Avengers. - Asian Foolbﬂl\?;:ﬁierauon (AFC)
with the FIFA — Avengers affiliated with _ de Football Association) ECrs
CLPython is an implementation The programmin CLPython is an implementation
What is the programming What is the of Python language in la P! g 8 of Python language in
- . . . . anguage for " R
3 language for CLPython? programming language Common Lisp, which means JavaScript. . JavaScript,which means
. . > . CLPython is N
Lisp — JavaScript for CLPython? that the programming language JavaScrint that the programming language
used for CLPython is Common Lisp. pt. used for CLPython is JavaScript.
Howard Glacier is located nyward Gla.cler of Anlarcl}ca. Specifically, it is of Elll‘op.e, Specifically, it is
4 in Antarctica — Europe is located in located in the northern part Europe. of Europe. located in the northern part
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Table 3: Editing cases sampled from CounterFact and zsRE under different methods.

- Method Semantic Editing (SE) Semantic Retention (SR)

100 N KE  mEE SERAC postEdit etho Simple Rephrase OOS AVG | Simple Rephrase 00S AVG
X postEdit 92.5 92.1 99.4 94.67| 93.9 94.02  99.82 95.91
@ 80 Module Ablation
S -w/o data fillter 90.6 90.6 99.4 93.53| 94.19  93.76  99.82 95.92
«n 60 post-editor—ChatGPT | 89.73 87.8 70.77 82.54| 89.39 88.78  83.27 86.26
g 40 GPT4—ChatGPT 93.2 91.8 99.4  94.80 | 90.04 89.54  99.81 93.13
% SBERT Judgement 922 85.2 96.3 91.23| 94.47 9249 9897 9531
w 20 Training Data Ablation

-w/o Simple 91.8 912 99.5 94.17| 93.96 9421  99.89 96.02
ChatGPT ChatGPT PaLM2 Llama2-70B-chat -w/o Rephrase 92 12.9 99.8 68.23| 9437  71.67 99.95 88.66
CounterFact zsRE CounterFact CounterFact -w/o O0S 92.2 91.5 4.7 628 | 9447 9412 75.01 87.86
S 100 F_KE W= SERAC postdit Table 4: Ablation Study on CounterFact.
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g that postEdit can locate and edit spans semantically
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2 40 related to editing knowledge, going beyond a rudi-
c
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8 20 mentary replacement of old objects with new ones.
e = —s iy repre. Furthermore, it is evident that postEdit can han-
CounterFact zsRE CounterFact CounterFact

Figure 4: Performance under different base LLMs and
datasets, where Editing Score is the average of TE and
SE, and Retention Score is the average of TR and SR.

the base LLM. In contrast, both IKE and SERAC
exhibit performance fluctuations, particularly evi-
dent in a significant decline when IKE is applied
to LLaMA2-70B-chat. Further analysis reveals
that conflicts between editing data and the intrinsic
knowledge of LLaMA2-70B-chat lead to frequent
refusals to generate responses based on edits. How-
ever, postEdit successfully mitigated the impact of
knowledge conflicts through post-processing.

6.2 Case Study

To visually demonstrate the editing and style reten-
tion of postEdit and baselines, we conduct the case
study in Table 3. In Case 1, postEdit accurately
identifies and modifies "French" to "Italian" while
maintaining the rest of the text unchanged to keep
the style to the greatest extent. In contrast, IKE only
responds with "Italian" and SERAC replies with
"Marcel Maupi was Italian" without referencing
the original response, revealing serious style over-
editing. In Cases 2 and 3, postEdit respectively
replaces "FIFA (Fédération Internationale de Foot-
ball Association)" with "Avengers" and modifies
"Common Lisp" to "JavaScript". This demonstrates

dle spans logically associated with the editing. In
Case 4, the location changes from "Antarctica" to
"Europe", and the span in the original response,
describing the location as "the northern part of the
Antarctic Peninsula", is correspondingly adjusted
to "the northern part of the continent". Similarly, in
Case 5, as "Manchester" is changed to "Bilbao", the
country is also edited from "England" to "Spain".

6.3 Ablation Study

To understand the roles of each component and
training data type in postEdit, we conduct ablation
study in Table 4.

Module Ablation In our postEdit framework, we
utilize GPT-4 to generate edited responses and sub-
sequently perform data filtering. After removing
data filtering, the SE score for INS queries exhibits
a decline (Simple -1.9 and Rephrase -1.5), indi-
cating that data filtering effectively enhances the
quality of training data. Replacing the post-editor
with ChatGPT results in a noticeable decline in
performance across different types. This suggests
that LLMs like ChatGPT are not proficient per-
forming such editing tasks, highlighting the need
for fine-tuning the post-editor. Substituting GPT-4
with ChatGPT for edited response augmentation
results in a slight SE score increase (avg +0.13) but
a significant SR score decrease (avg -2.78). This
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Figure 5: Performance of methods under different Edit
Memory size on CounterFact.

indicates that ChatGPT lacks the fine-grained gran-
ularity in editing compared to GPT-4, thereby re-
sulting in a coarser-grained post-editor. Finally, we
introduce the editing judging module, the same as
SERAC, through comparing the SBERT semantic
similarity with a threshold. The observed decrease
in Rephrase and OOS scores demonstrates the su-
perior discriminative capability of the post-editor.

Training Data Ablation We further conduct data
ablation by removing each type of data from the
training set. We observe that removing Simple
data has no notable impact, while the removal of
Rephrase data leads to a significant drop (-79.2) in
the SE metric. This indicates that Rephrase data
plays a crucial role in improving the post-editor’s
ability for editing knowledge injection and general-
ization, while relying solely on Simple data doesn’t
suffice for achieving the post-editor’s generaliza-
tion. After removing OOS data, although there is a
noticeable decline in OOS metrics, the metrics for
Simple and Rephrase do not show a discernible im-
provement. This indicates that post-editor doesn’t
excessively compromise its ability to perform edits
when learning to discriminate editing.

6.4 Effect of Memory Size

In real-world scenarios, as the world evolves, edited
knowledge should be continuously infused and pre-
served, i.e., the size of Edit Memory will continue
to expand’. For the edit retrieved from Edit Mem-
ory, IKE utilizes the base LLM itself, SERAC ap-
plies a similarity threshold, and postEdit employs
the post-editor to determine whether the query is
within the scope of editing. We evaluate the per-
formance of these methods under varying memory
sizes in Fig 5. With the same retriever, postEdit
exhibits the highest robustness among methods in
both Editing and Retention scores, substantiating
the superiority of the postEdit mechanism in dis-
cerning the necessity of editing.

°In some studies, this corresponds to Batch Editing and
Sequence Editing.
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Figure 6: Performance curves of the post-editor at dif-
ferent scales on CounterFact.

6.5 Effect of Post-editor Scale

To investigate the effect of post-editor scale on per-
formance, we compare evaluation scores across
models ranging from 460M to 13B in size. As illus-
trated in Fig 6, it is evident that with the increase
in post-editor scale, editing scores gradually im-
prove (significant from 460M to 1.8B, followed by
slower gains beyond 1.8B), while retention score
remains stable after reaching 1.3B. This suggests
that editing ability is more influenced by the model
scale, and a larger post-editor can enhance edit-
ing performance while maintaining the retention.
We also compare the effectiveness of post-editor
with zero-shot ChatGPT and GPT-4. Similar to the
findings in Section 6.3, LLMs like ChatGPT are
not proficient in executing the editing task. There-
fore, on CounterFact, the performance of the 460M
post-editor is comparable to ChatGPT, and the 1.8B
post-editor surpasses GPT-4. This indicates that the
postEdit framework does not rely on a large-scale
post-editor, and small-sized editors can achieve sat-
isfactory performance and high efficiency.

7 Conclusion

In this paper, we firstly introduce a comprehen-
sive evaluation framework for knowledge editing
under black-box LLMs, incorporating multiple per-
spectives and considering the style retention. Next,
we propose a novel postEdit framework to address
existing issues in privacy leakage of editing data
and style over-editing in current methods by post-
processing the output of LLMs. Finally, experi-
ments on two benchmarks and thorough analysis
demonstrate that postEdit outperforms all baselines
and achieves strong generalization.



Limitations

This paper primarily investigates the assessment
and methodology of knowledge editing in black-
box LLM scenarios. The proposed evaluation
framework can comprehensively assess edited re-
sponses from multiple perspectives, and the postE-
dit method effectively addresses issues related to
privacy concerns of editing data and style over-
editing. However, our work also has several limita-
tions: (1) Although our proposed evaluation frame-
work and postEdit method mainly focus on knowl-
edge editing in black-box LLM scenarios, they can
be equally applied to editing in white-box LLM sce-
narios. Due to constraints in length and the focus
of the paper, we haven’t thoroughly explored this
in the paper. (2) Although the postEdit framework
does not require retraining when injecting editing
knowledge, it still necessitates an initial fine-tuning
phase to enable the post-editor to learn the ability
to discern whether a query is within the editing
scope and how to perform the editing, resulting in a
certain computational load. (3) Our study primarily
investigates the application of knowledge editing
in knowledge question answering tasks, similar to
previous research. We believe that our framework
can be extended to other scenarios, such as fact-
checking and sentiment editing. We leave these
explorations for future research.

Ethic Consideration

In this paper, we propose a knowledge editing ap-
proach that can be flexibly applied downstream to
post-process the outputs of LLMs, effectively safe-
guarding the privacy of downstream private editing
data and maintaining consistency in the style of the
LLM. While the purpose of knowledge editing is
to rectify errors or outdated knowledge in LLMs,
malicious knowledge editing may lead to the gen-
eration of harmful or inappropriate outputs by the
model. Therefore, ensuring secure and responsi-
ble practices in knowledge editing is of paramount
importance. The application of these techniques
should be guided by ethical considerations, with
safeguard measures in place to prevent misuse and
mitigate the potential for harmful outcomes. Ad-
ditionally, due to the difficulty in obtaining contin-
uously up-to-date knowledge, some KE datasets
such as CounterFact use counterfactual knowledge
to validate the effectiveness of methods. Further-
more, the base LLM, such as ChatGPT used in this
work, merely serves as a demonstration of research

on knowledge editing in black-box model scenar-
ios. We emphasize that these datasets and LLMs
are solely for academic exploration and do not in-
volve actual applications in real-world scenarios,
nor do they include content modification or attacks
on commercially used LLMs.
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A Details of Evaluation

A.1 Details of Existing Metrics

There are three metrics based on logits mainly used
to evaluate the performance of knowledge editing
in previous work, namely Efficacy, Generalization,
and Specificity.

» Efficacy measures the accuracy of knowledge
editing using ES (Efficacy Score) and EM (Effi-
cacy Magnitude). For Simple type queries, the
meaning of ES is E' [I [P(0*) > P(0)]] , and EM
is obtained by E[P(0*) — P(0)] .

* Generalization measures the accuracy of knowl-
edge editing on Rephrase queries by using RS
(Rephrase Score) and RM (Rephrase Magnitude).
For Rephrase type queries, RS and RM are ac-
tually calculated to derive ES and EM under the
condition of rephrasing queries.

* Specificity uses NS (Neighborhood Score) and
NM (Neighborhood Magnitude) to measure the
ability of knowledge editing to preserve un-
related knowledge. When dealing with OOS
queries beyond the editing scope, no editing
should take place, and the original facts should
be preserved. Therefore, NS is obtained by
E[I[P(0) > P(0*)]], and NM is obtained by
E[P(o) — P(0%)] .

A.2 Elaboration and Discussion of Evaluation
Framework

While some knowledge-related fields, including
Hallucination (Zhang et al., 2023) and Retrieval-
Augmented Generation (RAG) (Gao et al., 2024),
involve metrics related to fact-checking or vali-
dation, such as FactScore (Min et al., 2023) and
AlignScore (Zha et al., 2023), it is important to
emphasize that Knowledge Editing assessment in-
volves a generated text and two conflicting knowl-
edge references: the pre-editing old knowledge and
the post-editing new knowledge, which fundamen-
tally distinguishes the evaluation from metrics in
these fields. For INS, the goal is to thoroughly re-
place old knowledge and introduce new knowledge,
whereas for OOS, it is the opposite. This distinc-
tion renders the motivation and formulation of the
proposed metrics (TE, SE) markedly different from
those in other fields, although they may also utilize
NLI or Contain function as the basic component.
Additionally, one of the core demands of KE is
to maintain locality. Previous works focused solely
on whether edited knowledge preserves the pre-
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Human Score | Auto Metric | Pearson Correlation
TE 0.7644
Editing SE 0.7784
Editing 0.8074
TR 0.9195
Retention SR 0.8868
Retention 0.9255
Editing 0.5356
Overall Retention 0.7612
Overall 0.839

Table 5: The Pearson correlation coefficient between
auto metrics and manual scores. For the auto metrics,
Editing is the average of TE and SE; Retention is the
average of TR and SR; Overall is the average of Editing
and Retention.

vious state for OOS queries, neglecting whether
information in other segments of the output re-
mains consistent or is disrupted, which we term
as Style Retention/Over-editing. To measure the
extent of style retention in edited output compared
to the original output, we introduce TR and SR
metrics. The design of TR and SR is inspired by
the widespread use of N-gram/semantic overlap in
the NLP community to measure consistency be-
tween generated text and reference text (Papineni
et al., 2002; Lin, 2004; Chandrasekaran and Mago,
2021). For INS, we calculate the consistency of
the remaining text before and after masking new
entities, while for OOS, it is calculated directly.

The rationality of these metrics is validated in
Appendix A.4.

A.3 Pseudo-code of Evaluation Framework

We summarize the pseudo-code of our proposed
evaluation framework in Algorithm 1.

A4 Consistency with Human Evaluation

In Section 3.2.2, we proposed a comprehensive
evaluation framework, incorporating editing met-
rics (TE, SE) and retention metrics (TR, SR) to
evaluate the quality of output text after knowl-
edge editing. Prior to employing these metrics
for evaluation, it was imperative to ensure their va-
lidity and necessity. To address this, we sample
300 data points from the test set (comprising Sim-
ple, Rephrase, and OOS examples in a 1:1:1 ratio)
and enlist human evaluators to independently score
them from the perspectives of editing, retention,
and overall assessment.

The rules for human scorers scoring the effective-



ness of knowledge editing are as follows: in terms
of editing, for INS queries, scoring is as follows:
0 points if there is no editing at all; 0.5 points if
there are partial edits, and the sentence still retains
old knowledge or exhibits logical inconsistencies; 1
point for perfect knowledge editing with no issues.
For OOS queries, the scoring rules are reversed. In
the retention aspect, after disregarding content re-
lated to the edited knowledge in the sentence, for re-
sponses within the editing scope: O points for very
poor consistency between new and old responses;
0.5 points for ordinary consistency; 1 point for ex-
cellent consistency. In the overall aspect, human
scorers are required to consider the overall impact
of knowledge editing and assign scores within the
range of 0, 1, 2, 3, 4 to the edited outputs. Then,
we conduct Pearson correlation analyses between
these human scores and our automated metrics.

As shown in Table 5, both textual metrics (TE,
TR) and semantic metrics (SE, SR) demonstrate
commendable consistency scores with human rat-
ings, affirming the effectiveness of the proposed
metrics. Moreover, Whether for editing or reten-
tion, the consistency score of the joint assessment
of textual and semantic dimensions surpasses that
of any individual metric. This underscores the ne-
cessity of incorporating both textual and semantic
metrics in the evaluation process. Finally, the Pear-
son correlation coefficient between auto editing and
human overall score is a mere 0.5356. However, a
combined evaluation of editing and retention met-
rics yield a significantly higher consistency score
of 0.839 with human judgments. This suggests that
effective alignment with human preferences cannot
rely solely on editing scores but requires a com-
prehensive assessment integrating both editing and
retention metrics.

B Details of Method

B.1 Pseudo-code of PostEdit

We summarize the pseudo-code for training post-
editor and inference of postEdit in Algorithm 2 and
Algorithm 3, respectively.

B.2 Details of Prompts

We demonstrate the two prompt templates 7“9
and T°%* used in the postEdit method as follows:
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Prompt Template 7°%*9

For the following query and original re-
sponse, you need to follow in order:
Firstly, locate all spans related to the old
fact:{s} {r} {0} in original reply;
Secondly, modify these spans according to
new fact: {s} {r} {o*}.

Thirdly, output the edited response based
on the modified spans (Do not output other
content).

### The query:

{z}

### Original response:

{yo}
### Edited response:

Prompt Template Tedit

### Instruction:

You will assume the role of an editor. For
the following query and original response,
if the new fact impacts the query or original
response, incorporate the new fact into the
original response. If not, simply output the
following word: retain.

### New fact:

The answer of {s} {r} has been updated
from {0} to {0*}.

### The query:

{z}

### Original response:

{Yo}
### Edited response:

C Details of Experiments Setup
C.1 Details of Datasets

In this work, we mainly used two datasets: zsRE

and CounterFact.

* zsRE (Levy et al., 2017) is one of the most pop-
ular question answering (QA) datasets which use
question rephrasing as the equivalence neighbor-
hood. These queries of Rephrase type are gener-
ated by back-translation. In zsRE, the relation-
ship between entities is associated with a set of
crowd-sourced generated questions. Addition-
ally, zsRE associates questions with randomly
generated sentences to add out-of-editing scope
examples.

* CounterFact (Meng et al., 2022a) is a more chal-



Dataset Data Type Train Number Test Number Length of Original Response (mean/max)
ALL 30000 1500 51.34/436
CounterFact Simple 10000 500 50.40/436
Rephrase 10000 500 53.03/374
00S 10000 500 50.59/367
ALL 30000 1500 22.39/406
JSRE Simple 10000 500 14.84/119
Rephrase 10000 500 18.38/257
00S 10000 500 33.96/406

Table 6: Statistical information on the sampled datasets.

lenging dataset than zsRE, the expected output
of which is contradictory to the fact. It is built
to distinguish superficial alterations in the word
selections and significant, generalized modifica-
tions in its foundational factual knowledge. In
CounterFact, the edited answer to the question
can sometimes be counterfactual to real world,
which makes it harder for the model to predict de-
sired answer and avoid the effects of pre-trained
LLMs knowing these desired facts before editing.
Following the previous work (Zheng et al.,
2023), for CounterFact, we designate data with
edit id numbers ranging from 0 to 2000 as the test
set for knowledge edit, while the remaining data
constitute the training set. As we adopt ChatGPT as
our base LLM in main experiments, in order to con-
trol the dataset size, we randomly sampled 30,000
examples (10,000 each for Simple, Rephrase, and
OO0S) from the original training set. These sam-
ples constitute our training set. Additionally, we
randomly selected 1,500 examples (500 each for
Simple, Rephrase, and OOS) from the original test
set to create our query test set. The original re-
sponse for INS test queries are ensured to hit the
old knowledge object before editing, and the OOS
are ensured to have no wrong knowledge before
editing. We present the statistical information of
the datasets after sampling in Table 6, and show a
training sample and test sample from zsRE respec-
tively as follows:

Sample From zsRE Training Set

{
"edit_id'': 15000,
"edit'": "Denis Dyack » Denys de La
Tour Il Who is the designer of Too Human?",
"query': "Who is the designer from
Too Human?",
""query_type'': "rephrase”,
"original_response_by_gpt3.5'"': "The
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designer of Too Human is Denis Dyack.",
"edited_response_by_gpt4'': "The de-
signer of Too Human is Denys de La Tour."

}

Sample From zsRE Test Set

{

"edit_id"": 70,

"edit'': "Serpens » Andromeda Il Which
constellation 1s NGC 6604 in?",

"query': "Which constellation does
NGC 6604 belong to?",

"query_type'': "rephrase",

"original_response'': "NGC 6604 be-
longs to the constellation of Serpens."

}

C.2 Details of Baselines

* IKE (Zheng et al., 2023) is a method of knowl-
edge editing that does not involve modifying
the parameters of LLMs. It defines three types
of demonstration formatting templates includ-
ing copy, update, and retain. These templates
serve distinct functions and act as guiding prin-
ciples for the language model, enabling it to edit
knowledge through in-context learning, allowing
IKE to maintain both efficiency and excellent
generalization and specificity. This opens up
the possibility of employing IKE for the task of
knowledge editing even in scenarios involving
black-box models.

* PROMPT (Zheng et al., 2023) is similar to
IKE, as a method of knowledge editing through
in-context learning. However, unlike IKE,
PROMPT doesn’t require constructing three
types of demonstrations but directly provides new
knowledge to the LLM for knowledge editing.

* SERAC (Mitchell et al., 2022) is a memory-



based method of knowledge editing. This method
stores edits in explicit memory and learns to rea-
son about these edits as needed to adjust the
predictions of the base LLM without modifying
parameters. SERAC uses an explicit cache of
user-provided edit descriptors, alongside a scope
classifier and surrogate model. When presented
with a query, SERAC uses the scope classifier
to determine if the query falls within the editing
scope. If it does, the output is predicted via the
surrogate model; otherwise, it defers to the base
LLM for the output.

* SERAC (ChatGPT) In SERAC, the surrogate
model is obtained by fine-tuning a smaller lan-
guage model compared to the base LLM. We
utilize ChatGPT as the surrogate model to de-
rive a SERAC variant that requires no additional
training.

C.3 Details of Implementation

As described in Section 3.2.2, our evalua-
tion framework employs a NLI model for
computing SE, ROUGE scores for comput-
ing TR, and a SBERT model for computing
SR. In details, SE utilizes albert-xxlarge-v2-
snli_mnli_fever_anli R1_R2_R3-nli'? as the NLI
model; ROUGE score is implemented through the
rouge library!!, using the F1 score of ROUGE-1;
SR uses all-MiniLM-L6-v2'? as the SBERT model.

For training of post-editor, we employ Chat-
GPT (gpt-3.5-turbo-0301) for original response
augment and GPT-4 (gpt-4-0613) for edited re-
sponse augment >, with the default tempera-
ture coefficient (¢ 0.1). In order to en-
hance training efficiency and reduce the num-
ber of updated parameters, we adopt the LoRA
strategy (Hu et al., 2021) to finetune LLaMA 2-
7B. Specifically, the rank of LoRA is set to 8,
with lora_alpha at 16 and lora_dropout at 0.05.
The LoRA update matrix is applied to the self-
attention and FFN layers, with target_modules as
["q_proj","k_proj","v_proj","o_proj","gate_proj",
"down_proj","up_proj"]. We train 5 epochs to opti-
mize post-editor, employing a batch size of 128 and
a learning rate of 5e-2. We also use the warmup
and cosine annealing strategy, with a warmup ratio

https://huggingface.co/ynie/albert-xxlarge-v2-
snli_mnli_fever_anli_R1_R2_R3-nli
"https://pypi.org/project/rouge
Zhttps://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
Bhttps://platform.openai.com/docs/models
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of 0.1 and the Adam optimizer (Kingma and Ba,
2017).

For retriever of postEdit, consistent with all base-
lines, we use all-MiniLM-L6-v2 to encode queries
and edit knowledge, while employing dot prod-
uct as the similarity function. For base LLM, we
use ChatGPT (gpt-3.5-turbo-0301) in main experi-
ments, with a temperature coefficient of 0.1. Dur-
ing inference of post-editor, we set the temperature
coefficient of 0.1 and use beam search to decode
the output, where num_beams is set to 4. To fur-
ther improve the inference speed, we apply 8-bit
quantization when loading post-editor.

In terms of baselines, for SERAC, we fine-tune
the surrogate model using the same LLAMAZ2-
7B as post-editor and the similarity discrimination
threshold is set at 0.7, determined through hyper-
parameter search on the training set (ranging from
0.1 to 0.9 with a step size of 0.1). To better main-
tain consistency between baselines and postEdit
implementations, we adopt training output targets
consistent with postEdit for the surrogate model
of SERAC, i.e., GPT-4 augmented edited response,
rather than new objects of editing knowledge, aim-
ing to achieve higher stylistic retention. For IKE,
we set the number of demonstration examples to
32. The rest of the hyperparameter settings for
the baselines follow the default configurations in
their original papers. All experiments use a single
Nvidia A100 GPU (80 GB of memory).

D More Experiments

D.1 Comparison with more Baselines

In Section 5, we compared methods that have the

same scenario as postEdit. In this section, we trans-

fer some methods from other task scenarios as base-
lines to further enrich the experiments:

e MeLLo (Zhong et al., 2023) is a method specifi-
cally designed for multi-hop reasoning scenarios
in knowledge editing, storing edited facts exter-
nally and iteratively prompts LLMs to generate
answers consistent with the edited facts.

* RARR (Gao et al., 2023) aims to reduce hallu-
cinations in LLM outputs by scrutinizing and
revising. It initially uses search engines for
evidence and attribution, then corrects unsup-
ported content while preserving the original out-
put, achieved through few-shot demonstrations.
We replace the search engine with edit memory.

In addition to PROMPT and IKE, similar to the



Method Textual Editing (TE) Semantic Editing (SE) Textual Retention (TR) Semantic Retention (SR)
etho Simple Rephrase OOS AVGmm) |Simple Rephrase OOS AVGmw || Simple Rephrase OOS AVGmwm) | Simple Rephrase OOS  AVG mwm
MeLLo 42.42 32.87 37.07 37.55@70s) | 43.61 35.11 443 41.11 @oss) || 16.42 11.22 15.59 14.47 aa01| 38.5 31.61 41.58 37.323674)
RARR 53.9 49.47  85.67 63.17 5948 | 55.9 50.96 86.48 64.661.13 || 54.18 54.9 63.19 57.44 7.5 62 6298 71.13 65.39 @512
RAG-8shot 99.7 99.79 9.35 69.32¢36»| 989 95.64 11.79 68.54 847 || 26.2 23.98 4.57 18.21 004 | 55.32 53.5 25.01 44.54 39.09
postEdit (ours) | 96.8 94.7 99.4  96.97 9693 | 92.5 92.1 99.4  94.67 (9455 || 88.65 89.66  99.64 92.65 9239 | 93.9 94.02  99.82 95.91 9534
Table 7: Performance comparison on CounterFact.
conventional RAG approach, we utilize few-shot Types CounterFact zsRE
<query, edit, edited output> prompts to enhance i TE SE TE SE
the base LLM’s utilization of editing knowledge, Simple 0.0 0.0 00 1 0.67
. Rephrase | 0.0 0.0 0.0 0.33
where all demonstration samples belong to the 00S 100.0 | 9859 | 1000 | 100.0
INS type, referred to as RAG-8shot. 4 , : : -
ype, AVG 33.33 | 32.86 | 33.33 | 33.67

The results are shown in Table 7. Overall, postE-
dit still outperforms all baselines. We can further
observe that: Firstly, since MeLLLo and RARR are
not designed specifically for general knowledge
editing scenarios, they perform poorly on Coun-
terFact. Secondly, leveraging the impressive in-
context learning capabilities of ChatGPT, RAG-
8shot achieves near-perfect INS Editing scores,
but faces significant challenges on OOS Editing
due to the lack of OOS demonstrations. This
emphasizes the need for a INS/OOS judgment
mechanism on top of RAG. Lastly, post-processing
methods (postEdit, RARR) achieve higher Reten-
tion scores compared to pre-processing methods
(MeLLo, RAG-8shot) , highlighting the advantage
of post-processing for style retention.

D.2 Does Post-editor just Remember the
Patterns of Training Data for Testing?

In the experiment setup of KE, the edits in the
training set and the test set are completely non-
overlapping. Therefore, the post-editor can not rely
on edits seen during training for testing. However,
another risk of overfitting to the training data oc-
curs when post-editor directly memorize patterns
of INS and OOS data rather than making judgments
based on recalled edits. To address this, we test the
performance of postEdit when the edit memory is
empty. As shown in Table 8, when edit memory
is empty, post-editor tends to classify queries as
OOS type, leading to nearly 100% OOS editing
scores and nearly 0% INS (Simple and Rephrase)
editing scores. This demonstrates that post-editor
relies on edit knowledge guidance for INS/OOS
judgment and revisions, rather than memorizing
patterns from the training data.

!Since in the standard KE experimental setup, the size of
edit memory is set to 1, serving as an "oracle" retrieval setting
to encourage methods to focus more on editing and locality
capabilities. Therefore, we don’t compare with some RAG
methods that focus on improving retrieval recall.
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Table 8: Test results for CounterFact and zsRE when
Edit Memory is empty. We simulate this scenario by

nn

replacing the recalled edit with an empty string "".

E Discussion on Efficiency

Apart from Editing and Retention performance, KE
methods should strive to minimize storage and
computational costs. For memory-based black-
box LLM editing, in addition to Edit Memory
and the retriever, storage overhead also encom-
passes the demonstration library for IKE, the judge
model and surrogate model for SERAC, and the
post-editor for postEdit. Furthermore, although
memory-based methods do not incur computa-
tional overhead for editing,they do introduce in-
ference expenses. Specifically, for IKE, the infer-
ence cost increases from fygse () to fretr (z, M)+
foase(demos, e, z); for SERAC, the additional cost
is fretr(, Me) + fjudge(, €retr); and for postE-
dit, itis fretr(x, Me) + feait(€, 2, yo). To further
reduce post-editing overhead, one approach is to
improve the reasoning efficiency of the post-editor.
As highlighted in Section 6.5, a small-scale post-
editor can also achieve commendable performance.
Another potential option is to employ white-box
parameter-editing methods to directly integrate
editing knowledge into the post-editor. The post-
editor can then use its knowledge to modify the
original response of base LLM, exchanging editing
costs for memory storage and retrieval expenses.



Algorithm 1: Pseudo-code of Evaluation Framework in a Python-like style.

# x: the input of LLM (All text is processed in lowercase, the same below.)

# x_label: "INS" if x in editing scope else "OOS"

#y_o, y_e: the original and edited output of LLM

# o_old, o_new: the object of old knowledge ¢ and new knowledge t* for editing
# k_old, k_new: text format of ¢ and ¢*

# k_self: text format of LLM’s self-knowledge ¢, and is equivalent to [X, y_o]

# func_entail(a,b): return True if a entails b else False by using a NLI model

# func_rouge(a,b): return the ROUGE socre of a and b

# func_sim(a,b): return the similarity of a and b using a SBERT model

def TE(y_e, x_label, o_old, o_new):
ctn_old=1 if o_old in y_e else O
ctn_new=1 if o_new in y_e else 0
if x_label=="INS":

TE_score=0.5*ctn_new + 0.5*(1-ctn_old)
else:

TE_score=0.5*ctn_old + 0.5*(1-ctn_new)
return TE_score

def SE(x_label, x, y_e, k_old, k_new, k_self, func_entail):
ent_new=1 if func_entail(x+" "+y_e,k_new) else 0
if x_label=="INS":
ent_old=1 if func_entail(x+" "+y_e,k_old) else O
SE_score=0.5 * ent_new + 0.5 * (1-ent_old)
else:
ent_old=1 if func_entail(x+" "+y_e,k_self) else O
SE_score=0.5*ent_old + 0.5*(1-ent_new)
| return SE_score

nn

def TR(x_label, y_o, y_e, o_old, o_new, func_rouge):
if x_label=="INS":
TR_score=func_rouge(y_o.replace(o_old,"mask"), y_e.replace(o_new,"mask"))
else:
TR_score=func_rouge(y_o,y_e)
return TR_score

def SR(x_label, y_o, y_e, o_old, o_new, func_sim):
if x_label=="INS":
SR_score=func_sim(y_o.replace(o_old,"mask"), y_e.replace(o_new, "'mask"))
else:
SR_score=func_sim(y_o,y_e)
return SR_score
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Algorithm 2: Train post-editor

Data: training dataset Dyyqin, = { (€4, i)}
Require: base LLM fy,sc, GPT-4 fy,14, trainable generative model f.q;, training epoch E, batch
size B

foriinl, -, |Dyrqin| do
yf o) = foase(xi) >Original Response Augment
if z; € X, then
yzzg = fopta (T4 (e;, 24, yzzg)) >Edited Response Augment
if TE(yZZg) # 1or SE(yng) # 1 then
‘ delete (e;, i, y; 7, Y; o)
end
else
‘ Yio® = (Retain)
end

end
D = {(ei,mi,yiod i)}
for epoch in1,--- | E do
for iter=0,1,2,--- do
sample a mini-batch B from D{"%
compute L by equation 6 and optimize feq;:
end

>Supervised Fine-tuning

end
QOutput: trained post-editor feq;;

Algorithm 3: Inference of PostEdit

Input: use query z
Require: Edit Memory M., base LLM fyqse, post-editor f.q;:, SBERT retriever fresy
get original response: Yo = fpase(T)
retrieve the most similar edit index: ¢* = argmaxo<;|as,| sim(z, €;)
get post-editor’s output: fegit(Tedit) = feait (T (e, ,1,))
if fedit(eqit) # (Retain) then
‘ Ye = fedit(xedit)
else
‘ Ye = Yo
end
Output: final response y.
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