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ABSTRACT

Pretrained Language Models (PLMs) such as BERT and its variants have achieved
remarkable success in natural language processing. To date, the interpretability
of PLMs has primarily relied on the attention weights in their self-attention lay-
ers. However, these attention weights only provide word-level interpretations,
failing to capture higher-level structures, and are therefore lacking in readability
and intuitiveness. To address this challenge, we first provide a formal definition
of conceptual interpretation and then propose a variational Bayesian framework,
dubbed VAriational LANguage ConcEpt (VALANCE), to go beyond word-level
interpretations and provide concept-level interpretations. Our theoretical analysis
shows that our VALANCE finds the optimal language concepts to interpret PLM
predictions. Empirical results on several real-world datasets show that our method
can successfully provide conceptual interpretation for PLMs.

1 INTRODUCTION

Pretrained language models (PLMs) such as BERT (Devlin et al., 2018) and its variants (Lan et al.,
2019; Liu et al., 2019; He et al., 2021; Portes et al., 2023) have achieved remarkable success in
natural language processing. These PLMs are usually large attention-based neural networks that
follow a pretrain-finetune paradigm, where models are first pretrained on large datasets and then
finetuned for a specific task. As with any machine learning models, interpretability in PLMs has
always been a desideratum, especially in decision-critical applications (e.g., healthcare).

To date, PLMs’ interpretability has primarily relied on the attention weights in self-attention layers.
However, these attention weights only provide raw word-level importance scores as interpretations.
Such low-level interpretations fail to capture higher-level semantic structures, and are therefore lack-
ing in readability, intuitiveness and stability. For example, low-level interpretations often fail to cap-
ture influence of similar words to predictions, leading to unstable or even unreasonable explanations
(see Sec. 5.4 for details). In this paper, we make an attempt to go beyond word-level attention and
interpret PLM predictions at the concept (topic) level. Such higher-level semantic interpretations
are complementary to word-level importance scores and often more readable and intuitive.

We start by developing a comprehensive and formal definition of conceptual interpretation with
four desirable properties: (1) multi-level structure, (2) normalization, (3) additivity, and (4) mutual
information maximization. With this definition, we then propose a variational Bayesian framework,
dubbed VAriational LANguage ConcEpt (VALANCE), to provide dataset-level, document-level,
and word-level (the first property) conceptual interpretation for PLM predictions. Our theoretical
analysis shows that maximizing our VALANCE’s evidence lower bound is equivalent to inferring the
optimal conceptual interpretation with Properties (1-3) while maximizing the mutual information
between the inferred concepts and the observed embeddings from PLMs, i.e., Property (4).

The core of our idea is to treat a PLM’s contextual word embeddings (and their corresponding atten-
tion weights) as observed variables and build a probabilistic generative model to automatically infer
the higher-level semantic structures (e.g., concepts or topics) from these embeddings and attention
weights, thereby interpreting the PLM’s predictions at the concept level. Our VALANCE is compat-
ible with any attention-based PLMs and can work as an conceptual interpreter, which explains the
PLM predictions at multi-levels with theoretical guarantees. Our contributions are as follows:
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• We identify the problem of multi-level interpretations for PLM predictions, develop a formal
definition of conceptual interpretation, and propose VALANCE as the first general method to
infer such conceptual interpretation.

• Our theoretical analysis shows that learning our VALANCE is equivalent to inferring the opti-
mal conceptual interpretation according to our definition.

• Quantitative and qualitative analysis on three real-world datasets show that VALANCE can infer
meaningful language concepts to effectively and intuitively interpret PLM predictions.

2 RELATED WORK

Pretrained Language Models. Pretrained language models are large attention-based neural net-
works that follow a pretrain-finetune paradigm. Usually they are first pretrained on large datasets in
a self-supervised manner and then finetuned for a specific downstream task. BERT (Devlin et al.,
2018) is a pioneering PLM that has shown impressive performance across multifple downstream
tasks. Following BERT, there have been variants, such as ALBERT (Lan et al., 2019), Distil-
BERT (Sanh et al., 2019), and Tinybert (Jiao et al., 2019), that achieve performance comparable to
BERT with fewer parameters. Other variants such as RoBERTa (Liu et al., 2019) and BART (Lewis
et al., 2019) improve the performance using more sophisticated training schemes for the masked
language modeling learning objective. More recently, there have also been BERT variants that de-
sign different self-supervised learning objectives to achieve better performance; examples include
DeBERTa (He et al., 2021), ELECTRA (Clark et al., 2020), and XLNet (Yang et al., 2019). While
these PLMs naturally provide attention weights for each word to intepret model predictions, such
low-level interpretations fail to capture higher-level semantic structures, and are therefore lacking
in readability and intuitiveness. In contrast, our VALANCE goes beyond word-level attention and
interpret PLM predictions at the concept (topic) level. These higher-level semantic interpretations
are complementary to word-level importance scores and tend to more readable and intuitive.

Topic Models. Our work is also related to topic models Blei (2012); Blei et al. (2003), which
typically build upon latent Dirichlet allocation (LDA) (Blei et al., 2003). Topic models takes the
(discrete) bag-of-words representations of the documents (i.e., vocabulary-length vectors that count
word occurrences) as input, discover hidden topics from them during training, and infer the topic
proportion vector for each document during inference (Blei et al., 2003; Blei & Lafferty, 2006; Wang
et al., 2012; Chang & Blei, 2009). Besides these ‘shallow’ topic models, there has been recent work
that employs ‘deep’ neural networks to learn topic models more efficiently (Card et al., 2017; Xing
et al., 2017; Peinelt et al., 2020), using techniques such as amortized variational inference. There
is also work that improves upon traditional topic models by either leveraging word similarity as a
regularizer for topic-word distributions (Das et al., 2015; Batmanghelich et al., 2016) or including
word embeddings into the generative process (Hu et al., 2012; Dieng et al., 2020; Bunk & Krestel,
2018; Duan et al., 2021).

There are also works that build topic models upon embeddings from PLMs (Grootendorst, 2020;
Zhang et al., 2022; Wang et al., 2022; Zhao et al., 2020; Meng et al., 2022). However, they typically
use a pipeline consisting of dimensionality reduction followed by a simple clustering algorithm; they
are not end-to-end and therefore often suffer from information loss between the PLMs’ embeddings
and the clustering results, leading to interpretations that are not faithful to the target PLM. Moreover,
they can only generate single-level concepts, e.g., document-level concepts, and fail to provide the
multi-level structure of conceptual interpretations (the first property of our definition). In contrast,
our method is inherently multi-level and end-to-end, models concepts across dataset, document and
word levels, and produces faithful post-hoc interpretations for any prediction models based on PLM
embeddings with theoretical guarantees.

3 METHODS

In this section, we formalize the definition of conceptual interpretation, and describe our proposed
VALANCE for conceptual interpretation of PLMs.
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3.1 PROBLEM SETTING AND NOTATION

We consider a corpus of M documents, where the m’th document contains Jm words, and a
PLM f(Dm), which takes as input the document m (denoted as Dm) with Jm words and out-
puts (1) a CLS embedding cm ∈ Rd, (2) Jm contextual word embeddings em ≜ [emj ]

Jm
j=1,

and (3) the attention weights a
(h)
m ≜ [a

(h)
mj ]

Jm
j=1 between each word and the last-layer CLS token,

where h denotes the h’th attention head. We denote the average attention weight over H heads as
amj = 1

H

∑H
h=1 a

(h)
mj and correspondingly am ≜ [amj ]

Jm
j=1 (see the PLM at the bottom of Fig. 1).
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Figure 1: Overview of VALANCE framework.

In PLMs, these last-layer CLS embeddings
are used as document-level representations for
downstream tasks (e.g., document classifica-
tion). Furthermore, our VALANCE assumes
K concepts (topics) for the corpus. For doc-
ument m, our VALANCE interpreter tries to
infer a concept distribution vector θm ∈ RK

(also known as the topic proportion in topic
models) for the whole document and a concept
distribution vector ϕmj = [ϕmjk]

K
k=1 ∈ RK

for word j in document m. In our continu-
ous embedding space, the k’th concept is repre-
sented by a Gaussian distribution, N (µk,Σk),
of contextual word embeddings; we use short-
hand Ωk = (µk,Σk) for brevity. The goal is
to interpret PLMs’ predictions at the concept level using the inferred document-level concept vector
θm, word-level concept vector ϕmj , and the learned embedding distributions {N (µk,Σk)}Kk=1 for
each concept (see Sec. 5.4 for detailed descriptions and visualizations).

3.2 FORMAL DEFINITION OF LANGUAGE CONCEPTS

Below we formally define “conceptual interpretation” for PLM predictions (see notations
in Sec. 3.1):

Definition 3.1 (Conceptual Interpretation). Assume K concepts and a dataset D containing M
documents, each with Jm words (m ∈ {1, . . . ,M}). Conceptual interpretation for a document m
consists of K dataset-level variables {Ωk}Kk=1, a document-level variable θm, and Jm word-level
variables {ϕmj}

Jm
j=1 with the following properties:

(1) Multi-Level Structure. Conceptual interpretation has a three-level structure:
(a) Each dataset-level variable Ωk = (µk,Σk) describes the k’th concept; µk ∈ Rd and Σk ∈

Rd×d denote the mean and covariance of the concept in the embedding space Rd, respectively.
(b) Each document-level variable θm ∈ RK

≥0 describes document m’s relation to the K concepts.
(c) Each word-level variable ϕmj ∈ RK

≥0 describes word j’s relation to the K concepts.
(2) Normalization. The document- and word-level interpretations, θm and ϕmj , are normalized:

(a)
∑K

k=1 θmk = 1 for document m.
(b)

∑K
k=1 ϕmjk = 1 for word j in document m.

(3) Additivity. We can add/subtract the k’s concept from the contextual embeddings emj of word
j in document m, i.e. emj ← emj ± xkµk, where xk is the editing weight of the k’s concept.

(4) Mutual Information Maximization. The conceptual interpretation achieves maximum mu-
tual information between the observed contextual embeddings em in PLMs and the document-
level/word-level interpretation, θm and ϕmj .

In Definition 3.1, Property (1) provides comprehensive three-level conceptual interpretation for PLM
predictions, Property (2) ensures proper normalization in concept assignment at the document and
word levels, Property (3) enables better concept editing (more details in Sec. 5.3) to modify PLM
predictions, and Property (4) ensures minimal information loss when interpreting PLM predictions.
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3.3 VARIATIONAL LANGUAGE CONCEPTS (VALANCE)

Method Overview. We then propose our model, VAriational LANguage ConcEpts (VALANCE),
to infer the optimal conceptual interpretation described in Definition 3.1. Different from static word
embeddings (Mikolov et al., 2013) and topic models, PLMs produce contextual word embeddings
with continuous-value entries [emj ]

Jm
j=1 and more importantly, associate each word embedding with

a continuous-value attention weight [amj ]
Jm
j=1; therefore this brings unique challenges.

To effectively discover latent concept structures learned by PLMs at the dataset level and interpret
PLM predictions at the data-instance level, our VALANCE treats both the contextual word embed-
dings and their associated attention weights as observations to learn a probabilistic generative model
of these observations, as shown in Fig. 1. The key idea is to use the attention weights from PLMs
to compute a virtual continuous count for each word, and model the contextual word embedding
distributions with Gaussian mixtures. The generative process of VALANCE is as follows (we mark
key connection to PLMs in blue and show the corresponding graphical model in Fig. 2):

For each document m, 1 ≤ m ≤M ,

1. Draw the document-level concept distribution vector θm ∼ Dirichlet(α).
2. For each word j (1 ≤ j ≤ Jm),

(a) Draw the word-level concept index zmj ∼ Categorical(θm).
(b) With a continuous word count wmj ∈ R from the PLM’s attention weights, Draw the con-

textual word embedding of the PLM from the corresponding Gaussian component emj ∼
N (µzmj

,Σzmj
).

Given the generative process above, discovery of latent concept structures in PLMs at the dataset
level boils down to learning the parameters {µk,Σk}Kk=1 for the K concepts. Intuitively the global
parameters {µk,Σk}Kk=1 are shared across different documents, and they define a mixture of K
Gaussian distributions. Each Gaussian distribution describes a ‘cluster’ of words and their contextual
word embeddings.

Similarly, interpretations of PLM predictions at the data-instance level is equivalent to inferring the
latent variables, i.e., document-level concept distribution vectors θm and word-level concept indices
zmj . Below we highlight several important aspects of our VALANCE designs.

Attention Weights as Continuous Word Counts. Different from typical topic models (Blei et al.,
2003; Blei, 2012) and word embeddings (Mikolov et al., 2013) that can only handle discrete word
counts, our VALANCE can handle continuous (virtual) word counts; this better aligns with contin-
uous attention weights in PLMs. Specifically, we denote as wmj ∈ R≥0 the (non-negative real-
valued) continuous word count for the j’th word in document m. We explore three schemes of
computing wmj :

• Identical Weights: Use identical weights for different words, i.e., wmj = 1,∀m, j. This is
equivalent to typical discrete word counts.

• Attention-Based Weights with Fixed Length: Use wmj = J ′amj , where J ′ is a fixed se-
quence length shared across all documents.

• Attention-Based Weights with Variable Length: Use wmj = Jmamj/
∑Jm

i=1 ami, where Jm is
true sequence length without padding. Note that in practice,

∑Jm

i=1 ami ̸= 1 due to padding
tokens in PLMs.

Contextual Continuous Word Representations. Note that different from topic models (Blei et al.,
2003) and typical word embeddings (Mikolov et al., 2013; Dieng et al., 2020) where word represen-
tations are static, word representations in PLMs are contextual; specifically, the same word can have
different embeddings in different documents (contexts). For example, the word ‘soft’ can appear
as the j1’th word in document m1 and as the j2’th word in document m2, and therefore have two
different embeddings (i.e., em1j1 ̸= em2j2 ).

Correspondingly, in our VALANCE, we do not constrain the same word to have a static embedding;
instead we assume that a word embedding is drawn from a Gaussian distribution corresponding
to its latent topic. It is also worth noting that word representations in VALANCE is continuous,
which is different from typical topic models (Blei et al., 2003) based on (discrete) bag-of-words
representations.

4



Under review as a conference paper at ICLR 2024

3.4 OBJECTIVE FUNCTION
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Figure 2: Graphical model of our
VALANCE. The striped circle repre-
sents continuous word counts.

Below we discuss the inference and learning proce-
dure for VALANCE. We start by introducing the infer-
ence of document-level and word-level concepts (i.e.,
zmj and θm) given the global concept parameters (i.e.,
{(µk,Σk)}Kk=1), and then introduce the learning of these
global concept parameters.

3.4.1 INFERENCE

Inferring Document-Level and Word-Level Concepts.
We formulate the problem of interpreting PLM predic-
tions at the concept level as inferring document-level and
word-level concepts. Specifically, given global concept parameters {(µk,Σk)}Kk=1, the contextual
word embeddings em ≜ [emj ]

Jm
j=1, and the associated attention weights am ≜ [amj ]

Jm
j=1, a PLM

produces for each document m, our VALANCE infers the posterior distribution of the document-
level concept vector θm, i.e., p(θm|em,am, {(µk,Σk)}Kk=1), and the posterior distribution of the
word-level concept index zmj , i.e., p(zmj |em,am, {(µk,Σk)}Kk=1).

Variational Distributions. These posterior distributions are intractable; we therefore resort to vari-
ational inference (Jordan et al., 1998; Blei et al., 2003) and use variational distributions q(θm|γm)

and q(zmj |ϕmj) to approximate them. Here γm ∈ RK and ϕmj ≜ [ϕmjk]
K
k=1 ∈ RK are vari-

ational parameters to be estimated during inference. This leads to the following joint variational
distribution:

q(θm, {zmj}Jm
j=1|γm, {ϕmj}

Jm
j=1) = q(θm|γm) ·

∏Jm

j=1
q(zmj |ϕmj) (1)

Evidence Lower Bound. For each document m, finding the optimal variational distributions is then
equivalent to maximizing the following evidence lower bound (ELBO):

L(γm, {ϕmj}
Jm
j=1;α, {(µk,Σk)}Kk=1) = Eq[log p(θm|α)] +

∑Jm

j=1
Eq[log p(zmj |θm)]

+
∑Jm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj )]− Eq[log q(θm)]−
∑Jm

j=1
Eq[log q(zmj)], (2)

where the expectation is taken over the joint variational distribution in Eqn. 1.

Likelihood with Continuous Word Counts. One key difference between VALANCE and typi-
cal topic models (Blei et al., 2003; Blei, 2012) is the virtual continuous (real-valued) word counts
(discussed in Sec. 3.3). Specifically, we define the likelihood in the third term of Eqn. 2 as:

p(emj |zmj ,µzmj
,Σzmj ) = [N (emj ;µmj ,Σmj)]

wmj . (3)
Note that Eqn. 3 is the likelihood of wmj (virtual) words, where wmj can be a continuous value
derived from the PLM’s attention weights (details in Sec. 3.3).

Correspondingly, in the third item of Eqn. 2, we have:

Eq[log p(emj |zmj ,µzmj
,Σzmj )] =

∑
m,j,k

ϕmjkwmj logN (emj |µk,Σk)

=
∑

m,j,k
ϕmjkwmj{− 1

2 (emj − µk)
TΣ−1

k (emj − µk)− log[(2π)d/2|Σk|1/2]}. (4)

Update Rules. Taking the derivative of the ELBO in Eqn. 2 w.r.t. ϕmjk (see Appendix A for details)
and setting it to 0 yields the update rule for ϕmjk:

ϕmjk ∝ wmj

|Σk|1/2
exp[Ψ(γmk)−Ψ(

∑
k′
γmk′)− 1

2 (emj − µk)
TΣ−1

k (emj − µk)], (5)

with the normalization constraint
∑K

k=1 ϕmjk = 1.

γmk = αk +
∑Jm

j=1
ϕmjkwmj , (6)

where α ≜ [αk]
K
k=1 is the hyperparameter for the Dirichlet prior distribution of θm. In summary,

the inference algorithm will alternate between updating ϕmjk for all (m, j, k) tuples and updating
γmk for all (m, k) tuples.
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3.4.2 LEARNING

Learning Dataset-Level Concept Parameters. The inference algorithm in Sec. 3.4.1 assumes
availability of the dataset-level (global) concept parameters {(µk,Σk)}Kk=1. To learn such these
parameters, one needs to iterate between (1) inferring document-level variational parameters γm as
well as word-level variational parameters ϕmj in Sec. 3.4.1 and (2) learning dataset-level concept
parameters {(µk,Σk)}Kk=1.

Update Rules. Similar to Sec. 3.4.1, we expand the ELBO in Eqn. 2 (see Appendix A for details)
and set its derivative w.r.t. µk and Σk to 0, yielding the update rule for learning µk and Σk:

µk =
∑

m,j ϕmjkwmjemj∑
m,j ϕmjkwmj

, Σk =
∑

m,j ϕmjkwmj(emj−µk)(emj−µk)
T∑

m,j ϕmjkwmj
. (7)

Algorithm 1: Algorithm for
VALANCE
Input: Initialized {γm}Mm=1,
{ϕm}Mm=1, and {Ωk}Kk=1,
documents {Dm}Mm=1, number of
epochs T.

for t = 1 : T do
for m = 1 : M do

Update ϕm and γm using
Eqn. 5 and Eqn. 6, respectively.
Update {Ωk}Kk=1 using Eqn. 7.

Effect of Attention Weights. From Eqn. 7, we can ob-
serve that the attention weight of the j’th word in doc-
ument m, i.e., amj , affects the virtual continuous word
count wmj (see Sec. 3.3), thereby affecting the update of
the dataset-level concept center µk and covariance Σk.

Specifically, if we use attention-based weights with fixed
length or variable length in Sec. 3.3, the continuous word
count wmj will be proportional to the attention weight
amj . Therefore, when updating the concept center µk as
a weighted average of different word embeddings emj ,
VALANCE naturally places more focus on words with
higher attention weights amj from PLMs, thereby making
the interpretations sharper (see Sec. 5.4 for detailed results and Appendix I for theoretical analysis).

Interestingly, we also observe that PLMs’ attention weights on stop words such as ‘the’ and ‘a’ tend
to be much lower; therefore VALANCE can naturally ignore these concept-irrelevant stop words
when learning and inferring concepts (topics). This is in contrast to typical topic models (Blei et al.,
2003; Blei, 2012) that require preprocessing to remove stop words.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees that our VALANCE satisfies the four properties
in Definition 3.1.

Multi-Level Structure. As shown in Alg. 1, VALANCE (1) learns the dataset-level interpretation
{Ωk}Kk=1 describing the K concepts, (2) infers the distribution of document-level interpretation
θm for document m, i.e., q(θm|γm), which is parameterized by γm, and (3) infers the posterior
distribution of word-level concept index, i.e., q(zmj |ϕmj), parameterized by ϕmj . Such three-level
interpretations correspond to Property (1) in Definition 3.1.

Normalization. The variational distribution q(θm|γm) (Eqn. 1) which VALANCE learns is a
Dirichlet distribution; therefore we have

∑K
k=1 θmk = 1. The update of ϕmj (Eqn. 5) is naturally

constrained by
∑K

k=1 ϕmjk = 1 since ϕmj parameterizes a Categorical distribution (over zmj).

Additivity. VALANCE is able to add or subtract the learned concept activation µk from PLM
embeddings via the following Quadratic Programming (QP) problem (x = [xk]

K
k=1):

minx∈RK ∥
∑K

k=1
xkµk − em∥2, subject to x ≥ 0 and

∑K

k=1
xk = 1. (8)

Given learned concepts {(µk,Σk)}Kk=1, VALANCE obtains this QP’s optimal solution x∗ ∈ RK

and add/subtract any concept k from arbitrary PLM embedding em by: em ← em ± x∗
kµk. Alg. 2

summarizes this concept editing process; one can also replace emj with the CLS embedding cm for
document-level editing (see Appendix D for details).

Mutual Information Maximization. Theorem 4.1 below shows that our inferred document-level
and word-level interpretation, θm and {ϕmj}

Jm
j=1, satisfy Property (4), Mutual Information Maxi-

mization, in Definition 3.1.
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Theorem 4.1 (Mutual Information Maximization). In Eqn. 2, the ELBO
L(γm, {ϕmj}

Jm
j=1;α, {(µk,Σk)}Kk=1) is upper bounded by the mutual information between

contextual embeddings em and multi-level interpretation θm, {ϕmj}
Jm
j=1 in Definition 3.1.

Formally, with approximate posteriors q(θm|γm) and q(zmj |ϕmj), we have

L(γm, {ϕmj}
Jm
j=1;α, {(µk,Σk)}Kk=1) ≤ I(em;θm, {zmj}Jm

j=1)−H(em), (9)

where the entropy term H(em) is a constant.

From Theorem 4.1 we can see that maximizing the ELBO in Eqn. 2 is equivalent to maximizing the
mutual information between our document-level/word-level concepts and the observed contextual
embeddings in PLMs (proof is provided in Appendix H).

In summary, VALANCE enjoys all four properties in Definition 3.1 and therefore generates the
optimal conceptual interpretation for PLMs. In contrast, state-of-the-art methods only satisfy a
small part of them (Table 2 and Sec. 5.2). In Appendix I, we provide theoretical guarantees that (1)
under mild assumptions our VALANCE can learn better conceptual interpretations for PLMs for in
noisy data and (2) attention-based schemes is superior to the identical scheme (Sec. 3.3).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Table 1: Dataset statistics, including the
number of documents (M ), vocabulary
size (V ), the number of corpus cate-
gories (L), and the average document
length (J).

Dataset M V L J

20 Newsgroups 16,309 1,612 20 48
M10 8,355 1,696 10 5.9
BBC News 2,225 2,949 5 120

Datasets. We use three datasets with various text lengths
in our experiments, namely 20 Newsgroups, M10 (Lim &
Buntine, 2015), and BBC News (Greene & Cunningham,
2006). We follow Terragni et al. (2021) and Zhang et al.
(2022) to pre-process these datasets. The statistics of the
datasets are summarized in Table 1. We use the standard
8:1:1 train/validation/test set split.

Baselines. We compare our method with the following
state-of-the-art baselines:

• SHAP and LIME Lundberg & Lee (2017); Ribeiro et al. (2016) are interpretation methods that
attribute importance scores to input features. In this paper, we use embeddings of ‘CLS’ token
as input to SHAP/LIME.

• BERTopic Grootendorst (2020) is a clustering-based model that uses HDBSCAN (McInnes &
Healy, 2017) to cluster sentence embeddings from BERT, performs Uniform Manifold Approx-
imation Projection (UMAP) (McInnes et al., 2018), and then uses class-based TF-IDF (c-TF-
IDF) to obtain words for each cluster.

• CETopic Zhang et al. (2022) is a clustering-based model that first uses UMAP to perform
dimensionality reduction on BERT sentence embeddings, performs K-Means clustering (Lloyd,
1982), and then uses weighted word selection for each cluster.

Algorithm 2: Algorithm for VALANCE
Concept Editing
Input: PLM f(·), classifier g(·),
classification loss L, document Dm with
Jm words, labels y, constant factor ω.

for j = 1 : Jm do emj = f(Dmj)
x∗ = QP (emj , {µk}Kk=1)
k∗ = argmink L(g(emj −ω ·x∗

kµk), ym)
emj ← emj − ω · x∗

k∗µk∗

Evaluation Metric. Inspired by Koh et al.
(2020), we perform concept editing experiments
to evaluate conceptual interpretation for PLMs;
higher accuracy gain after editing indicates bet-
ter interpretation performance. We leverage
BERT-base-uncased (Devlin et al., 2018) as the
contextual embedding model. To compare our
learned concepts with the baseline models, we
first follow their configurations (Grootendorst,
2020; Zhang et al., 2022) to fix BERT model pa-
rameters when learning the topics/concepts, train a classifier on top of the fixed contextual embed-
dings, and then perform concept pruning (Koh et al., 2020) for different evaluated models on the
same classifier. We use accuracy on the test set as our metric.

We can perform concept editing on either input tokens or contextual embeddings of PLMs. Specif-
ically, we can perform hard concept editing for concept k by directly removing tokens that belong
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concept k (applicable for hard clustering methods such as our baselines); we could also perform
soft concept editing for concept k by removing concept subspace vectors from contextual embed-
dings em (applicable for VALANCE using Alg. 2). For SHAP/LIME, we treat the ‘CLS’ token’s
embedding as the input features to interpret.

5.2 COMPARISON ON FOUR PROPERTIES IN DEFINITION 3.1

Table 2: Comparing different methods on the
four properties in Definition 3.1 (MIM: Mutual
Information Maximization).

Model Multi-Level Normalization Additivity MIM
SHAP/LIME No No Partial No
BERTopic No Hard Partial No
CETopic No Hard Partial No
VALANCE Yes Soft Full Yes

In Sec. 4 we show that VALANCE satisfies
the four properties of conceptual interpretation
in Definition 3.1. In contrast, baseline models do
not necessarily learn concepts that meet these re-
quirements. Table 2 summarizes the comparison
between our VALANCE and the baselines. We
can see that VALANCE is superior to baselines
in terms of the following four aspects:

(1) Multi-Level Structure. Baselines either apply clustering algorithms directly on the document-
level embeddings from PLMs and therefore can only provide document-level interpretation or
assign importance scores to input features, and thus can only provide single-level interpretation.
In contrast, VALANCE provides dataset-level, document-level, and word-level interpretation.

(2) Normalization. BERTopic and CETopic assign each word to exactly one concept and therefore
satisfies hard-normalization. SHAP/LIME produce importance scores that are not normalized.
In contrast, VALANCE learn fractional concept interpretations γm and ϕmj and therefore sat-
isfies soft-normalization, which is more flexible and intuitive.

(3) Additivity. Baselines cannot perform complete addition or subtraction of language concepts,
because they operate only at a single level (i.e., word or document). In contrast, VALANCE’s
additivity and concept editing (Alg. 2) work for both document and word levels.

(4) Mutual Information Maximization. Baselines either use a multi-step pipeline or produce
only importance scores; they are therefore prone to lose information between raw PLM embed-
dings and final clustering/scoring results. In contrast, VALANCE is theoretically guaranteed to
maximally preserve information (Theorem 4.1).

5.3 CONCEPT EDITING RESULTS

Table 3: Accuracy gain on 20 Newsgroups
(20NG), M10, and BBC News (BBC) (%). We
mark the best result with bold face and the second
best results with underline.

Dataset Unedited SHAP BERTopic CETopic VALANCE Finetune
/LIME (Oracle)

20NG Acc. 51.26 61.74 60.76 61.93 62.54 64.38
Gain - 10.48 9.50 10.67 11.28 13.12

M10 Acc. 69.74 75.60 76.79 79.18 80.74 82.54
Gain - 5.86 7.05 9.44 11.00 12.80

BBC Acc. 93.72 95.96 95.52 96.86 96.41 97.76
Gain - 2.24 1.80 3.14 2.69 4.04

Accuracy Gain. We perform greedy concept
editing (Koh et al., 2020) for BERTopic, CE-
Topic, and our VALANCE to evaluate the qual-
ity of their learned concepts. Higher accuracy
gain after pruning indicates better performance.
Specifically, we perform concept pruning to the
CLS embeddings for VALANCE (see details
in Alg 2). Since BERTopic and CETopic can in-
fer concepts (topics) only at the document level,
their only choice is to prune a concept by com-
pletely removing input tokens assigned to the concept (as mentioned in Sec. 5.1 and 5.2).

Table 3 show the results for different methods in three real-world datasets, where ‘Finetune (Ora-
cle)’ refers to finetuning both the backbone and the classifier of BERT. VALANCE’s concept edit-
ing can improve the accuracy upon the unedited model by more than 11% in 20 Newsgroups and
M10, almost on par with ‘Finetune (Oracle)’. Compared with the baselines, VALANCE achieves
the most accuracy gain in 20 Newsgroups and M10 and the second most accuracy gain in BBC
News, demonstrating the effectiveness of VALANCE’s four properties in Definition 3.1. Note that
SHAP and LIME both interpret the CLS token’s embedding and therefore has identical accuracy
gain (see Appendix E for details).

Ablation Study. Thanks to its full additivity (Definition 3.1), VALANCE is capable of differ-
ent concept editing schemes, including ‘Random’, ‘Unweighted’, and ‘Weighted’. Specifically,
weighted pruning uses the concept editing algorithm in Alg. 2 with the optimal hyperparameter ω;
unweighted pruning runs Alg. 2 with ω = 1; random pruning first randomly picks a concept, sets
ω · xk = 1/K,∀k ∈ {1, ...,K}, and then runs Alg. 2.
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M10
Dimensionality Reduction of Embeddings with Topics

Concept (Topic) 5: sampling, sequence, similarity, mapping, reconstruction, shift
Concept (Topic) 84: analyze, explore, integrate, accept, incorporate, recover, explain
Concept (Topic) 62: environment, mix, farm, formation, life, origin, growth, source
Concept (Topic) 98: term, cycle, isotope, summer, heating, environment
Concept (Topic) 24: forthcoming, proceeding, prospect, overview, grow, profit
Concept (Topic) 74: peer, connect, collaborative, learning, transaction, change

Feature selection vs theory reformulation: A 
study of genetic refinement of knowledge-
based neural networks 
Document Topic: 5
Prediction: 3 (computer science)
Label: 3 (computer science) (a)

Deep learning with kernel regularization for 
visual recognition
Document Topic: 5
Prediction: 3 (computer science)
Label: 3 (computer science)                     (b)

Mobile search for a black hole in an 
anonymous ring
Document Topic: 84
Prediction: 8 (physics)
Label: 8 (physics)                                     (c)

Banks and markets: The changing character
of European finance
Document Topic: 84
Prediction: 4 (financial economics)
Label: 4 (financial economics)                     (d)

Bio-inspired computing tissues: towards 
machines that evolve, grow, and learn 
Document Topic: 62, 24
Prediction: 9 (social science)
Label: 2 (biology)                                         (e)

The influence of intermittency on air-water gas 
transfer measurements 
Document Topic: 5
Prediction: 0 (agriculture)
Label: 7 (petroleum chemistry)   (f)      

M10
Dimensionality Reduction of Embeddings with Topics

Figure 3: Visualization of VALANCE’s three-level conceptual interpretation. Left and Middle:
Dataset-level interpretation with 6 concepts’ µk and Σk with nearest word embeddings. For better
readability, we show 3 concepts in each plot. Right: Top words in each concept and 6 example
documents with the associated document-level and word-level interpretations.

Table 4: VALANCE Editing Accuracy (%). We
mark the best result with bold face and the second
best results with underline.

Dataset Unedited Random Unweighted Weighted Finetune
(Oracle)

20 Newsgroups 51.26 51.13 54.63 62.54 64.38
M10 69.74 69.76 73.56 80.74 82.54
BBC News 93.72 93.72 95.52 96.41 97.76

Table 4 shows accuracy for VALANCE’s dif-
ferent schemes. As expected, random pruning
barely improves upon the unedited model. Un-
weighted pruning improves upon the unedited
model by 1.5 ∼ 3.5%. Weighted pruning im-
proves the accuracy by around 11% upon the
unedited model on 20 Newsgroups and M10.

5.4 CONCEPTUAL INTERPRETATION (MORE FOR DIFFERENT TASKS IN APPENDIX F)

Dataset-Level Interpretations. As a case study, we train VALANCE on M10, sample 6 concepts
(topics) from the dataset, and plot the word embeddings of the top words (closest to the center µk)
in these concepts using PCA in Fig. 3(left and middle). We can observe Concept 5 is mostly about
data analysis, including words such as ‘sampling’ and ‘similarity’. Concept 84 is mostly about
reasoning, with words ‘explore’, ’accept’, ‘explain’, etc. Concept 62 is mostly about nature, with
words ‘environment’, ‘formation’, ‘growth’, etc. Concept 98 is mostly about farming, with words
‘term’, ‘summer’, ‘heating’, etc. Concept 24 is mostly about economics, with words ‘forthcoming’,
‘prospect’, ‘grow’, etc. Concept 74 is mostly about social contact, containing words such as ‘peer’,
‘connect’, and ‘collaborative’. Interestingly, Concept 24 (economics) and Concept 74 (social con-
tact) are both related to social science and are therefore closer to each other in Fig. 3(middle), while
Concept 98 (farming) is farther away, showing VALANCE’s cability of capturing concept similarity.

Document-Level Interpretations. Fig. 3(right) shows that VALANCE can provide conceptual in-
terpretations on why correct or incorrect PLM predictions happen for specific documents. For exam-
ple, document (e) belongs to class 2 (biology), but BERT misclassifies it as class 9 (social science);
our VALANCE interprets that this is because document (e) involves Concept 24 (economics), which
is related to social science. On the other hand, document (b) is related to machine learning and
BERT correctly classifies it as class 3 (computer science); VALANCE interprets that this is be-
cause document (b) involves Concept 5 (data analysis).

Word-Level Interpretations. Fig. 3(right) also shows that VALANCE can interpret which words
and what concepts of these words lead to specific PLM predictions. For example, document (f)
belongs to class 7 (petroleum chemistry), but BERT misclassifies it as class 0 (agriculture);
VALANCE attributes this to the word ‘air’, which belongs to Concept 98 (farming). For docu-
ment (b), VALANCE interprets that BERT correctly classifies it as class 3 (computer science)
because the document contains the word ‘kernel’, which belongs to Concept 5 (data analysis).

6 CONCLUSION

We identify the problem of multi-level interpretations for PLM predictions, develop a formal defi-
nition of conceptual interpretation, and propose VALANCE as the first general method to infer such
conceptual interpretation, with promising empirical results. Our theoretical analysis shows that
VALANCE is guaranteed to generate the optimal conceptual interpretation by our definition. Future
work includes extending VALANCE beyond BERT variants and natural language processing.
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A DETAILS ON LEARNING VALANCE

Update Rules. Similar to Sec. 3.4.1 of the main paper, we expand the ELBO in Eqn. 2 of the main
paper, take its derivative w.r.t. µk and set it to 0:

∂L
∂µk

=
∑
m,j

ϕmjkwmjΣ
−1
k (emj − µk) = 0, (10)

yielding the update rule for learning µi:

µk =
∑

m,j ϕmjkwmjemj∑
m,j ϕmjkwmj

, (11)

where Σ−1
k is canceled out. Similarly, setting the derivatives w.r.t. Σ to 0, i.e.,

∂L

∂Σk
= 1

2

∑
m,j

ϕmjkwmj(−Σ−1
k +Σ−1

k (emj − µk)(emj − µk)
TΣ−1

k ), (12)

we have

Σk =
∑

m,j ϕmjkwmj(emj−µk)(emj−µk)
T∑

m,j ϕmjkwmj
. (13)
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Figure 4: Probabilistic graphical model of smoothed VALANCE.

Smoothing with Prior Distributions on {(µk,Σk)}Kk=1. To alleviate overfitting and prevent singu-
larity in numerical computation, we impose priors distributions on µk and Σk to smooth the learning
process (Fig. 4). Specifically, we use a Normal-Inverse-Wishart prior on µi and Σi:
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Σk ∼ IW(Λ0, ν0),

µk|Σk ∼ N (µ0,Σk/κ0),

where Λ0, ν0, µ0, and κ0 are hyperparameters for the prior distributions. Taking the expectations of
µk and Σk over the posterior distibutionNIW(µk,Σk|µ(n)

k ,Λ
(n)
k , κ

(n)
k , ν

(n)
k ), we have the update

rules as:

µk ← ENIW [µk] =
κ0µ0+nkµ̃k

κ0+nk
, (14)

Σk ← ENIW [Σk] =
Λ0+Sk+

κ0nk

κ0+nk
(µ̃k−µ0)(µ̃k−µ0)

T

ν0+nk−K−1 , (15)

Sk =
∑

m,j
ϕmjkwmj(emj − µ̃k)(emj − µ̃k)

T . (16)

where nk =
∑

m,j ϕmjkwmj is the total virtual word counts used to estimate µk and Σk. Eqn. 14
and Eqn. 15 are the smoothed version of Eqn. 7 of the main paper. From the Bayesian perfective,
they correspond to the expectations of µk’s and Σk’s posterior distributions. Alg. 1 of the main
paper summarizes the learning of VALANCE.

Online Learning of µk and Σk. Note that PLMs are deep neural networks trained using mini-
batches of data, while Eqn. 14 and Eqn. 15 need to go through the whole dataset before each update.
Inspired by Hoffman et al. (2010); Oord et al. (2017), we using exponential moving average (EMA)
to work with minibatchs. Specifically, we update them as:

µk ← ρ ·N · µk + (1− ρ) ·B · µ̃k,

Σk ← ρ ·N ·Σk + (1− ρ) ·B · Σ̃k,

N ← ρ ·N + (1− ρ) ·B,

µk ←
µk

N , Σk ← Σk

N ,

where B is the minibatch size, N is a running count, and ρ ∈ (0, 1) is the momentum hyperparam-
eter. µ̃k and Σ̃k are the updated µk and Σk after applying Eqn. 14 and Eqn. 15 only on the current
minibatch.

B INTERPRETATION OF THE ELBO

We can expand the ELBO in Eqn. 2 of the main paper as:

L(γ,ϕ;α, {µ}K
k=1, {Σ}K

k=1) = logΓ(

K∑
k=1

αk) −
K∑

k=1

logΓ(αk) +

K∑
k=1

(αk − 1)(Ψ(γk) − Ψ(

K∑
k′=1

γk′ ))

+

J∑
j=1

K∑
k=1

ϕjk(Ψ(γk) − Ψ(

K∑
k′=1

γk′ ))

+
∑
j,k

ϕjkwj{− 1
2 (ej − µk)

T
Σ

−1
k (ej − µk) − log[(2π)

d/2|Σk|1/2]}

− logΓ(

K∑
k=1

γj) +

K∑
k=1

logΓ(γk) −
K∑

k=1

(γk − 1)(Ψ(γk) − Ψ(

K∑
k′=1

γk′ ))

−
J∑

j=1

K∑
k=1

ϕjk log ϕjk. (17)

We can interpret the meaning of each term of ELBO as follows:

• The sum of the first and the fourth terms, namely Eq[log p(θm|α)]−Eq[log q(θm)], is equal
to−KL(q(θm)|p(θm|α)), which is the negation of KL Divergence between the variational
posterior probability q(θm) and the prior probability p(θm|α) of the topic proportion θm

for document m. Therefore maximizing the sum of these two terms is equivalent to min-
imizing the KL Divergence KL(q(θm)|p(θm|α)); this serves as a regularization term to
make sure the inferred q(θm) is close to its prior distribution p(θm|α).
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• Similarly, the sum of the second and the last terms (ignoring the summation over the
word index j for simplicity), namely Eq[log p(zmj |θm)] − Eq[log q(zmj)] is equal to
−KL(q(zmj)|p(zmj |θm)), which is the negation of the KL Divergence between the vari-
ational posterior probability q(zmj) and the prior probability p(zmj |θm) of the word-level
topic assignment zmj for word j of document m. Therefore maximizing the sum of these
two terms is equivalent to minimizing the KL Divergence KL(q(zmj)|p(zmj |θm)); this
serves as a regularization term to make sure the inferred q(zmj) is close to its “prior” dis-
tribution p(zmj |θm).

• The third term
∑Jm

j=1 Eq[log p(emj |zmj ,µzmj
,Σzmj )] is to maximize the log likelihood

p(emj |zmj ,µzmj
,Σzmj

) of every contextual embedding emj (for word j of document m)
conditioned on the inferred zmj and the parameters (µzmj

,Σzmj
).

C EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

We will release all code, models, and data. Below we provide more details on the experimental
settings and practical implementation.

Datasets. We use the GLUE benchmark (Wang et al., 2018) to perform additional conceptual
interpretation in this section. This benchmark includes multiple sub-tasks of predictions, with the
paired sentences as inputs. In this paper, we use 4 datasets from GLUE (MRPC, RTE, STS-B, and
QQP) to show contextual interpretations.

Visualization Postprocessing. For better showcase the dataset-level concepts as in Fig. 3 of the
main paper, we may employ simple linear transformations on the embedding of words after the
aforementioned PCA step, in order to scatter all the informative words on the same figures. However,
for some datasets such as STS-B, this is not necessary; therefore we do not use it for these datasets.

Algorithm 3: Algorithm for VALANCE
Document-Level Concept Editing
Input: PLM f(·), classifier g(·), classification

loss L, dataset {Dm}Mm=1, labels y, constant
factor ω.

for m = 1 : M do
cm = f(Dm)
x∗ = QP (cm, {µk}Kk=1)

k∗ = argminKk=1 L(g(cm − ω · x∗
kµk), ym)

cm ← cm − ω · x∗
k∗µk∗

Topic (Concept) Identification. Inspired
by Blei et al. (2003), we identify meaning-
ful topics by listing the top-5 topics for each
word, computing the inverse document fre-
quency (IDF), and filtering out topics with the
lowest IDF scores. Note that although GLUE
benchmark are datasets that consists of doc-
uments with small size, making it particu-
larly challenging for traditional topic mod-
els (such as LDA) to learn topics; interest-
ingly our VALANCE can still perform well
in learning the topics. We contribute this to
the following observations: (1) Compared to
traditional LDA using discrete word representations, VALANCE uses continuous word embeddings.
In such a continuous space, topics learned for one word can also help neighboring words; this allevi-
ates the sparsity issue caused by short documents and therefore learns better topics. (2) VALANCE’s
attention-based continuous word counts further improves sample efficiency. In VALANCE, impor-
tant words have larger attention weights and therefore larger continuous word counts. In this case,
one important word in a sentence possesses statistical (sample) power equivalent to multiple words;
this leads to better sample efficiency in VALANCE.

D DOCUMENT-LEVEL CONCEPT EDITING

We describe the document-level concept eding algorithm of VALANCE in Alg. 3. cm denotes the
‘CLS’ embedding of document m (see Fig. 1 of the main paper).

E MORE DETAILS ON CONCEPT EDITING

Assume each BERT model contains a backbone and a classifier. To perform concept editing:
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(1) We first train a classifier on top of the fixed BERT embeddings generated by the fixed
backbone to get the original accuracy in the “Unedited” column (in Table 3 and Table 4 of
the main paper).

(2) We then apply the same embedding cluster methods to these BERT embeddings to infer the
concepts/topics for each dataset.

(3) Finally, with the inferred concepts/topics from the baselines (SHAP/LIME, BERTopic and
CETopic in Table 3 of the main paper) and our VALANCE variants (Unweighted and
Weighted in Table 4 of the main paper), we perform concept editing and feed the concept-
edited embeddings into the trained classifier from Step (1) to compute the editing accuracy
for different methods.

Since here one does not fully finetune the BERT model (i.e., keeping the backbone fixed), the editing
accuracy is expected to be lower than the “Finetune” column (in Table 3 and Table 4 of the main
paper), which serves as the oracle. Table Table 3 of the main paper shows that our VALANCE learns
better concepts than the baselines, and Table 4 of the main paper shows that the weighted variant of
VALANCE performs better.

Note that SHAP and LIME both interpret the CLS token’s embedding, and hence their concept
vectors have the same dimension as the PLM embedding vector (768 in our case). When we conduct
concept editing on the k’th dimension/concept, we simply subtract the CLS embedding’s dimension
k with the average value in the batch on dimension k (which means that we know little about the
concept/dimension k on this document), and keep values of the other dimensions unchanged. Note
that the pruning process is exactly the same for SHAP and LIME. Therefore SHAP and LIME have
identical test accuracy and accuracy gain.

F MORE CONCEPTUAL INTERPRETATION RESULTS IN DIFFERENT
DOWNSTREAM TASKS

Dataset-Level Interpretations. As in the main paper, we leverage VALANCE as an interpreter
on MRPC, RTE, STS-B and QQP, respectively, sample 3, 3, 4, 4 concepts (topics) for each dataset
respectively, and plot the word embeddings of the top words (closest to the center µi) in these con-
cepts using PCA. Fig. 5(left) shows the concepts from MRPC. We can observe Concept 20 is mostly
about policing, including words such as ‘suspect’, ‘police’, and ‘house’. Concept 24 is mostly
about politics, including words such as ‘capital’, ‘Congress’, and ‘Senate’. Concept 27 contains
mostly names such as ‘Margaret’ and ‘Mary’. Similarly, Fig. 5(right) shows the concepts from
RTE. We can observe Concept 67 is related to West Asia and includes words such as ‘Quran’ and
‘Pasha’. Concept 13 is related to Europe and includes European countries/names such as ‘Prussia’
and ‘Salzburg’. Concept 91 is mostly about healthcare and includes words such as ‘physiology’
and ‘insulin’. Fig. 6 shows the concepts from STS-B. We can observe Concept 63 is mostly about
household and daily life, including words such as ‘trash’, ‘flowers’, ‘airs’, and ‘garden’. Concept 60
is mostly about tools, including words such as ‘stations’, ‘rope’, ‘parachute’, and ‘hose’. Concept
84 is mostly about national security, including words such as ‘guerilla’, ‘NSA’, ‘espionage’, and
‘raided’. Concept 55 contains mostly countries and cities such as ‘Kiev’, ‘Moscow’, ‘Algeria’, and
‘Ukrainian’. Similarly, Fig. 7 shows the concepts from QQP. We can observe that Concept 12 is
mostly about negative attitude, including words such as ‘boring’, ‘criticism’, and ’blame’. Concept
73 is mostly about Psychology, including words such as ‘adrenaline’, ‘haunting’, and ’paranoia’.
Concept 34 is mostly about prevention and conservatives, including words such as ‘destroys’, ‘unac-
ceptable’, and ’prohibits’. Concept 64 is mostly about strategies, including words such as ‘rumours’,
‘boycott’, and ’deportation’.

Document-Level Interpretations. For document-level conceptual interpretations, we sample two
example documents from MRPC (Fig. 5(left)), three from RTE (Fig. 5(right)), six from STS-B
(Fig. 6) and eight from QQP (Fig. 7), respectively, where each document contains a pair of sentences.
The MRPC task is to predict whether one sentence paraphrases the other. For example, in the first
document of MRPC, we can see that our VALANCE correctly interprets the model prediction ‘True’
with Concept 24 (politics). The RTE task is to predict whether one sentence entail the other. For
example, in the second document of RTE, VALANCE correctly interprets the model prediction
‘True’ with Concept 13 (countries). The STS-B task is to predict the semantic similarity between
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Dimensionality Reduction of Embeddings with Topics
He playfully chided the Senate’s little
bitty tax relief plan. [SEP] We don’t
need a little bitty tax relief plan.

Concept (Topic) 24: capital,
Congress, John, Clinton, Senate, gov,
fort, secretary

Concept (Topic) 20: delegation, prep,
speaker, suspect, mono, seat, police,
house, right, chair, oversee, ask

Document Topic: 24    Prediction: True

“Close cooperation between law 
enforcement agencies and 
intelligence services lie at the heart 
of the ongoing fight against terrorism,” 
Mr. Howard said. [SEP] Close 
cooperation between regional law 
enforcement agencies and 
intelligence services was at the heart

Concept (Topic) 27: Margaret, Mary,
lieu, Scott, Sue, Congress, Shelley

Concept (Topic) 83: your, replace,
county, hill,

Document Topic: 83   Prediction: True

Green tea consumption is associated with 
decreased risk of breast , pancreatic , colon , 
oesophageal , and lung cancers in humans . 
[SEP] Tea protects from some diseases . 

Concept (Topic) 91: physiology, chemical, 
insulin, diabetes, fry, weigh
Document Topic: 91    Prediction: False

The united states told Polish leaders it wants 
to open formal negotiations on the possibility 
of locating ground-based interceptor missiles 
in their country as part of a larger missile 
defense system [SEP] United states wants 
to enlarge their missile defense system.

Concept (Topic) 13: Prussia, Hell, Salzburg, 
Magnet, Juan, Berlin, Raleigh, hood, 
Hanover, shopping, Hui, Torino
Document Topic: 13    Prediction: True

It said it carried out both the Taba and 
Sharm El - Sheikh attacks in obedience to 
the leaders of Jihad [SEP] Sheikh Osama 
Bin Laden and Sheikh Ayman Al - Zawahri
are the leaders of Al Qaeda .

Concept (Topic) 67: Quran, shah, Pasha, 
Shiva, mir, Kuwait, mosque, Iran 
Document Topic: 67 Prediction: False

Dimensionality Reduction of Embeddings with Topics
MRPC RTE

Figure 5: Visualization of VALANCE’s learned topics of contextual word embeddings. Left:
MRPC’s dataset-level interpretation with two example documents. Concept 83 is relatively far from
the other three concepts in the embedding space; therefore we omit it on the left panel for better
readability. Right: RTE’s dataset-level interpretation with three example documents.

Dimensionality Reduction of Embeddings with Topics
STS-B

Concept (Topic) 63: trash, flowers, airs, garden, wild, closet, sofa, vase, carrot, seeds, 
turf, playground, floors

Concept (Topic) 60: stations, rope, parachute, hose, clarinet, sink, axe, rifle

Concept (Topic) 84: guerrilla, NSA, espionage, raided, Canadian, Croatia, historic

Concept (Topic) 55: Kiev, Moscow, resistance, Algeria, agrees, Ukrainian, emerge, 
Qaeda, final

A man and a woman watch two
dogs. [SEP] A man in a 
maroon bathing suit swings on 
a rope on a lake.

Document Topic: 63, 60

Prediction: 0.118 (a)   

A woman is pouring egg into a 
frying pan. [SEP] A man is 
petting two dogs.

Document Topic: 63

Prediction: 0.115                    (b)

A cat is playing on the floor. 
[SEP] A man is slicing garlic.

Document Topic: 63

Prediction: 0.100   (c)

South Korean soldier reportedly flees after killing 5 
comrades at border with North Korea [SEP] South 
Korean soldier kills comrades and flees

Document Topic: 84, 55

Prediction: 3.905 (e)

Syria agrees to surrender chemical weapons [SEP] 
UK’s Cameron: Syria, Russia must show chemical
arms proposal is genuine.

Document Topic: 84

Prediction: 1.975 (d)

Russian opposition leader under house arrest [SEP] 
Russian opposition leader placed under house 
arrest

Document Topic: 84

Prediction: 4.672 (f)

Figure 6: Visualization of VALANCE’s learned topics of contextual word embeddings. We show
STS-B’s dataset-level interpretation with six example documents. The prediction of VALANCE is
between the range of [0, 5].

two sentences with the score range of [0, 5]. For example, in Document (a) of Fig. 6, we can see
that VALANCE correctly interpret the model’s predicted similarity score ‘0.118’ (which is relatively
low,) with Concept 63 (household and daily life) and Concept 60 (tools). Similarly, in Document (f)
of Fig. 6, we can see that VALANCE correctly interpret the model’s predicted similarity score
‘4.672’ (which is relatively high) with Concept 84 (national security). The QQP task is to predict
whether the two questions are paraphrase of each other. For example, in Document (b) of Fig. 7,
we can see that VALANCE correctly interprets the model’s predicted label ‘False’ with Concept 73
(Psychology). Similarly, in Document (e) of Fig. 7, we can see that VALANCE correctly interprets
the model’s predicted label ‘True’ with Concept 64 (strategies).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that
VALANCE interpret the PLM’s prediction on MRPC’s first document (Fig. 5(left)) using words
such as ‘senate’ and ‘bitty’ that are related to politics. Note that the word ‘bitty’ is commonly
used (with ‘little’) by politicians to refer to the small size of tax relief/cut plans. Similarly, for
RTE’s first document (Fig. 5(right)), VALANCE correctly identifies Concept 67 (West Asia) and
interprets the model prediction ‘False’ by distinguishing between keywords such as ‘Jihad’ and ‘Al
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QQP
Dimensionality Reduction of Embeddings with Topics

Concept (Topic) 12: boring, criticism, poorer, blame, empathy, punishment, critic, destroys, cry

Concept (Topic) 73: adrenaline, predatory, haunting, paranoia, twitching

Concept (Topic) 34: destroys, unacceptable, prohibits, straining, ruined

Concept (Topic) 64: rumours, boycott, deportation, affiliation, arbitration, scandals, indicted, factions, 
competitors, bodyguards, competing

How can I turn my idea into a fundable business? 
[SEP] How do I turn my idea into a successful 
company?

Document Topic: 64

Prediction: True (f)

What are the different factions within the 
conservative party? [SEP] What are the organised 
factions of the conservative party?

Document Topic: 34

Prediction: True (g)

How can I start hacking from scratch? [SEP] 
Where/how do I start to learning hacking as a 
newbie?

Document Topic: 64

Prediction: True (h)

What are Hillary Clinton's plans for India? [SEP] 
What would be Hillary Clinton's policy on India?

Document Topic: 64

Prediction: True (e)

What is the best anime to watch when you are 
bored? [SEP] What is the most boring anime you 
have ever watched?

Document Topic: 73

Prediction: True (a)

Are there any famous cases of pronoia (the 
opposite of paranoia)? [SEP] What are some good 
examples of pronoia, the opposite of paranoia?

Document Topic: 73

Prediction: True (c)

Why do we cry while chopping an onion? [SEP] 
Why is assisted-suicide not legal for mentally ill 
people?

Document Topic: 73

Prediction: False (b)

Why is India trying to sabotage CPEC? [SEP] why 
does India oppose CPEC? 

Document Topic: 64

Prediction: True (d)

Figure 7: Visualization of VALANCE’s learned topics of contextual word embeddings. We show
QQP’s dataset-level interpretation with eight example documents.

Table 5: Example concepts on RTE dataset learned by VALANCE.
Concepts Top Words

bio-chem cigarette biological ozone cardiovascular chemist liver chemical toxin
citizenship indies bolivian fiji surrey jamaican dutch latino caribbean
names mozart spielberg einstein bush kurt liszt hilton lynn
conspiracy secretly corrupt disperse infected ill hidden illegally sniper
administration reagan interior ambassador prosecutor diplomat legislative spokesman embassy
crime fraud laundering sheriff prosecutor corruption fool robber greed

Qaeda’. likewise, we can observe that VALANCE interprets PLM’s prediction on Document (c) of
Fig. 6 using words such as ‘cat’, ‘floor’, and ‘garlic’ that are related to household and daily life.
Also, VALANCE interprets PLM’s prediction on Document (e) of Fig. 6 using words such as ‘sol-
dier’ and ‘border’ that are related to national security. Similarly, for QQP’s Document (d) (Fig. 7),
VALANCE correctly interprets the model prediction ‘True’ by identifying keywords such as ‘sab-
otage’ and ‘oppose’ with similar meanings in the topic of strategies. For QQP’s Document (g),
(Fig. 7), VALANCE interprets the words in the both sentences with the same semantics, such as
‘conservative’ that is related to prevention and conservatives (note that in politics, ‘conservative’
refers to parties that tend to prevent/block new policies or legislation), and thereby predicting the
correct label ‘True’.

Example Concepts. Following Blei et al. (2003), we show the learned concepts on the RTE dataset
in Table 5, which is complementary to aforementioned explanations. We select several different
topics from Fig. 5. As in Sec. 5.4 of the main paper, we obtain top words from each concept
via first calculating the average of the each word’s corresponding contextual embeddings over the
dataset, and then getting the nearest words to each topic center (µk) in the embedding space. As we
can see in Table 5, VALANCE can capture various concepts with profound and accurate semantics.
Therefore, although PLM embeddings are contextual and continuous, our VALANCE can still find
conceptual patterns of words on the dataset-level.

G DOCUMENT CLASSIFICATION WITH VALANCE CONCEPTS

We ran additional experiments to perform document classification with the ‘CLS’ token’s embedding
and θ (inferred from VALANCE) as features. Table 6 below shows the results on three datasets. The
results show that our VLANCE can learn meaningful concept vector θ, which can improve model
predictions of document labels.
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Table 6: Comparison of Unedited and Unedited+θ on 20 Newsgroups, M10, and BBC News

Unedited Unedited+θ
20 Newsgroups 51.26 51.74
M10 69.74 70.76
BBC News 93.72 94.90

H THEORY ON THE MUTUAL INFORMATION MAXIMIZATION PROPERTY

We provide the following proof of Theorem 4.1 of the main paper.

For convenience, let Ω = (µK
k=1,Σ

K
k=1), and β = (θm, zm).

We then introduce a helper joint distribution of the variables em and β, s(em, β) = p(em)q(β|em).

According to the definition of ELBO of Section 3.4.1, in Eqn. 9, we have

LHS = L(γm, ϕm;α,Ω) = Ep(em)[Eq(β)[log p(em|Ω, β)]] + Eq(β)[log q(β|Ω)]. (18)

Since Eq(β)[log q(β|Ω)] ≤ 0, we only need to prove that

Ep(em)[Eq(β)[log p(em|Ω, β)]] ≤ Is(em;β)−H(em) = RHS. (19)

Then we have that

Ep(em)[Eq [log p(em|β,Ω)]] ≤ Ep(em)[Eq [log p(em|β)]]

= Ep(em)[Eq [log
q(em|β)
p(em)

p(em)p(em|β)
q(em|β)

]]

= Ep(em)[Eq [log
q(em|β)
p(em)

]] + Ep(em)[Eq [log p(em)]] + Ep(em)[Eq [log
p(em|β)
q(em|β)

]]

= Is(em; β) − H(em) − Eq [KL(q(em|β)|p(em|β))]

≤ Is(em; β) − H(em) − 0 = RHS, (20)

which concludes the proof of Theorem 4.1.

I THEORETICAL ANALYSIS ON CONTINUOUS WORD COUNTS

Before going to the claims and proofs, first we specify some basic problem settings and assumptions.
Suppose there are K+1 topic groups, each of which is regarded to be sampled from a parameterized
multivariate Gaussian distribution. In specific, the K + 1 ’th distribution of topic has a much larger
covariance, and in the same time, closed to the center of embedding space. The prementioned
properties can be measured by a series of inequalities:

The approximate marginal log-likelihood of word embeddings, i.e., the third term of the ELBO as
mentioned in Eqn. 2 of the main paper, is:

L(train) =
∑Jm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj
)]

=
∑
m,j,k

ϕmjkwmj{− 1
2 (emj − µk)

TΣ−1
k (emj − µk)− log[(2π)d/2|Σk|1/2]}. (21)

The above equation is the training objective, yet for fair comparison of different training schemes,
we calculate the approximated likelihood with word count 1 for all words.

L(eval) =
∑Jm

j=1
Eq[log p

′(emj |zmj ,µzmj
,Σzmj

)]

=
∑
m,j,k

ϕmjk{− 1
2 (emj − µk)

TΣ−1
k (emj − µk)− log[(2π)d/2|Σk|1/2]}. (22)
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I.1 GAUSSIAN MIXTURE MODELS

Suppose we have a ground truth GMM model with parameters π∗ ∈ RK and {µ∗
k,Σ

∗
k}Kk=1, with K

different Gaussian distributions. In the dataset, let N and Ns denote the numbers of non-stop-words
and stop-words, respectively. Then the marginal log likelihood of a learned GMM model on a given
data sample e can be written as

p(e|{µ,Σ},π) =
K∑

k=1

πkN (e;µk,Σk). (23)

Assuming a dataset of N+Ns words {ei}N+Ns
i=1 and taking the associated weights wi for each word

into account, the log-likelihood of the dataset can be written as

N+Ns∑
i=1

p(ei|{µk,Σk}
K
k=1,π) =

N∑
i=1

log

K∑
k=1

wiπkN (ei;µk,Σk) +

N+Ns∑
i=N+1

log

K∑
k=1

wiπkN (ei;µk,Σk). (24)

Leveraging Jensen’s inequality, we obtain a lower bound of the above quantity (denoting as Θ the
collection of parameters {µk,Σk}Kk=1 and π):

LGMM(Θ, {wi}) =

N∑
i=1

wi log

K∑
k=1

πkN (ei;µk,Σk) +

N+Ns∑
i=N+1

wi log

K∑
k=1

πkN (ei;µk,Σk) + C, (25)

where C is a constant.

In the following theoretical analysis, we consider the following three different configurations of the
weights wi.

Definition I.1 (Weight Configurations). We define three different weight configurations as follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}

• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}

• Attention-Based Weights: wi =

{
λ1 ∈ [ 1

N+Ns
, 1
N ], i ∈ {1, 2, . . . , N}

λ2 ∈ [0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}

Definition I.2 (Advanced Weight Configurations). We define three different weight configurations
as follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}

• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}

• Attention-Based Weights: wi ∈

{
[ 1
N+Ns

, 1
N ], i ∈ {1, 2, . . . , N}

[0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}

Definition I.3 (Optimal Parameters). With Definition I.1, the corresponding optimal parameters
are then defined as follows:

ΘI = argmax
Θ
L(Θ;w→ Identical), (26)

ΘG = argmax
Θ
L(Θ;w→ GT), (27)

ΘA = argmax
Θ
L(Θ;w→ Attention), (28)

where w → Identical, w → GT, and w → Attention indicates that ‘Identical Weights’, ‘Ground-
Truth Weights’, and ‘Attention-Based Weights’ are used, respectively.
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Lemma I.1. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two non-
negative weighting parameters λ1, λ2 satisfying Nλ1 + Nsλ2 = 1. We define the final objective
function f(·) as:

f(x;λ1, λ2) = λ1

N∑
i=1

f1,i(x) + λ2

Ns∑
i=N+1

f2,i(x). (29)

We assume two pairs of parameters (λ1, λ2) and (λ′
1, λ

′
2), where

λ1 ≥ λ′
1, (30)

λ2 ≤ λ′
2. (31)

Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;λ1, λ2), (32)

x̂′ = argmax
x

f(x;λ′
1, λ

′
2), (33)

we then have that

f(x̂; 1
N , 0) ≥ f(x̂′; 1

N , 0). (34)

Proof. We prove this theorem by contradiction. Suppose that we have

f(x̂; 1
N , 0) < f(x̂′; 1

N , 0). (35)

According to Eqn. 30, i.e., λ1 ≥ λ′
1, and the equation Nλ1 +Nsλ2 = 1, we have

λ1λ
′
2 = λ1

1−Nλ′
1

Ns
≥ λ′

1
1−Nλ1

Ns
= λ′

1λ2. (36)

According to Eqn. 33, we have the following equality:

f(x̂;λ′
1, λ

′
2) ≤ f(x̂′;λ′

1, λ
′
2). (37)

Combined with the aforementioned assumption in Eqn. 35, we have that

λ′
2f(x̂;λ1, λ2) = λ1λ

′
2

N∑
i=1

f1,i(x̂) + λ2λ
′
2

Ns∑
i=N+1

f2,i(x̂) (38)

=(λ′
1λ2

N∑
i=1

f1,i(x̂) + λ′
2λ2

Ns∑
i=N+1

f2,i(x̂)) + (N(λ1λ
′
2 − λ′

1λ2) · 1
N

N∑
i=1

f1,i(x̂)) (39)

=λ2f(x̂;λ
′
1, λ

′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂;
1
N , 0) (40)

<λ2f(x̂
′;λ′

1, λ
′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂
′; 1

N , 0) (41)

=(λ′
1λ2

N∑
i=1

f1,i(x̂
′) + λ′

2λ2

Ns∑
i=N+1

f2,i(x̂
′)) + (N(λ1λ

′
2 − λ′

1λ2) · 1
N

N∑
i=1

f1,i(x̂
′)) (42)

=λ1λ
′
2

N∑
i=1

f1,i(x̂
′) + λ2λ

′
2

Ns∑
i=N+1

f2,i(x̂
′) (43)

=λ′
2f(x̂

′;λ1, λ2), (44)

which contradicts the definition of x̂ in Eqn. 32 (i.e., x̂ maximizes f(x;λ1, λ2)), completing the
proof.

Lemma I.2. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two series
of non-negative weighting parameters λ1 = [λ1,i]

N
i=1,λ2 = [λ2,i]

Ns

i=N+1 satisfying
∑N

i=1 λ1,i +∑Ns

i=N+1 λ2,i = 1. We define the final objective function f(·) as:

f(x;λ1,λ2) =

N∑
i=1

λ1,if1,i(x) +

Ns∑
i=N+1

λ2,if2,i(x). (45)
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We assume two pairs of parameters (λ1,λ2) and (λ′
1,λ

′
2), where

λ1,i ≥ λ′
1,i, i ∈ {1, 2, ..., N}, (46)

λ2,i ≤ λ′
2,i, i ∈ {N + 1, N + 2, ..., Ns}. (47)

Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;λ1,λ2), (48)

x̂′ = argmax
x

f(x;λ′
1,λ

′
2), (49)

x∗ = argmax f(x, 1
N ,0). (50)

Under the following Assumptions (with 1 and 0 denoting vectors with all entries equal to 1 and 0,
respectively):

1. f(x̂,0,λ2) ≤ f(x̂′,0,λ2).

2. f(x;λ,0) ≥ f(x′;λ,0), iff ∥x− x∗∥ ≤ ∥x′ − x∗∥, λ ≥ 0, ∥λ∥1 = 1.

we have that

f(x̂; 1
N ,0) ≥ f(x̂′; 1

N ,0). (51)

Proof. We start with proving the following equality by contradiction:

∥x̂− x∗∥ ≤ ∥x̂′ − x∗∥. (52)

Specifically, if

∥x̂− x∗∥ > ∥x̂′ − x∗∥, (53)

leveraging the Assumption 1 and 2 above, we have that

f(x̂;λ1,λ2) = f(x̂;λ1,0) + f(x̂;0,λ2) < f(x̂′;λ1,0) + f(x̂′;0,λ2) = f(x̂′;λ1,λ2), (54)

which contradicts Eqn. 48. Therefore, Eqn. 52 holds.

Combining Eqn. 52 and Assumption 2 above, we have that

f(x̂; 1
N ,0) ≥ f(x̂′; 1

N ,0), (55)

concluding the proof.

Based on the definitions and lemmas above, we have the following theorems:
Theorem I.3 (Advantage of ΘA in the Simplified Case). With Definition I.1 and Definition I.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., L(·, w → GT), we have that

LGMM(ΘI ;w→ GT) ≤ LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (56)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among
the three:

max[LGMM (ΘI ;w → GT),LGMM (ΘA;w → GT)] ≤ max
Θ

LGMM (Θ;w → GT) = LGMM (ΘG;w → GT). (57)

Next, we set {wi}Ni=1 to λ1 and {wi}N+Ns

i=N+1 to λ2, respectively; we rewrite
log

∑K
k=1 πkN (ei;µk,Σk) as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈

{N +1, N +1, . . . , N +Ns}, where x corresponds to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma I.1, we
have that

LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (58)

Combining Eqn. 57 and Eqn. 58 concludes the proof.
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Theorem I.3 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from
the corpus, improving interpretability of PLMs.
Theorem I.4 (Advantage of ΘA in the General Case). With Definition I.2 and Definition I.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., LGMM (·, w → GT), we have that

LGMM(ΘI ;w→ GT) ≤ LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (59)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among
the three:

max[LGMM(ΘI ;w → GT),LGMM(ΘA;w → GT)] ≤ max
Θ

LGMM(Θ;w → GT) = LGMM(ΘG;w → GT). (60)

Next, we invoke Lemma I.2 by (1) setting {wi}Ni=1 to λ1 and {wi}N+Ns

i=N+1 to λ2, respectively, and
(2) rewriting log

∑K
k=1 πkN (ei;µk,Σk) as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈ {N +

1, N + 1, . . . , N +Ns}, where x corresponds to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma I.2, we then
have that

LGMM(ΘA;w→ GT) ≤ LGMM(ΘG;w→ GT). (61)

Note that because f1,i(·) and f2,i(·) are Gaussian, therefore Assumption 1 and 2 in Lemma I.2 hold
naturally under mild regularity conditions.

Combining Eqn. 60 and Eqn. 61 concludes the proof.

I.2 VALANCE AS INTERPRETERS

As mentioned in Eqn. B , the ELBO of the marginal likelihood (denoting as Θ the collection of
parameters ϕ,γ and {µk,Σk}Kk=1) is as follows:

LVALANCE(Θ; {wi}) =
∑L′

j=1
Eq [log p(emj |zmj ,µzmj

,Σzmj
)]

=
∑
m,j

wmj

∑
k

ϕmjk{− 1
2
(emj − µk)

T
Σ

−1
k

(emj − µk) − log[(2π)
H/2|Σk|

1/2
]}. (62)

Based on the definitions and lemmas above, we have the following theorems:
Theorem I.5 (Advantage of ΘA in the Simplified Case). With Definition I.1 and Definition I.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., L(·, w → GT), we have that

LVALANCE(ΘI ;w→ GT) ≤ LVALANCE(ΘA;w→ GT) ≤ LVALANCE(ΘG;w→ GT). (63)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among
the three:

max[LVALANCE(ΘI ;w → GT),LVALANCE(ΘA;w → GT)] ≤ max
Θ

LVALANCE(Θ;w → GT) = LVALANCE(ΘG;w → GT). (64)

Next, we set ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}

Nm+Nm,s

j=Nm+1 to λ2, respectively; we rewrite∑
i ϕmji{− 1

2 (emj − µi)
TΣ−1

i (emj − µi) − log[(2π)d/2|Σi|1/2]} as f1,j(x) for j ∈
∪m{1, 2, . . . , Nm} and f2,j(x) for j ∈ ∪m{Nm + 1, Nm + 1, . . . , Nm + Nm,s}, where x cor-
responds to Θ ≜ (ϕ,γ, {µk,Σk}Kk=1). By Lemma I.1, we have that

LVALANCE(ΘA;w→ GT) ≤ LVALANCE(ΘG;w→ GT). (65)

Combining Eqn. 64 and Eqn. 65 concludes the proof.

Theorem I.5 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from
the corpus, improving and interpretability of PLMs.
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Theorem I.6 (Advantage of ΘA in the General Case). With Definition I.2 and Definition I.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., LV ALANCE(·, w → GT), we have that

LVALANCE(ΘI ;w→ GT) ≤ LVALANCE(ΘA;w→ GT) ≤ LVALANCE(ΘG;w→ GT). (66)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w → GT) among
the three:

max[LVALANCE(ΘI ;w → GT),LVALANCE(ΘA;w → GT)] ≤ max
Θ

LVALANCE(Θ;w → GT) = LVALANCE(ΘG;w → GT). (67)

Next, we invoke Lemma I.2 by (1) setting ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}

Nm+Nm,s

j=Nm+1 to λ2,
respectively, and (2) rewriting

∑
i ϕmji{− 1

2 (emj − µi)
TΣ−1

i (emj − µi) − log[(2π)d/2|Σi|1/2]}
as f1,j(x) for j ∈ ∪m{1, 2, . . . , Nm} and f2,j(x) for j ∈ ∪m{Nm +1, Nm +1, . . . , Nm +Nm,s},
where x corresponds to Θ ≜ (ϕ,γ, {µk,Σk}Kk=1). By Lemma I.2, we then have that

LVALANCE(ΘA;w→ GT) ≤ LVALANCE(ΘG;w→ GT). (68)

Note that because f1,j(·) and f2,j(·) are very close to Gaussian, therefore Assumption 1 and 2
in Lemma I.2 hold naturally under mild regularity conditions.

Combining Eqn. 67 and Eqn. 68 concludes the proof.
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