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Fig. 1: Real-world execution of our active perception and grasping pipeline. The mobile manipulator robot, equipped with a head-mounted camera,
efficiently explores the scene to detect grasps on the target object and effectively performs the grasp by evaluating its executability. Video demonstrations
are provided at our project website: sites.google.com/view/actpermoma.

Abstract— Mobile Manipulation (MoMa) systems incorporate
the benefits of mobility and dexterity, due to the enlarged space
in which they can move and interact with their environment.
However, extracting task-relevant visual information in clut-
tered environments, such as households, remains challenging. In
this work, we introduce an Active Perception (AP) pipeline for
mobile manipulators to generate motions that are informative
toward manipulation tasks, such as grasping in unknown,
cluttered scenes. Our proposed approach, ActPerMoMa, gen-
erates robot paths in a receding horizon fashion by sampling
paths and computing path-wise utilities. These utilities trade-off
maximizing the visual Information Gain (IG) for scene recon-
struction and the task-oriented objective, e.g., grasp success,
by maximizing grasp reachability. We show the efficacy of our
method in simulated experiments with a dual-arm TIAGo++
MoMa robot performing mobile grasping in cluttered scenes
with obstacles. Also, we demonstrate the transfer of our mobile
grasping strategy to the real world, indicating a promising
direction for active-perceptive MoMa.

I. INTRODUCTION

We envision a future where embodied agents, such as
mobile manipulators, autonomously operate in everyday en-
vironments like households. However, due to the unstruc-
tured and unpredictable nature of the real world, some robots
will actively gather information about their surroundings
through embodied sensors whilst operating [1]. While current
advances in AI and machine learning for robotics have
unlocked new capabilities for table-top manipulation [2]–
[4], or language-driven navigation and manipulation [5]–[9],
mobile manipulation in unknown (or partially known) scenes
poses significant challenges [10]–[12], as the MoMa robot
needs to consider both scene reconstruction and task-oriented
objectives.
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In AP for mobile robots, the robot’s objective is typically
reconstruction, i.e., obtaining volumetric information about
the scene/target object [13]–[16]. Often, this is achieved
via a Next-Best-View (NBV) strategy [17]–[21], primarily
choosing viewpoints based on information gain (IG) [17] that
minimizes uncertainty by exploring unobserved regions. A
good overview and comparison of different IG formulations
for NBV is provided in [22]. Notably, an AP approach that
only considers movement to the NBV with the most informa-
tion gain can lead to unnecessarily large motions. Hence, the
authors of [23] consider IG over paths using a graph-based
approach, while in [24], a receding horizon viewpoint and
path planning method is proposed, a formulation that adapts
to newly observed information.

This work focuses on AP for mobile grasping. For grasp-
ing with static manipulators, recent AP methods adopt grasp
quality metrics to choose the next robot viewpoint that
minimizes uncertainty in the grasp pose estimation [2], [25].
However, these methods have several drawbacks when con-
sidering their application to MoMa. First, a MoMa robot can
move further within the scene and reach (almost) any view-
point. Thus, wasteful motions can be especially costly, and
information gained during movement has to be considered,
opposing NBV-only approaches. Second, the reachability of
grasps and viewpoints is crucial when formulating planning
for MoMa, since grasps of high quality could be challenging
to reach and might cause unnecessary robot movements.

We propose an effective and efficient approach to visu-
ally informative motion generation for mobile manipulators
performing tasks in unknown, cluttered scenes, focusing
on mobile grasping. Our method, Active-Perceptive Motion
Generation for Mobile Manipulation (ActPerMoMa), plans
over collision-free paths generated toward objects of inter-
est in a receding horizon fashion. We compute path-wise
utilities over robot poses, balancing the collection of visual
information gain to infer good grasps (exploration) and task-
specific information, i.e. grasp executability (exploitation).
Our holistic pipeline is illustrated in Fig. 2.

https://sites.google.com/view/actpermoma/home


Fig. 2: ActPerMoMa pipeline. Using a rough initial knowledge about the target area or target object position p̃target, we continuously plan and execute
informative motions for the mobile grasping task. At every timestep t, the RGBD information from the head-mounted embodied camera is integrated into a
scene TSDF for both grasp detection and information gain computation. Using the currently known free space for movement of the robot base, we sample
candidate robot paths T , including both base and camera poses, towards the target. For each candidate path τj ∈ T , we compute the information gained
from camera views pi

j,cam in the path, and the reachability of stable detected grasps from the final base poses pgoal
j,base in the path. We trade-off these

objectives with a receding horizon cost Jτ and take a step of the optimal path τ∗ for execution at every timestep.

II. ACTIVE-PERCEPTIVE MOTION GENERATION FOR
MOBILE MANIPULATION

We consider scenarios where a MoMa robot is placed in a
previously unseen environment and is tasked with picking up
a target object placed on a surface among clutter. To achieve
this task, the mobile manipulator needs to use its mobile base
to move in the scene, an RGBD camera to gather information
about the scene, and an arm/end-effector to execute 6DoF
grasps. Without loss of generality to different physical MoMa
designs, we can simplify the robot’s state as a combination
of its mobile base pose pbase ∈ SE(2), its camera pose
pcam ∈ SE(3), and its end-effector pose pee ∈ SE(3).

We assume to know a rough target object position in
the form of an approximate bounding target object position,
the center of which we denote by p̃target. This can be
achieved by exploring and using an RGB object detector
or by evaluating a user instruction like ’Pickup the object
from the right corner of the table’, although no prior scene
information is required for our method. From the point cloud
of the embodied camera, we build a volumetric representa-
tion of the scene, a 3D Truncated Signed Distance Function
(TSDF). This TSDF is used to plan motions in the observed
environment and to detect grasps. We consider example
scenarios visualized in Fig. 2 and Fig. 3.

A. Candidate goals & paths generation

Our objective is to move towards the target object in the
most informative and time/energy efficient manner and grasp
it. We measure efficiency w.r.t the total distance traveled and
viewpoints visited. At each time step, we sample candidate
paths for the robot and the corresponding SE(3) camera
poses, which always look at the target area, and evaluate
utilities over those paths. For this, we sample Nb goal base

poses {pgoali
base }

Nb
i=0 near the approximate target object position

p̃target within a radius that affords robot reachability [26],
[27]. Every time step, we ensure that base goals are collision-
free by performing a simple collision check with the scene’s
continuously generated TSDF grid or base occupancy map.

We aim to obtain the optimal motion of the robot toward
the target object by planning paths to the candidate base
goals. Thus, we sample M candidate paths T = {τj}Mj=0

to all the Nb candidate base goals {pgoali
base }

Nb
i=0 using opti-

mal path planners—in this work we plan over discretized
grids with A∗. Each path τ ∈ T consists of base poses
from the current robot base to the base goal and feasible
camera poses pcam ∈ SE(3) along the path, i.e., τi =
{{p0

base,p
0
cam}, {{p1

base,p
1
cam} . . . {pgoal

base,p
goal
cam}}. Exam-

ple candidate paths are visualized in Fig. 3.

B. Receding-horizon control

We use a receding-horizon control formulation to generate
the robot’s motion to find and execute a grasp on the
target object. At each time step, we choose the optimal
path among the sampled candidate paths T and execute an
action towards the first waypoint along this current optimal
path. The re-computation of actions at every timestep ensures
robot reactivity to newly observed scene information.

Formally, given the observation of the scene, i.e., the
observed TSDF oTSDF, the detected set of grasps G, and the
sampled candidate paths T , we compute the current optimal
path τ∗ ∈ T based on the expected information gain JIG and
the utility of the grasps’ executability Jexec in the paths:

τ∗ = argmax
τ∈T

JIG(oTSDF, τ) + Jexec(G, τ) (1)

Utilities JIG and Jexec are detailed in subsections II-C &
II-D.



Fig. 3: Example scene with sampled candidate paths (blue) for the robot
pose towards the target object (red box). The paths consist of SE(2) poses
for the base and SE(3) poses for the head-mounted camera (visualized from
the robot to the base goals). The current optimal path is highlighted in green.

For movement at every time step, we use the first waypoint
along the chosen optimal path, i.e., {p∗1

base,p
∗1
cam} ∈ τ∗ and

run a low-level controller that executes IK-based velocities
for the robot base and the camera. If the optimal path τ∗

contains exactly one waypoint, i.e., the robot is close enough
to the final chosen base goal p∗goal

base , we finally consider
grasp execution. If the grasp execution utility Jexec is above
a threshold, we execute the grasp with the highest utility
(sec. II-D) by activating the arm/end-effector and planning a
motion to the SE(3) grasp.

C. Information gain computation & grasp detection

Information gain computation: Our perception objective is
to obtain enough information about the target object to grasp
it. We continuously build a voxel-based TSDF representation
oTSDF of the scene and calculate the rear-side voxel IG
IGrear inspired by [2], [22]: For every viewpoint pcam,
a set of rays R are generated by casting from a virtual
camera placed at the respective view pose. Every ray r
traverses voxels of the TSDF v ⊂ oTSDF until it hits an
observed surface. Therefore the rear-side IG is computed as
IGrear =

∑
r∈R

∑
v I(v), where I(v) = 1 if the voxel is

on the rear of an existing voxel and within the approximate
target object bounding box.

Unlike [22], [2], we consider not only the Next-Best-View
(NBV) but the IG over paths taken by the robot. Moreover,
we also consider the cost of reaching the viewpoints in the
paths by weighting the IG by the distance to the view-
points dist(pcam) along the path. This takes care of our
requirement that information gained sooner is better than
later. We can thus calculate the total IG over each candidate
path τ as

JIG(oTSDF, τ) =
∑

pcam∈τ

IGrear(oTSDF,pcam)

dist(pcam)2
. (2)

An example visualization of the rear-side voxel IG is pro-
vided in Fig 4.

Grasp detection: At every time step, we query grasps in the
target object region using the observed TSDF of the scene
using a grasp detection network. In this work, we use the
VGN [28] grasp detection network to predict an SE(3) grasp
pose for every 3D voxel of the TSDF along with a grasp qual-
ity q. We use a grasp quality threshold qth hyperparameter to
detect good grasps with a high likelihood of success. Given

Fig. 4: Left: Example rear-side Information Gain (IG) for a candidate view.
Pink voxels denote observed TSDF voxels. Blue voxels are on the rear side
of the observed TSDF, which could be revealed by a candidate view. Views
are colored red to green, denoting lower to higher IG. Right: Reachability
map of the robot’s left arm, reduced from 6 dimensions (SE(3)) to 3 for
visualization. Red and green points denote lower and higher reachability.
Current detected 6D grasps are visualized in green on a target object.

that the TSDF contains only partial/incomplete information,
it is also important to consider grasp detector inaccuracy.
Hence, as in [2], we also consider grasp stability by ensuring
that a grasp predicted for the same 3D voxel on the TSDF
has a high-quality score for nstab steps.

D. Reachability utility & grasp selection

To achieve the task, i.e., to grasp the target object, the
robot also needs be positioned at a base goal where a high-
quality grasp can be executed easily. We achieve this ability
by computing a grasp reachability/ utility Jexec correspond-
ing to each candidate path τ . The reachability of any SE(3)
end-effector pose of a robot from a given base pose can be
found by pre-computing a reachability map [29]–[31]. We
refer to [29], [31] for a full description of reachability map
computation. A visualization of the reachability map used in
our approach is provided in Fig 4.

In our pipeline, we pre-compute the reachability map R
and query it for each grasp g ∈ G, when executed from each
candidate base goal pgoal

base corresponding to our sampled
paths τ ∈ T . The highest reachability over all grasps gives
us a utility score Jexec for each candidate path τ and the
corresponding grasp will be executed if the robot reaches
the respective base goal. To ensure that the proximity of
the robot to the base goal of the path pgoal

base ∈ τ is also
considered, we weigh the reachability utilities by the length
of the path len(τ), resulting in

Jexec(G, τ) =
max
g∈G

R(g,pgoal
base)

len(τ)
(3)

E. Additional hyperparameters

To smoothly switch between the two objectives in (1), we
weigh the IG and grasp execution utilities by factors wIG and
wexec. Also, to avoid noisy grasps being used for movement
and execution, we filter out unstable grasps, i.e., grasps that
disappear after a few timesteps. Furthermore, to minimize
oscillation between two base goals with similar overall utility
(eq. 1), that move the robot in opposing directions, we
introduce a momentum term that continues to move the
robot in a direction unless the utility of another direction
is significantly higher.



TABLE I: Ablations & Hyperparameter study – Complex scenes

Hyperparameters
Approach SR (%) ↑ AR (%) ↓ GFR (%) ↓ dtotal (m) ↓ vtotal ↓
ActPerMoMa-Quality (0.7) 91.4 0.6 8.0 4.57 ± 2.39 16.47±8.78
ActPerMoMa-Quality (0.9) 88.8 5.0 6.2 4.84±2.73 17.11±9.54
ActPerMoMa-StableGrasp (1) 92.6 2.2 5.2 4.57±2.51 16.20±8.65
ActPerMoMa-StableGrasp (5) 91.2 2.8 6.0 4.92 ± 2.48 17.47±8.80
ActPerMoMa-IGweight (3.0) 85.8 8.6 5.6 5.10±3.18 17.83± 10.38
ActPerMoMa-IGweight (0.2) 92.6 1.8 5.6 4.31±2.27 15.60±8.39
ActPerMoMa-momentum (0) 83.2 13.0 3.8 5.45±3.40 18.77±11.06
ActPerMoMa-momentum (700) 90.6 3.8 5.6 4.56±2.53 16.28 ± 9.11

Ablation
ActPerMoMa† 92.6 1.80 5.6 4.31±2.27 15.60±8.39
ActPerMoMa-IG-only 96.8 0.8 2.4 3.52±1.61 12.87±6.31
ActPerMoMa-no-weights 48.4 42.0 10.6 9.05±3.79 13.28±10.44

Hard Grasps
ActPerMoMa† 61.8 29.6 8.6 7.19±4.17 24.81±13.24
ActPerMoMa-IG-only 56.2 36.2 7.6 5.77±4.11 25.52±13.82

† Quality=0.8, StableGrasp=1, IGweight=0.2, momentum=800

III. EXPERIMENTS

A. Experimental setup & metrics

We run our experiments in simulation and the real world
on a dual-armed TIAGo++ mobile manipulator with a holo-
nomic base and a head-mounted camera. In the simulated
setup in Isaac Sim, the robot starts at a distance of 2 m w.r.t.
the approximate target location. We consider two scenarios:
a simple one, where a table is placed in free space and with 4
randomly spawned objects from the YCB dataset [32], and a
more complex one, with 6 objects to create more clutter and
with a random obstacle sampled around the table to obstruct
the path of the robot.

We employ the following metrics and use ”rate” synonym
to ”percentages of episodes”: Success Rate (SR), finishing
with successful grasp execution, Abort Rate: (AR) ending
without finding executable grasps in the given time budget,
Grasp Failure Rate (GFR): ending in grasp failure, total
distance covered (dtotal), and the total number of views
visited (vtotal)).

For a more details, a full overview of experiments includ-
ing the real-world demonstrations, ablations and hyperpa-
rameter study, see the full paper and the project website:
https://sites.google.com/view/actpermoma.

B. Ablations & hyperparameter study

We present the results for (i) ActPerMoMa-IG-only: ab-
lation without the grasp executability objective in which
case we execute a grasp as soon as we are 0.85 m of
the object; (ii) ActPerMoMa-no-weights: ablation without
path-length-related scaling of the utilities (see eqs. 2, 3)).
Additionally, we tune important parameters to find the best
configuration for our method and present results for vary-
ing grasp quality thresholds (ActPerMoMa-Quality), grasp
stability windows (ActPerMoMa-StableGrasp), IG weighting
factors (ActPerMoMa-IGweight), and the momentum term
that punishes oscillatory paths (ActPerMoMa-momentum).

Table I presents the results of our study for complex
scenes. Here we see the benefits of our momentum term
as high momentum in complex scenes leads to better per-
formance and reduced path lengths. Our ablation places the
method without the grasp-related utility higher than the full
ActPerMoMa approach, but in the “hard” grasp scenario, we
notice a significant ∼6% performance improvement when
accounting for the grasps utility while planning.

TABLE II: Comparison with baselines

Approach SR (%) ↑ AR (%) ↓ GFR (%) ↓ dtotal (m) ↓ vtotal ↓
Simple scenes

Naive 95.2 1.2 3.6 1.36±0.28 5.93±3.77
Random 93.2 5.0 1.8 4.38±1.98 15.24±6.47
Breyer et al. [2] 92.0 8.0 0.0 3.71±1.78 12.56±6.12
ActPerMoMa (ours) 95.4 1.4 3.2 3.59±1.69 12.67 ± 5.39

Complex Scenes
Naive 86.8 2.6 10.6 1.55±0.45 8.72±8.89
Random 90.4 5.8 3.2 3.97±1.56 13.98±5.39
Breyer et al. [2] 90.0 6.0 4.0 3.32±1.47 12.32±6.13
ActPerMoMa (ours) 92.6 2.2 5.2 4.57±2.51 16.20±8.65

Complex Scenes (Hard Grasps)
Naive 43.8 49.2 7.0 6.06±3.81 27.25±13.95
Random 24.6 68.4 7.0 3.82±2.23 16.29±11.07
Breyer et al. [2] 47.2 48.8 4.0 5.11±3.83 24.03±14.88
ActPerMoMa (ours) 61.8 29.6 8.6 7.19±4.17 24.81±13.24

C. Baseline Comparison

We consider baseline methods with and without IG objec-
tive to show in which cases AP is necessary. Namely, we
compare against (i) a naive approach (Naive) in which we
navigate the robot towards the approximate target location
and activate grasp execution if, within a 0.85 m distance
from the object, a high-quality grasp has been detected; (ii)
a random approach (Random) in which, we randomly select
a feasible base goal each time step around the approximate
target object location until a grasp has been detected. (iii) the
method by Breyer et al. [2] adapted for mobile manipulation,
in which we compute the IG per view (and not accumulated
over paths) sampled on a hemisphere of radius 1m around the
approximate object location. In this case, we always move
to the viewpoint with the highest IG. If we are within reach
of the object and a grasp has been found, we execute it.

Table II presents the results for simple and complex
scenes. For simple scenes, the need for path planning seems
to be alleviated, as an approach as simple as the Naive
approach performs as well as ours, outperforming Breyer
et al. [2] In complex scenes, the SR margin with which
ActPerMoMa leads, widens. Nevertheless, the hard-grasp
case shows the significant benefit of ActPerMoMa w.r.t base-
lines. Notably, we highlight the large benefit in finding grasps
(at least ∼20% lower abort rate) compared to baselines.

D. Limitations

An issue of methods that use reactive planning (such as
ours) is that, depending on the resolution of the sampled base
goals and the sampling frequency, the robot can get stuck in
deadlocks trying to switch between base goals leading to
oscillating motions. Although we introduce the momentum
as a penalty for this behavior, some amount of deadlocks can
still exist.

Another limitation is the limited volumetric information
in the target area in very occluded scenes, making the IG
computation difficult. This can prominently be observed in
Breyer et al. [2], as very occluded objects that get partially
discovered from different views often prompt a ‘zigzag’ path.
Although we improve this behavior by not just considering
the best NBV to decide where to go but instead using the
whole spatial distribution provided by our sampled base
goals, we consider future work with Reinforcement Learning
agents leveraging a combination of our active and some
random exploration to mitigate this effect.

https://sites.google.com/view/actpermoma/home
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