
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAKING THE GP OUT OF THE LOOP

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) has traditionally solved black-box problems where
evaluation is expensive and, therefore, observations are few. Recently, however,
there has been growing interest in applying BO to problems where evaluation is
cheaper and observations are more plentiful. Scaling BO to many observations, N ,
is impeded by the O(N3) cost of a naïve query (or O(N2) in optimized implemen-
tations) of the Gaussian process (GP) surrogate. Many methods improve scaling
at acquisition time, but hyperparameter fitting still scales poorly. Because a GP is
refit at every iteration of BO, fitting remains the bottleneck. We propose Epistemic
Nearest Neighbors (ENN), a lightweight alternative to GPs that estimates function
values and epistemic uncertainty from K-nearest-neighbor observations. ENN has
O(N) acquisition cost and, crucially, omits hyperparameter fitting, making ENN-
based BO also O(N). Because ENN omits hyperparameter fitting, its uncertainty
scale is arbitrary, making it incompatible with standard acquisition methods. We
resolve this by applying a non-dominated sort (NDS) to candidate points, treating
predicted values (µ) and uncertainties (σ) as two independent metrics. Our method,
TuRBO-ENN, replaces the GP surrogate in TuRBO with ENN and its Thompson-
sampling acquisition with this NDS-based alternative. We show empirically that
TuRBO-ENN reduces proposal generation time by one to two orders of magnitude
compared to TuRBO and scales to thousands of observations.

1 INTRODUCTION

Bayesian optimization (BO) is commonly used in settings where evaluations are expensive, such as
A/B testing (days to weeks) Quin et al. (2023); Sweet (2023), materials experiments (roughly 1 day)
Kotthoff et al. (2021). It has also been applied to simulation optimization problems in engineering,
logistics, medicine, and other domains Amaran et al. (2017). More recently, BO has been used in
settings where evaluations are fast and can be run in parallel—for example, large-scale simulations
in engineering design. In such cases, thousands of evaluations may be generated during a single
optimization process Daulton et al. (2021).

BO methods typically scale poorly with the number of observations, N , because proposals are
generated by fitting and querying a Gaussian process (GP) surrogate. Modern, optimized implemen-
tations require O(N2) time per query. We refer to this setting as Bayesian optimization with many
observations (BOMO), and present a method that reduces the proposal-time scaling to O(N).

It is important to distinguish between BOMO and BO with many design parameters – high-
dimensional Bayesian optimization (HDBO). Generally, we expect to need more observations to
optimize more parameters since there are simply more possible designs to evaluate. This expectation
is codified, for example, in Ax’s (Meta (2023)) prescription to collect 2 ×D observations before
fitting a surrogate (where D is the number of design parameters, or dimensions). However, the
number of observations necessary to locate a good design depends on more than just D. For example,
Wang et al. (2016) optimizes a one-billion-parameter function with only 500 observations, while
Daulton et al. (2021) takes 1500 observations to optimize a simulator with only 12 parameters.

This work focuses on BOMO. Specifically, we ask: Can we make a SOTA algorithm significantly
faster on BOMO problems while producing comparable-quality solutions? We are concerned
mainly with scaling (with N) but we also report on wall time. Our approach is to strategically
simplify, then compare solution quality, scaling, and running time. One could think of this paper as
an ablation of the state-of-the-art in BO.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
number of observations (N)

0

20

40

60

80

100

me
an

pr
op

os
al

 t
im

e
(s

)

(a)

D = 300
N turbo-enn-10
N optuna
N2 turbo-1
N vecchia
N2 ucb
N2 lei

0 200 400 600 800 1000
number of observations (N)

0

10

20

30

40

50

60

me
an

pr
op

os
al

 t
im

e
(s

)

(b)

D = 1000
N turbo-enn-10
N optuna
N2 turbo-1
N vecchia

0 200 400 600 800 1000
number of observations (N)

0.3

0.4

0.5

0.6

0.7

me
an

pr
op

os
al

 t
im

e
(s

)

(c)

D = 1000, Zoom
N turbo-enn-10

Figure 1: Mean proposal time (in seconds) versus number of observations (N) for several Bayesian optimization
methods. Subfigures show results for (a) D = 300, (b) D = 1000, and (c) a zoomed-in view of (b), averaged
over many optimization runs (see Section 5). GP-based methods (lei, ucb, turbo-1) scale approximately as
O(N2), while optuna, which uses a Parzen estimator, vecchia, and our method (turbo-enn-10) scale
linearly in N . Results are averaged over 51 functions × 10 BO runs/function = 510 runs for each optimization
mathod.

We propose a method consisting of two components: (i) a K-nearest neighbors surrogate, Epistemic
Nearest Neighbors (ENN), which estimates function values and (uncalibrated, Section 4) epistemic
uncertainty, and (ii) an acquisition method compatible with uncalibrated uncertainty estimates. We
integrate this approach into TuRBO Eriksson et al. (2019) by replacing its GP surrogate and Thompson
sampling acquisition method with ENN and our acquisition method. Additionally, as many simulation
optimization problems are effectively noise-free Santner et al. (2019, Chapter 1, Section 2), and, for
clarity of exposition, we restrict attention to the noise-free case in this paper. Extensions to noisy
settings are a natural direction for future work.

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION

A Bayesian optimizer proposes a design, x ∈= [0, 1]D, given some observations, D =
{(xm, ym)}Nm=1, where ym = f(xm). A typical BO method consists of two components: a surrogate
and an acquisition method. A surrogate is a model of f(x) mapping a design, x, to both an estimate
of f(x), µ(x), and a measure of uncertainty in that estimate, σ(x). An acquisition method determines
the proposal, xp = argmaxx α(µ(x), σ(x)), where the argmax is found by numerical optimization
(e.g., via BFGS Meta (2024a)) or by evaluating α(·, ·) over a set of x samples, for example, uniform
in [0, 1]D or following any number of sampling schemes Kandasamy et al. (2017); Eriksson et al.
(2019); Rashidi et al. (2024a).

2.1.1 SURROGATE

The usual BO surrogate is a Gaussian process Rasmussen & Williams (2006). Given observations
D = {(xm, ym)}Nm=1, the GP posterior at a new point x has mean and variance

µ(x) = K(xm, x)⊤K(xm, xm)−1ym

σ2(x) = 1−K(xm, x)⊤K(xm, xm)−1K(xm, x).
(1)

The N ×N kernel matrix, K(xm, xm), has as its elements K(·, ·)ij = k(xm,i, xm,j), where k(·, ·)
is a kernel function, often a squared exponential k(xm,i, xm,j) = e−∥xm,i−xm,j∥2/2λ, although
others are common, too Rasmussen & Williams (2006). Similarly, the kernel vector, K(xm, x)i =
k(xm,i, x). The kernel matrix is the pairwise covariance between all observations, and the kernel
vector is the covariance between the query point, x, and the observations.

The N ×N kernel matrix is a source of the GP’s O(N2) scaling with number of observations as it
takes N(N−1)/2 evaluations of k(·, ·) to construct it. A straightforward calculation of K(xm, xm)−1

would worsen the scaling to O(N3), but an efficient conjugate-gradient algorithm reduces this, also,
to O(N2) Gardner et al. (2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The hyperparameter, λ, the kernel length-scale, is typically tuned to maximize the marginal log-
likelihood of the observations, D, by a numerical optimizer such as SGD Eriksson et al. (2019) or
BFGS Meta (2024a).

2.1.2 ACQUISITION METHOD

There are many acquisition methods in the literature. Three common ones are:

Upper Confidence Bound (UCB) xp = argmaxx
[
µ(x) + βσ(x)

]
, where β is a constant. The first

term encourages exploitation of D, i.e. biasing xp towards a design that is expected to work well,
while the second term encourages exploration of the design space so as to collect new observations
that will improve future surrogates.

Expected Improvement (EI) xp = argmaxx E[max{0, y(x)− y∗}], where y∗ = max ym, and the
expectation is taken over y(x) ∼ N (µ(x), σ2(x)).

Thompson Sampling (TS)] xp = argmaxx y(x), where y(x) is a joint sample from the GP at a set
of x values. (A joint sample modifies equations equation 1 to account for the covariance between
each x that is being sampled.)

All three methods rely on the GP’s uncertainty being calibrated. Calibration, i.e. hyperparameter
tuning, requires multiple queries of the GP, each of which takes O(N2) time.

We next introduce a surrogate and companion acquisition method. The surrogate, ENN, reduces
query time to O(N), and the acquisition method does not require uncertainty calibration.

3 RELATED WORK

There are many approaches to scale BO to many observations.

Blackbox Matrix-Matrix Multiplication A conjugate-gradient algorithm replaces the inversion of
K(xm, xm) in equation equation 1 with a sequence of matrix multiplies, reducing the query time
complexity of a GP from O(N3) to O(N2) Gardner et al. (2018). A Lanczos algorithm can speed up
GP posterior sampling (e.g., used in Thompson sampling) to constant-in-N Pleiss et al. (2018).

Trust Region BO The TuRBO algorithm Eriksson et al. (2019) reduces wall-clock time in two ways:
(i) It occasionally restarts, discarding all previous observations, resetting N to 0. (ii) It Thompson
samples only within a trust region, a small subset of the overall design space where good designs are
most likely, thus avoiding needless evaluations elsewhere.

Modeling p∗(x) An open-source optimizer, Optuna Akiba et al. (2019); Optuna (2025), does not
model f(x). Instead, it models p∗(x) = P{x = argmaxx f(x)}. The model is a Parzen estimator,
a linear combination of functions of the observations, which has O(N) query time. Optuna uses a
modified EI-based acquisition method Watanabe (2023).

Another optimizer, CMA-ES Hansen (2023), an evolution strategy (not a Bayesian optimizer), uses
no surrogate at all. It models the distribution of the maximizer, p∗(x), by evaluating f(x) directly in
batches of designs. After each batch is evaluated, all previous observations are discarded. Thus, the
compute time of a CMA-ES proposal is O(1), constant in N .

Other methods of scaling to large N replace the GP with a neural network Snoek et al. (2015) or a
random forest Hutter et al. (2011). While fitting a neural network or random forest scales as O(N),
the fitting processes are complex and introduce many tunable hyperparameters. Query time depends
on the model architecture and is independent of N .

Inducing point methods Titsias (2009) introduce M summary points, reducing the training complexity
of GPs to O(NM2) and storage to O(NM), with prediction costs of O(M) for the mean and
O(M2) for the variance, independent of N . Optimally, M increases only slowly with N Burt
et al. (2020). Stochastic variational GPs (SVI-GP) further reduce the per-minibatch complexity to
O(M3), independent of N Hensman et al. (2013). Fitting requires choosing inducing points (various
approaches exist Moss et al. (2023)) and can be computationally intensive, since the variational loss
is more complex than the exact GP likelihood. These methods become relatively efficient when
N ≥ 10, 000 Wang et al. (2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Another approach to scaling is to model f(x) using nearest neighbor observations, as in Vecchia GP
methods Jimenez & Katzfuss (2022) and others Gramacy & Apley (2015); Wu et al. (2024). One
Vecchia method explored in Jimenez & Katzfuss (2022) combines nearest-neighbor lookups with
TuRBO’s trust region sampling. This approach is most similar to ours.

In contrast to the approaches above, our method, TuRBO-ENN, drastically simplifies the surrogate
model and dispenses with hyperparameter fitting altogether. (It has a hyperparameter; It just does not
fit it. See Section 4.) As a result, our method scales linearly, O(N), and has a smaller constant factor,
making it faster at every tested N . See Figure 1.

In preparing Figure 1, we found that the Vecchia GP method Jimenez (2025) to take 3 - 4 times longer
to run than TuRBO and, thus, have omitted it from further numerical studies.

Chen & Lam (2025) recently introduced Pseudo-Bayesian Optimization (PBO), which establishes
convergence guarantees for any method whose surrogate, uncertainty quantifier, and acquisition
satisfy certain conditions. Appendix C shows that TuRBO-ENN meets these conditions and, therefore,
qualifies as a PBO method, inheriting the associated convergence guarantees.

4 EPISTEMIC NEAREST NEIGHBORS

4.1 ENN SURROGATE

We define ENN by three properties. For a query point, x,

• Independence: Each observation, (xm, ym) ∈ D, produces an independent estimate of
f(x).

• Mean: µ(x | xm, ym) = ym.
• Epistemic variance: σ2(x | xm, ym) = d2(x, xm), where d(x, xm) denotes the (Euclidean)

distance from x to xm.

Precisely speaking, we treat the estimates as independent for tractability. Equating epistemic variance
to squared distance from the measurement, xm, captures the intuition that similar designs will have
similar evaluations, f(x).

Combining estimates. For a query point, x, we combine the estimates from its K nearest neighbors
into the linear combination with minimum variance, the precision-weighted average Cochran (1954)

µ(x) =

∑K
i σ−2(x | xi)µ(x | xi, yi)∑K

i σ−2(x | xi)
, σ2(x) = Var[µ(x)] =

1∑K
i σ−2(x | xi)

Substituting from the properties above yields the ENN estimator:

µ(x) =

∑K
i d−2(x, xi)yi∑K
i d−2(x, xi)

, σ2(x) =
1∑K

i d−2(x, xi)
(2)

Computational cost. Finding the K nearest neighbors requires evaluating d(x, xi) for all N
observations, costing O(N lnK) time per query. Treating the observations as independent relieves
us from calculating the O(N2) pairwise covariances between observations as in the calculation of
K(xm, x) in equations 1. Our implementation uses the Python module Faiss Meta (2024b) to find
the K nearest neighbors.

Hyperparameters Note that we fix K (ENN’s hyperparameter) to a single value for the entirety
of all BO runs. This contrasts with most other surrogate methods, which re-fit either surrogate
hyperparameters (e.g., a GP may fit lengthscales, output scales, and other hyperparameters Gardner
et al. (2018)) or model parameters (e.g., tree-based methods or neural networks fit their parameters to
the observations). In this respect, our method is perhaps most similar to a Tree-structured Parzen
Estimator (TPE) Watanabe (2023); Akiba et al. (2019): a TPE updates summary statistics of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

K = 1, N = 4 K = 2, N = 4 K = 3, N = 4

K = 1, N = 10 K = 3, N = 10 K = 9, N = 10

Figure 2: Epistemic nearest neighbors (ENN) surrogate. The dashed line shows µ(x) and the shaded region is
proportional to ±σ(x). Only the relative size of σ(x) is meaningful because σ(x) is uncalibrated. The solid red
line is the function being estimated, f(x).

observations but does not perform an iterative fitting procedure to tune hyperparameters or parameters.
The impact of the choice of K on performance is discussed in Appendix A.

Figure 2 depicts the ENN surrogate for an inverted parabola with various numbers of observations,
N , and settings of K. Both the mean and uncertainty become smoother as K increases. Notice in the
lower right subfigure (K = 9, N = 10) that the red line falls outside the gray area. A fitted model
would contain the function in µ(x)− 2σ(x) < f(x) < µ(x) + 2σ(x), with high probability. In the
next section, Section 4.2, we provide numerical evidence that surrogate fitting is not necessary for
effective BO.

4.2 ACQUISITION VIA NON-DOMINATED SORT

Because the ENN surrogate is not fit, the scales of µ(x) and σ(x) are unrelated, and acquisition
methods that compare µ(x) to σ(x) (e.g., UCB, EI, TS) would yield arbitrary proposals. For example,
UCB(x) = µ(x) + βσ(x). Unless σ is properly scaled to capture the uncertainty in µ(x), UCB(x)
is meaningless. We, therefore, treat acquisition as a bi-objective optimization that maximizes both
µ(x) and σ(x), an approach that is insensitive to the overall scales of µ(x) and σ(x) (and was
previously studied in De Ath et al. (2021)).

Pareto dominance. Let X ⊆ [0, 1]D be the search space. For any two points xi, xj ∈ X , xi

dominates xj if µ(xi) ≥ µ(xj) and σ(xi) ≥ σ(xj), with at least one inequality strict. The Pareto
front PF(µ, σ) is the set of non-dominated points. More on this may be found in Appendix B.

Practical approximation. We sample a finite candidate set C = {xi} uniformly inside TuRBO’s
trust region, compute µ(x) and σ(x) for each xi, and extract the non-dominated subset PF0 ⊂ C
via non-dominated sort Buzdalov & Shalyto (2014). A proposal, or arm, xa is drawn uniformly at
random from PF0. If more than one arm is required, we keep sampling without replacement from
PF0. If PF0 is exhausted, we find the next non-dominated subset, PF1 ⊂ C \ PF0. The process
repeats until we have sampled the required number of arms. Code is available at [anonymized].

5 NUMERICAL EXPERIMENTS

We benchmark TuRBO-ENN on three categories of problem: (i) 51 analytic test functions Surjanovic
& Bingham (2013), (ii) Five reinforcement-learning environments (LunarLander-v3, Swimmer-v5,
Hopper-v5, Ant-v5, Humanoid-v5, Farama (2024)), and (iii) The MOPTA08 automotive simulator
Jones (2008). Across all tasks, TuRBO-ENN attains objective values comparable to TuRBO while
reducing proposal time by an order of magnitude or more, with greater reductions for larger N . We
compare to several baseline optimizers summarized in Table 1 and below.

The computations in this section required an estimated 30,000 cpu-hours of compute time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Optimization methods compared in Section 5.

Method Surrogate Acquisition Cost / proposal
RL

Score
RL

Time

random none Uniform sample O(1) 0.082± .018 0.00023

CMA–ES none Gaussian sample O(1) — —
optuna Parzen KDE Modified EI O(N) — –
lei GP Log-EI O(N2) — —
ucb GP UCB O(N2) — —

turbo-1 GP
Thompson sample

trust region O(N2) 0.35± 0.017 1.0

turbo-0 none
Uniform sample

trust region O(1) 0.25± .004 0.008

turbo-enn-10 ENN (K = 10)
Pareto(µ,σ)

front O(N) 0.32± .005 0.014

0 50 100 150 200 250 300
rounds

21.4

21.2

21.0

20.8

20.6

20.4

20.2

y,
 m

ax
 s

in
ce

 r
ou

nd
 0

 0.0s random
 322.8s optuna

 24.1s turbo-enn-10
 902.1s turbo-1

Figure 3: Four different optimizers optimizing a 300-dimensional Ackley function. The legend shows the total
time (in seconds) spent calculating proposals.

5.1 SCORING

To introduce our comparison methodology, we compare TuRBO-ENN to other optimizers on the
300-dimensional Ackley function, Figure 3. In each round of the optimization, one design, xn, is
proposed and evaluated, yn = f(xn). The max-so-far, ymax,n = max{y0, . . . , y(xn)}, is plotted vs.
n. We ran each optimization 10 times and depicted the mean of ymax,n by the dashed line and ±se
(standard error) by the gray area.

We can summarize each optimization method’s performance in Figure 3 with a single number, which
we call the score. At each round, n, find the maximum measured values so far for each method, m:
ymax,n,m. Rank these values across m and scale: rn,m = [rank(ymax,n,m)−1]/(M −1), where M
is the number of methods. Repeat this for every round, n, then average over all R rounds to get a score
for each method: sm =

∑R
n rn,m/R. The scores in figure 3 are sturbo-1 = 1, sturbo-enn-10 = 2/3,

soptuna = 1/3, and srandom = 0.

Using a normalized score enables us to average over runs on different functions which, in general,
have different scales for y. Using a rank-based score prevents occasional, outlying result from
dominating the average.

5.2 PURE FUNCTIONS

In these experiments we perform calculations similar to 3 for 51 test functions. To add variety to
the function set and to avoid an artifact where an optimization method might coincidentally prefer
to select initial points near a function’s optimum (e.g., at the center of the parameter space Kudela
(2023)), we randomly distort each function. We move the center point to a uniformly-randomly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

le
i

uc
b

tu
rb
o-
1

tu
rb
o-
en
n-
10

tu
rb
o-
0

op
tu
na

ra
nd
om

0.0

0.5

1.0

sc
or

e(
y m

ax
)

num_dim = 100 num_arms = 1

uc
b

tu
rb
o-
1

tu
rb
o-
en
n-
10

tu
rb
o-
0

op
tu
na

ra
nd
om

0.0

0.5

1.0

sc
or

e(
y m

ax
)

num_dim = 300 num_arms = 1

tu
rb
o-
1

tu
rb
o-
0

tu
rb
o-
en
n-
10

ra
nd
om

0.0

0.5

1.0

sc
or

e(
y m

ax
)

num_dim = 1000 num_arms = 1

le
i

uc
b

tu
rb
o-
1

op
tu
na

tu
rb
o-
en
n-
10

tu
rb
o-
0

ra
nd
om

0.0

0.5

1.0

sc
or

e(
t p

ro
po

sa
l)

num_dim = 100 num_arms = 1

uc
b

tu
rb
o-
1

op
tu
na

tu
rb
o-
en
n-
10

tu
rb
o-
0

ra
nd
om

0.0

0.5

1.0

sc
or

e(
t p

ro
po

sa
l)

num_dim = 300 num_arms = 1

tu
rb
o-
1

tu
rb
o-
en
n-
10

tu
rb
o-
0

ra
nd
om

0.0

0.5

1.0

sc
or

e(
t p

ro
po

sa
l)

num_dim = 1000 num_arms = 1

Figure 4: Optimizations on 51 pure functions in dimensions 100-1000. The top row compares the maximal
attained objective values. The bottom row compares wall-clock time. TuRBO-ENN is faster than GP methods
yet finds objective values comparable to those found by TuRBO-1.

chosen value, x0. Along each axis, we distort like this

x′ =

{
x−x0

1+x0
x < x0

x−x0

1−x0
x > x0

Note that the boundaries at 0 and 1 remain fixed. The value x0 is set and fixed for the duration of an
optimization run. We repeat the optimization 30 times for D ≤ 100 or 10 times for D > 100, each
time with a different random distortion. We optimize each function for max(30, D) rounds.

We calculate normalized scores for ymax as well as for tproposal, the total time spent computing design
proposals. Figure 4 compares TuRBO-ENN to TuRBO and other methods in various dimensions
from 100-1000. Scores in each plot are averaged over 51 test functions. The full list of functions is
available in the code repository [anonymized] and is taken from Surjanovic & Bingham (2013).

The other optimization methods are summarized in Table 1. The methods lei and ucb use a
GP surrogate, and optuna uses a tree Parzen model. turbo-1 is the single-trust-region variant
of TuRBO Eriksson et al. (2019), which tracks a trust region (a box inside [0, 1]D) from round-
to-round. turbo-1 Thompson samples from max(5000, 2D) candidate x values, C, in the trust
region. turbo-enn-10 replaces the Thompson samples with samples from the Pareto front (see
Section 4.2) of C and uses ENN instead of a GP. We use K = 10 for ENN estimation. (Other values
of K are studied in Appendix A.) For all optimizations, the first round of arms (proposed designs) is
chosen by some method of random initialization. For all TuRBO-based methods the initialization
method is a latin hypercube design Santner et al. (2019). EI and UCB are initialized with Sobol’
samples Santner et al. (2019).

We also include an ablation we call turbo-0 in which we use no surrogate at all. Instead, we just
select a design, x, uniformly randomly in the trust region. Comparing turbo-0 to random and
turbo-1 allows one to disentangle the impact of the trust region logic from that of the surrogate.
The column RL Score shows average scores (as defined in Section 5.1) on the three RL problems
in Figures 5- 10. Sampling in the trust region instead of the entire bounding box improves the
score from 0.21 (random) to 0.36 (turbo-0). Incorporating the ENN surrogate increases it to
0.42 (turbo-enn-10). Finally, switching from ENN to a GP further raises the score to 0.44
(turbo-1).

The column RL Time lists the total time a method spent calculating proposals, normalized to the time
spent by turbo-1. The normalization was performed once for each problem since the proposal
time varies by problem.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
rounds

150

100

50

0

50

100

150

200

250

y,
 m
ax
 s
in
ce
 r
ou
nd
 0

num_arms = 1 num_denoise = 1

 0.0s random
 3.4s optuna
 0.3s turbo-0

 23.6s turbo-1
 0.5s turbo-enn-10

0 20 40 60 80 100
rounds

50

0

50

100

150

200

250

300
num_arms = 10 num_denoise = 10

 0.0s random
 0.2s cma
 58.4s optuna

 0.4s turbo-0
 37.8s turbo-1
 0.7s turbo-enn-10

0 5 10 15 20 25 30
rounds

50

0

50

100

150

200

250

300
num_arms = 50 num_denoise = 50

 0.0s random
 0.2s cma
 111.3s optuna

 0.1s turbo-0
 67.5s turbo-1
 0.3s turbo-enn-10

Figure 5: LunarLander-v3, D = 12, using the controller presented in Eriksson et al. (2019). turbo-enn-1
performs comparably to turbo-1, which uses a GP, while achieving speeds nearly matching turbo-0, which
uses no surrogate at all.

Figure 4 summarizes our results. We see that vanilla BO methods, lei or ucb, perform best
(top row) but also take the most time to generate a proposal (bottom row). Note that when D =
1000, we exclude lei and ucb due to prohibitive computational demands. 1 turbo-1 improves
computation time but sacrifices some design quality. Finally, turbo-enn-10 is significantly faster
than turbo-1 but still achieves comparable design quality.

The bottom row shows only the scores of each method’s proposal time. For time in seconds, see
figure 1. At the 1000th proposal, turbo-enn-10 is over 30 times faster than turbo-1. Extending
the curve for lei in the first plot to N = 1000, we estimate that turbo-enn-10 would make its
1000th proposal over 1800 times faster than lei.

5.3 SIMULATORS

We next examine optimizations of several realistic problems. Most of the problems presented are
from Gymnasium Farama (2024), the RL testbed originally known as OpenAI Gym Brockman et al.
(2016).

For every gymnasium environment we use “frozen noise”, i.e., each evaluation starts with a fixed
random seed Kim et al. (2003). Panel (a) in each figure runs for 100 rounds using 1 arm per round.
Panel (b), for each evaluation, averages the simulation’s return (i.e., the sum of the rewards over
all steps of the simulation) over num_denoise = 10 different random seeds, proposing and
evaluating 10 arms/round. Panel (c) averages over num_denoise = 50 random seeds, proposing
50 arms/round. Configuration (c) was chosen to match the right panel of Figure 3 in Eriksson et al.
(2019). All optimizations in this section were replicated 100 times, each time with a different set of
random seeds, for variety. The legend shows the total time spent proposing arms over all rounds
(averaged over replications), in seconds. The time required to run the simulations is excluded.
Figures for other environments in Appendix D show the same patter.

In each case, we see turbo-enn-10 producing designs of similar quality to those produced by
turbo-1, but 10-100 times faster. Interestingly, the method turbo-0, which has no surrogate at
all – it just samples uniformly from the trust region – outperforms other optimization methods on
several problems. Hopper-v5 does not benefit from a surrogate, at least to within the error bars of our
measurement. Nevertheless, including a surrogate (whether ENN or GP) generally further improves
performance.

1Based on our runs of D ∈ 30, 100, 300, we project that a single optimization of a function in D = 1000
with lei would take nine hours.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 LIMITATIONS AND FUTURE WORK

Improving scaling from O(N2) to O(N) allows BO to handle many more observations. We would
prefer, however, to see a constant-in-N , i.e. O(1), scaling in a BO algorithm, as one finds in evolution
strategies such as CMA-ES. In that case, the usable number of observations is unlimited.

Additionally, while TuRBO-ENN performs comparably to TuRBO (with a GP), neither perform as
well (at least on the pure functions) as LEI or UCB. It would be interesting to seek a global ENN
algorithm that matches the performance of LEI or UCB but retains the O(N) scaling and speed of
TuRBO-ENN.

In Appendix A, we discuss the potential to improve the dependence of ENN on K.

7 DISCUSSION

The major impediment to scaling to large numbers of observations in Bayesian optimization is
the GP surrogate. Advances in GP methods have reduced the scaling from O(N3) to O(N2) for
exact methods Gardner et al. (2018), but O(N2) still hampers scaling to BOMO problems. Scaling
improves to O(N) for approximate methods Titsias (2009); Moss et al. (2023) and alternative
surrogates Snoek et al. (2015); Hutter et al. (2011), but fitting can be complex.

Our results show that BOMO problems can be solved to near state-of-the-art quality much more
quickly by (i) using a simplified surrogate and (ii) omitting the surrogate-fitting step.

Almost certainly ENN provides worse estimates than a fitted GP. We do not optimize K, ENN has no
other tunable parameters, and correlations between observations are ignored. But our goal in BO is
not to estimate f(x), it is to find its maximizer. TuRBO-ENN does this does this well and does it
quickly.

We propose two explanations for this finding.

1. Trust region TuRBO’s adaptive trust region biases samples to lie near the incumbent (best-
so-far) observation. Table 1 shows that even with no surrogate at all (i.e., turbo-0), BO
performance is significantly better than with random search (random). In fact, the bulk of
the performance improvement between random search and the full TuRBO algorithm can
be accounted for by the trust region. [N.B.: In addition to confining samples to a subspace,
TuRBO samples only a subset of dimensions, a technique called RAASP Rashidi et al.
(2024b); Eriksson et al. (2019). RAASP and the trust region, together, are responsible for the
impact. Rashidi et al. (2024b) study the effects of RAASP and the trust region separately.]
Additionally, the smaller the region over which a surrogate is required to predict, the less
function variation it will need to model. Thus, a simpler surrogate (e.g., ENN) might incur
less of a penalty in the overall BO problem when a trust region is used.

2. Acquisition In Bayesian optimization, the distribution of observations is not arbitrary: Ob-
servations are biased by epistemic uncertainty toward locations where the surrogate predicts
with low confidence and toward locations of high f(x). By these two mechanisms, observa-
tions tend to lie where they are needed for future acquisition decisions. We hypothesize that
any surrogate that relies on nearby observations to predict at a point x, will fare relatively
better in a BO setting that in an general regression problem. This may be interesting to make
more precise in future work.

8 CONCLUSION

This paper asked whether we could speed up Bayesian optimization in the presence of many obser-
vations by removing the O(N2) bottleneck, the Gaussian process (GP) surrogate. Our numerical
studies indicate that the answer is Yes. We introduced a simple model, Epistemic Nearest Neighbors
(ENN), and found that substituting it for the GP in TuRBO resulted in one to two orders of magnitude
reduced proposal time in our tests and better scaling (O(N)) without significantly sacrificing the
quality of the proposed designs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

We used ChatGPT and Cursor to help with writing code, constructing LaTeX commands, researching
related work, and editing and revising this paper. All content remains our responsibility; we verified
correctness and originality. Otherwise anonymized until final submission.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019. URL https://api.
semanticscholar.org/CorpusID:196194314.

Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. Simulation optimization:
A review of algorithms and applications. CoRR, abs/1706.08591, 2017. URL http://arxiv.
org/abs/1706.08591.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

David R. Burt, Carl Edward Rasmussen, and Mark van der Wilk. Convergence of sparse variational
inference in gaussian processes regression. Journal of Machine Learning Research, 21(131):1–63,
2020. URL http://jmlr.org/papers/v21/19-1015.html.

Maxim Buzdalov and Anatoly Shalyto. A provably asymptotically fast version of the generalized
jensen algorithm for non-dominated sorting. In Thomas Bartz-Beielstein, Jürgen Branke, Bogdan
Filipič, and Jim Smith (eds.), Parallel Problem Solving from Nature – PPSN XIII, pp. 528–537,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-10762-2.

Haoxian Chen and Henry Lam. Pseudo-bayesian optimization, 2025. URL https://arxiv.
org/abs/2310.09766.

William G. Cochran. The combination of estimates from different experiments. Biometrics, 10
(1):101–129, 1954. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/
3001666.

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian
optimization over high-dimensional search spaces. CoRR, abs/2109.10964, 2021. URL https:
//arxiv.org/abs/2109.10964.

George De Ath, Richard M. Everson, Alma A. M. Rahat, and Jonathan E. Fieldsend. Greed is good:
Exploration and exploitation trade-offs in bayesian optimisation. ACM Trans. Evol. Learn. Optim.,
1(1), April 2021. doi: 10.1145/3425501. URL https://doi.org/10.1145/3425501.

David Eriksson, Michael Pearce, Jacob R. Gardner, Ryan Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. CoRR, abs/1910.01739, 2019. URL http:
//arxiv.org/abs/1910.01739.

Farama. Gymnasium, 2024. URL https://gymnasium.farama.org/index.html.

Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon Wilson.
Gpytorch: blackbox matrix-matrix gaussian process inference with gpu acceleration. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,
pp. 7587–7597, Red Hook, NY, USA, 2018. Curran Associates Inc.

Robert B. Gramacy and Daniel W. Apley. Local gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics, 24(2):561–578, 2015. doi:
10.1080/10618600.2014.914442. URL https://doi.org/10.1080/10618600.2014.
914442.

Nikolaus Hansen. The cma evolution strategy: A tutorial, 2023. URL https://arxiv.org/
abs/1604.00772.

10

https://api.semanticscholar.org/CorpusID:196194314
https://api.semanticscholar.org/CorpusID:196194314
http://arxiv.org/abs/1706.08591
http://arxiv.org/abs/1706.08591
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://jmlr.org/papers/v21/19-1015.html
https://arxiv.org/abs/2310.09766
https://arxiv.org/abs/2310.09766
http://www.jstor.org/stable/3001666
http://www.jstor.org/stable/3001666
https://arxiv.org/abs/2109.10964
https://arxiv.org/abs/2109.10964
https://doi.org/10.1145/3425501
http://arxiv.org/abs/1910.01739
http://arxiv.org/abs/1910.01739
https://gymnasium.farama.org/index.html
https://doi.org/10.1080/10618600.2014.914442
https://doi.org/10.1080/10618600.2014.914442
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13, pp. 282–290,
Arlington, Virginia, USA, 2013. AUAI Press.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello (ed.), Learning and Intelligent
Optimization, pp. 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-
642-25566-3.

Felix Jimenez. Vecchiabo, 2025. URL https://github.com/feji3769/VecchiaBO.

Felix Jimenez and Matthias Katzfuss. Scalable bayesian optimization using vecchia approximations
of gaussian processes, 2022. URL https://arxiv.org/abs/2203.01459.

Don R. Jones. Mopta08 automotive benchmark problem: Large-scale multi-disciplinary mass
optimization in the auto industry. Presentation at the Modeling and Optimization: The-
ory and Applications (MOPTA) Conference, 2008. Slides and benchmark files available at
https://www.miguelanjos.com/projects/3009-jones-benchmark, 2008. Ac-
cessed 11 May 2025.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asynchronous
parallel bayesian optimisation via thompson sampling, 2017. URL https://arxiv.org/
abs/1705.09236.

H. Kim, Michael Jordan, Shankar Sastry, and Andrew Ng. Autonomous helicopter
flight via reinforcement learning. In S. Thrun, L. Saul, and B. Schölkopf (eds.), Ad-
vances in Neural Information Processing Systems, volume 16. MIT Press, 2003. URL
https://proceedings.neurips.cc/paper_files/paper/2003/file/
b427426b8acd2c2e53827970f2c2f526-Paper.pdf.

Lars Kotthoff, Hud Wahab, and Patrick Johnson. Bayesian optimization in materials science: A survey.
ArXiv, abs/2108.00002, 2021. URL https://api.semanticscholar.org/CorpusID:
236772166.

Jakub Kudela. The evolutionary computation methods no one should use, 2023.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is com-
petitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf.

Meta. Ax, 2023. URL https://ax.dev.

Meta. Botorch, 2024a. URL https://botorch.org.

Meta. Faiss, 2024b. URL https://ai.meta.com/tools/faiss/.

Henry B. Moss, Sebastian W. Ober, and Victor Picheny. Inducing point allocation for sparse gaussian
processes in high-throughput bayesian optimisation. In Francisco Ruiz, Jennifer Dy, and Jan-
Willem van de Meent (eds.), Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp. 5213–
5230. PMLR, 25–27 Apr 2023.

Optuna. Optuna, 2025. URL https://optuna.org.

Geoff Pleiss, Jacob R. Gardner, Kilian Q. Weinberger, and Andrew Gordon Wilson. Constant-
time predictive distributions for gaussian processes. CoRR, abs/1803.06058, 2018. URL http:
//arxiv.org/abs/1803.06058.

Federico Quin, Danny Weyns, Matthias Galster, and Camila Costa Silva. A/b testing: A systematic
literature review. ArXiv, abs/2308.04929, 2023. URL https://api.semanticscholar.
org/CorpusID:260735919.

11

https://github.com/feji3769/VecchiaBO
https://arxiv.org/abs/2203.01459
https://www.miguelanjos.com/projects/3009-jones-benchmark
https://arxiv.org/abs/1705.09236
https://arxiv.org/abs/1705.09236
https://proceedings.neurips.cc/paper_files/paper/2003/file/b427426b8acd2c2e53827970f2c2f526-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/b427426b8acd2c2e53827970f2c2f526-Paper.pdf
https://api.semanticscholar.org/CorpusID:236772166
https://api.semanticscholar.org/CorpusID:236772166
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7634ea65a4e6d9041cfd3f7de18e334a-Paper.pdf
https://ax.dev
https://botorch.org
https://ai.meta.com/tools/faiss/
https://optuna.org
http://arxiv.org/abs/1803.06058
http://arxiv.org/abs/1803.06058
https://api.semanticscholar.org/CorpusID:260735919
https://api.semanticscholar.org/CorpusID:260735919

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bahador Rashidi, Kerrick Johnstonbaugh, and Chao Gao. Cylindrical Thompson sampling for
high-dimensional Bayesian optimization. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li
(eds.), Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research, pp. 3502–3510. PMLR, 02–04 May
2024a. URL https://proceedings.mlr.press/v238/rashidi24a.html.

Bahador Rashidi, Kerrick Johnstonbaugh, and Chao Gao. Cylindrical Thompson sampling for
high-dimensional Bayesian optimization. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li
(eds.), Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research, pp. 3502–3510. PMLR, 02–04 May
2024b.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and Analysis of Com-
puter Experiments. Springer New York, NY, 2019. ISBN 9781493988471. doi: https:
//doi.org/10.1007/978-1-4939-8847-1. URL https://link.springer.com/book/10.
1007/978-1-4939-8847-1.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Md. Mostofa Ali Patwary, Prabhat Prabhat, and Ryan P. Adams. Scalable bayesian optimization
using deep neural networks. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pp. 2171–2180. JMLR.org, 2015.

Sonya Surjanovic and Derek Bingham. Virtual library of simulation experiments: Optimization test
problems. http://www.sfu.ca/~ssurjano/optimization.html, 2013. Accessed:
2023-10-25.

David Sweet. Experimentation for Engineers. Manning, 2023. ISBN 9781617298158. URL
https://www.manning.com/books/experimentation-for-engineers.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In David
van Dyk and Max Welling (eds.), Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 567–574,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
https://proceedings.mlr.press/v5/titsias09a.html.

Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, and
Andrew Gordon Wilson. Exact gaussian processes on a million data points. Curran Associates
Inc., Red Hook, NY, USA, 2019.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Freitas. Bayesian
optimization in a billion dimensions via random embeddings, 2016. URL https://arxiv.
org/abs/1301.1942.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance, 2023. URL https://arxiv.org/abs/2304.
11127.

Luhuan Wu, Geoff Pleiss, and John Cunningham. Variational nearest neighbor gaussian process,
2024. URL https://arxiv.org/abs/2202.01694.

12

https://proceedings.mlr.press/v238/rashidi24a.html
https://link.springer.com/book/10.1007/978-1-4939-8847-1
https://link.springer.com/book/10.1007/978-1-4939-8847-1
http://www.sfu.ca/~ssurjano/optimization.html
https://www.manning.com/books/experimentation-for-engineers
https://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/1301.1942
https://arxiv.org/abs/1301.1942
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2202.01694

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
ra
nd
-1
0

tu
rb
o-
en
n-
mu
-1
0

tu
rb
o-
en
n-
se
-1
0

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e(
y m

ax
)

N = 100 D = 100

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
ra
nd
-1
0

tu
rb
o-
en
n-
mu
-1
0

tu
rb
o-
en
n-
se
-1
0

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e(
y m

ax
)

N = 300 D = 300

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
ra
nd
-1
0

tu
rb
o-
en
n-
mu
-1
0

tu
rb
o-
en
n-
se
-1
0

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e(
y m

ax
)

N = 1000 D = 1000

Figure 6: It is important to consider both µ(x) and σ(x) in the acquisition method.

tu
rb
o-
en
n-
1

tu
rb
o-
en
n-
3

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
30

tu
rb
o-
en
n-
10
0

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e(
y m

ax
)

N = 100 D = 100
tu
rb
o-
en
n-
1

tu
rb
o-
en
n-
3

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
30

tu
rb
o-
en
n-
10
0

0.0

0.2

0.4

0.6

0.8

1.0
sc

or
e(

y m
ax
)

N = 300 D = 300

tu
rb
o-
en
n-
1

tu
rb
o-
en
n-
3

tu
rb
o-
en
n-
10

tu
rb
o-
en
n-
30

tu
rb
o-
en
n-
10
0

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e(
y m

ax
)

N = 1000 D = 1000

Figure 7: Score has a maximum in K.

A ABLATIONS

Our acquisition method (Section 4.2) relies on both the ENN mean µ(x) and its uncertainty σ(x). To
test whether each component is necessary, we evaluate three ablations of turbo-enn-10:

• turbo-enn-mu-10: propose the design with the largest µ(x) and ignore σ(x).
• turbo-enn-sigma-10: propose the design with the largest σ(x) and ignore µ(x).
• turbo-enn-rand-10: replace σ(x) by a uniform random value u ∼ U(0, 1) when

constructing the Pareto front, i.e. use PF
(
µ(x), u

)
.

The first two ablations simply ignore one of µ(x) and σ(x). The third tests whether our model
for σ(x) carries any useful information. It could be that random numbers drive exploration just as
effectively, in which case we could simply omit our σ(x) estimates.

If both statistics contribute meaningfully, the full turbo-enn-10 should outperform these abla-
tions.

TuRBO-ENN comes with a hyperparameter, K, which determines the number of neighbors used
to form estimates. Figure 7 explores the dependence of performance on K. The fact that there is
a maximum in the function score vs. K suggests that tuning K at each round might be beneficial.
Ideally, score would increase monotonically in K, which would enable one to subjectively trade off
evaluation speed (low K) for design quality (high K). Future work could explore modifications of
the ENN surrogate to achieve this goal.

B PARETO DOMINANCE

With two objectives the Pareto front is typically a one-dimensional curve (Figure 8); each point on
the front dominates every point lying below or to the left of it but none on the curve itself.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(x)

(x
)

Figure 8: µ(x) and σ(x) for 100 candidate design points. The circled (red) points are the non-dominated subset.

C TURBO-ENN AS PSEUDO-BAYESIAN OPTIMIZATION

Chen and Lam (2023) introduce the Pseudo-Bayesian Optimization (PBO) framework, which axiom-
atizes the conditions under which a black-box optimization method can be shown to converge. A
PBO algorithm is defined by three components: a surrogate predictor (SP), an uncertainty quantifier
(UQ), and an acquisition function (AF). For convergence, these must satisfy:

• Local Consistency (LC): The surrogate’s prediction converges to the true function value in
any region where data are dense.

• Sequential No-Empty-Ball (SNEB): Uncertainty is bounded away from zero in unsampled
regions, and vanishes only when samples approach the point of interest.

• Improvement Property (IP): The acquisition assigns positive worthiness to any candi-
date with nonzero uncertainty, and converges to zero only when further improvement is
impossible.

We now verify that TuRBO-ENN satisfies these conditions:

LC TuRBO-ENN uses Epistemic Nearest Neighbors (ENN) as its surrogate, predicting the mean
µ(x) from a weighted average of the K nearest neighbors. Chen and Lam (2023) explicitly analyze
K-nearest-neighbor regression and show that it is locally consistent for continuous f : with sufficient
data near x, µ(x) → f(x). Since ENN is a weighted K-NN model, it inherits this property and thus
satisfies the local consistency condition.

SNEB ENN defines the predictive variance σ2(x) using squared distances to the nearest neighbors.
If x is far from all sampled points, σ(x) is large; as samples approach x, σ(x) → 0. Hence ENN’s
uncertainty is SNEB-compliant: unexplored regions maintain positive uncertainty, and only regions
with dense samples become certain.

IP TuRBO-ENN selects new points via non-dominated sorting (NDS) on (µ(x), σ(x)). Candidates
with high σ(x) but moderate µ(x) remain on the Pareto front, ensuring exploration whenever
uncertainty exists. Conversely, if no improvement is possible with certainty, all candidates become
dominated and their acquisition values vanish. This satisfies the improvement property.

Because TuRBO-ENN’s SP, UQ, and AF satisfy the PBO axioms, it qualifies as a Pseudo-Bayesian
Optimization method. Therefore, TuRBO-ENN is algorithmically consistent Chen & Lam (2025): its
sequence of evaluations will eventually cover the search space, [0, 1]D, and converge to the global
optimum in the limit of infinite evaluations.

D MORE RL PROBLEMS

Figures 9 and 10 show turbo-enn-10 producing high quality solutions in 10-100x less time than
turbo-1.

Figure 11 shows results for three more problems, MOPTA08, Ant-v5, and Humanoid-b5. We
excluded turbo-1 and optuna from the comparisons of Ant-v5 and Humanoid-v5 because a
single optimization would take longer than our allotted 5-hour window. We include them here simply

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
rounds

0

50

100

150

200

250

300

y,
 m
ax
 s
in
ce
 r
ou
nd
 0

num_arms = 1 num_denoise = 1

 0.0s random
 4.5s optuna
 0.4s turbo-0

 31.0s turbo-1
 0.6s turbo-enn-10

0 20 40 60 80 100
rounds

50

100

150

200

250

300

350

num_arms = 10 num_denoise = 10

 0.0s random
 0.2s cma
 82.2s optuna

 0.5s turbo-0
 47.8s turbo-1
 1.0s turbo-enn-10

0 5 10 15 20 25 30
rounds

50

100

150

200

250

300

350

num_arms = 50 num_denoise = 50

 0.0s random
 0.2s cma
 150.4s optuna

 0.2s turbo-0
 51.1s turbo-1
 0.5s turbo-enn-10

Figure 9: Swimmer-v5, D = 17, using a linear controller, similar to Mania et al. (2018). The controller designed
by turbo-enn-10 performs as well as that designed by turbo-1, but the designs are proposed almost 50
times faster.

0 20 40 60 80 100
rounds

0

200

400

600

800

y,
 m
ax
 s
in
ce
 r
ou
nd
 0

num_arms = 1 num_denoise = 1

 0.0s random
 8.7s optuna
 0.6s turbo-0

 103.1s turbo-1
 1.3s turbo-enn-10

0 20 40 60 80 100
rounds

0

200

400

600

800

1000

num_arms = 10 num_denoise = 10

 0.0s random
 0.2s cma
 170.9s optuna

 0.8s turbo-0
 168.7s turbo-1
 2.4s turbo-enn-10

0 5 10 15 20 25 30
rounds

200

400

600

800

num_arms = 50 num_denoise = 50

 0.0s random
 0.2s cma
 302.3s optuna

 0.2s turbo-0
 115.4s turbo-1
 1.0s turbo-enn-10

Figure 10: Hopper-v5, D = 34, using a linear controller, similar to Mania et al. (2018). Performance of
turbo-1, turbo-enn-10, and turbo-0 is comparable (within the error areas).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
rounds

340

320

300

280

260

240

y,
 m

ax
 s

in
ce

 r
ou

nd
 0

MOPTA08

 0.0s random
 4.3s turbo-0

 7.1s turbo-enn-10
 327.0s turbo-1

0 20 40 60 80 100
rounds

900

1000

1100

1200

1300

Ant-v5

 0.3s random
 25.5s turbo-0

 113.5s turbo-enn-10

0 20 40 60 80 100
rounds

250

300

350

400

450

500

550

Human-v5

 1.3s random
 235.4s turbo-0

1299.9s turbo-enn-10

Figure 11: (a) MOPTA08 Jones (2008) D = 124 10 arms/round (b) Ant-v5, D = 841, 100 arms/round. (c)
Humanoid-v5, D = 5861. (b,c) use a linear controller, similar to Mania et al. (2018)

to demonstrate that it is possible to work with thousands of observations in hundreds or thousands of
dimensions using our Bayesian optimization method.

16

	Introduction
	Background
	Bayesian optimization
	Surrogate
	Acquisition method

	Related work
	Epistemic Nearest Neighbors
	ENN surrogate
	Acquisition via Non-dominated Sort

	Numerical experiments
	Scoring
	Pure functions
	Simulators

	Limitations and future work
	Discussion
	Conclusion
	Ablations
	Pareto Dominance
	TuRBO-ENN as Pseudo-Bayesian Optimization
	More RL Problems

