
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTS HELP AGENTS: EXPLORING TRAINING-FREE
KNOWLEDGE DISTILLATION FOR SLMS IN DATA SCI-
ENCE CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation from Large Language Models (LLMs) to locally hosted
Small Language Models (SLMs) provides advantages for Data Science Code Gen-
eration (DSCG) such as enhanced data privacy and reduced response times. How-
ever, achieving effective distillation without resource-intensive training is chal-
lenging. This paper investigates whether LLMs can distill knowledge to SLMs
through In-Context Learning (ICL), a training-free method for rapid task adap-
tation. We present the Agents Help Agents (AHA) framework, which facili-
tates automatic knowledge distillation from LLMs to SLMs via agent orchestra-
tion. AHA consists of three phases: exploration through an Agent Orchestration
Interface (AOI), memory collection of successful examples, and inference aug-
mented with distilled knowledge. The AOI orchestrates interactions between a
LLM as a Teacher Agent and a SLM as a Student Agent. And we propose two
distillation strategies: a static approach that aggregates an offline instruction set
and a dynamic RAG-based approach that distills knowledge dynamically during
inference. We evaluate AHA on three challenging code generation tasks for tab-
ular data analysis: TABMWP, BIRD-SQL, and WIKITQ. Experimental results
demonstrate the effectiveness of AHA, leading to an average 27.5% relative im-
provement in the performance of the Student Agent Phi-3-mini. Additionally,
relative gains of 14.3% and 30.9% are observed in Llama-3.1-8B and GPT-35-
Turbo, respectively, even though those models were not calibrated as part of the
orchestration, highlighting the model-agnostic nature of the distilled knowledge in
AHA. Further analysis compares distillation and demonstration techniques across
different data input settings, providing insights into optimal configurations for
DSCG.

1 INTRODUCTION

Data Science Code Generation (DSCG) automates the conversion of natural language queries into
executable code, empowering non-expert information extraction and analysis from tabular data ef-
ficiently. This process enhances productivity, reduces the technical barrier for data analysis, and
allows data scientists to focus on deriving insights, ultimately supporting more effective decision-
making (Khanbabaei et al., 2018; Han et al., 2011; Fayyad et al., 1996). This is a challenging task
since it not only requires code generation capability but also data understanding capability.

Large Language Models (LLMs) have demonstrated remarkable performance across diverse, com-
plex tasks (Singh et al., 2023; Mu et al., 2024; Chen et al., 2023; Zheng et al., 2024; Deng et al.,
2023). Leveraging LLMs or LLM agents for automatic code generation from user queries offers an
effective solution (Yang et al., 2024b; Wang et al., 2024b). However, the integration of LLMs in
DSCG faces two primary challenges: 1) Privacy concerns arise when utilizing closed-source LLMs
such as GPT-4 (Achiam et al., 2023) or Claude-3.5-Sonnet (Ogunseyi et al., 2023). 2) Deploying
large open-source models like Llama-3.1-405B (Dubey et al., 2024) or DeepSeek-v2 (236B) (Liu
et al., 2024) can be challenging due to their large number of parameters. Balancing these benefits
and challenges is crucial for effective data science applications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Small Language Models (SLMs), such as Phi-3-mini (Abdin et al., 2024) and Llama-3.1-8B (Dubey
et al., 2024), have gained attention for their In-Context Learning (ICL) capabilities but more advan-
tages for local deployment and on-device inference. These models offer computational efficiency
and enhanced data privacy, crucial for resource-constrained or privacy-sensitive applications (Joshi
et al., 2024). While SLMs have shown competitive performance in some general tasks including
natural language understanding (Nie et al., 2020) and code completion (Chen et al., 2021), their
effectiveness in data science code generation tasks remains an open question.

Fine-tuning is a common strategy to enhance SLM capabilities for complex tasks (Petroni et al.,
2021). However, this approach encounters several challenges in the domain of data science DSCG.
One primary issue is the limited availability of high-quality training data. Professional tabular
datasets, such as relational databases, are often small or proprietary, restricting access to substantial
corpora for training. Additionally, the dual expertise required in both coding syntax and data un-
derstanding for accurate annotation further constrains dataset scalability (Li et al., 2024b; Lei et al.,
2024). This is reflected in recent benchmarks for data science code generation, which typically con-
tain around or fewer than 1,000 samples, highlighting the complexity and resource constraints in
this field (Hu et al., 2024; Agashe et al., 2019; Lai et al., 2023; Zhang et al., 2023; Yin et al., 2023).
Recent research has explored distillation from LLMs to SLMs through fine-tuning on synthetic data
generated (Team et al., 2024; Magister et al., 2023; Kang et al., 2023). While this approach shows
promise, several challenges persist. For example, frequent updates to code packages introduce new
syntax that may conflict with previously trained knowledge (Wu et al., 2024). Furthermore, the per-
formance improvements obtained from these methods often fail to generalize well across different
programming languages or frameworks, requiring extensive re-training for each package update or
new task (Shen et al., 2022a; Ke et al., 2023). However, In-Context Learning (ICL) can adapt to new
requirements or tasks by providing relevant instructions or examples, reducing the effort required
for re-training or continual training. This raises a research question in DS code generation: Can
LLMs distill knowledge to SLMs through In-Context Learning (ICL)?

In this paper, we explore the potential of knowledge distillation from LLMs to SLMs via ICL. We
design Agents Help Agents (AHA), a novel, fully automated framework that enables LLM as a
Teacher Agent to guide SLMs as Student Agents in complex data science code generation tasks.
AHA operates in three phases: exploration, memory database collection, and knowledge-driven
inference. During exploration, we employ the Agent Orchestration Interface (AOI) that allows an
LLM to probe and analyze SLM code knowledge by converting questions into step-wise functional
plans and asking SLMs to infill the code for each plan. Then, successful collaborated cases are
stored in memory databases. We also introduce two novel distillation techniques during inference:
General Instructions and Meta Instructions.

We evaluate AHA on three challenging tabular analysis datasets that need code generation:
TABMWP (Lu et al., 2023), BIRD-SQL (Li et al., 2024a), and WIKITQ (Pasupat & Liang, 2015).
The experimental results demonstrate that the AHA framework significantly improves the perfor-
mance of SLMs across all datasets, validating the potential of our knowledge distillation approach
via In-Context Learning (ICL). Notably, the performance boost achieved by AHA is not limited to
the specific SLM trained during the orchestration process but generalizes across other SLMs as well.
This model-agnostic nature further highlights the flexibility and adaptability of distilled knowledge
in our framework, enabling it to be applied in a wide range of data science code generation scenarios
without requiring extensive retraining.

2 METHODOLOGY

2.1 TASK FORMULATION

Given a natural language query or question qi ∈ Q, where Q = {q1, q2, . . . , qN} represents a set of
N queries or instructions, and its corresponding tabular data or database schema information di ∈ D,
where D = {d1, d2, . . . , dN}, the Small Language Model (SLM) is tasked with generating a single,
concise, and executable code snippet ci. This code snippet must accurately answer the query qi with
the associated data di. The function that maps each query-data pair to its corresponding code snippet
by SLMs is defined as fgen, and can be written as:

ci = fgen(qi, di) for i = 1, 2, . . . , N. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1

Reference Code: Could be
generated by Teacher LLM
or GT code (if have)

Functional Plan: That’s
step-by-step plan eliciting
SLM to resolve codes.

Agent Orchestration Interface

Orchestrated Coding: SLM
fill the code for the plan to
make it correct.

O
</> Observation: Orchestrated

Code will be executed and
return logs to Teacher LLM

Abstraction Lifting: Convert Referenced code to Functional Plan

R F
R

F

2 Orchestrated Coding: Fill codes to the plan to make it correct

F

O

3 Plan Optimization: Optimize plans only for student SLM understand

F2

F2

</>

New Functional Plan: LLM
will optimize plans by pre-
defined actions

A

B

Decomposition (Stepn)

C

ALT (Stepn)

SIMPLYFY (Stepn)

D DELETE (Stepn)

E ADD (Stepn)

F SWITCH (Stepn)

Memory Database Construction

Correct Trajectory with 1 turn (COLLECTED)

R F O </>

C C C
CC C

C S
C S

C
S

a) Mem DB:

C Correct Case:

Question:

Database Input:

SQLite:

…

SELECT

S Case Study:

Question:

Schema Info:
• Table 1:
- column 1:
- column 2:

• Table 2:
- column 1:

Explanation:
• Filter Columns:

• Join Tables:

• Perform Operations:

b) Mem DB + Case Study:

C S
C S

C
S

Knowledge-driven Inference
c) Tree-based General Instruction Distillation

Pos General Instructions
1. You should …
2. You should …
3. You should …
…

d) RAG-based Meta Instruction Distillation

C S
C S

C
S S

S

S

Pos Meta Instructions

1. You should …
2. Group data before
counting…

3. You should …
…

e) Knowledge-driven Planning + Code Generation

SELECT COUNT(T2.score) FROM
ranking_criteria AS T1 INNER
JOIN uni_ranking_year AS T2
… …

Task Prompt:
1. Filter tables..
2. Count number…
…

Plan:

1. Filter tables..
2. Count number…
…

Plan: Code:Task Prompt:

Correct Trajectory with 1 turn (COLLECTED)

R F O </> F … O </>

Wrong Trajectory with Multi-turn (DISCARD)

R F O </> F … O </>

Figure 1: Overview of the AI agent orchestration system for data science code generation. Left:
Agent Orchestration Interface (AOI) with abstraction lifting, orchestrated coding, and plan opti-
mization. Center: Memory Database Construction, including trajectory collection and case study
integration. Right: Knowledge-driven Inference and Planning, featuring tree-based general instruc-
tion distillation, RAG-based meta instruction generation, and knowledge-driven code generation.

2.2 AGENT ORCHESTRATION INTERFACE

The Agent Orchestration Interface (AOI) is designed to mediate the interaction between a Large
Language Model (LLM), a Teacher Agent, and a Student Agent, represented by the SLM. The
primary goal of the AOI is to generate successful and informative problem-solving cases, which
are later used for knowledge distillation in DSCG. The AOI is composed of three key components:
Abstraction Lifting, Orchestrated Coding, and Plan Optimization.

Abstraction Lifting (AL). In this phase, LLM generates a functional plan Pi =
{si1, si2, . . . , siK} based on a query qi, data input di, and the corresponding ground truth (gt) code
c̃i. The ground truth code c̃i can either be sourced from an existing dataset or generated by the
Teacher Agent when it is not directly available but a ground-truth answer string exists. This func-
tional plan is defined as Lal(di, qi, c̃i), where Lal LLM performing abstraction lifting. Each step sij
in the plan corresponds to a key subtask derived from the query, collectively forming a structured
template outlining the solution process. These steps are annotated by the LLM with descriptive
comments and placeholders such as [Fill Your Code Here] in Python or [Fill Your
Sub-Query] in SQL, as shown in Figure 2, ensuring that the SLM follows the logical flow of
the entire plan and enables guided code generation. Unlike Chain-Of-Thought (Wei et al., 2022)
plans, which provide intermediate steps in continuous textual form, our approach bridges high-level
problem understanding with low-level code implementation logic, allowing the SLM to follow the
better plan for data science code generation.

Orchestrated Coding (OC). Once the functional plan Pi is provided, the SLM considers all
context including the question and data input to generate the complete orchestrated code ci =
fgen(di, qi, Pi) in a single turn by filling all placeholders, ensuring the solution is correct and ex-
ecutable. The results from executing this orchestrated code are then compared to those from a ref-
erence solution (such as ground truth answer string or gt codes) to evaluate whether the SLM fully
understands both the data and the logic needed to answer the question. This comparison serves as
a key indicator of the problem-solving accuracy of SLM and alignment with the intended solution.
While the ground truth code may already be available from datasets or generated by the Teacher
Agent, orchestrated coding and abstraction lifting are crucial for a few reasons. First, AL breaks
down complex problem-solving tasks into manageable sub-tasks, with the potential to improve the
performance of the SLMs across a wide range of analytical queries by assisting them in under-
standing modular structure. Additionally, error isolation can be grounded in the program structure,
enabling more precise identification of issues and contributing to optimized plans. This is supported
by our analysis in Section 3.6 that compares chain-of-thought with functional plans across multiple
turns of orchestration.

Plan Optimization (PO). The plan optimization process is an iterative procedure that unfolds
over multiple turns, denoted by t. During each iteration, the SLM refines the functional plan P t

i .
To formalize this interactive optimization process, we define an environment E = ⟨S,A,O, T ⟩,
following (Zhou et al., 2023; Xie et al., 2024; Gu et al., 2024), where S represents the state space,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Original Code Executable Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # clean the data for acts, and stages
4 [Fill Your Code]
5
6 # compute z scores
7 [Fill Your Code]
8
9 …
10 # Answer the Question
11 [Fill Your Code]
12 …
13
14
15

Harmonized Code

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8 # compute z scores
9 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11 …
12 # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

What is the percentage of documentary films? Calculation =
DIVIDE(SUM(name = 'Documentary'), COUNT(film_id)) * 100

Question:

CREATE TABLE film_category
(
 film_id INTEGER NOT NULL
 …
 primary key (film_id, category_id)
)

CREATE TABLE category
(
 category_id INTEGER NOT NULL
 …
 name TEXT NOT NULL
)

Data Input:

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1, 0)) AS REAL)
* 100 / COUNT(T1.film_id) FROM film_category AS T1 INNER
JOIN category AS T2 ON T1.category_id = T2.category_id

SQLite:

…

What is the percentage of documentary films?
Hint: Calculation = DIVIDE(SUM(name =
'Documentary'), COUNT(film_id)) * 100

Question:

CREATE TABLE film_category
(
 film_id INTEGER NOT NULL
 …
 primary key (film_id, category_id)
)

CREATE TABLE category
(
 category_id INTEGER NOT NULL
 …
 name TEXT NOT NULL
)

Database Input:

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1,
0)) AS REAL) * 100 / COUNT(T1.film_id) FROM
film_category AS T1 INNER JOIN category AS T2 ON
T1.category_id = T2.category_id

SQLite:

-- Step 1: Count the total number of films
WITH Total_Films AS (
 [Fill Your Sub-Query]
),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
 [Fill Your Sub Query]
),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 4: Select the final result
SELECT percentage
FROM Percentage_Documentary;

Functional Plan:

-- Step 1: Count the total number of films
WITH Total_Films AS (
 SELECT COUNT(film_id) AS total_films
 FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
 SELECT COUNT(fc.film_id) AS documentary_films
 FROM film_category fc
 JOIN category c ON fc.category_id = c.category_id
 WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS
 percentage
 FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes
-- Step 1: Count the total number of films
WITH Total_Films AS (
 [Fill Your Sub-Query]
),

-- Step 2a: Filter of the table to get documentary films
Filtered_Documentary_Films AS (
 [Fill Your Sub Query]
),

-- Step 2b: Count the number of documentary films
Count_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
) …

Functional Plan:

Figure 2: Main steps of AOI demonstrated with a text-to-SQL task example. Teacher Agent con-
verts referenced code to a functional plan for Student Agent to complete. Teacher Agent iteratively
optimizes the plan until the Student Agent produces correct code. A Python code AOI example is
provided in Appendix D.1.

A the action space (see Table 1), and O the observation space. In this context, the plan P t
i is

embedded within the current state St
i , serving as a structure that guides the SLM to generate code.

The orchestrated code cti is the snippet produced by performing the plan P t
i within the environment.

During each turn, the LLM observes oti, the outcome of executing orchestrated code cti generated by
the SLM, and selects an action ati from A to optimize the plan. For example, if a step stij contains an
error such as: "Step j: List players who was born before 1930 and after
1950", the LLM will apply an action ALT(·) to correct this, resulting in an updated plan P t+1

i

with the refined step st+1
ij as "Step j: List players who were born after 1930

and before 1950". This iterative process can be represented as:

P t+1
i = {sti1, sti2, . . . , st+1

ij , . . . , stiK}, st+1
ij = Lopt(s

t
ij , o

t
i, a

t
i). (2)

Here, st+1
ij is updated by the optimization function Lopt of the LLM, which integrates the current

observation oti, action ati and sub-optimal step stij . The system transitions from state St
i to St+1

i

through T (St
i ,At

i), resulting in the updated plan P t+1
i . The SLM then generates the updated or-

chestrated code ct+1
i = fgen(qi, di, P

t+1
i) for the new plan. This process repeats until the output is

correct or the maximum number of iterations T is reached.

2.3 MEMORY DATABASE CONSTRUCTION

After interactions between the LLM and SLM in AOI, the finalized states are stored in a memory
database. This database includes the correct orchestrated codes, along with the context of the ques-
tion and data input. This process ensures that the SLM can efficiently reference and apply related
knowledge to new, unseen queries.

Case Study Translation. Rather than only storing raw, heterogeneous cases that consist of a
query, plan, and orchestrated code in a simple stacked format, the LLM refines these into case
study-like representations. These representations distill the reasoning behind the success of each
example, serving as an intermediate abstraction that emphasizes the underlying rationale for the
chosen approach. Each case study Gi contains a Case Name, Question, Schema / Value
Information, Objective, and an Explanation of how the solution code successfully ad-
dresses the query using the provided data. An example of this structure is provided in Appendix I.
As shown in Figure 1 (Mid), AHA performs case study translation only for correct cases, because
reflecting on incorrect cases without supervision or comparison to correct cases often introduces
hallucinations.

Correct Case Collection. The Correct Case Collection, denoted as M, consists of cases where
the SLM has generated correct orchestrated codes. Each case Mi in this collection contains the
natural language query qi, the corresponding data di, the correct orchestrated code ĉi, which contains
descriptive comments as shown in Figure 2 (right), and the case study Gi illustrating the solution.
The set M is the union of all such individual cases:

M =
⋃
i

Mi, Mi = (qi, di, ĉi, Gi) . (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Action Type Expression Description

Decomposition step(x) → step(a),
step(b)

Split a complex step x into smaller, man-
ageable steps such as step a and step b.

ALT step(x) → step(y) Replace a step x described by ambiguous or
incorrect messages with a clearer and cor-
rect alternative step y.

ADD step(x) → step(x),
step(a)

Add a necessary step a to ensure the com-
pleteness of code logic.

DELETE step(x) → None Remove the unnecessary step x, which may
lead to misunderstanding by the SLM.

SIMPLIFY step(x) →
simple_step(x)

Replace a complex step x with a simpler
approach. For example, convert recursive
plans into iterative loops.

SWITCH packageA.step(x) →
packageB.step(x)

Use a simpler package to achieve the same
functionality. For example, conversion
from Package Linear Regression to
Correlation Coefficient to deter-
mine relationship between two variables.

Table 1: The 6 action types utilized by the LLM during the Agent Orchestration Interface (AOI) to
optimize the plans for better understanding and code generation by SLMs

2.4 KNOWLEDGE DISTILLATION FROM MEMORY DATABASE

This part presents two methods for distilling knowledge from the memory database: fine-to-coarse
general instruction generation and RAG-based meta-instruction generation. Distilled knowledge
then guides the SLM in learning how to plan and generate code more accurately for unseen queries.

Fine-to-Coarse Knowledge Distillation for General Instructions Generation. Our first ap-
proach generates universally applicable, "plug-and-play" instructions through a novel fine-to-coarse
knowledge distillation method. This technique employs a recursive, tree-based strategy, offering an
alternative to conventional sequential updating methods. Approaches such as (Askari et al., 2024)
process batches of examples sequentially and need to select initial examples that often require hu-
man efforts. In contrast, our method aims to enable a fully automated workflow, constructing a
knowledge tree recursively and in parallel, thereby reducing both biases and the need for human
intervention. We define the set of distilled General Instruction Ig as:

Ig = Lsum(M) = Tl, Tl = Lagg(Tl−1), (4)

where Lsum is a recursive function executed by the LLM, and Tl is the root node of the tree with the
highest layer l, which encapsulates task-specific knowledge, enabling the SLMs to apply it to new
examples.

At each recursive step, nodes at layer l aggregate knowledge from layer l − 1 using the aggregation
function Lagg, which summarizes local instructions within each batch (see prompts in Figure 12,
13 of Appendix H for reference). The leaves represent the individual case studies recorded in M,
while higher layers abstract and generalize knowledge from lower ones. The layer of the tree and
the final number of distilled rules are hyper-parameters, allowing for balancing complexity and
generalization capability. This hierarchical structure can capture broadly applicable rules, resulting
in a more general instruction. General Instruction then guides the SLM in generating correct code
for unseen queries in a plug-and-play manner represented by Figure 1 (Right). A detailed illustration
with examples can be found in Appendix A.

RAG-based Knowledge Distillation for Meta Instruction Generation. General Instructions,
while broadly applicable, often fall short when addressing long-tail problems. To mitigate this gap,
we propose a Retrieval-Augmented Generation (RAG) framework for localized instruction distilla-
tion. In the retrieval phase, we identify the top relevant examples from a memory database M via
an embedding model. Relevance is measured via a function D, expressed as R(qi) = D(qi,M, k),
where k is number of most relevant cases.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Then, rather than leveraging the entire heterogeneous context, the case studies of these retrieved
examples are then fed into the SLM to extrapolate plans for solutions, adhering them to the specific
query. Here, SLM performs a secondary distillation, extracting shared knowledge patterns from
these case studies, which have already been distilled by the LLM (Teacher Agent), to generate
instructions, noted as Meta-Instruction (Im(qi)), precisely specific to the current query at hand.
The process is formalized:

Im(qi) = fagg(qi,R(qi)) (5)

where fagg is an aggregation function applied by the SLM. By doing so, SLMs can generate more rel-
evant and contextually appropriate instructions, effectively bridging the gap between general knowl-
edge and query-specific requirements.

Knowledge-Driven Inference. Harnessing the distilled instructions I ∈ (Ig, Im(qi)) from the
memory database, the SLM initially formulates a structured plan pgen, which it subsequently em-
ploys to generate code for new queries. For a given query qi and its associated data di, this process
unfolds as follows:

Pgen = fplan(qi, di, I), ci = fgen(Pgen, qi, di), (6)

where fplan denotes the planning function executed by the SLM. This plan serves as a blueprint,
guiding the following code generation phase. The SLM then employs the function fgen, which takes
Pgen along with the original query qi and data di to generate the final code ci.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

STATISTIC TABMWP WIKITQ BIRD-SQL
Dataset Features

train examples 1,000 2,000 1,000
eval examples 1,000 1,000 500
question type Analysis SP SP + Analysis
toks / Q 26.5 12.6 20.0

Data Structure
data input type Single Single RDB
rows / data 6.13 28.5 354k
columns / data 2.22 6.36 73.3

Code Features
code type Python Python SQL
answer type String String Code
toks / code N/A N/A 61.15

Table 2: Statistics for three datasets. The term
Analysis indicates that the dataset mainly con-
sists of analytical questions, while SP refers to se-
mantic parsing tasks.

We evaluate our approach on three tabular
data analysis datasets: WIKITQ (Pasupat &
Liang, 2015), TABMWP (Lu et al., 2023), and
BIRD-SQL (Li et al., 2024a). These datasets
cover various task types and data complexities,
challenging models to interpret different data
structures and generate accurate, executable
code for question answering. The data statistics
are shown in the Table 2. 1). Questions in
WIKITQ typically involve operations such as
counting, comparison, and aggregation (e.g.,
How many players scored more
than 10 points?, What is the
largest city by population?).
We sample 1,000 instances from the test set
(∼ 25% of the full set) and 2,000 examples
from the training set for exploration. Perfor-
mance is evaluated using the accuracy metric
as implemented by the official evaluation
scripts (Pasupat & Liang, 2015), which measures the correctness of the final answer derived
from the generated codes. 2). In TABMWP, questions focus on mathematical word problems
involving tabular data, extending beyond semantic parsing to include data analysis questions (e.g.,
Is there a relationship between x and y?). We use 1,000 instances from the
development set for memory construction and evaluate on the full test set (1,000 non-overlapping
questions). Performance is evaluated by comparing the generated results with the ground truth
answers across all grade levels. 3). BIRD-SQL presents the most complex data structures and
comprehensive question types in our evaluation. The data inputs are relational databases, which are
more challenging than the single tables in WIKITQ and TABMWP. The questions contain both
semantic parsing and analytical tasks. For exploration, we adopt the mini-train set curated by (Qu
et al., 2024), which comprises 1,000 examples. Our evaluation is conducted on the mini-dev set, a
collection of 500 high-quality and challenging cases officially selected by the BIRD-SQL team. We
evaluate performance by widely adopted execution accuracy (EX) metric for this dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model WIKITQ TABMWP BIRD-SQL

Accuracy Grad. 1-6 Grad. 7-8 Total Sim. Med. Chal. Total

CodeLlama-7B 11.80 26.55 13.11 20.50 43.92 18.00 11.76 24.40
CodeLlama-13B 34.90 37.27 24.22 31.40 45.27 19.60 17.65 26.80
StarCoder2-7B 20.70 34.00 27.56 31.10 41.22 21.60 17.65 26.60
StarCoder2-15B 36.60 39.09 36.44 37.90 55.41 30.40 14.71 34.60
Phi-3-Small-7B 27.00 46.36 38.00 42.60 52.03 28.40 10.78 31.80
Phi-3-Medium-14B 44.80 59.45 46.00 53.40 51.35 32.80 13.73 34.40

Student Agent Performance
Phi-3-Mini-3.8B 32.50 44.18 38.89 41.80 38.51 21.20 11.76 24.40
+ Chain-Of-Thought 27.70 46.36 35.33 41.40 34.46 22.00 12.75 23.80
+ Static Few-Shot 23.00 37.27 34.89 36.20 47.97 20.80 7.84 26.20
+ Dynamic Few-Shot 16.60 51.45 52.89 52.10 42.57 18.80 11.76 24.40
+ AHA General Instruction (Ours) 39.50 50.91 46.89 49.10 51.35 25.60 17.65 31.60
+ AHA Meta Instruction (Ours) 41.10 48.36 42.44 45.70 51.35 30.40 16.67 33.80

Table 3: Performance comparison of various SLMs on WIKITQ, TABMWP, and BIRD-SQL, with
results presented in accuracy percentages. Improvements of our AHA methods over the End-to-End
Code Gen baseline are highlighted using different intensities of olive color. Bold indicates best
results for Phi-3-Mini, while underlines denote second-best results.

3.2 IMPLEMENTATIONS

Setup. Experiments are conducted on three datasets across two primary settings. For TABMWP
and WIKITQ, the SLMs are instructed to generate Python Pandas code to answer questions. How-
ever, since TABMWP and WIKITQ are QA datasets lacking ground truth code, two additional steps
are implemented. First, the Teacher Agent is employed to generate initial Python code solutions
as referenced or ground-truth code c̃i, prior to the Agent Orchestration Interface (AOI). Second,
following both orchestrated and inference code generation, the SLM is called upon to produce con-
cise string answers for final accuracy evaluation. This process involved an additional step: given
the question qi and executed results oi, the SLM generated a result string ri = fans(qi, oi) with an
answering prompt, which was then compared to the GT answer string using the official evaluation
script. For BIRD-SQL, a SQLite environment is established for orchestration and evaluation, fol-
lowing the task formulation ci = fgen(qi, di). We do not need to generate initial SQL by LLMs as
ground truth codes since they already contain ground truth SQLs.

For General Instruction generation, we set layer of the tree l = 2 and limit number of rules to under
10. In RAG-based Meta Instruction generation, we employ KNN with L2 distance, setting k = 3
for top relevant cases and using CodeT5+ (Wang et al., 2023d) as the embedding model. Details are
in Appendix C.

Baselines Models and Methods. We define an SLM as suitable for this task if it satisfies two
criteria: (1) it can perform reasoning through in-context learning (ICL) without relying solely on
fine-tuning, and (2) it has fewer than 15 billion parameters (< 15B), enabling inference on an A100
GPU or less powerful hardware. For closed-source models, we choose GPT-35-Turbo as SLM since
it has faster inference speed and its performance falls behind other larger models such as GPT-4-
Turbo or GPT-4o. We implement models for three purposes: 1) Orchestration Models: In our
experiment, we select LLM GPT-4o (Achiam et al., 2023) as Teacher Agent and a SLM Phi-3-mini-
128k (Abdin et al., 2024) as Student Agent, which only contains < 3.8B parameters. 2) Evaluation
Models: There are several families of SLMs for evaluation. Phi-3 models (Abdin et al., 2024),
CodeLlama models (Roziere et al., 2023), StarCoder2 family (Lozhkov et al., 2024). 3) Knowledge-
Transmission Models: We include the widely-used closed-source model GPT-35-Turbo and Llama-
3.1-8B as new models for evaluation of knowledge transmissions in Section 3.5. Our focus in
this paper is on single-pass code generation. Thus, the environment is not available for SLMs to
iteratively refine or generate code in multiple turns as in (Yao et al., 2023; Wang et al., 2024c).
We consider zero-shot end-to-end code generation, Chain-Of-Thought (Wei et al., 2022), Static
Few-shot Demonstration (Brown et al., 2020), Dynamic RAG-based Few-shot Demonstrations (Gao
et al., 2024) as our baseline methods. For fairness, we employ three examples for all few-shot
demonstration methods.

3.3 OVERALL RESULTS

Overall Performance. Table 3 highlights three key aspects: (1) Knowledge distilled from AHA
can make Phi-3-mini outperform both the End-to-End Code Generation baseline and the widely-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

AHA-GI
AHA-MI

COT
End2End

AHA-GI
AHA-MI

COT
End2End

Figure 3: Knowledge transmission from the memory database between GPT-4o and Phi-3-mini
across three datasets. The results demonstrate that knowledge distilled from AHA can transfer to
new models.

used Chain-of-Thought reasoning technique across all datasets for SLM. Specifically, the Phi-3-
mini model demonstrates relative improvements ranging from 17.5% on TABMWP to 38.5% on
BIRD-SQL. (2) The enhanced Phi-3-Mini frequently matches or exceeds the performance of larger
models, especially those with 2-3 times more parameters, notably surpassing CodeLlama-13B by
17.7%, StarCoder2-15B by 11.2% on the TABMWP benchmark and approaching the performance
of Phi-3-Medium (which has 4x times the parameters) across all datasets. (3) Our experiments also
indicate that Chain-of-Thought reasoning can negatively impact SLM performance. In such com-
plex scenarios, we observe that SLMs often generate hallucinations, resulting in incorrect reasoning
steps. The propagation of these errors due to flawed or invalid thought processes ultimately leads to
diminished performance (Yee et al., 2024).

3.4 DISTILLATION V.S. DEMONSTRATION

In this section, given the memory database, we compare the effectiveness of our knowledge distil-
lation techniques, with conventional demonstration-based strategies. In our approach, distillation
involves transferring knowledge from the memory database to SLMs through task-specific instruc-
tions. On the other hand, demonstration-based methods guide SLMs by presenting explicit task
examples to facilitate analog reasoning (Yu et al., 2024). We implemented two variants of few-
shot demonstrations: Static: Human experts select three representative examples from the memory
database, which remain constant across all cases. Dynamic RAG-based: Examples are selected
from AHA memory database based on similarity to the current query. For fair comparison, we also
implement the same RAG system as AHA-MI, described in Section 3.2.

Our findings indicate that few-shot demonstration generally underperforms AHA knowledge dis-
tillation technqiues on each dataset. However, we observe a surprisingly superior performance of
the RAG-based few-shot demonstration compared to our designed knowledge distillation and other
baselines on TABMWP. This effectiveness appears to correlate with the complexity of the input data
by further analysis. Referring to Table 2, we note that TABMWP presents the simplest data input,
containing only 2.22 columns and 6.13 rows per data point, with clean values consisting of numbers
or processed strings. However, when dealing with WIKITQ, which contains irregular value types,
column names, and BIRD-SQL, which presents complex database schemas and values, SLMs ex-
hibit confusion with such heterogeneous and complex inputs. More critically, SLMs generate 38.2%
more invalid outputs (e.g., "SELECT \n\n\n\n...") in BIRD-SQL.

Based on these observations, we conclude that dynamic few-shot demonstration is more conve-
nient and effective for leveraging the memory database when the input data is less complex. On
the contrary, for complex data such as tables with dirty values or relational databases, our designed
knowledge distillation enables SLMs to better utilize knowledge and perform tasks more effectively.
It is worth noting that in real-world scenarios, complex data schemas and inputs are prevalent (Lee
et al., 2021). Moreover, our approach exhibits greater scalability as task complexity increases. Al-
though dynamic few-shot learning achieves a slight 3.0% advantage over our method on simpler
tasks, our technique outperforms it by a significant 16.2% on more complex systems. This asymme-
try in performance gains highlights the robust generalization of our knowledge distillation approach

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

for DSCG tasks across a spectrum of input complexities, from simple to more challenging data
inputs.

3.5 KNOWLEDGE TRANSMISSION

While AHA shows notable performance gains for SLMs in data science code generation without
fine-tuning, an important question arises: Is the distilled knowledge only useful to the Student
Agent participated in Orchestration? In order to answer this, we conduct knowledge transmission
experiments by Llama-3.1-8B and GPT-35-Turbo, which didn’t attend the exploration.

The results in Figure 3 demonstrate that both General and Meta Instructions, distilled from AOI
memory database between GPT-4o and Phi-3-mini, obviously benefit these new models. AHA-
GI and AHA-MI consistently outperform conventional techniques like COT and End2End across all
datasets leading to average relative improvement of 14.3% for Llama-3.1-8B and 30.9% for GPT-35-
Turbo. This proves that distilled knowledge is not limited to the original Student Agent (Phi-3-mini)
but can transfer effectively to other models without additional fine-tuning, suggesting an efficient
pathway for knowledge augmentation in emerging SLMs.

3.6 ORCHESTRATION MEDIA TYPE ANALYSIS

1 2 3 4 5 6 7 8 9 10
Turn

60

65

70

75

80

85

90

Ac
cu

ra
cy

Orchestration Media Type
COT plans
Functional Plans

(a) Accuracy across different AOI turns when
using COT and Functional Plans as orchestra-
tion media.

decomposition add alt simplify delete switch
Action Type

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (

%)

Orchestration Media Type
COT plans
Functional Plans

(b) Action type distribution for plan optimiza-
tion in AOI using two orchestration media types.

Figure 4: Comparison of accuracy and action type distribution for orchestration media types in AOI.
The experiments are conducted on TABMWP on 1000 training examples across 10 turns.

In this section, we assess the impact of various orchestration media types on data efficiency within
the AOI frameworkduring exploration. Figure 4 (a) presents a comparison of the Phi-3-mini perfor-
mance growth trends adopting COT plans, the sequantial textual plan, versus functional plans over
10 turns of plan optimization on 1000 training data in AOI.

At the beginning, COT plans enable Phi-3-mini to outperform the functional plans (69.00% vs.
61.10%). However, as orchestration continues, the functional plans progressively improve, eventu-
ally surpassing the COT plans, achieving 86.3% compared to 81.4% by the final round. A visual-
ization of action distributions for plan optimization, performed by GPT-4o in Figure 4 (b), indicates
that Decomposition and Add occur much more frequently than other actions, generating longer
plans with more steps and interpretations. In such scenario, Phi-3-mini demonstrates significant
hallucinations when processing extended COT plans, especially when the number of steps exceeds
7, we observe that Phi-3-mini would ignore some steps of the plan and hallucinate some steps that
do not appear in the orignal plan. In contrast, the structured nature of our functional plan forces
Phi-3-mini to follow each step methodically, ensuring the completion of all placeholders. This
structured approach provides a clearer sense of task progression since the model perceives the task
as completed only when all placeholders are filled.

In conclusion, functional plans lead to a larger portion of correct cases, promoting a more data-
efficient strategy for constructing memory databases, which can be effectively leveraged by SLM
agents. This finding can prove that our designed functional plans are better orchestration media type
compared to general COT plans in data science code generation task.

4 RELATED WORK

Data Science Code Generation (DSCG). DSCG focuses on automating code generation for data-
centric tasks, requiring a deep understanding of data formats like CSV, TSV, and relational databases

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(RDB). Unlike general code generation models, which primarily generate syntactically correct code
in response to natural language instructions (Chen et al., 2021; Luo et al., 2024), DSCG must en-
sure that the generated code correctly interacts with underlying data structures. This involves un-
derstanding the schema, format, and semantics of the data, whether in Python code for handling
tabular data (Chen et al., 2024; Cheng et al., 2023; Shen et al., 2022b) or SQL for interacting with
relational databases (Yu et al., 2018; Lee et al., 2021; Li et al., 2024a). Spreadsheet-based code
generation further extends DSCG, automating the generation of formulas and operations in tools
(Wang et al., 2023a; Bhatia et al., 2023). Even though large language models (LLMs) have demon-
strated effectiveness in enhancing the capabilities of SLMs, concerns regarding data privacy in cloud
environments have prompted a reevaluation of their deployment strategies.

Knowledge Distillation. Knowledge distillation can mitigate this problem by transferring LLM
capabilities to smaller models, enabling efficient deployment in resource-constrained environments
(Xu et al., 2024). The field has evolved from early work on softened output training (Hinton, 2015)
to advanced techniques like task-specific fine-tuning (Sanh, 2019), zero-shot learning (Wang et al.,
2023b), and instruction-following datasets (Wang et al., 2023c;b). Progressive distillation tech-
niques, such as the Orca framework (Mukherjee et al., 2023), demonstrate the potential for guiding
the development of efficient open-source models. Self-distillation approaches have explored au-
tonomous training data generation (Wang et al., 2023c). Recent advancements have focused on im-
proving the performance and privacy aspects of DSCG by knowledge distillation (Luo et al., 2024).
At the same time, synthetic data has been leveraged to enhance the generalization of SQL generation
across different schemas (Yang et al., 2024a). Even though these techniques are effective, most still
require training efforts to transfer knowledge. Our AHA framework introduces agent-based distil-
lation through in-context learning, eliminating the need for task-specific fine-tuning and improving
scalability across models and tasks.

Agent Memory. Agent memory can improve the capability of LLM-based agents, particularly in
tasks that require long-term context retention and continuous knowledge accumulation (Zhang et al.,
2024). Traditionally, research has focused on teaching LLMs to reflect on and evolve from mem-
ory built through their own interactions, limiting knowledge transfer to the model performing the
task (Shinn et al., 2023). For DSCG, memory plays a critical role in managing complex data for-
mats, maintaining long-term context, and learning from iterative analysis processes. For instance,
reGAL (Stengel-Eskin et al., 2024) introduces a memory mechanism that enables LLMs to reuse
abstractions across program synthesis tasks by storing and recalling reusable subroutines, signifi-
cantly improving code generation performance. Similarly, models like MAGIC (Askari et al., 2024)
have demonstrated how memory can facilitate self-correction in data analysis code generation. In
more complex software engineering contexts, frameworks like SWE-Agent (Yang et al., 2024b) and
OpenDevin (Wang et al., 2024b) by codeAct (Wang et al., 2024a) extend the use of memory by con-
sidering complicated contexts such as entire code repositories and prior interactions, allowing agents
to manage more intricate tasks like cross-file dependencies and repository-level refactoring. How-
ever, current agent memory systems typically rely on a single model, i.e., memory is constructed and
knowledge is learned and leveraged exclusively by models like GPT-4, limiting knowledge transfer.
Our work introduces distillation techniques that enable SLMs to leverage memory orchestrated by
multiple models, including more capable GPT-4o. This approach allows SLMs to utilize richer, ex-
ternal knowledge for improved performance in knowledge-driven ICL, effectively bridging the gap
of knowledge sharing between high-capacity models and more efficient SLMs.

5 CONCLUSION

In this paper, we presented Agents Help Agents (AHA), an automatic framework for efficient knowl-
edge distillation from Large Language Models (LLMs) to Small Language Models (SLMs) in Data
Science Code Generation (DSCG). AHA leverages In-Context Learning to enhance SLM perfor-
mance without fine-tuning, using agent orchestration and memory-based distillation to improve task
accuracy. Evaluations on three challenging tabular data analysis datasets, which requires code gener-
ation, show a 27.5% relative performance increase for Phi-3-mini and model-agnostic effectiveness,
benefiting models like Llama-3.1-8B and GPT-35-Turbo even they did not participate in the orches-
tration. These results highlight the potential of AHA for developing intelligent applications with a
focus on privacy and computational efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rajas Agashe, Srini Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised dataset
for open domain context-based code generation. EMNLP-IJCNLP, pp. 5436–5446, 2019. URL
https://aclanthology.org/D19-1546.

Arian Askari, Christian Poelitz, and Xinye Tang. Magic: Generating self-correction guideline for
in-context text-to-sql. arXiv preprint arXiv:2406.12692, 2024.

Kushal Bhatia, Sumit Gulwani, Raksha Saikia, and Samuel Samuel. Sheetcopilot: Assistive table
formula completion with neural code generation models. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, pp. 701–714, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, and Others. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding lan-
guage models in symbolic languages. In The Eleventh International Conference on Learning
Representations, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=kiYqbO3wqw.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to knowledge
discovery in databases. AI Mag., 17(3):37–54, 1996.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, 2024.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie Tang, Jayanth Srinivasa, Hugo Latapie, and
Yu Su. Middleware for llms: Tools are instrumental for language agents in complex environments.
arXiv preprint arXiv:2402.14672, 2024.

11

https://aclanthology.org/D19-1546
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques, 3rd edition.
Morgan Kaufmann, 2011. ISBN 978-0123814791.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia
Yang, and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024,
2024.

Harshit Joshi, Abishai Ebenezer, José Cambronero Sanchez, Sumit Gulwani, Aditya Kanade, Vu Le,
Ivan Radiček, and Gust Verbruggen. Flame: A small language model for spreadsheet formulas.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12995–13003,
2024.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Mohammad Khanbabaei, Farzad Movahedi Sobhani, Mahmood Alborzi, and Reza Radfar. Develop-
ing an integrated framework for using data mining techniques and ontology concepts for process
improvement. J. Syst. Softw., 137:78–95, 2018.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. Kaggledbqa: Realistic evaluation of
text-to-sql parsers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pp. 2261–2273. Association for Computational
Linguistics, 2021.

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun Zhao, and Kang Liu. S3Eval: A synthetic,
scalable, systematic evaluation suite for large language model. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 1259–1286, Mexico City, Mexico, June
2024. Association for Computational Linguistics.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024a.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-
Guang Lou, and Reynold Cheng. Tapilot-crossing: Benchmarking and evolving llms towards
interactive data analysis agents. arXiv preprint arXiv:2403.05307, 2024b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR), 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 1773–1781, Toronto,
Canada, July 2023. Association for Computational Linguistics.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. Advances in Neural Information Processing Systems, 36, 2024.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020, pp. 4885–4901. Association for Computational Linguistics, 2020.

Taiwo Blessing Ogunseyi, Cossi Blaise Avoussoukpo, and Yiqiang Jiang. A systematic review of
privacy techniques in recommendation systems. International Journal of Information Security,
22(6):1651–1664, 2023.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long
Papers, pp. 1470–1480. The Association for Computer Linguistics, 2015.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rock-
täschel, and Sebastian Riedel. KILT: a benchmark for knowledge intensive language tasks. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2523–2544, Online, June 2021. As-
sociation for Computational Linguistics.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation. arXiv preprint arXiv:2405.15307, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Da Shen, Xinyun Chen, Chenguang Wang, Koushik Sen, and Dawn Song. Benchmarking language
models for code syntax understanding. In Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pp. 3071–3093, Abu Dhabi, United Arab Emirates, December 2022a.
Association for Computational Linguistics.

Li Shen, Yicong Xu, and Hongbo Wang. Handling ambiguity in natural language code generation.
Transactions of the Association for Computational Linguistics, 10:113–126, 2022b. doi: 10.1162/
tacl_a_00414.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: Refactoring programs to discover
generalizable abstractions. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-SQL:
Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Online, July 2020. Association
for Computational Linguistics.

Daming Wang, Yijun Liu, and Qiang Zhang. Spreadsheet formula generation using lightweight
language models. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, pp.
2109–2116, 2023a.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In ICML, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association
for Computational Linguistics, 2023c.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023d.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Chain-of-table:
Evolving tables in the reasoning chain for table understanding. In The Twelfth International
Conference on Learning Representations, 2024c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
Continual learning for large language models: A survey. arXiv preprint arXiv:2402.01364, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-
pack: Packed resources for general chinese embeddings. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’24, pp.
641–649, New York, NY, USA, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-SQL data from weak and strong LLMs. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, August
2024a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Evelyn Yee, Alice Li, Chenyu Tang, Yeon Ho Jung, Ramamohan Paturi, and Leon Bergen. Dissoci-
ation of faithful and unfaithful reasoning in llms. arXiv preprint arXiv:2405.15092, 2024.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles Sut-
ton. Natural language to code generation in interactive data science notebooks. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Toronto, Canada, July 2023.

Junchi Yu, Ran He, and Zhitao Ying. THOUGHT PROPAGATION: AN ANALOGICAL AP-
PROACH TO COMPLEX REASONING WITH LARGE LANGUAGE MODELS. In The
Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=SBoRhRCzM3.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Tan, Murhaf Fawzi Er, Iris Li, Jun Ma,
Zilin Li, and Dragomir R. Radev. Spider: A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 3911–3921, 2018. doi: 10.18653/v1/
D18-1425.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024.

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou. Crt-qa: A dataset of complex reason-
ing question answering over tabular data. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 2131–2153, 2023.

15

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=SBoRhRCzM3
https://openreview.net/forum?id=SBoRhRCzM3

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2DlB.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

16

https://openreview.net/forum?id=piecKJ2DlB

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DETAILED DESCRIPTION OF FINE-TO-COARSE KNOWLEDGE
DISTILLATION

We introduce a novel fine-to-coarse knowledge distillation method employing a recursive, tree-based
approach to generalize to unseen queries. This method improves upon traditional sequential updat-
ing techniques by constructing a knowledge tree recursively and in parallel, thereby reducing bias
and ensuring a more robust distillation process.

Our knowledge tree consists of nodes, each containing a batch of successful cases from the set M.
This structure allows for concurrent summarization of essential rules from diverse examples. We
define the set of distilled instructions I as:

I = Lsum(M) = Tl,

where Lsum is a recursive function executed by the Large Language Model (LLM) to distill knowl-
edge, and Tl is the root node of the tree. This function constructs a multi-layered tree, with each
layer aggregating knowledge from the preceding layer. The tree’s depth adjusts dynamically based
on the context length of case studies, ensuring optimal abstraction at each layer.

At each recursive step, nodes in the current layer l aggregate knowledge from layer l − 1:

Tl = Lagg(Tl−1),

where Lagg is the aggregation function merging batches of successful cases into more abstract rep-
resentations.

The leaves of the tree (layer L) contain the original cases from M, represented as batches:

TL = {B1,B2, ...,Bk}

where each batch Bj is a set of successful cases:

Bj = {Mj1,Mj2, ...,Mjn}

and each successful case Mji is defined as:

Mji = (qji, dji, ĉji, Sji)

Here, qji is the ith natural language query of jth batch, dji is the ith corresponding data of jth

batch, ĉji is the ith orchestrated correct code of jth batch, and Sji is the ith case study of jth batch
summarizing the solution.

Each higher layer in the tree abstracts and summarizes the knowledge from the level below, culmi-
nating in the root node Tl, which represents the final set of distilled instructions I.

This recursive and parallel tree construction allows for simultaneous extraction of rules, significantly
reducing dependence on the order or selection of initial examples. Each node encompasses multiple
successful cases, facilitating the extraction of generalized instructions through the identification of
common patterns and rules.

The process continues iteratively from the leaves to the root, resulting in comprehensive and un-
biased distilled instructions I. This framework provides a well-rounded guide for the SLM in
generating correct code for unseen queries, effectively balancing knowledge complexity with SLM
constraints.

Our method represents an advancement in knowledge distillation for language models, offering a
robust approach to extracting generalizable knowledge from diverse examples and enhancing SLM
performance on unseen queries.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Aggregation 1:

Batch 1

By following these key points, you can systematically
approach the construction of Python codes, ensuring
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis,
it is essential to follow a structured and methodical
approach. Here are 5-10 key points to consider when
planning and generating correct Python codes, especially
tailored for a student learning the process:

Understand the Data Relationships:
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch 1

Case Study 2:
…

Case Study N :

Aggregation 2:

Batch 2

By following these key points, you can systematically
approach the construction of Python codes, ensuring
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis,
it is essential to follow a structured and methodical
approach. Here are 5-10 key points to consider when
planning and generating correct Python codes, especially
tailored for a student learning the process:

Understand the Data Relationships:
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch 2

Case Study 2:

…

Case Study N :

Aggregation k-1:

Batch k-1

By following these key points, you can systematically
approach the construction of Python codes, ensuring
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis,
it is essential to follow a structured and methodical
approach. Here are 5-10 key points to consider when
planning and generating correct Python codes, especially
tailored for a student learning the process:

Understand the Data Relationships:
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch k-1

Case Study 2:

…

Case Study N :

Aggregation k:

Batch k

By following these key points, you can systematically
approach the construction of Python codes, ensuring
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis,
it is essential to follow a structured and methodical
approach. Here are 5-10 key points to consider when
planning and generating correct Python codes, especially
tailored for a student learning the process:

Understand the Data Relationships:
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch k

Case Study 2:

…

Case Study N :

You are a data analyst trainer. You are educating your
student to generate correct python pandas code to
answer tabular data analysis questions. To test and elicit
their knowledge of code, you generate step-by-step
plans that allow them to fill in subqueries until they
succeed.
These are case studies where they fill the correct code:
---------------- case begin: ----------------
 {last layer of case studies}
---------------- case end ----------------
Please note:
- Do not ask students to add data inspection in the code,
such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information.
- The mixed code should be end-to-end, so you cannot
encourage student to print other things except the final
result. More other information would cause student to
be distracted.
- Just focus on how to make students learn how to
better plan in the end-to-end code generation.
Following case studies, please summarize 5-7 key points
about how to plan and generate correct code to answer
the tabular data analysis questions accurately.
Students will take your notes directly.
You need to start with:
```1. You should

Final Sum Prompt:

1. You should **break down the task into manageable 
steps**. Each step should build on the previous one, 
guiding you through the process logically. 

2. You should **emphasize data handling and cleaning**. 
This includes handling missing values, normalizing case, 
and ensuring data consistency."

3. You should **focus on filtering and extraction**. Guide 
yourself on how to filter and extract relevant data based 
on specific criteria. This is often the core of the analysis."
…

General Instruction:

Layer 1 Layer 2 Layer 3 … Layer l-1 Layer l

… … …

Figure 5: Illustration of how Fine-to-Coarse Knowledge Distillation for AHA-GI generation. The
intermediate layers are omitted.

B MODEL IMPLEMENTATION

We implement models for three main categories of purpose:

B.1 ORCHESTRATION MODELS

gpt-4o: The Teacher Agent (gpt-4o) is responsible for several key tasks, including Abstraction
Lifting (see Section 2.2) and Plan Optimization (see Section 2.2), which are performed while mon-
itoring the performance of the Student Agent. Additionally, the Teacher Agent handles the conver-
sion of complex, heterogeneous cases into more readable case studies for Student Learning Models
(SLMs), as detailed in Section 2.3. Finally, gpt-4o distills general instructions that contain task-
specific knowledge, as described in Section 2.4. Notably, these general instructions are utilized by
the SLMs in an offline manner, meaning that gpt-4o does not participate in the inference process
of the SLMs.

phi-3-mini-128k-instruct: For the orchestration process, we select this 3.8B parameter
SLM as the Student Agent due to its strong generalization abilities and efficient deployment.

B.2 BASELINE MODELS

Within the orchestration mode, several families of Student Learning Models (SLMs) are evaluated.
These include models from the Phi-3, Starcoder 2, and Llama families:

Phi-3 Family (Abdin et al., 2024)

phi-3-mini-128k-instruct (3.8B)

phi-3-small-128k-instruct (7B)

phi-3-medium-128k-instruct (14B)

Starcoder 2 Family (Lozhkov et al., 2024)

starcoder2-7b-instruct

starcoder2-15b-instruct

Llama Family (Dubey et al., 2024)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

codellama-7b-instruct-hf

codellama-13b-instruct-hf

B.3 MODELS IN KNOWLEDGE TRANSMISSION

In Section 3.5, we explore the knowledge distilled from AHA to newly developed models, particu-
larly in terms of their ability to generalize knowledge. For this evaluation, we select the following
models:

llama-3.1-8b-instruct: This model is broad new, yet it shows significant performance im-
provements when leveraging the distilled knowledge.

gpt-35-turbo-16k: We also include a closed-source model in our experiments to demonstrate
the effectiveness of our approach across both GPU-deployed and API-based models. Despite its
number of parameters is unknown, we consider it as one of SLMs since its performance falls behind
of its more advanced versions such as GPT-4.

C DATASET IMPLEMENTATION DETAILS

C.1 DATA FILE CONTENT

For convenient reproduction and following, we preprocess all dataset into more unified data for-
mat of jsonl. In python task (TABMWP, WIKITQ), each line of data contains question_id,
question, data_path, data_overview, answer_type, answer. In SQL task (BIRD-
SQL), each line of data contains question_id, question, evidence, data_path, db_id,
sql.

C.2 DATA INPUT CONTENT

The main goal of this work is to evaluate the code generation capabilities of models in understanding
data schemas and structures across multiple datasets. Given the impracticality of providing all data
values in real-world scenarios in which datasets may consist of millions or even billions of rows,
we sample values for the part of data input to simulate realistic code generation tasks. We feed the
markdown format of schemas with data samples as data_overview.

For TABMWP, we provide only the column names and the first three rows of values. This enables
models to infer the data structure and value types necessary for Python Pandas code generation
without exposing all the data.

For WIKITQ, which contains more complex and varied value types, we provide the first 10 rows of
values and column names to help models navigate the dataset’s intricacies.

In the case of BIRD-SQL, which contains relational databases with complex schemas and diverse
value types, more advanced schema-linking techniques are often required to retrieve relevant tables
or columns before answering queries (Wang et al., 2020; Pourreza & Rafiei, 2024). While we
consider this advanced schema-linking process as future work for AHA, our current focus is on the
code generation aspect. Therefore, we provide:

• Ground truth retrieved tables, reducing input complexity and simulating realistic human-
machine interactions where users might supply potentially relevant tables.

• Full columns with column meaning description files.

• The first three rows of values for each table.

Although the retrieved tables are given, the models must still consider constraints and generate cor-
rect SQL queries. As shown in Table 3, performance on Bird-SQL remains relatively low, even with
simplified table retrieval, highlighting the challenges of generating accurate SQL queries in complex
database environments. This methodology allows us to evaluate code generation capabilities while
approximating the real-world challenges of data analysis.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.3 PREVENT MODELS FROM DIRECT ANSWERING

We observe two kinds of direct answers behaviors in Python tasks, which leads to unfair evaluation
of code generation ability:

Unfair Data Inspection. We find that SLMs usually generate data inspection codes such as
print(df.head()) in their code generation. When producing answers given executed results,
such first few rows will show again in which SLMs tend to answer it correctly even with wrong codes
or bugs. We need to decouple study of tabular understanding and code generation understanding data
structure. And the mutually influenced capability would be the future goals of development.

Data Leakage. In datasets like WIKITQ, current popular SLMs tend to exhibit a form of data
leakage, where models effectively "memorize" the ground truth answers, resulting in unfair evalu-
ations. Through a sample of 100 generated codes using the Phi-3-mini baseline across these datasets,
we observed that the model often embeds the correct answer directly into the code. For instance,
given the question "Who was the opponent of James V.?", the generated code might
include a line like opponent = "Smith W.", which corresponds to the ground truth answer.
The frequency of this leakage is particularly high in WIKITQ, where 23 out of 100 samples exhibits
this behavior, especially for simpler question types. In contrast, datasets with more complex ques-
tion structures, such as TABMWP, exhibits only 5 cases of leakage out of 100, while no instances are
found in BIRD-SQL. These findings suggest that more complex input structures and question/code
types can effectively reduce the possibility of data leakage.

Mitigating Direct Answering Behaviors. To address these cheating behaviors, we propose an
embodied prompt, as outlined in Section H. This approach minimizes data leakage and prevents
unfair data inspection during evaluation. As illustrated in Figure 7, we design scenarios where the
model is informed that it has already inspected the dataset and does not need to generate further data
inspection commands. Additionally, the embodied prompts encourage the model to approach tasks
as a professional data analyst, preventing it from assigning variables based on memorized answers.
Our evaluation shows that this method successfully eliminated data leakage in all 100 tested cases.
Also, the unfair data inspections appear less frequently. The remaining of unfair data inspections
will be removed by post-processed by regex functions.

We believe that this solution holds promise for addressing data leakage issues in complex benchmark
evaluations. This is particularly important in DSCG, where datasets are difficult to collect from
expert teams and frequent re-annotation to prevent leakage is impractical.

D AHA FUNCTIONALITY

D.1 AOI GENERALIZATION

GT Codes Functional Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # Clean the data for acts
4 [Fill Your Code]
5
6 # Clean the data for stages
7 [Fill Your Code]
8
9            …
10 # Compute z scores
11 [Fill Your Code]
12         …
13 # Answer the Question
14 [Fill Your Code]
15

Orchestrated Codes

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8   # compute z scores
9   df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11       …
12   # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

Figure 6: Illustration of how AOI is conducted in Python for Tabular data analysis.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model SIMPLE MEDIUM CHALLENGING OVERALL

Zero-Shot End-to-End Code Gen.
Original Checkpoint 38.51 21.20 11.76 24.40
LoRA Fine-Tuned 39.86 19.20 10.78 23.60

AHA Knowledge Distillation
General Instruction 51.35 25.60 17.65 31.60
Meta Instruction 51.35 30.40 16.67 33.80

Table 4: Performance evaluation of Zero-Shot End-to-End Code Generation, LoRA fine-tuning,
and our proposed knowledge distillation techniques on BIRD-SQL. Deeper red shading indicates
a larger performance drop compared to the original pre-trained model, while green indicates no
decline or improvement.

Our Agent Orchestration Interface (AOI) is adaptable to different programming languages with dif-
ferent data input settings. Figure 2 shows how AOI is conducted in RDB settings with SQLite, and
Figure 6 shows how it’s undertaken in Single-tabular data with Python.

D.2 FINE-TUNING V.S. AHA KNOWLEDGE DISTILLATION

We also compare the performance of knowledge distillation via AHA with the commonly used
LoRA fine-tuning method (Hu et al., 2022) under the same low-resource setting (1,000 training
samples) on the BIRD-SQL dataset, specifically for the Phi-3-mini model. As shown in Table 4,
training with such a limited amount of data can degrade the performance of SLMs. However, AHA
significantly improves the performance of SLMs when utilizing the same data, with a clear margin
of advantage. We hypothesize that: 1) the small training set may introduce bias, limiting the model
generalization; and 2) LoRA fine-tuning struggles to teach SLMs the reasoning capabilities required
for complex tasks within such an end-to-end training regime. On the Contrary, AHA leverages
LLMs to automatically decompose difficult questions into more understandable steps to SLMs, and
distill planning knowledge, which allows SLMs to generalize better when faced with new queries.
In conclusion, AHA proves to be an effective method for enhancing the performance of SLMs in the
domain of DSCG, which contains limited annotated data usually.

E ABLATION STUDY

We conducted a comprehensive ablation study of AHA-MI, as shown in Table 5. Code-T5+ is a
code embedding model (Wang et al., 2023d), while BGE-Large (Xiao et al., 2024) represents one of
the state-of-the-art (SOTA) text embedding models. The study examines two types of RAG Index:
one where distance is computed using question embeddings alone, and another where both question
and schema embeddings are used. The "Plan + Gen" approach involves first constructing a plan
with distilled knowledge, followed by generation using knowledge-driven planning. In contrast, the
"Gen" approach involves direct generation without prior planning. The instruction type labeled w/
examples refers to cases where a specific example is provided by the Teacher Agent. We evaluate
performance with 1, 3, and 5 examples to assess the impact of varying numbers of RAG examples.
The results of the ablation study reveal several key insights:

Code embeddings outperform text embeddings. The superior performance of Code-T5+ over
BGE-Large-en can be attributed to the nature of the task. While text embeddings emphasize on
semantic and domain knowledge, code embeddings capture the syntactic and logical structure of
coding problems, which is crucial for DSCG tasks. Even when presented with identical questions,
the code solutions can vary significantly depending on the data input. Code-T5+ is able to effectively
embed questions from a programming perspective, benefiting from its pre-trained corpus, whereas
text embeddings are less suited for the task.

Embedding only the question is more effective than embedding both the question and schema.
The study demonstrates that question-only embeddings lead to better results. This suggests that the
inclusion of schema in the embedding may introduce unnecessary complexity, which may hinder
performance on the DSCG task.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Planning is essential for more complex tasks. The results stress on the importance of planning in
a knowledge-driven generation. For tasks requiring complex reasoning, the "Plan + Gen" approach
outperforms direct generation (Gen), indicating that structured planning significantly improves task
performance.

One example may bias the SLM. Involving a single example in the instruction can introduce
bias in Sequence Learning Models (SLMs). A specific example might cause the SLM to over-
follow to certain information, leading to hallucinations. For instance, if the example includes a
reference to "singer", the SLM may generate plans that include "singer" even when the
question pertains to an unrelated topic, such as "cars". This observation highlights the lack of
robustness in SLMs when exposed to overly specific examples. Consequently, it is better to provide
more general, transferable knowledge in instructions. The degraded performance observed with
1 RAG example supports this conclusion, as the model becomes overly reliant on the provided
information.

More examples do not always improve performance. Interestingly, increasing the number of
RAG examples (from 1 to 5) results in a performance drop. This suggests that longer input se-
quences may confuse the SLM, making it more difficult to distill relevant knowledge. Based on
these findings, we recommend using 3 RAG examples as the optimal balance for complex DSCG
tasks since it avoids both the biases of a single example and the confusion caused by too many
examples.

Embedding Model RAG Index Reasoning Type Instruction Type # RAG Examples Performance
code-t5+ question plan + gen no examples 3 33.80
code-t5+ question gen no examples 3 31.40 (↓2.40)
bge-large question plan + gen no examples 3 30.00 (↓3.80)
code-t5+ question plan + gen w/ examples 3 28.00 (↓5.80)
code-t5+ question+schema plan + gen no examples 3 32.40 (↓1.40)
code-t5+ question plan + gen no examples 5 31.80 (↓2.00)
code-t5+ question plan + gen no examples 1 29.80 (↓4.00)

Table 5: Ablation Study Results of AHA-MI of Phi-3-mini on BIRD-SQL. The table compares
different embedding models, RAG index (with or without schema), reasoning approaches (planning
or direct generation), and varying numbers of RAG examples.

F ERROR ANALYSIS

We conducted an error analysis by sampling 50 incorrect cases for both AHA-MI and AHA-GI
across three datasets. Although AHA substantially improves the overall performance of SLMs, we
found that 54% of the errors were caused by over-reasoning. This issue tends to emerge even in
relatively simple cases. As discussed earlier, SLMs can overly adhere to the instructions derived
from planning and guidance, which is problematic when the task is enough simple and does not
require decomposition or reasoning. In these cases, direct code generation would lead to more
accurate results. The remaining errors stem from common issues in code generation tasks, such as
incorrect string handling, incorrect column selection, database constrain understanding.

G LIMITATIONS AND FUTURE WORK

A key limitation of our current approach with AHA is the reliance on initial training examples for
both LLMs and SLMs to facilitate orchestration. This is why we selected datasets that include a
training corpus suitable for distilling knowledge. However, an important avenue for future work is
to explore how to generate such training data in a fully zero-shot manner, without relying on human-
annotated or enumerated examples. Additionally, as highlighted in the error analysis, over-reasoning
negatively impacts performance on simpler tasks, where additional reasoning or decomposition is
unnecessary. To address this, future work could focus on developing or prompting smaller models to
act as routers, as proposed by Ding et al. (2024), to classify questions based on whether they require
planning. This would help avoid over-reasoning in straightforward cases and improve the overall
efficiency of AHA.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H MAIN PROMPTS

The zero-shot End-to-End Code Generation prompt is shown in Figure 7, Figure 15 and 17 show the
zero-shot Chain-Of-Thought reasoning. Figure 18 shows few-shot demonstration prompting. The
few_shot_examples can be selected by human experts as Static Few-Shot Demonstration, and
can be retrieved from AHA memory database by RAG system as Dynamic Few-Shot Demonstration.

The Figure 7, 8, 9, 10 show prompts for Orchestration between LLMs and SLMs. Figure 11
presents how LLM convert orchestrated successful cases to more understandable case studies to
SLMs. LLMs can go through correct cases from memory databases and distill knowledge to an of-
fline and plug-and-plan General Instruction for SLMs to used for new and unseen queries performed
by prompts shown in Figure 12 and 13. During inference, SLMs can produce Meta Instructions by
prompts in Figure 14. Given distilled knowledge (instructions), SLMs will plan first as shown in
Figure 16, and generate codes finally with their knowledge-driven planning, which shows in Figure
17.

I KNOWLEDGE DISTILLATION EXAMPLES

I.1 CASE STUDY EXAMPLE

The Figure 19 shows the example of case studies on Python task. The Figure 20 and Figure 21
present examples of AHA-GI and AHA-MI respectively.

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and
let your students to fill to understand plans and analysis. So you cannot generate code by your
own, only generate plans.

Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

Question: {question}
Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete
each line of code to answer questions correctly:

Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())`
since this is cheating!
- Do not use any external information.
- The code should be end-to-end, so you cannot encourage yourself to print other
things except final result. More other information lead to be distracted.

Question: {question}
Function Plan:
```python
[[functional plan]]
```
Your entire completion code for function plan executable and correct:

Code:
```python
import pandas as pd

Figure 7: Prompt of baseline end-to-end generation for tasks requiring Python.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and
let your students to fill to understand plans and analysis. So you cannot generate code by your
own, only generate plans.

Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

Question: {question}
Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete
each line of code to answer questions correctly:

Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())`
since this is cheating!
- Do not use any external information.
- The code should be end-to-end, so you cannot encourage yourself to print other
things except final result. More other information lead to be distracted.

Question: {question}
Function Plan:
```python
[[functional plan]]
```
Your entire completion code for function plan executable and correct:

Code:
```python
import pandas as pd

Figure 8: Prompt converting ground-truth code to functional plan for python task as example. This
is conducted by LLM Teacher Agent.

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and
let your students to fill to understand plans and analysis. So you cannot generate code by your
own, only generate plans.

Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

Question: {question}
Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete
each line of code to answer questions correctly:

Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())`
since this is cheating!
- Do not use any external information.
- The code should be end-to-end, so you cannot encourage yourself to print other
things except final result. More other information lead to be distracted.

Question: {question}
Function Plan:
```python
{functional plan}
```
Your entire completion code for function plan executable and correct:

Code:
```python
import pandas as pd

Figure 9: Prompt of orchestration coding. This is conducted by SLM Student Agent.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

You are an expert in error analysis and code planning. Your task is to guide your intern in filling out the code for your logic. You need to generate textual plans 
as comments that include essential import statements, logics. Currently, the mixed code filled by your intern is incorrect. Then you should analyze and help him.

------------------------------------------- case begin: -----------------------------------------------
{last turn case}
--------------------------------------- end --------------------------------------------

You are experienced data analysis programmer responsible for checking the errors, analyzing the reasons, and helping them correct the code. Note that you cannot 
fill the code for them directly. You have four options for actions:
1. **Decomposition(Step Number, new sub steps**: If a step is too complicated and exceeds the intern's capability, decompose this step into multiple smaller steps 
for them to fill step by step. 
    Actually, you have to decompose steps if there are multiple functions or multiple lines of code in one step since they are not capable!
    step a -> step b, step c
2. **ALT(Step Number, what do you want to alt in detials**: If a step is ambiguous or requires additional information or options, provide an alternative approach 
or clarification. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
    step a -> step b
3. **ADD(Step Number, what do you want to add in details**: If the original step lacks important operations, add a supplementary step to ensure the main code logic 
is smooth. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
   Also all available data are shown, you cannot add or teach them to use `df.head()` to overview data again.
    step a, step c -> step a, step b, step c
4. **DELETE(Step Number, what do you want to delete in details**: If some steps are unnecessary and hinder the intern's understanding of the overall logic, delete 
them.
    step a, step b -> step b (deleted step a)
5. **SIMPLIFY(Step Number, simplify specific steps)**: If a step is implemented using recursion and this approach is too complex for the intern to understand or 
debug, suggest a non-recursive approach that achieves the same result. 
This might involve using iterative methods or other strategies to simplify the logic. If you find code fails due to this, simplify the functions.
step a (recursive) -> step a (iterative)
6. **SWITCH(Step Name, packages to SWITHC)**: If a function relies heavily on a specific package that is known to be complex or not beginner-friendly, suggest 
switching to a more intuitive or simpler package that achieves similar functionality. This can help the intern understand the underlying logic without getting 
bogged down by the complexities of the original package.
    step a (uses ComplexPackage) -> step a (uses SimplePackage)  

You have to provide reasons based on analysis of errors for choosing this action and show your action in <action></action>, then. Finally, you must execute your 
chosen action to change original code and fill in the following format:

# format:
Reason:
<reason>...</reason>
Act:
<action>...</action>

# Updated code plan:
```code_plan
import ...

Step 1:....
[Fill Your Code]

Step 2:....
[Fill Your Code]
...

Step N:
```

## Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More other information would cause student to 
be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

OK, now change your codes according to your actions. 
If you don't follow rules, then you will lose 1 million dollars:

Figure 10: Prompt of plan optimization. This is conducted by LLM Teacher Agent.

You are a data analyst trainer. You are educating your student to generate pythyon code to answer tabular data analysis questions.

This is a successful case of your code, perform a case study on this:
------------------------------------------- case begin: -----------------------------------------------
# Question: {question}

# Data Overview at the path {data_path} (first 10 rows):
{data_overview}
...

# Code:
```python
{final orchestrated code}
``` 
------------------------------------------- case end: -----------------------------------------------

perform a concise case study! Your case study should only contain

### Case Study: [Case Name]
### Question: [Question]
### Table Info: [Summarized Useful information about Tabular Data]
### Objective:
### Explanation:

Please note your case study should make your student understand. You don't have to include code again. You will get 1000 dollars if 
you have a good job:

Figure 11: Prompt of case study conversion. This is conducted by LLM Teacher Agent.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

Figure 12: Prompt of aggregation prompt of each batch of case studies. This is conducted by LLM
Teacher Agent.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of code, you generate step-by-step plans that allow them to 
fill in subqueries until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{last layer of case studies}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

Following case studies, please summarize 5-7 key points about how to plan and generate correct code to answer the tabular 
data analysis questions accurately.
Students will take your notes directly.

# You need to start with:
```1. You should

Figure 13: Prompt of summarization prompt of batch of case studies in the last layer. This is
conducted by LLM Teacher Agent.

You are a data analysis trainer. Your are teaching your student to plan and generate python code
accurately. You find some case study for reference.

There are case studies:
--- case begin: ---
{case_studies}
--- case end: ---

Following case studies, please summarize key 5-7 points about how to plan and generate correct python
code to answer the data analysis questions accurately.

You will use them to educate your student:
```successful plan suggestions:
1. You Should

Figure 14: Prompt of in-time summarization for meta-instructions. This is conducted by SLM
Student Agent.

You are a data engineer. Given the sample data, generate python code plan to answer the question 
accurately.

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.
```

Question: {question}
Thought: I need to see the data samples in the first 10 rows:

Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

Observation:
{data_overview}

Thought: I should have a step-by-step text plan for generating this code first. I will fill my plan
into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

Let's think step by step:
```code_plan
Step 1:

Figure 15: Prompt of generating Chain-Of-Thought. This is conducted by SLM Student Agent.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

Question: {question}
Thought: I need to see the data samples in the first 10 rows:

Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

Observation:
{data_overview}

Thought: I can generate code to answer this question and print the result. I will fill my code in the
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

Code:
```python
import pandas as pd

Figure 16: Prompt of knowledge-driven planning. This is conducted by SLM Student Agent.

You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

Question: {question}
Thought: I need to see the data samples in the first 10 rows:

Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

Observation:
{data_overview}

Thought: I can generate code to answer this question and print the result. I will fill my code in the
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

Code:
```python
import pandas as pd

Figure 17: Prompt of code generation given step-wise planning. This is conducted by SLM Student
Agent.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

You are a data analyst. Given data sample, you need to generate pandas code first to answer the question.

Generate your pandas code to answer the question, and print the result for your to understand. Fill your 
code in 
```python
[Your Code]
``` 

# Please follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except the final 
result. More other information would cause sutdent to be distracted.

There are some examples:
---------------------------- Examples Start ----------------------------
{few_shot_examples}
---------------------------- Examples END ----------------------------

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question:

# Code:
```python
import pandas as pd

Figure 18: Prompt of few-shot demonstration. This is conducted by SLM Student Agent.

Case Study: Average Weight Calculation for Specific Players

Question:
What is the average weight of Jamarr Sanders and Robert Williams?

Table Info:
- **Columns**: Name, Height, Weight (lbs.), Position, Class, Hometown, Previous Team(s)
- **Sample Data**:
 - Jamarr Sanders: Weight 210 lbs.
 - Robert Williams: Weight 210 lbs.

Objective:
To calculate the average weight of the players Jamarr Sanders and Robert Williams from the given dataset.

Explanation:
1. **Load Data**: The data is loaded from a tab-separated values (TSV) file.
2. **Filter Data**: Rows corresponding to the names "Jamarr Sanders" and "Robert Williams" are filtered from the dataset.
3. **Calculate Average**: The average weight of the filtered rows is computed.
4. **Output**: The result is printed as an integer.

By following these steps, the student can understand how to filter specific rows in a dataset and perform calculations on the filtered data. This case
demonstrates the practical application of data manipulation and analysis using pandas in Python.

-- Step 1: Count the total number of films
WITH Total_Films AS (
 SELECT COUNT(film_id) AS total_films
 FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
 SELECT COUNT(fc.film_id) AS documentary_films
 FROM film_category fc
 JOIN category c ON fc.category_id = c.category_id
 WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS
 percentage
 FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes

Figure 19: Example of case studies for tasks requiring Python. This is conducted by LLM Teacher
Agent.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1. You should **break down the task into manageable steps**. Each step should build on the previous one, guiding you through the process
logically.

2. You should **emphasize data handling and cleaning**. This includes handling missing values, normalizing case, and ensuring data consistency."

3. You should **focus on filtering and extraction**. Guide yourself on how to filter and extract relevant data based on specific criteria. This is often
the core of the analysis."

4. You should **perform aggregation and counting**. Learn how to perform aggregation operations like counting, summing, or finding
minimum/maximum values to derive insights from the data."

5. You should **present the result clearly**. Ensure that the final step involves presenting the result in a clear and concise manner. This reinforces
the importance of communicating findings effectively."

6. You should **avoid distractions**. Keep the instructions focused on the end-to-end process without encouraging unnecessary intermediate
outputs or external information. This helps maintain your focus on the task at hand."""

Figure 20: Example of General Instruction for tasks requiring Python. This is conducted by LLM
Teacher Agent.

"question": "which country rank last?"

1. Understand the problem statement and the data structure.

2. Load the data using appropriate libraries (e.g., pandas).

3. Perform necessary data manipulation and cleaning.

4. Identify the relevant columns and values for the analysis.

5. Use appropriate functions and methods to filter, sort, and extract the
required information.

6. Output the result in a clear and concise manner.

Figure 21: Example of General Instruction for tasks requiring Python. This is conducted by SLM
Student Agent in time.

29

	Introduction
	Methodology
	Task Formulation
	Agent Orchestration Interface
	Memory Database Construction
	Knowledge Distillation from Memory Database

	Experiments
	Datasets and Metrics
	Implementations
	Overall Results
	Distillation V.S. Demonstration
	Knowledge Transmission
	Orchestration Media Type Analysis

	Related Work
	Conclusion
	Detailed Description of Fine-to-Coarse Knowledge Distillation
	Model Implementation
	Orchestration Models
	Baseline Models
	Models in Knowledge Transmission

	Dataset Implementation Details
	Data File Content
	Data Input Content
	Prevent Models From Direct Answering

	AHA Functionality
	AOI Generalization
	Fine-Tuning v.s. AHA Knowledge Distillation

	Ablation Study
	Error Analysis
	Limitations and Future Work
	Main Prompts
	Knowledge Distillation Examples
	Case Study Example

