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ABSTRACT

Knowledge distillation from Large Language Models (LLMs) to locally hosted
Small Language Models (SLMs) provides advantages for Data Science Code Gen-
eration (DSCG) such as enhanced data privacy and reduced response times. How-
ever, achieving effective distillation without resource-intensive training is chal-
lenging. This paper investigates whether LLMs can distill knowledge to SLMs
through In-Context Learning (ICL), a training-free method for rapid task adap-
tation. We present the Agents Help Agents (AHA) framework, which facili-
tates automatic knowledge distillation from LLMs to SLMs via agent orchestra-
tion. AHA consists of three phases: exploration through an Agent Orchestration
Interface (AOI), memory collection of successful examples, and inference aug-
mented with distilled knowledge. The AOI orchestrates interactions between a
LLM as a Teacher Agent and a SLM as a Student Agent. And we propose two
distillation strategies: a static approach that aggregates an offline instruction set
and a dynamic RAG-based approach that distills knowledge dynamically during
inference. We evaluate AHA on three challenging code generation tasks for tab-
ular data analysis: TABMWP, BIRD-SQL, and WIKITQ. Experimental results
demonstrate the effectiveness of AHA, leading to an average 27.5% relative im-
provement in the performance of the Student Agent Phi-3-mini. Additionally,
relative gains of 14.3% and 30.9% are observed in Llama-3.1-8B and GPT-35-
Turbo, respectively, even though those models were not calibrated as part of the
orchestration, highlighting the model-agnostic nature of the distilled knowledge in
AHA. Further analysis compares distillation and demonstration techniques across
different data input settings, providing insights into optimal configurations for
DSCG.

1 INTRODUCTION

Data Science Code Generation (DSCG) automates the conversion of natural language queries into
executable code, empowering non-expert information extraction and analysis from tabular data ef-
ficiently. This process enhances productivity, reduces the technical barrier for data analysis, and
allows data scientists to focus on deriving insights, ultimately supporting more effective decision-
making (Khanbabaei et al., 2018; Han et al., 2011; Fayyad et al., 1996). This is a challenging task
since it not only requires code generation capability but also data understanding capability.

Large Language Models (LLMs) have demonstrated remarkable performance across diverse, com-
plex tasks (Singh et al., 2023; Mu et al., 2024; Chen et al., 2023; Zheng et al., 2024; Deng et al.,
2023). Leveraging LLMs or LLM agents for automatic code generation from user queries offers an
effective solution (Yang et al., 2024b; Wang et al., 2024b). However, the integration of LLMs in
DSCG faces two primary challenges: 1) Privacy concerns arise when utilizing closed-source LLMs
such as GPT-4 (Achiam et al., 2023) or Claude-3.5-Sonnet (Ogunseyi et al., 2023). 2) Deploying
large open-source models like Llama-3.1-405B (Dubey et al., 2024) or DeepSeek-v2 (236B) (Liu
et al., 2024) can be challenging due to their large number of parameters. Balancing these benefits
and challenges is crucial for effective data science applications.
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Small Language Models (SLMs), such as Phi-3-mini (Abdin et al., 2024) and Llama-3.1-8B (Dubey
et al., 2024), have gained attention for their In-Context Learning (ICL) capabilities but more advan-
tages for local deployment and on-device inference. These models offer computational efficiency
and enhanced data privacy, crucial for resource-constrained or privacy-sensitive applications (Joshi
et al., 2024). While SLMs have shown competitive performance in some general tasks including
natural language understanding (Nie et al., 2020) and code completion (Chen et al., 2021), their
effectiveness in data science code generation tasks remains an open question.

Fine-tuning is a common strategy to enhance SLM capabilities for complex tasks (Petroni et al.,
2021). However, this approach encounters several challenges in the domain of data science DSCG.
One primary issue is the limited availability of high-quality training data. Professional tabular
datasets, such as relational databases, are often small or proprietary, restricting access to substantial
corpora for training. Additionally, the dual expertise required in both coding syntax and data un-
derstanding for accurate annotation further constrains dataset scalability (Li et al., 2024b; Lei et al.,
2024). This is reflected in recent benchmarks for data science code generation, which typically con-
tain around or fewer than 1,000 samples, highlighting the complexity and resource constraints in
this field (Hu et al., 2024; Agashe et al., 2019; Lai et al., 2023; Zhang et al., 2023; Yin et al., 2023).
Recent research has explored distillation from LLMs to SLMs through fine-tuning on synthetic data
generated (Team et al., 2024; Magister et al., 2023; Kang et al., 2023). While this approach shows
promise, several challenges persist. For example, frequent updates to code packages introduce new
syntax that may conflict with previously trained knowledge (Wu et al., 2024). Furthermore, the per-
formance improvements obtained from these methods often fail to generalize well across different
programming languages or frameworks, requiring extensive re-training for each package update or
new task (Shen et al., 2022a; Ke et al., 2023). However, In-Context Learning (ICL) can adapt to new
requirements or tasks by providing relevant instructions or examples, reducing the effort required
for re-training or continual training. This raises a research question in DS code generation: Can
LLMs distill knowledge to SLMs through In-Context Learning (ICL)?

In this paper, we explore the potential of knowledge distillation from LLMs to SLMs via ICL. We
design Agents Help Agents (AHA), a novel, fully automated framework that enables LLM as a
Teacher Agent to guide SLMs as Student Agents in complex data science code generation tasks.
AHA operates in three phases: exploration, memory database collection, and knowledge-driven
inference. During exploration, we employ the Agent Orchestration Interface (AOI) that allows an
LLM to probe and analyze SLM code knowledge by converting questions into step-wise functional
plans and asking SLMs to infill the code for each plan. Then, successful collaborated cases are
stored in memory databases. We also introduce two novel distillation techniques during inference:
General Instructions and Meta Instructions.

We evaluate AHA on three challenging tabular analysis datasets that need code generation:
TABMWP (Lu et al., 2023), BIRD-SQL (Li et al., 2024a), and WIKITQ (Pasupat & Liang, 2015).
The experimental results demonstrate that the AHA framework significantly improves the perfor-
mance of SLMs across all datasets, validating the potential of our knowledge distillation approach
via In-Context Learning (ICL). Notably, the performance boost achieved by AHA is not limited to
the specific SLM trained during the orchestration process but generalizes across other SLMs as well.
This model-agnostic nature further highlights the flexibility and adaptability of distilled knowledge
in our framework, enabling it to be applied in a wide range of data science code generation scenarios
without requiring extensive retraining.

2 METHODOLOGY

2.1 TASK FORMULATION

Given a natural language query or question qi ∈ Q, where Q = {q1, q2, . . . , qN} represents a set of
N queries or instructions, and its corresponding tabular data or database schema information di ∈ D,
where D = {d1, d2, . . . , dN}, the Small Language Model (SLM) is tasked with generating a single,
concise, and executable code snippet ci. This code snippet must accurately answer the query qi with
the associated data di. The function that maps each query-data pair to its corresponding code snippet
by SLMs is defined as fgen, and can be written as:

ci = fgen(qi, di) for i = 1, 2, . . . , N. (1)
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…
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Figure 1: Overview of the AI agent orchestration system for data science code generation. Left:
Agent Orchestration Interface (AOI) with abstraction lifting, orchestrated coding, and plan opti-
mization. Center: Memory Database Construction, including trajectory collection and case study
integration. Right: Knowledge-driven Inference and Planning, featuring tree-based general instruc-
tion distillation, RAG-based meta instruction generation, and knowledge-driven code generation.

2.2 AGENT ORCHESTRATION INTERFACE

The Agent Orchestration Interface (AOI) is designed to mediate the interaction between a Large
Language Model (LLM), a Teacher Agent, and a Student Agent, represented by the SLM. The
primary goal of the AOI is to generate successful and informative problem-solving cases, which
are later used for knowledge distillation in DSCG. The AOI is composed of three key components:
Abstraction Lifting, Orchestrated Coding, and Plan Optimization.

Abstraction Lifting (AL). In this phase, LLM generates a functional plan Pi =
{si1, si2, . . . , siK} based on a query qi, data input di, and the corresponding ground truth (gt) code
c̃i. The ground truth code c̃i can either be sourced from an existing dataset or generated by the
Teacher Agent when it is not directly available but a ground-truth answer string exists. This func-
tional plan is defined as Lal(di, qi, c̃i), where Lal LLM performing abstraction lifting. Each step sij
in the plan corresponds to a key subtask derived from the query, collectively forming a structured
template outlining the solution process. These steps are annotated by the LLM with descriptive
comments and placeholders such as [Fill Your Code Here] in Python or [Fill Your
Sub-Query] in SQL, as shown in Figure 2, ensuring that the SLM follows the logical flow of
the entire plan and enables guided code generation. Unlike Chain-Of-Thought (Wei et al., 2022)
plans, which provide intermediate steps in continuous textual form, our approach bridges high-level
problem understanding with low-level code implementation logic, allowing the SLM to follow the
better plan for data science code generation.

Orchestrated Coding (OC). Once the functional plan Pi is provided, the SLM considers all
context including the question and data input to generate the complete orchestrated code ci =
fgen(di, qi, Pi) in a single turn by filling all placeholders, ensuring the solution is correct and ex-
ecutable. The results from executing this orchestrated code are then compared to those from a ref-
erence solution (such as ground truth answer string or gt codes) to evaluate whether the SLM fully
understands both the data and the logic needed to answer the question. This comparison serves as
a key indicator of the problem-solving accuracy of SLM and alignment with the intended solution.
While the ground truth code may already be available from datasets or generated by the Teacher
Agent, orchestrated coding and abstraction lifting are crucial for a few reasons. First, AL breaks
down complex problem-solving tasks into manageable sub-tasks, with the potential to improve the
performance of the SLMs across a wide range of analytical queries by assisting them in under-
standing modular structure. Additionally, error isolation can be grounded in the program structure,
enabling more precise identification of issues and contributing to optimized plans. This is supported
by our analysis in Section 3.6 that compares chain-of-thought with functional plans across multiple
turns of orchestration.

Plan Optimization (PO). The plan optimization process is an iterative procedure that unfolds
over multiple turns, denoted by t. During each iteration, the SLM refines the functional plan P t

i .
To formalize this interactive optimization process, we define an environment E = ⟨S,A,O, T ⟩,
following (Zhou et al., 2023; Xie et al., 2024; Gu et al., 2024), where S represents the state space,
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Original Code Executable Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # clean the data for acts, and stages
4 [Fill Your Code]
5
6 # compute z scores
7 [Fill Your Code]
8
9            …
10 # Answer the Question
11 [Fill Your Code]
12         …
13
14
15

Harmonized Code

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8   # compute z scores
9   df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11       …
12   # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

What is the percentage of documentary films? Calculation = 
DIVIDE(SUM(name = 'Documentary'), COUNT(film_id)) * 100

Question: 

CREATE TABLE film_category
(
  film_id INTEGER  NOT NULL
  …
  primary key (film_id, category_id)
)

CREATE TABLE category
(
  category_id INTEGER  NOT NULL
  …
  name TEXT NOT NULL
)

Data Input: 

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1, 0)) AS REAL) 
* 100 / COUNT(T1.film_id) FROM film_category AS T1 INNER 
JOIN category AS T2 ON T1.category_id = T2.category_id

SQLite:

…

What is the percentage of documentary films? 
Hint: Calculation = DIVIDE(SUM(name = 
'Documentary'), COUNT(film_id)) * 100

Question: 

CREATE TABLE film_category
(
  film_id INTEGER  NOT NULL
  …
  primary key (film_id, category_id)
)

CREATE TABLE category
(
  category_id INTEGER  NOT NULL
  …
  name TEXT NOT NULL
)

Database Input: 

SELECT CAST(SUM(IIF(T2.name = 'Documentary', 1, 
0)) AS REAL) * 100 / COUNT(T1.film_id) FROM 
film_category AS T1 INNER JOIN category AS T2 ON 
T1.category_id = T2.category_id

SQLite:

-- Step 1: Count the total number of films
WITH Total_Films AS (
    [Fill Your Sub-Query]
),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
     [Fill Your Sub Query]
),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 4: Select the final result
SELECT percentage
FROM Percentage_Documentary;

Functional Plan:

-- Step 1: Count the total number of films
WITH Total_Films AS (
    SELECT COUNT(film_id) AS total_films
    FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
    SELECT COUNT(fc.film_id) AS documentary_films
    FROM film_category fc
    JOIN category c ON fc.category_id = c.category_id
    WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS      
    percentage
    FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes
-- Step 1: Count the total number of films
WITH Total_Films AS (
    [Fill Your Sub-Query]
),

-- Step 2a: Filter of the table to get documentary films
Filtered_Documentary_Films AS (
     [Fill Your Sub Query]
),

-- Step 2b: Count the number of documentary films
Count_Documentary AS (

[Fill Your Sub-Query]
)

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

[Fill Your Sub-Query]
) …

Functional Plan:

Figure 2: Main steps of AOI demonstrated with a text-to-SQL task example. Teacher Agent con-
verts referenced code to a functional plan for Student Agent to complete. Teacher Agent iteratively
optimizes the plan until the Student Agent produces correct code. A Python code AOI example is
provided in Appendix D.1.

A the action space (see Table 1), and O the observation space. In this context, the plan P t
i is

embedded within the current state St
i , serving as a structure that guides the SLM to generate code.

The orchestrated code cti is the snippet produced by performing the plan P t
i within the environment.

During each turn, the LLM observes oti, the outcome of executing orchestrated code cti generated by
the SLM, and selects an action ati from A to optimize the plan. For example, if a step stij contains an
error such as: "Step j: List players who was born before 1930 and after
1950", the LLM will apply an action ALT(·) to correct this, resulting in an updated plan P t+1

i

with the refined step st+1
ij as "Step j: List players who were born after 1930

and before 1950". This iterative process can be represented as:

P t+1
i = {sti1, sti2, . . . , st+1

ij , . . . , stiK}, st+1
ij = Lopt(s

t
ij , o

t
i, a

t
i). (2)

Here, st+1
ij is updated by the optimization function Lopt of the LLM, which integrates the current

observation oti, action ati and sub-optimal step stij . The system transitions from state St
i to St+1

i

through T (St
i ,At

i), resulting in the updated plan P t+1
i . The SLM then generates the updated or-

chestrated code ct+1
i = fgen(qi, di, P

t+1
i ) for the new plan. This process repeats until the output is

correct or the maximum number of iterations T is reached.

2.3 MEMORY DATABASE CONSTRUCTION

After interactions between the LLM and SLM in AOI, the finalized states are stored in a memory
database. This database includes the correct orchestrated codes, along with the context of the ques-
tion and data input. This process ensures that the SLM can efficiently reference and apply related
knowledge to new, unseen queries.

Case Study Translation. Rather than only storing raw, heterogeneous cases that consist of a
query, plan, and orchestrated code in a simple stacked format, the LLM refines these into case
study-like representations. These representations distill the reasoning behind the success of each
example, serving as an intermediate abstraction that emphasizes the underlying rationale for the
chosen approach. Each case study Gi contains a Case Name, Question, Schema / Value
Information, Objective, and an Explanation of how the solution code successfully ad-
dresses the query using the provided data. An example of this structure is provided in Appendix I.
As shown in Figure 1 (Mid), AHA performs case study translation only for correct cases, because
reflecting on incorrect cases without supervision or comparison to correct cases often introduces
hallucinations.

Correct Case Collection. The Correct Case Collection, denoted as M, consists of cases where
the SLM has generated correct orchestrated codes. Each case Mi in this collection contains the
natural language query qi, the corresponding data di, the correct orchestrated code ĉi, which contains
descriptive comments as shown in Figure 2 (right), and the case study Gi illustrating the solution.
The set M is the union of all such individual cases:

M =
⋃
i

Mi, Mi = (qi, di, ĉi, Gi) . (3)

4
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Action Type Expression Description

Decomposition step(x) → step(a),
step(b)

Split a complex step x into smaller, man-
ageable steps such as step a and step b.

ALT step(x) → step(y) Replace a step x described by ambiguous or
incorrect messages with a clearer and cor-
rect alternative step y.

ADD step(x) → step(x),
step(a)

Add a necessary step a to ensure the com-
pleteness of code logic.

DELETE step(x) → None Remove the unnecessary step x, which may
lead to misunderstanding by the SLM.

SIMPLIFY step(x) →
simple_step(x)

Replace a complex step x with a simpler
approach. For example, convert recursive
plans into iterative loops.

SWITCH packageA.step(x) →
packageB.step(x)

Use a simpler package to achieve the same
functionality. For example, conversion
from Package Linear Regression to
Correlation Coefficient to deter-
mine relationship between two variables.

Table 1: The 6 action types utilized by the LLM during the Agent Orchestration Interface (AOI) to
optimize the plans for better understanding and code generation by SLMs

2.4 KNOWLEDGE DISTILLATION FROM MEMORY DATABASE

This part presents two methods for distilling knowledge from the memory database: fine-to-coarse
general instruction generation and RAG-based meta-instruction generation. Distilled knowledge
then guides the SLM in learning how to plan and generate code more accurately for unseen queries.

Fine-to-Coarse Knowledge Distillation for General Instructions Generation. Our first ap-
proach generates universally applicable, "plug-and-play" instructions through a novel fine-to-coarse
knowledge distillation method. This technique employs a recursive, tree-based strategy, offering an
alternative to conventional sequential updating methods. Approaches such as (Askari et al., 2024)
process batches of examples sequentially and need to select initial examples that often require hu-
man efforts. In contrast, our method aims to enable a fully automated workflow, constructing a
knowledge tree recursively and in parallel, thereby reducing both biases and the need for human
intervention. We define the set of distilled General Instruction Ig as:

Ig = Lsum(M) = Tl, Tl = Lagg(Tl−1), (4)

where Lsum is a recursive function executed by the LLM, and Tl is the root node of the tree with the
highest layer l, which encapsulates task-specific knowledge, enabling the SLMs to apply it to new
examples.

At each recursive step, nodes at layer l aggregate knowledge from layer l − 1 using the aggregation
function Lagg, which summarizes local instructions within each batch (see prompts in Figure 12,
13 of Appendix H for reference). The leaves represent the individual case studies recorded in M,
while higher layers abstract and generalize knowledge from lower ones. The layer of the tree and
the final number of distilled rules are hyper-parameters, allowing for balancing complexity and
generalization capability. This hierarchical structure can capture broadly applicable rules, resulting
in a more general instruction. General Instruction then guides the SLM in generating correct code
for unseen queries in a plug-and-play manner represented by Figure 1 (Right). A detailed illustration
with examples can be found in Appendix A.

RAG-based Knowledge Distillation for Meta Instruction Generation. General Instructions,
while broadly applicable, often fall short when addressing long-tail problems. To mitigate this gap,
we propose a Retrieval-Augmented Generation (RAG) framework for localized instruction distilla-
tion. In the retrieval phase, we identify the top relevant examples from a memory database M via
an embedding model. Relevance is measured via a function D, expressed as R(qi) = D(qi,M, k),
where k is number of most relevant cases.

5
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Then, rather than leveraging the entire heterogeneous context, the case studies of these retrieved
examples are then fed into the SLM to extrapolate plans for solutions, adhering them to the specific
query. Here, SLM performs a secondary distillation, extracting shared knowledge patterns from
these case studies, which have already been distilled by the LLM (Teacher Agent), to generate
instructions, noted as Meta-Instruction (Im(qi)), precisely specific to the current query at hand.
The process is formalized:

Im(qi) = fagg(qi,R(qi)) (5)

where fagg is an aggregation function applied by the SLM. By doing so, SLMs can generate more rel-
evant and contextually appropriate instructions, effectively bridging the gap between general knowl-
edge and query-specific requirements.

Knowledge-Driven Inference. Harnessing the distilled instructions I ∈ (Ig, Im(qi)) from the
memory database, the SLM initially formulates a structured plan pgen, which it subsequently em-
ploys to generate code for new queries. For a given query qi and its associated data di, this process
unfolds as follows:

Pgen = fplan(qi, di, I), ci = fgen(Pgen, qi, di), (6)

where fplan denotes the planning function executed by the SLM. This plan serves as a blueprint,
guiding the following code generation phase. The SLM then employs the function fgen, which takes
Pgen along with the original query qi and data di to generate the final code ci.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

STATISTIC TABMWP WIKITQ BIRD-SQL
Dataset Features

# train examples 1,000 2,000 1,000
# eval examples 1,000 1,000 500
question type Analysis SP SP + Analysis
# toks / Q 26.5 12.6 20.0

Data Structure
data input type Single Single RDB
# rows / data 6.13 28.5 354k
# columns / data 2.22 6.36 73.3

Code Features
code type Python Python SQL
answer type String String Code
# toks / code N/A N/A 61.15

Table 2: Statistics for three datasets. The term
Analysis indicates that the dataset mainly con-
sists of analytical questions, while SP refers to se-
mantic parsing tasks.

We evaluate our approach on three tabular
data analysis datasets: WIKITQ (Pasupat &
Liang, 2015), TABMWP (Lu et al., 2023), and
BIRD-SQL (Li et al., 2024a). These datasets
cover various task types and data complexities,
challenging models to interpret different data
structures and generate accurate, executable
code for question answering. The data statistics
are shown in the Table 2. 1). Questions in
WIKITQ typically involve operations such as
counting, comparison, and aggregation (e.g.,
How many players scored more
than 10 points?, What is the
largest city by population?).
We sample 1,000 instances from the test set
(∼ 25% of the full set) and 2,000 examples
from the training set for exploration. Perfor-
mance is evaluated using the accuracy metric
as implemented by the official evaluation
scripts (Pasupat & Liang, 2015), which measures the correctness of the final answer derived
from the generated codes. 2). In TABMWP, questions focus on mathematical word problems
involving tabular data, extending beyond semantic parsing to include data analysis questions (e.g.,
Is there a relationship between x and y?). We use 1,000 instances from the
development set for memory construction and evaluate on the full test set (1,000 non-overlapping
questions). Performance is evaluated by comparing the generated results with the ground truth
answers across all grade levels. 3). BIRD-SQL presents the most complex data structures and
comprehensive question types in our evaluation. The data inputs are relational databases, which are
more challenging than the single tables in WIKITQ and TABMWP. The questions contain both
semantic parsing and analytical tasks. For exploration, we adopt the mini-train set curated by (Qu
et al., 2024), which comprises 1,000 examples. Our evaluation is conducted on the mini-dev set, a
collection of 500 high-quality and challenging cases officially selected by the BIRD-SQL team. We
evaluate performance by widely adopted execution accuracy (EX) metric for this dataset.
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Model WIKITQ TABMWP BIRD-SQL

Accuracy Grad. 1-6 Grad. 7-8 Total Sim. Med. Chal. Total

CodeLlama-7B 11.80 26.55 13.11 20.50 43.92 18.00 11.76 24.40
CodeLlama-13B 34.90 37.27 24.22 31.40 45.27 19.60 17.65 26.80
StarCoder2-7B 20.70 34.00 27.56 31.10 41.22 21.60 17.65 26.60
StarCoder2-15B 36.60 39.09 36.44 37.90 55.41 30.40 14.71 34.60
Phi-3-Small-7B 27.00 46.36 38.00 42.60 52.03 28.40 10.78 31.80
Phi-3-Medium-14B 44.80 59.45 46.00 53.40 51.35 32.80 13.73 34.40

Student Agent Performance
Phi-3-Mini-3.8B 32.50 44.18 38.89 41.80 38.51 21.20 11.76 24.40
+ Chain-Of-Thought 27.70 46.36 35.33 41.40 34.46 22.00 12.75 23.80
+ Static Few-Shot 23.00 37.27 34.89 36.20 47.97 20.80 7.84 26.20
+ Dynamic Few-Shot 16.60 51.45 52.89 52.10 42.57 18.80 11.76 24.40
+ AHA General Instruction (Ours) 39.50 50.91 46.89 49.10 51.35 25.60 17.65 31.60
+ AHA Meta Instruction (Ours) 41.10 48.36 42.44 45.70 51.35 30.40 16.67 33.80

Table 3: Performance comparison of various SLMs on WIKITQ, TABMWP, and BIRD-SQL, with
results presented in accuracy percentages. Improvements of our AHA methods over the End-to-End
Code Gen baseline are highlighted using different intensities of olive color. Bold indicates best
results for Phi-3-Mini, while underlines denote second-best results.

3.2 IMPLEMENTATIONS

Setup. Experiments are conducted on three datasets across two primary settings. For TABMWP
and WIKITQ, the SLMs are instructed to generate Python Pandas code to answer questions. How-
ever, since TABMWP and WIKITQ are QA datasets lacking ground truth code, two additional steps
are implemented. First, the Teacher Agent is employed to generate initial Python code solutions
as referenced or ground-truth code c̃i, prior to the Agent Orchestration Interface (AOI). Second,
following both orchestrated and inference code generation, the SLM is called upon to produce con-
cise string answers for final accuracy evaluation. This process involved an additional step: given
the question qi and executed results oi, the SLM generated a result string ri = fans(qi, oi) with an
answering prompt, which was then compared to the GT answer string using the official evaluation
script. For BIRD-SQL, a SQLite environment is established for orchestration and evaluation, fol-
lowing the task formulation ci = fgen(qi, di). We do not need to generate initial SQL by LLMs as
ground truth codes since they already contain ground truth SQLs.

For General Instruction generation, we set layer of the tree l = 2 and limit number of rules to under
10. In RAG-based Meta Instruction generation, we employ KNN with L2 distance, setting k = 3
for top relevant cases and using CodeT5+ (Wang et al., 2023d) as the embedding model. Details are
in Appendix C.

Baselines Models and Methods. We define an SLM as suitable for this task if it satisfies two
criteria: (1) it can perform reasoning through in-context learning (ICL) without relying solely on
fine-tuning, and (2) it has fewer than 15 billion parameters (< 15B), enabling inference on an A100
GPU or less powerful hardware. For closed-source models, we choose GPT-35-Turbo as SLM since
it has faster inference speed and its performance falls behind other larger models such as GPT-4-
Turbo or GPT-4o. We implement models for three purposes: 1) Orchestration Models: In our
experiment, we select LLM GPT-4o (Achiam et al., 2023) as Teacher Agent and a SLM Phi-3-mini-
128k (Abdin et al., 2024) as Student Agent, which only contains < 3.8B parameters. 2) Evaluation
Models: There are several families of SLMs for evaluation. Phi-3 models (Abdin et al., 2024),
CodeLlama models (Roziere et al., 2023), StarCoder2 family (Lozhkov et al., 2024). 3) Knowledge-
Transmission Models: We include the widely-used closed-source model GPT-35-Turbo and Llama-
3.1-8B as new models for evaluation of knowledge transmissions in Section 3.5. Our focus in
this paper is on single-pass code generation. Thus, the environment is not available for SLMs to
iteratively refine or generate code in multiple turns as in (Yao et al., 2023; Wang et al., 2024c).
We consider zero-shot end-to-end code generation, Chain-Of-Thought (Wei et al., 2022), Static
Few-shot Demonstration (Brown et al., 2020), Dynamic RAG-based Few-shot Demonstrations (Gao
et al., 2024) as our baseline methods. For fairness, we employ three examples for all few-shot
demonstration methods.

3.3 OVERALL RESULTS

Overall Performance. Table 3 highlights three key aspects: (1) Knowledge distilled from AHA
can make Phi-3-mini outperform both the End-to-End Code Generation baseline and the widely-
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Figure 3: Knowledge transmission from the memory database between GPT-4o and Phi-3-mini
across three datasets. The results demonstrate that knowledge distilled from AHA can transfer to
new models.

used Chain-of-Thought reasoning technique across all datasets for SLM. Specifically, the Phi-3-
mini model demonstrates relative improvements ranging from 17.5% on TABMWP to 38.5% on
BIRD-SQL. (2) The enhanced Phi-3-Mini frequently matches or exceeds the performance of larger
models, especially those with 2-3 times more parameters, notably surpassing CodeLlama-13B by
17.7%, StarCoder2-15B by 11.2% on the TABMWP benchmark and approaching the performance
of Phi-3-Medium (which has 4x times the parameters) across all datasets. (3) Our experiments also
indicate that Chain-of-Thought reasoning can negatively impact SLM performance. In such com-
plex scenarios, we observe that SLMs often generate hallucinations, resulting in incorrect reasoning
steps. The propagation of these errors due to flawed or invalid thought processes ultimately leads to
diminished performance (Yee et al., 2024).

3.4 DISTILLATION V.S. DEMONSTRATION

In this section, given the memory database, we compare the effectiveness of our knowledge distil-
lation techniques, with conventional demonstration-based strategies. In our approach, distillation
involves transferring knowledge from the memory database to SLMs through task-specific instruc-
tions. On the other hand, demonstration-based methods guide SLMs by presenting explicit task
examples to facilitate analog reasoning (Yu et al., 2024). We implemented two variants of few-
shot demonstrations: Static: Human experts select three representative examples from the memory
database, which remain constant across all cases. Dynamic RAG-based: Examples are selected
from AHA memory database based on similarity to the current query. For fair comparison, we also
implement the same RAG system as AHA-MI, described in Section 3.2.

Our findings indicate that few-shot demonstration generally underperforms AHA knowledge dis-
tillation technqiues on each dataset. However, we observe a surprisingly superior performance of
the RAG-based few-shot demonstration compared to our designed knowledge distillation and other
baselines on TABMWP. This effectiveness appears to correlate with the complexity of the input data
by further analysis. Referring to Table 2, we note that TABMWP presents the simplest data input,
containing only 2.22 columns and 6.13 rows per data point, with clean values consisting of numbers
or processed strings. However, when dealing with WIKITQ, which contains irregular value types,
column names, and BIRD-SQL, which presents complex database schemas and values, SLMs ex-
hibit confusion with such heterogeneous and complex inputs. More critically, SLMs generate 38.2%
more invalid outputs (e.g., "SELECT \n\n\n\n...") in BIRD-SQL.

Based on these observations, we conclude that dynamic few-shot demonstration is more conve-
nient and effective for leveraging the memory database when the input data is less complex. On
the contrary, for complex data such as tables with dirty values or relational databases, our designed
knowledge distillation enables SLMs to better utilize knowledge and perform tasks more effectively.
It is worth noting that in real-world scenarios, complex data schemas and inputs are prevalent (Lee
et al., 2021). Moreover, our approach exhibits greater scalability as task complexity increases. Al-
though dynamic few-shot learning achieves a slight 3.0% advantage over our method on simpler
tasks, our technique outperforms it by a significant 16.2% on more complex systems. This asymme-
try in performance gains highlights the robust generalization of our knowledge distillation approach
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for DSCG tasks across a spectrum of input complexities, from simple to more challenging data
inputs.

3.5 KNOWLEDGE TRANSMISSION

While AHA shows notable performance gains for SLMs in data science code generation without
fine-tuning, an important question arises: Is the distilled knowledge only useful to the Student
Agent participated in Orchestration? In order to answer this, we conduct knowledge transmission
experiments by Llama-3.1-8B and GPT-35-Turbo, which didn’t attend the exploration.

The results in Figure 3 demonstrate that both General and Meta Instructions, distilled from AOI
memory database between GPT-4o and Phi-3-mini, obviously benefit these new models. AHA-
GI and AHA-MI consistently outperform conventional techniques like COT and End2End across all
datasets leading to average relative improvement of 14.3% for Llama-3.1-8B and 30.9% for GPT-35-
Turbo. This proves that distilled knowledge is not limited to the original Student Agent (Phi-3-mini)
but can transfer effectively to other models without additional fine-tuning, suggesting an efficient
pathway for knowledge augmentation in emerging SLMs.

3.6 ORCHESTRATION MEDIA TYPE ANALYSIS
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(b) Action type distribution for plan optimiza-
tion in AOI using two orchestration media types.

Figure 4: Comparison of accuracy and action type distribution for orchestration media types in AOI.
The experiments are conducted on TABMWP on 1000 training examples across 10 turns.

In this section, we assess the impact of various orchestration media types on data efficiency within
the AOI frameworkduring exploration. Figure 4 (a) presents a comparison of the Phi-3-mini perfor-
mance growth trends adopting COT plans, the sequantial textual plan, versus functional plans over
10 turns of plan optimization on 1000 training data in AOI.

At the beginning, COT plans enable Phi-3-mini to outperform the functional plans (69.00% vs.
61.10%). However, as orchestration continues, the functional plans progressively improve, eventu-
ally surpassing the COT plans, achieving 86.3% compared to 81.4% by the final round. A visual-
ization of action distributions for plan optimization, performed by GPT-4o in Figure 4 (b), indicates
that Decomposition and Add occur much more frequently than other actions, generating longer
plans with more steps and interpretations. In such scenario, Phi-3-mini demonstrates significant
hallucinations when processing extended COT plans, especially when the number of steps exceeds
7, we observe that Phi-3-mini would ignore some steps of the plan and hallucinate some steps that
do not appear in the orignal plan. In contrast, the structured nature of our functional plan forces
Phi-3-mini to follow each step methodically, ensuring the completion of all placeholders. This
structured approach provides a clearer sense of task progression since the model perceives the task
as completed only when all placeholders are filled.

In conclusion, functional plans lead to a larger portion of correct cases, promoting a more data-
efficient strategy for constructing memory databases, which can be effectively leveraged by SLM
agents. This finding can prove that our designed functional plans are better orchestration media type
compared to general COT plans in data science code generation task.

4 RELATED WORK

Data Science Code Generation (DSCG). DSCG focuses on automating code generation for data-
centric tasks, requiring a deep understanding of data formats like CSV, TSV, and relational databases
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(RDB). Unlike general code generation models, which primarily generate syntactically correct code
in response to natural language instructions (Chen et al., 2021; Luo et al., 2024), DSCG must en-
sure that the generated code correctly interacts with underlying data structures. This involves un-
derstanding the schema, format, and semantics of the data, whether in Python code for handling
tabular data (Chen et al., 2024; Cheng et al., 2023; Shen et al., 2022b) or SQL for interacting with
relational databases (Yu et al., 2018; Lee et al., 2021; Li et al., 2024a). Spreadsheet-based code
generation further extends DSCG, automating the generation of formulas and operations in tools
(Wang et al., 2023a; Bhatia et al., 2023). Even though large language models (LLMs) have demon-
strated effectiveness in enhancing the capabilities of SLMs, concerns regarding data privacy in cloud
environments have prompted a reevaluation of their deployment strategies.

Knowledge Distillation. Knowledge distillation can mitigate this problem by transferring LLM
capabilities to smaller models, enabling efficient deployment in resource-constrained environments
(Xu et al., 2024). The field has evolved from early work on softened output training (Hinton, 2015)
to advanced techniques like task-specific fine-tuning (Sanh, 2019), zero-shot learning (Wang et al.,
2023b), and instruction-following datasets (Wang et al., 2023c;b). Progressive distillation tech-
niques, such as the Orca framework (Mukherjee et al., 2023), demonstrate the potential for guiding
the development of efficient open-source models. Self-distillation approaches have explored au-
tonomous training data generation (Wang et al., 2023c). Recent advancements have focused on im-
proving the performance and privacy aspects of DSCG by knowledge distillation (Luo et al., 2024).
At the same time, synthetic data has been leveraged to enhance the generalization of SQL generation
across different schemas (Yang et al., 2024a). Even though these techniques are effective, most still
require training efforts to transfer knowledge. Our AHA framework introduces agent-based distil-
lation through in-context learning, eliminating the need for task-specific fine-tuning and improving
scalability across models and tasks.

Agent Memory. Agent memory can improve the capability of LLM-based agents, particularly in
tasks that require long-term context retention and continuous knowledge accumulation (Zhang et al.,
2024). Traditionally, research has focused on teaching LLMs to reflect on and evolve from mem-
ory built through their own interactions, limiting knowledge transfer to the model performing the
task (Shinn et al., 2023). For DSCG, memory plays a critical role in managing complex data for-
mats, maintaining long-term context, and learning from iterative analysis processes. For instance,
reGAL (Stengel-Eskin et al., 2024) introduces a memory mechanism that enables LLMs to reuse
abstractions across program synthesis tasks by storing and recalling reusable subroutines, signifi-
cantly improving code generation performance. Similarly, models like MAGIC (Askari et al., 2024)
have demonstrated how memory can facilitate self-correction in data analysis code generation. In
more complex software engineering contexts, frameworks like SWE-Agent (Yang et al., 2024b) and
OpenDevin (Wang et al., 2024b) by codeAct (Wang et al., 2024a) extend the use of memory by con-
sidering complicated contexts such as entire code repositories and prior interactions, allowing agents
to manage more intricate tasks like cross-file dependencies and repository-level refactoring. How-
ever, current agent memory systems typically rely on a single model, i.e., memory is constructed and
knowledge is learned and leveraged exclusively by models like GPT-4, limiting knowledge transfer.
Our work introduces distillation techniques that enable SLMs to leverage memory orchestrated by
multiple models, including more capable GPT-4o. This approach allows SLMs to utilize richer, ex-
ternal knowledge for improved performance in knowledge-driven ICL, effectively bridging the gap
of knowledge sharing between high-capacity models and more efficient SLMs.

5 CONCLUSION

In this paper, we presented Agents Help Agents (AHA), an automatic framework for efficient knowl-
edge distillation from Large Language Models (LLMs) to Small Language Models (SLMs) in Data
Science Code Generation (DSCG). AHA leverages In-Context Learning to enhance SLM perfor-
mance without fine-tuning, using agent orchestration and memory-based distillation to improve task
accuracy. Evaluations on three challenging tabular data analysis datasets, which requires code gener-
ation, show a 27.5% relative performance increase for Phi-3-mini and model-agnostic effectiveness,
benefiting models like Llama-3.1-8B and GPT-35-Turbo even they did not participate in the orches-
tration. These results highlight the potential of AHA for developing intelligent applications with a
focus on privacy and computational efficiency.
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A DETAILED DESCRIPTION OF FINE-TO-COARSE KNOWLEDGE
DISTILLATION

We introduce a novel fine-to-coarse knowledge distillation method employing a recursive, tree-based
approach to generalize to unseen queries. This method improves upon traditional sequential updat-
ing techniques by constructing a knowledge tree recursively and in parallel, thereby reducing bias
and ensuring a more robust distillation process.

Our knowledge tree consists of nodes, each containing a batch of successful cases from the set M.
This structure allows for concurrent summarization of essential rules from diverse examples. We
define the set of distilled instructions I as:

I = Lsum(M) = Tl,

where Lsum is a recursive function executed by the Large Language Model (LLM) to distill knowl-
edge, and Tl is the root node of the tree. This function constructs a multi-layered tree, with each
layer aggregating knowledge from the preceding layer. The tree’s depth adjusts dynamically based
on the context length of case studies, ensuring optimal abstraction at each layer.

At each recursive step, nodes in the current layer l aggregate knowledge from layer l − 1:

Tl = Lagg(Tl−1),

where Lagg is the aggregation function merging batches of successful cases into more abstract rep-
resentations.

The leaves of the tree (layer L) contain the original cases from M, represented as batches:

TL = {B1,B2, ...,Bk}

where each batch Bj is a set of successful cases:

Bj = {Mj1,Mj2, ...,Mjn}

and each successful case Mji is defined as:

Mji = (qji, dji, ĉji, Sji)

Here, qji is the ith natural language query of jth batch, dji is the ith corresponding data of jth

batch, ĉji is the ith orchestrated correct code of jth batch, and Sji is the ith case study of jth batch
summarizing the solution.

Each higher layer in the tree abstracts and summarizes the knowledge from the level below, culmi-
nating in the root node Tl, which represents the final set of distilled instructions I.

This recursive and parallel tree construction allows for simultaneous extraction of rules, significantly
reducing dependence on the order or selection of initial examples. Each node encompasses multiple
successful cases, facilitating the extraction of generalized instructions through the identification of
common patterns and rules.

The process continues iteratively from the leaves to the root, resulting in comprehensive and un-
biased distilled instructions I. This framework provides a well-rounded guide for the SLM in
generating correct code for unseen queries, effectively balancing knowledge complexity with SLM
constraints.

Our method represents an advancement in knowledge distillation for language models, offering a
robust approach to extracting generalizable knowledge from diverse examples and enhancing SLM
performance on unseen queries.
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Aggregation 1:

Batch 1

By following these key points, you can systematically 
approach the construction of Python codes, ensuring 
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis, 
it is essential to follow a structured and methodical 
approach. Here are 5-10 key points to consider when 
planning and generating correct Python codes, especially 
tailored for a student learning the process:

**Understand the Data Relationships:**
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch 1

Case Study 2:
…

Case Study N :

Aggregation 2:

Batch 2

By following these key points, you can systematically 
approach the construction of Python codes, ensuring 
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis, 
it is essential to follow a structured and methodical 
approach. Here are 5-10 key points to consider when 
planning and generating correct Python codes, especially 
tailored for a student learning the process:

**Understand the Data Relationships:**
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch 2

Case Study 2:

…

Case Study N :

Aggregation k-1:

Batch k-1

By following these key points, you can systematically 
approach the construction of Python codes, ensuring 
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis, 
it is essential to follow a structured and methodical 
approach. Here are 5-10 key points to consider when 
planning and generating correct Python codes, especially 
tailored for a student learning the process:

**Understand the Data Relationships:**
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch k-1

Case Study 2:

…

Case Study N :

Aggregation k:

Batch k

By following these key points, you can systematically 
approach the construction of Python codes, ensuring 
accuracy and efficiency in your data analysis tasks.
To generate correct Python codes for tabular data analysis, 
it is essential to follow a structured and methodical 
approach. Here are 5-10 key points to consider when 
planning and generating correct Python codes, especially 
tailored for a student learning the process:

**Understand the Data Relationships:**
…

Case Study 1:

Instruction: You are an expert teaching …

Sum: Please conclude points … via case
analysis Batch k

Case Study 2:

…

Case Study N :

You are a data analyst trainer. You are educating your 
student to generate correct python pandas code to 
answer tabular data analysis questions. To test and elicit 
their knowledge of code, you generate step-by-step 
plans that allow them to fill in subqueries until they 
succeed.
# These are case studies where they fill the correct code:
---------------- case begin: ----------------
 {last layer of case studies}
---------------- case end ----------------
# Please note:
- Do not ask students to add data inspection in the code, 
such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information.
- The mixed code should be end-to-end, so you cannot 
encourage student to print other things except the final 
result. More other information would cause student to 
be distracted.
- Just focus on how to make students learn how to 
better plan in the end-to-end code generation.
Following case studies, please summarize 5-7 key points 
about how to plan and generate correct code to answer 
the tabular data analysis questions accurately.
Students will take your notes directly.
# You need to start with:
```1. You should

Final Sum Prompt:

1. You should **break down the task into manageable 
steps**. Each step should build on the previous one, 
guiding you through the process logically. 

2. You should **emphasize data handling and cleaning**. 
This includes handling missing values, normalizing case, 
and ensuring data consistency."

3. You should **focus on filtering and extraction**. Guide 
yourself on how to filter and extract relevant data based 
on specific criteria. This is often the core of the analysis."
…

General Instruction:

Layer 1 Layer 2 Layer 3 … Layer l-1 Layer l

… … …

Figure 5: Illustration of how Fine-to-Coarse Knowledge Distillation for AHA-GI generation. The
intermediate layers are omitted.

B MODEL IMPLEMENTATION

We implement models for three main categories of purpose:

B.1 ORCHESTRATION MODELS

gpt-4o: The Teacher Agent (gpt-4o) is responsible for several key tasks, including Abstraction
Lifting (see Section 2.2) and Plan Optimization (see Section 2.2), which are performed while mon-
itoring the performance of the Student Agent. Additionally, the Teacher Agent handles the conver-
sion of complex, heterogeneous cases into more readable case studies for Student Learning Models
(SLMs), as detailed in Section 2.3. Finally, gpt-4o distills general instructions that contain task-
specific knowledge, as described in Section 2.4. Notably, these general instructions are utilized by
the SLMs in an offline manner, meaning that gpt-4o does not participate in the inference process
of the SLMs.

phi-3-mini-128k-instruct: For the orchestration process, we select this 3.8B parameter
SLM as the Student Agent due to its strong generalization abilities and efficient deployment.

B.2 BASELINE MODELS

Within the orchestration mode, several families of Student Learning Models (SLMs) are evaluated.
These include models from the Phi-3, Starcoder 2, and Llama families:

Phi-3 Family (Abdin et al., 2024)

phi-3-mini-128k-instruct (3.8B)

phi-3-small-128k-instruct (7B)

phi-3-medium-128k-instruct (14B)

Starcoder 2 Family (Lozhkov et al., 2024)

starcoder2-7b-instruct

starcoder2-15b-instruct

Llama Family (Dubey et al., 2024)
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codellama-7b-instruct-hf

codellama-13b-instruct-hf

B.3 MODELS IN KNOWLEDGE TRANSMISSION

In Section 3.5, we explore the knowledge distilled from AHA to newly developed models, particu-
larly in terms of their ability to generalize knowledge. For this evaluation, we select the following
models:

llama-3.1-8b-instruct: This model is broad new, yet it shows significant performance im-
provements when leveraging the distilled knowledge.

gpt-35-turbo-16k: We also include a closed-source model in our experiments to demonstrate
the effectiveness of our approach across both GPU-deployed and API-based models. Despite its
number of parameters is unknown, we consider it as one of SLMs since its performance falls behind
of its more advanced versions such as GPT-4.

C DATASET IMPLEMENTATION DETAILS

C.1 DATA FILE CONTENT

For convenient reproduction and following, we preprocess all dataset into more unified data for-
mat of jsonl. In python task (TABMWP, WIKITQ), each line of data contains question_id,
question, data_path, data_overview, answer_type, answer. In SQL task (BIRD-
SQL), each line of data contains question_id, question, evidence, data_path, db_id,
sql.

C.2 DATA INPUT CONTENT

The main goal of this work is to evaluate the code generation capabilities of models in understanding
data schemas and structures across multiple datasets. Given the impracticality of providing all data
values in real-world scenarios in which datasets may consist of millions or even billions of rows,
we sample values for the part of data input to simulate realistic code generation tasks. We feed the
markdown format of schemas with data samples as data_overview.

For TABMWP, we provide only the column names and the first three rows of values. This enables
models to infer the data structure and value types necessary for Python Pandas code generation
without exposing all the data.

For WIKITQ, which contains more complex and varied value types, we provide the first 10 rows of
values and column names to help models navigate the dataset’s intricacies.

In the case of BIRD-SQL, which contains relational databases with complex schemas and diverse
value types, more advanced schema-linking techniques are often required to retrieve relevant tables
or columns before answering queries (Wang et al., 2020; Pourreza & Rafiei, 2024). While we
consider this advanced schema-linking process as future work for AHA, our current focus is on the
code generation aspect. Therefore, we provide:

• Ground truth retrieved tables, reducing input complexity and simulating realistic human-
machine interactions where users might supply potentially relevant tables.

• Full columns with column meaning description files.

• The first three rows of values for each table.

Although the retrieved tables are given, the models must still consider constraints and generate cor-
rect SQL queries. As shown in Table 3, performance on Bird-SQL remains relatively low, even with
simplified table retrieval, highlighting the challenges of generating accurate SQL queries in complex
database environments. This methodology allows us to evaluate code generation capabilities while
approximating the real-world challenges of data analysis.
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C.3 PREVENT MODELS FROM DIRECT ANSWERING

We observe two kinds of direct answers behaviors in Python tasks, which leads to unfair evaluation
of code generation ability:

Unfair Data Inspection. We find that SLMs usually generate data inspection codes such as
print(df.head()) in their code generation. When producing answers given executed results,
such first few rows will show again in which SLMs tend to answer it correctly even with wrong codes
or bugs. We need to decouple study of tabular understanding and code generation understanding data
structure. And the mutually influenced capability would be the future goals of development.

Data Leakage. In datasets like WIKITQ, current popular SLMs tend to exhibit a form of data
leakage, where models effectively "memorize" the ground truth answers, resulting in unfair evalu-
ations. Through a sample of 100 generated codes using the Phi-3-mini baseline across these datasets,
we observed that the model often embeds the correct answer directly into the code. For instance,
given the question "Who was the opponent of James V.?", the generated code might
include a line like opponent = "Smith W.", which corresponds to the ground truth answer.
The frequency of this leakage is particularly high in WIKITQ, where 23 out of 100 samples exhibits
this behavior, especially for simpler question types. In contrast, datasets with more complex ques-
tion structures, such as TABMWP, exhibits only 5 cases of leakage out of 100, while no instances are
found in BIRD-SQL. These findings suggest that more complex input structures and question/code
types can effectively reduce the possibility of data leakage.

Mitigating Direct Answering Behaviors. To address these cheating behaviors, we propose an
embodied prompt, as outlined in Section H. This approach minimizes data leakage and prevents
unfair data inspection during evaluation. As illustrated in Figure 7, we design scenarios where the
model is informed that it has already inspected the dataset and does not need to generate further data
inspection commands. Additionally, the embodied prompts encourage the model to approach tasks
as a professional data analyst, preventing it from assigning variables based on memorized answers.
Our evaluation shows that this method successfully eliminated data leakage in all 100 tested cases.
Also, the unfair data inspections appear less frequently. The remaining of unfair data inspections
will be removed by post-processed by regex functions.

We believe that this solution holds promise for addressing data leakage issues in complex benchmark
evaluations. This is particularly important in DSCG, where datasets are difficult to collect from
expert teams and frequent re-annotation to prevent leakage is impractical.

D AHA FUNCTIONALITY

D.1 AOI GENERALIZATION

GT Codes Functional Plan

1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv(…)
4 df[‘acts’] = df[‘acts’].str.extract(‘…’)
5 df[‘stages’] = df[‘acts’].str.extract(‘…’)
6 df[‘acts_zscore’] = (df[‘acts’] …) / .std()
7 df[‘stages_zscore’] = (df[‘…’]) / .std()
8 threshold = 3
9 outliers = df[(np.abs(df[‘acts_zscore’]..
10
11 # Answer the Question
12 if not outliers.empty:
13 print(“Yes”)
14 else:
15 print(“No”)

1 # Load the data
2 [Fill Your Code]
3 # Clean the data for acts
4 [Fill Your Code]
5
6 # Clean the data for stages
7 [Fill Your Code]
8
9            …
10 # Compute z scores
11 [Fill Your Code]
12         …
13 # Answer the Question
14 [Fill Your Code]
15

Orchestrated Codes

1 # Load the data
2 df = pd.read_csv(file, del)
3 # clean the data for acts, and stages
4 for col in columns:
5 df[col] = pd.to_numeric(…)
6 …
7
8   # compute z scores
9   df[‘acts_zscore’] = (df[‘acts’] …) / .std()
10 df[‘stages_zscore’] = (df[‘…’]) / .std()
11       …
12   # Answer the Question
13 print(“Yes”) if outliers else print (“No”)
14
15

Figure 6: Illustration of how AOI is conducted in Python for Tabular data analysis.
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Model SIMPLE MEDIUM CHALLENGING OVERALL

Zero-Shot End-to-End Code Gen.
Original Checkpoint 38.51 21.20 11.76 24.40
LoRA Fine-Tuned 39.86 19.20 10.78 23.60

AHA Knowledge Distillation
General Instruction 51.35 25.60 17.65 31.60
Meta Instruction 51.35 30.40 16.67 33.80

Table 4: Performance evaluation of Zero-Shot End-to-End Code Generation, LoRA fine-tuning,
and our proposed knowledge distillation techniques on BIRD-SQL. Deeper red shading indicates
a larger performance drop compared to the original pre-trained model, while green indicates no
decline or improvement.

Our Agent Orchestration Interface (AOI) is adaptable to different programming languages with dif-
ferent data input settings. Figure 2 shows how AOI is conducted in RDB settings with SQLite, and
Figure 6 shows how it’s undertaken in Single-tabular data with Python.

D.2 FINE-TUNING V.S. AHA KNOWLEDGE DISTILLATION

We also compare the performance of knowledge distillation via AHA with the commonly used
LoRA fine-tuning method (Hu et al., 2022) under the same low-resource setting (1,000 training
samples) on the BIRD-SQL dataset, specifically for the Phi-3-mini model. As shown in Table 4,
training with such a limited amount of data can degrade the performance of SLMs. However, AHA
significantly improves the performance of SLMs when utilizing the same data, with a clear margin
of advantage. We hypothesize that: 1) the small training set may introduce bias, limiting the model
generalization; and 2) LoRA fine-tuning struggles to teach SLMs the reasoning capabilities required
for complex tasks within such an end-to-end training regime. On the Contrary, AHA leverages
LLMs to automatically decompose difficult questions into more understandable steps to SLMs, and
distill planning knowledge, which allows SLMs to generalize better when faced with new queries.
In conclusion, AHA proves to be an effective method for enhancing the performance of SLMs in the
domain of DSCG, which contains limited annotated data usually.

E ABLATION STUDY

We conducted a comprehensive ablation study of AHA-MI, as shown in Table 5. Code-T5+ is a
code embedding model (Wang et al., 2023d), while BGE-Large (Xiao et al., 2024) represents one of
the state-of-the-art (SOTA) text embedding models. The study examines two types of RAG Index:
one where distance is computed using question embeddings alone, and another where both question
and schema embeddings are used. The "Plan + Gen" approach involves first constructing a plan
with distilled knowledge, followed by generation using knowledge-driven planning. In contrast, the
"Gen" approach involves direct generation without prior planning. The instruction type labeled w/
examples refers to cases where a specific example is provided by the Teacher Agent. We evaluate
performance with 1, 3, and 5 examples to assess the impact of varying numbers of RAG examples.
The results of the ablation study reveal several key insights:

Code embeddings outperform text embeddings. The superior performance of Code-T5+ over
BGE-Large-en can be attributed to the nature of the task. While text embeddings emphasize on
semantic and domain knowledge, code embeddings capture the syntactic and logical structure of
coding problems, which is crucial for DSCG tasks. Even when presented with identical questions,
the code solutions can vary significantly depending on the data input. Code-T5+ is able to effectively
embed questions from a programming perspective, benefiting from its pre-trained corpus, whereas
text embeddings are less suited for the task.

Embedding only the question is more effective than embedding both the question and schema.
The study demonstrates that question-only embeddings lead to better results. This suggests that the
inclusion of schema in the embedding may introduce unnecessary complexity, which may hinder
performance on the DSCG task.
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Planning is essential for more complex tasks. The results stress on the importance of planning in
a knowledge-driven generation. For tasks requiring complex reasoning, the "Plan + Gen" approach
outperforms direct generation (Gen), indicating that structured planning significantly improves task
performance.

One example may bias the SLM. Involving a single example in the instruction can introduce
bias in Sequence Learning Models (SLMs). A specific example might cause the SLM to over-
follow to certain information, leading to hallucinations. For instance, if the example includes a
reference to "singer", the SLM may generate plans that include "singer" even when the
question pertains to an unrelated topic, such as "cars". This observation highlights the lack of
robustness in SLMs when exposed to overly specific examples. Consequently, it is better to provide
more general, transferable knowledge in instructions. The degraded performance observed with
1 RAG example supports this conclusion, as the model becomes overly reliant on the provided
information.

More examples do not always improve performance. Interestingly, increasing the number of
RAG examples (from 1 to 5) results in a performance drop. This suggests that longer input se-
quences may confuse the SLM, making it more difficult to distill relevant knowledge. Based on
these findings, we recommend using 3 RAG examples as the optimal balance for complex DSCG
tasks since it avoids both the biases of a single example and the confusion caused by too many
examples.

Embedding Model RAG Index Reasoning Type Instruction Type # RAG Examples Performance
code-t5+ question plan + gen no examples 3 33.80
code-t5+ question gen no examples 3 31.40 (↓2.40)
bge-large question plan + gen no examples 3 30.00 (↓3.80)
code-t5+ question plan + gen w/ examples 3 28.00 (↓5.80)
code-t5+ question+schema plan + gen no examples 3 32.40 (↓1.40)
code-t5+ question plan + gen no examples 5 31.80 (↓2.00)
code-t5+ question plan + gen no examples 1 29.80 (↓4.00)

Table 5: Ablation Study Results of AHA-MI of Phi-3-mini on BIRD-SQL. The table compares
different embedding models, RAG index (with or without schema), reasoning approaches (planning
or direct generation), and varying numbers of RAG examples.

F ERROR ANALYSIS

We conducted an error analysis by sampling 50 incorrect cases for both AHA-MI and AHA-GI
across three datasets. Although AHA substantially improves the overall performance of SLMs, we
found that 54% of the errors were caused by over-reasoning. This issue tends to emerge even in
relatively simple cases. As discussed earlier, SLMs can overly adhere to the instructions derived
from planning and guidance, which is problematic when the task is enough simple and does not
require decomposition or reasoning. In these cases, direct code generation would lead to more
accurate results. The remaining errors stem from common issues in code generation tasks, such as
incorrect string handling, incorrect column selection, database constrain understanding.

G LIMITATIONS AND FUTURE WORK

A key limitation of our current approach with AHA is the reliance on initial training examples for
both LLMs and SLMs to facilitate orchestration. This is why we selected datasets that include a
training corpus suitable for distilling knowledge. However, an important avenue for future work is
to explore how to generate such training data in a fully zero-shot manner, without relying on human-
annotated or enumerated examples. Additionally, as highlighted in the error analysis, over-reasoning
negatively impacts performance on simpler tasks, where additional reasoning or decomposition is
unnecessary. To address this, future work could focus on developing or prompting smaller models to
act as routers, as proposed by Ding et al. (2024), to classify questions based on whether they require
planning. This would help avoid over-reasoning in straightforward cases and improve the overall
efficiency of AHA.
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H MAIN PROMPTS

The zero-shot End-to-End Code Generation prompt is shown in Figure 7, Figure 15 and 17 show the
zero-shot Chain-Of-Thought reasoning. Figure 18 shows few-shot demonstration prompting. The
few_shot_examples can be selected by human experts as Static Few-Shot Demonstration, and
can be retrieved from AHA memory database by RAG system as Dynamic Few-Shot Demonstration.

The Figure 7, 8, 9, 10 show prompts for Orchestration between LLMs and SLMs. Figure 11
presents how LLM convert orchestrated successful cases to more understandable case studies to
SLMs. LLMs can go through correct cases from memory databases and distill knowledge to an of-
fline and plug-and-plan General Instruction for SLMs to used for new and unseen queries performed
by prompts shown in Figure 12 and 13. During inference, SLMs can produce Meta Instructions by
prompts in Figure 14. Given distilled knowledge (instructions), SLMs will plan first as shown in
Figure 16, and generate codes finally with their knowledge-driven planning, which shows in Figure
17.

I KNOWLEDGE DISTILLATION EXAMPLES

I.1 CASE STUDY EXAMPLE

The Figure 19 shows the example of case studies on Python task. The Figure 20 and Figure 21
present examples of AHA-GI and AHA-MI respectively.

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
[[functional plan]]
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 7: Prompt of baseline end-to-end generation for tasks requiring Python.
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You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
[[functional plan]]
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 8: Prompt converting ground-truth code to functional plan for python task as example. This
is conducted by LLM Teacher Agent.

You are a data analyst. Given the data, you need to generate the code first to answer the question:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except 

final result. More other information lead to be distracted.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate remaining code to answer this question:
# Code:
```python
import pandas as pd

You are a data analyst trainer. You are educating your student to generate right code to answer 
tabular data analysis questions. In order to do so, you need to convert your code to code_plan and 
let your students to fill to understand plans and analysis. So you cannot generate code by your 
own, only generate plans.

# Data Overview at the path {data_path} (first ten rows):
{data_overview}
...

# Question: {question}
# Original Code:
```python
{ground_truth code}
``` 

You should convert the code into the code_plan format with the placeholder `[FILL YOUR CODE HERE]`:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

Generate your code_plan for your student. DO NOT generate any code by your own. Also ignore and 
remove steps of inspecting the data which leads to student cheating.
Please note it's hard for your student to write long code. You will get 1,000 dollars if you have 
a good job:

You are a data analyst. Given the data, expert customized functional plan, complete 
each line of code to answer questions correctly:

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` 
since this is cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other 
things except final result. More other information lead to be distracted.

# Question: {question}
# Function Plan:
```python
{functional plan}
```
# Your entire completion code for function plan executable and correct:

# Code:
```python
import pandas as pd

Figure 9: Prompt of orchestration coding. This is conducted by SLM Student Agent.
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You are an expert in error analysis and code planning. Your task is to guide your intern in filling out the code for your logic. You need to generate textual plans 
as comments that include essential import statements, logics. Currently, the mixed code filled by your intern is incorrect. Then you should analyze and help him.

------------------------------------------- case begin: -----------------------------------------------
{last turn case}
--------------------------------------- end --------------------------------------------

You are experienced data analysis programmer responsible for checking the errors, analyzing the reasons, and helping them correct the code. Note that you cannot 
fill the code for them directly. You have four options for actions:
1. **Decomposition(Step Number, new sub steps**: If a step is too complicated and exceeds the intern's capability, decompose this step into multiple smaller steps 
for them to fill step by step. 
    Actually, you have to decompose steps if there are multiple functions or multiple lines of code in one step since they are not capable!
    step a -> step b, step c
2. **ALT(Step Number, what do you want to alt in detials**: If a step is ambiguous or requires additional information or options, provide an alternative approach 
or clarification. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
    step a -> step b
3. **ADD(Step Number, what do you want to add in details**: If the original step lacks important operations, add a supplementary step to ensure the main code logic 
is smooth. But this is a closed-book education, you cannot teach them to use external information aside code and data samples.
   Also all available data are shown, you cannot add or teach them to use `df.head()` to overview data again.
    step a, step c -> step a, step b, step c
4. **DELETE(Step Number, what do you want to delete in details**: If some steps are unnecessary and hinder the intern's understanding of the overall logic, delete 
them.
    step a, step b -> step b (deleted step a)
5. **SIMPLIFY(Step Number, simplify specific steps)**: If a step is implemented using recursion and this approach is too complex for the intern to understand or 
debug, suggest a non-recursive approach that achieves the same result. 
This might involve using iterative methods or other strategies to simplify the logic. If you find code fails due to this, simplify the functions.
step a (recursive) -> step a (iterative)
6. **SWITCH(Step Name, packages to SWITHC)**: If a function relies heavily on a specific package that is known to be complex or not beginner-friendly, suggest 
switching to a more intuitive or simpler package that achieves similar functionality. This can help the intern understand the underlying logic without getting 
bogged down by the complexities of the original package.
    step a (uses ComplexPackage) -> step a (uses SimplePackage)  

You have to provide reasons based on analysis of errors for choosing this action and show your action in <action></action>, then. Finally, you must execute your 
chosen action to change original code and fill in the following format:

# format:
Reason:
<reason>...</reason>
Act:
<action>...</action>

# Updated code plan:
```code_plan
import ...

# Step 1:....
[Fill Your Code]

# Step 2:....
[Fill Your Code]
...

# Step N: ....
```

## Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More other information would cause student to 
be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

OK, now change your codes according to your actions. 
If you don't follow rules, then you will lose 1 million dollars:

Figure 10: Prompt of plan optimization. This is conducted by LLM Teacher Agent.

You are a data analyst trainer. You are educating your student to generate pythyon code to answer tabular data analysis questions.

This is a successful case of your code, perform a case study on this:
------------------------------------------- case begin: -----------------------------------------------
# Question: {question}

# Data Overview at the path {data_path} (first 10 rows):
{data_overview}
...

# Code:
```python
{final orchestrated code}
``` 
------------------------------------------- case end: -----------------------------------------------

perform a concise case study! Your case study should only contain

### Case Study: [Case Name]
### Question: [Question]
### Table Info: [Summarized Useful information about Tabular Data]
### Objective:
### Explanation:

Please note your case study should make your student understand. You don't have to include code again. You will get 1000 dollars if 
you have a good job:

Figure 11: Prompt of case study conversion. This is conducted by LLM Teacher Agent.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

Figure 12: Prompt of aggregation prompt of each batch of case studies. This is conducted by LLM
Teacher Agent.
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You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of python pandas code, you generate step-by-step plans that 
allow them to fill in code until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{case_study_batch}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

According to the previous case studies, analyze and reflect how to generate plans which can make your student fill the 
correct code. Summarize 5-7 key points.

You are a data analyst trainer. You are educating your student to generate correct python pandas code to answer tabular 
data analysis questions. To test and elicit their knowledge of code, you generate step-by-step plans that allow them to 
fill in subqueries until they succeed.

# These are case studies where they fill the correct code:
------------------------------------------- case begin: -----------------------------------------------
{last layer of case studies}
------------------------------------------- case end: -----------------------------------------------

# Please note:
- Do not ask students to add data inspection in the code, such as `df.head()` or `print(df.head())`
- Do not guide them to use any external information. 
- The mixed code should be end-to-end, so you cannot encourage student to print other things except the final result. More 
other information would cause student to be distracted.
- Just focus on how to make students learn how to better plan in the end-to-end code generation.

Following case studies, please summarize 5-7 key points about how to plan and generate correct code to answer the tabular 
data analysis questions accurately.
Students will take your notes directly.

# You need to start with:
```1. You should

Figure 13: Prompt of summarization prompt of batch of case studies in the last layer. This is
conducted by LLM Teacher Agent.

You are a data analysis trainer. Your are teaching your student to plan and generate python code 
accurately. You find some case study for reference.

# There are case studies:
------------------------------------------- case begin: -----------------------------------------------
{case_studies}
------------------------------------------- case end: -----------------------------------------------

Following case studies, please summarize key 5-7 points about how to plan and generate correct python 
code to answer the data analysis questions accurately.

# You will use them to educate your student:
```successful plan suggestions:
1. You Should

Figure 14: Prompt of in-time summarization for meta-instructions. This is conducted by SLM
Student Agent.

You are a data engineer. Given the sample data, generate python code plan to answer the question 
accurately.

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I should have a step-by-step text plan for generating this code first. I will fill my plan 
into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

Figure 15: Prompt of generating Chain-Of-Thought. This is conducted by SLM Student Agent.
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You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question and print the result. I will fill my code in the 
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

# Code:
```python
import pandas as pd

Figure 16: Prompt of knowledge-driven planning. This is conducted by SLM Student Agent.

You are a data engineer. Given the sample data, generate python code plan to answer the question

# Please Follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except final 

result. More other information lead to be distracted.

# There are some important successful plan suggestions from experts:

```successful plan suggestions:
{successful_plan_suggestions}
```

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: Referring to [successful plan suggestions], I should have a step-by-step text plan for 
generating this code first. I will fill my plan into the template in details:
```code_plan
Step 1: ...
Step 2: ...
...
Final Step: ...
```

Generate your plan step by step for the question:

# Let's think step by step:
```code_plan
Step 1:

You are a data engineer. Given the sample data, generate python code to answer the question accurately.

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question and print the result. I will fill my code in the 
template:
```python
[Your Code]
```

Let's think step by step for the question:
{step-wise plans}

# Code:
```python
import pandas as pd

Figure 17: Prompt of code generation given step-wise planning. This is conducted by SLM Student
Agent.
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You are a data analyst. Given data sample, you need to generate pandas code first to answer the question.

Generate your pandas code to answer the question, and print the result for your to understand. Fill your 
code in 
```python
[Your Code]
``` 

# Please follow:
- Do not add data inspection in the plan, such as `df.head()` or `print(df.head())` since this is 
cheating!
- Do not use any external information. 
- The code should be end-to-end, so you cannot encourage yourself to print other things except the final 
result. More other information would cause sutdent to be distracted.

There are some examples:
---------------------------- Examples Start ----------------------------
{few_shot_examples}
---------------------------- Examples END ----------------------------

# Question: {question}
# Thought: I need to see the data samples in the first 10 rows:

# Code:
```python
import pandas as pd
df = pd.read_csv('{data_path}', sep='\t')
print(df.head(10))
```

# Observation:
{data_overview}

# Thought: I can generate code to answer this question:

# Code:
```python
import pandas as pd

Figure 18: Prompt of few-shot demonstration. This is conducted by SLM Student Agent.

### Case Study: Average Weight Calculation for Specific Players

### Question: 
What is the average weight of Jamarr Sanders and Robert Williams?

### Table Info: 
- **Columns**: Name, Height, Weight (lbs.), Position, Class, Hometown, Previous Team(s)
- **Sample Data**:
  - Jamarr Sanders: Weight 210 lbs.
  - Robert Williams: Weight 210 lbs.

### Objective:
To calculate the average weight of the players Jamarr Sanders and Robert Williams from the given dataset.

### Explanation:
1. **Load Data**: The data is loaded from a tab-separated values (TSV) file.
2. **Filter Data**: Rows corresponding to the names "Jamarr Sanders" and "Robert Williams" are filtered from the dataset.
3. **Calculate Average**: The average weight of the filtered rows is computed.
4. **Output**: The result is printed as an integer.

By following these steps, the student can understand how to filter specific rows in a dataset and perform calculations on the filtered data. This case 
demonstrates the practical application of data manipulation and analysis using pandas in Python.

-- Step 1: Count the total number of films
WITH Total_Films AS (
    SELECT COUNT(film_id) AS total_films
    FROM film_category),

-- Step 2: Count the number of documentary films
Documentary_Films AS (
    SELECT COUNT(fc.film_id) AS documentary_films
    FROM film_category fc
    JOIN category c ON fc.category_id = c.category_id
    WHERE c.name = 'Documentary’),

-- Step 3: Calculate the percentage of documentary films
Percentage_Documentary AS (

SELECT (df.documentary_films * 100.0 / tf.total_films) AS      
    percentage
    FROM Documentary_Films df, Total_Films tf) …

Orchestrated Codes

Figure 19: Example of case studies for tasks requiring Python. This is conducted by LLM Teacher
Agent.
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1. You should **break down the task into manageable steps**. Each step should build on the previous one, guiding you through the process 
logically. 

2. You should **emphasize data handling and cleaning**. This includes handling missing values, normalizing case, and ensuring data consistency."

3. You should **focus on filtering and extraction**. Guide yourself on how to filter and extract relevant data based on specific criteria. This is often 
the core of the analysis."

4. You should **perform aggregation and counting**. Learn how to perform aggregation operations like counting, summing, or finding 
minimum/maximum values to derive insights from the data."

5. You should **present the result clearly**. Ensure that the final step involves presenting the result in a clear and concise manner. This reinforces 
the importance of communicating findings effectively."

6. You should **avoid distractions**. Keep the instructions focused on the end-to-end process without encouraging unnecessary intermediate 
outputs or external information. This helps maintain your focus on the task at hand."""

Figure 20: Example of General Instruction for tasks requiring Python. This is conducted by LLM
Teacher Agent.

"question": "which country rank last?"

1. Understand the problem statement and the data structure.

2. Load the data using appropriate libraries (e.g., pandas).

3. Perform necessary data manipulation and cleaning.

4. Identify the relevant columns and values for the analysis.

5. Use appropriate functions and methods to filter, sort, and extract the 
required information.

6. Output the result in a clear and concise manner.

Figure 21: Example of General Instruction for tasks requiring Python. This is conducted by SLM
Student Agent in time.
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