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ABSTRACT

The role of Artificial intelligence (AI) is growing in every stage of drug devel-
opment. Nevertheless, a major challenge in drug discovery AI remains: Drug
pharmacokinetic (PK) and Drug-Target Interaction (DTI) datasets collected in
different studies often exhibit limited overlap, creating data overlap sparsity. Thus,
data curation becomes difficult, negatively impacting downstream research in-
vestigations in high-throughput screening, polypharmacy, and drug combination.
We propose xImagand-DKI, a novel SMILES/Protein-to-Pharmacokinetic/DTI
diffusion model capable of generating an array of PK and DTI target properties
conditioned on SMILES and protein inputs that exhibit data overlap sparsity. We
infuse additional molecular and genomic domain knowledge from the Gene On-
tology and molecular fingerprints to further improve our model performance. We
show that xImagand-DKI generates synthetic PK data that closely resemble real
data univariate and bivariate distributions, and can adequately fill in gaps among
PK and DTI datasets. As such, xImagand-DKI is a promising solution for data
overlap sparsity and may improve performance for downstream drug discovery
research tasks. Our code and data are available open-source 1.

1 INTRODUCTION

Artificial intelligence (AI) is set to substantially reduce the $2-3 billion dollars and 10-15 years
typically required to bring a drug candidate to market (Kim et al., 2021; Wouters et al., 2020). Fewer
than 10% of drug candidates successfully reach the market (Wouters et al., 2020), with the vast
majority failing in clinical development due to safety and lack of or insufficient activity (Paul et al.,
2010). AI is gaining momentum in drug discovery by enabling innovative preclinical approaches,
including target selection and identification (Murmu & Győrffy, 2024), drug repurposing (Thafar
et al., 2022; Park & Cho, 2025), drug-target interactions (DTI) (Lian et al., 2021), drug property
prediction (Kim et al., 2021), de novo generation (Vignac et al., 2023; Hu et al., 2024), and synthetic
data generation (Hu et al., 2025).

These advances in AI-driven drug discovery has been fueled by ongoing efforts to promote open
access to data for AI training and testing (Huang et al., 2021; Brown et al., 2019; Gaulton et al.,
2017). Despite the growing availability of diverse datasets, limited overlap among them presents
challenges for research questions that require data integration from multiple datasets (Scoarta et al.,
2023). Given that data collection for drug discovery through assay panels is both expensive and
time-consuming, synthetic drug discovery data emerges as a promising alternative solution.

Recent advances in AI for drug discovery have leveraged Denoising Diffusion Probabilistic Models
(DDPMs) (Jonathan et al., 2020), a new class of diffusion models capable of generating ligand
structures (Guo et al., 2023; Vignac et al., 2023; Wu et al., 2022; Igashov et al., 2022). Emerging
research has demonstrated that diffusion models can also generate pharmacokinetic (PK) properties
(Hu et al., 2025), and when integrated into a ligand diffusion pipeline (Hu et al., 2024). However,
sequence-based molecular and biological representations, such as SMILES and amino acid sequences,
alone are likely not sufficient in fully capturing the complexity of natural entities like drug molecules,
proteins, and omics data. By fusing multiple views of the same molecule or profile, multi-view
representation approaches for molecules (Suryanarayanan et al., 2025) and omics profiles (Ma et al.,
2024) can yield unified representations with enhanced predictive power.

1TBD
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Figure 1: The xImagand-DKI architecture, training, and inference methodology. Embeddings
for proteins and SMILES are generated using ProtBERT and DeBERTa, respectively. Protein
knowledge infusion from the Gene Ontology knowledge base is generated using PO2Vec, and
SMILES knowledge infusion from fingerprints is generated using FPFormer. The model undergoes
2.5k PK training steps and 3k DTI training steps every epoch.

Motivated by these advances, we present xImagand-DKI, a novel multi-view SMILES/Protein-to-
PK/DTI (SP2PKDTI) diffusion model. Conditioned on SMILES and protein embeddings, xImagand-
DKI is capable of simultaneously generating 9 PK properties and 3 DTI values. Our key contributions
are as follows:

• Proposes an end-to-end framework that unifies PK property prediction and DTI modeling
into a single foundational model, advancing solutions to data overlap sparsity by generating
high-quality synthetic drug discovery data.

• Introduces multi-view domain knowledge infusion (DKI) methods that incorporate protein
knowledge from the Gene Ontology (GO) (Aleksander et al., 2023) and various molecular
fingerprints.

• Demonstrates how end-to-end training method combined with multi-view domain knowledge
integration can effectively address the challenge of data overlap sparsity, bridging the gap
between PK and DTI datasets.

Notably, xImagand-DKI generates dense synthetic data that addresses the challenges posed by sparse
and non-overlapping PK and DTI datasets. Using xImagand-DKI, researchers can generate large
synthetic PK and DTI assay data across thousands of ligands, enabling the exploration of poly-
pharmacy and drug combination research questions, at a fraction of the cost of conducting in vitro or
in vivo PK assay panels.

2 BACKGROUND

Diffusion methods leverage families of probability distributions to model complex datasets in a
way that enables computationally tractable learning, sampling, inference, and evaluation (Guo et al.,
2023). DDPM (Jonathan et al., 2020) operates by first systematically destroying the structure in
the data through a forward process, and then learning to reconstruct it from noise via a reverse
generative process. Recent literature has highlighted significant advances in the use of diffusion
models for small-molecule generation (Huang et al., 2023; Hoogeboom et al., 2022; Satorras et al.,
2021; Vignac et al., 2023), conditional generation of drug PK properties (Hu et al., 2025; 2024),
and multi-view fusion for DTI prediction (Ning et al., 2025; Wang et al., 2022; Suryanarayanan
et al., 2025). In this study, we propose xImagand-DKI, a unified multi-view approach that leverages
both molecular and protein perspectives for synthetic data generation in drug property and DTI
prediction. Specifically, xImagand-DKI integrates molecular multi-views through circular and
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Figure 2: Visualizing data overlap sparsity between PK datasets and between DTI datasets (top), and
between PK and DTI datasets (bottom). When compared to the total size of DTI and PK data points,
700k and 17k, respectively, we see data overlap sparsity, with a small percentage of molecules that
belong to at least two datasets. We observe 16% of PK and 4.7% of DTI molecules with overlap.

Dataset Caco. Lipo. AqSo. Free. PPBR VDss Half ClH ClM Total

DTI Overlap 338 2789 1189 112 1241 184 486 698 794 4883
PK Overlap 179 1751 884 527 1296 163 337 879 1018 2772

Dataset Size 906 4200 9982 642 1797 1111 665 1020 1102 17k

Table 1: Number of overlapping molecules for each 9 PK dataset with DTI and other PK datasets.
We observe that there is a greater number of unique molecules in PK datasets that overlap with DTI
datasets compared to other PK datasets.

structural molecular fingerprints, and protein multi-views using omics relationships derived from the
Gene Ontology knowledge base.

2.1 DRUG DISCOVERY DATA OVERLAP SPARSITY

Drug discovery fails for two main reasons (Hughes et al., 2011): lack of efficacy and safety concerns.
Understanding the relationship between solubility, toxicity, molecular structure, and drug response
is essential for effective drug development (Kawabata et al., 2011; Bhalani et al., 2022), as these
properties play a critical role in shaping a compound’s absorption, distribution, metabolism, excretion,
and Toxicity (ADMET) profile, as well as its therapeutic window and overall clinical viability. In
this work, xImagand-DKI is trained to conditionally generate both drug properties and DTI data,
addressing these challenges through a unified framework.

PK broadly describes what the body does to a drug, encompassing absorption (how the drug is taken
up into the body), bioavailability (the extent to which the active drug enters systemic circulation),
distribution (how the drug spreads through tissues), metabolism (how the body breaks down the drug),
and excretion (how the drug is removed from the body). Issues related to PK properties are among
the primary causes for compound attrition in small-molecule drug development (Kola, 2008), making
accurate PK computational tools increasingly vital; and recent advances have significantly improved
their capabilities (Waring et al., 2015; Davies et al., 2020; Ahmed et al., 2021).

DTI prediction examines the relationships between drugs and their biological targets, providing
insights into the molecular pathophysiology of diseases (Askr et al., 2023; Kim et al., 2021). Accu-
rately modelling DTI is crucial for applications such as drug repurposing, high-throughput screening,
lead optimization, polypharmacy and drug combination research (Kim et al., 2021). Extending PK
profiling across large arrays of ligands is often cost-prohibitive due to high expense of functional
assays. An analysis of the overlap of 9 PK and 3 DTI datasets used in this study indicates that there
is limited overlap between individual PK and DTI datasets, especially when considering overlaps of
more than 2 datasets (Figure 2). Similarly, there is limited overlap between PK and DTI datasets,
with only 0.7% of all DTI molecules having some PK value overlap. This fragmentation poses a
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major barrier for researchers aiming to address complex questions that require integrated data, such
as those in polypharmacy and drug combination studies.

2.2 DRUG DISCOVERY DOMAIN KNOWLEDGE

The Gene Ontology (GO) knowledge base is one of the most widely used resources in bioinformatics,
offering structured annotations that describe the functions of genes and proteins across species.
However, despite its biological richness, GO has rarely been directly integrated into deep learning
models for drug discovery tasks. This underutilization stems partly from the dominance of sequence-
based representations, which, although effective, often fail to capture the functional hierarchies and
semantic relationships encoded in GO. Motivated by this limitation, we aim to enhance the quality of
target protein embeddings by incorporating ontology-based information alongside sequence-level
features.

Molecular fingerprints are bit strings that encode the structural information of a molecule, such
as the presence or absence of specific chemical groups, atom types, or topological features (Hu
et al., 2023). Molecular fingerprints offer a versatile representation where different algorithms
tailored to capture different aspects of molecular structure, such as key-based fingerprints and hash
fingerprints. Key-based fingerprints, including MACCS (Durant et al., 2002) and RDKit (Landrum,
2013), utilize a predefined fragment library to encode each molecule into a binary bit stream according
to its substructure. Hash-based fingerprints such as Morgan fingerprints (Morgan, 1965) encode
substructures in a molecule based on paths around atoms in a molecule. Leveraging fingerprints
alongside SMILES representations in parallel increases the generalizability of models (Schimunek
et al., 2023).

3 METHODOLOGY

xImagand-DKI is an SP2PKDTI diffusion model conditioned on learned SMILES and protein
embeddings from their respective encoder models to generate target PK properties and DTI values.
xImagand-DKI resembles a typical vision transformer architecture (Dosovitskiy et al., 2021); see
Figure 1. 1D patches are computed from the classifier-free guidance of SMILES and protein
embeddings and concatenated with PK class tokens. Diffusion step embeddings are generated using
sinusoidal position encodings (Vaswani et al., 2023). Patches are then fed alongside sinusoidal step
embeddings (Ho et al., 2021) to a transformer base. As the data is sparse over ligands, we apply
masking when computing the loss to flow gradients from known PK and DTI values during training.
Exponential Moving Average (EMA) (Tarvainen & Valpola, 2018) is applied to the base model during
training to generate the final model used for sampling. Additional training details about pre-trained
encoders and hyperparameters can be found in appendix A.1.

3.1 DIFFUSION MODEL

Given samples from a data distribution q(x0), we are interested in learning a model distribution pθ(x0)
that approximates q(x0) and is easy to sample from. (Jonathan et al., 2020) considers the following
Markov chain with Gaussian transitions parameterized by a decreasing sequence α1:T ∈ (0, 1]T :

q(x1:T |x0) := N (x1:T |
√
α1:Tx0, (1− α1:T )I) (1)

This is called the forward process, whereas the latent variable model pθ(x0:T ) is the generative
process, approximating the reverse process q(xt−1|xt). The forward process of xt can be expressed
as a linear combination of x0 and noise variable ϵ:

xt =
√
αtx0 +

√
1− αtϵ (2)

We train with the simplified objective:

L(ϵθ) :=

T∑
t=1

Ex0∼q(x0),ϵt [||ϵ
(t)
θ (xt)− ϵt||22] (3)

where ϵθ := {ϵ(t)θ }Tt=1 is a set of T functions, indexed by t, each with trainable parameters θ(t).
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3.2 INFUSING RELATIONSHIPS FROM GENE ONTOLOGY

We leverage PO2Vec (Li et al., 2024), a recent embedding technique that transforms GO structures
into continuous vector representations. Intuitively, PO2Vec relates the similarity between two terms
ti and tj to the length of the shortest path between ti and tj in the GO. PO2Vec defines the shortest
path based on three cases: (1) direct reachability Qdr(ti), if there exists a directed path starting at ti
and ends at tj ; (2) indirect reachability Qir(ti), if there exists a term tk, reachable from both ti and
tj ; (3) unreachable Qur(ti), if ti and tj are neither directly or indirectly reachable from ti.

PO2Vec applies contrastive learning to learn a partial order by sampling positive samples t+i from
Qdr(ti) or Qir(ti) with specified shortest path length and k negative samples N (ti) from indexed
Qdr(ti), Qir(ti), and Qur(ti) with greater lengths. With s(x, y) as cosine similarity between x, y,
PO2Vec utilizes InfoNCE (van den Oord et al., 2019) defined by the following:

LGO = −
m∑
i=1

log
s(ti, t

+
i )∑

tj∈N (ti)∪{t+i } s(ti, tj)
(4)

The resulting GO term embeddings are then aggregated via average pooling over the annotated
terms to obtain functional representations of genes. By integrating PO2Vec with ProtBert-derived
sequence embeddings prior to the diffusion process, our model benefits from both molecular se-
quence information and ontology-driven semantics, leading to more biologically meaningful target
representations.

3.3 INFUSING STRUCTURAL AND CIRCULAR DRUG FINGERPRINTS

We leverage FPFormer, a novel embedding model pre-trained on both structural and circular fin-
gerprints from ChemBL (Gaulton et al., 2017) and Moses (Polykovskiy et al., 2020). FPFormer
utilizes a novel tokenization methodology that converts different sparse fingerprints into a chemical
language and sequence, compatible with masked language modelling pre-training and embedding
techniques. Molecular fingerprints can be computed from SMILES strings, where each methods looks
to represent and encode different aspect of a molecule Cereto-Massagué et al. (2015). We utilize
a mixture of structural, circular, and atom-pair fingerprints ECFP4, FCFP6, MACCS, AVALON,
TOPTOR, and ATOMPAIR to pre-train our FPFormer model to generate meaningful molecular
embedding representations, complementing learned SMILES embeddings.

3.3.1 PRE-TRAINED SMILES AND PROTEIN ENCODERS

SP2PKDTI diffusion models need powerful semantic SMILE and protein encoders to capture the
complexity of arbitrary chemical and biological structure inputs. Given the sparsity and small size of
PK datasets, encoders trained on specific SMILES-Pharmacokinetic or SMILES-Protein pairs are
infeasible (Huang et al., 2021). Many transformer-based foundational models such as ChemBERTa
(Chithrananda et al., 2020; Ahmad et al., 2022), SMILES-BERT (Wang et al., 2019), and MOLGPT
(Bagal et al., 2021) have been pre-trained to deeply understand molecular and chemical structures and
properties. Similar transformer-based foundation models such as ProtBERT (Elnaggar et al., 2020)
have been pre-trained to deeply understand protein structures and properties. After pre-training, these
foundational models can then be fine-tuned for various downstream molecular and protein tasks.

We test SMILES embeddings from ChemBERTa (Ahmad et al., 2022) and protein embeddings from
ProtBERT (Elnaggar et al., 2020), trained on SMILES-only and protein-only corpora, respectively.
Both embedding models were collected through the Huggingface (Wolf et al., 2020) Model Hub.
Similar to (Saharia et al., 2022), we freeze the weights of our embedding models. Because embed-
dings are computed offline, freezing the weights minimizes computation and memory footprint for
embeddings during model training.

4 EXPERIMENTS

In the following, we describe the model training details and compare our synthetic data to real data,
in terms of machine learning efficiency (MLE) and univariate and bivariate statistical distributions.
We then discuss ablation studies and key findings. The metrics for MLE, univariate, and bivariate
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Figure 3: Distributions of ligand PK properties. Blue, synthetic distributions; orange, real distribu-
tions.

evaluations are further defined in their respective subsections. We compare xImagand-DK with
baselines of Conditional GAN (cGAN) (Mirza & Osindero, 2014) and Syngand (Hu et al., 2024).
SMILES-embeddings from a pre-trained T5 model are used conditionally by the cGAN model to
generate PK properties as output for a specific drug. Additional baseline and DKI ablation results are
provided in appendix A.2.

4.1 PHARMACOKINETIC AND DRUG-TARGET INTERACTION DATASETS

All 9 PK and 3 DTI datasets are collected from TDCommons (Huang et al., 2021). We select PK
datasets suitable for regression from the ADMET categories. We select DTI datasets from BindingDB
(Liu et al., 2007) covering properties such as inhibition constant (Ki), dissociation constant (Kd), and
half maximal inhibitory concentration (IC50). Revealing the overlap sparsity between DTI and PK,
out of around 700k molecules from BindingDB, only around 5k molecules (0.7%) have PK properties
defined from one of the 9 PK datasets.

The inhibition constant is a measure of how strongly an inhibitor binds to an enzyme, effectively
indicating the inhibitor’s potency. BindingDB has 375k pairs of Ki values from 175k drugs and 3k
proteins. The dissociation constant quantifies binding affinity between a drug and its target protein,
defined as the free ligand concentration at which 50% of the protein binding sites are occupied at
equilibrium. BindingDB has 52k pairs of Kd values from 11k drugs and 1.5k proteins. The half
maximal inhibitory concentration is a measure of the potency of a substance in inhibiting a specific
biological or biochemical function. BindingDB has 991k pairs of IC50 values from 550k drugs and
5k proteins.

Caco-2 (Wang et al., 2016) is an absorption dataset containing rates of 906 drugs passing through the
Caco-2 cells, approximating the rate at which the drugs permeate through the human intestinal tissue.
Lipophilicity (Wu et al., 2018) is an absorption dataset that measures the ability of 4,200 drugs to
dissolve in a lipid (e.g. fats, oils) environment. AqSolDB (Sorkun et al., 2019) is an absorption
dataset that measures the ability of 9,982 drugs to dissolve in water. FreeSolv (Mobley & Guthrie,
2014) is an absorption dataset that measures the experimental and calculated hydration-free energy of
642 drugs in water.

Plasma Protein Binding Rate (PPBR) (Wenlock & Tomkinson, 2016) is a distribution dataset of
percentages for 1,614 drugs on how they bind to plasma proteins in the blood. Volume of Distribution
at steady state (VDss) (Lombardo & Jing, 2016) is a distribution dataset that measures the degree of
concentration for 1,130 drugs in body tissue compared to their concentration in blood.

Half Life (Obach et al., 2008) is an excretion dataset for 667 drugs on the duration for the concentra-
tion of the drug in the body to be reduced by half. Clearance (Di et al., 2012) is an excretion dataset
for around 1,050 drugs on two clearance experiment types, microsome and hepatocyte. Drug clear-
ance is defined as the volume of plasma cleared of a drug over a specified time (Huang et al., 2021).
Acute Toxicity (LD50) (Zhu et al., 2009) is a toxicity dataset that measures the most conservative
dose for 7,385 drugs that can lead to lethal adverse effects.

4.1.1 DATA PROCESSING

We first merge all 9 PK datasets to create a unified dataset containing 17k drugs over 9 unique PK
columns for training and testing (90%/10% split) our models. We merge all data from 3 DTI datasets
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PKs DTIs
Model C2 Li. Aq FS PP VD HL ClH ClM Kd Ki I50
Sygd 0.62 0.53 0.34 0.50 0.66 0.81 0.85 0.59 0.58 ∅ ∅ ∅
cGAN 0.19 0.16 0.17 0.18 0.25 0.24 0.28 0.32 0.29 0.32 0.08 0.13
Imgd 0.19 0.12 0.13 0.18 0.20 0.27 0.36 0.20 0.19 0.27 0.13 0.11

No DKI 0.12 0.08 0.07 0.13 0.11 0.12 0.15 0.13 0.18 0.26 0.07 0.09
Ours 0.13 0.07 0.07 0.12 0.09 0.08 0.15 0.15 0.15 0.24 0.06 0.07

Table 2: Average Hellinger distance across 30 generated synthetic target property datasets for ablation
experiment configurations. The best HD values for each ablation test are bolded. We compare our
proposed model with and without DKI to existing benchmarks of Imagand, Syngand, and cGAN.

to create a unified dataset containing 1.2M drug-protein pairs with 3 dti columns for training and
testing (90%/10% split) for our models. Data from 3 DTI datasets are log-transformed.

We apply a Gaussian Quantile Transform to both PK and DTI datasets before min-max scaling
between the range of [−1, 1]. After removing outliers (Q1− 1.5IQR lower and Q3 + 1.5IQR upper
bound), we are left with 16.5k drugs from the original 17K drugs and 1.1M pairs from 1.2M DTI pairs.
Outliers are removed to ensure that Min-Max normalization does not cause unwarranted skewness in
our trainset distribution, causing issues for model training. Before infilling null values using inverse
transform sampling, we store the null masks for each drug for the masked loss function.

4.2 UNIVARIATE COMPARISONS TO REAL DATA

Hellinger distance (HD) quantifies the similarity between two probability distributions and can be
used as a summary statistic of differences for each PK target property between real and synthetic
datasets. Given two discrete probability distributions P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn},
the HD between P and Q is expressed in Equation 5.

HD2(p, q) =
1

2

n∑
i=1

(
√
pi −

√
qi)

2 (5)

With scores ranging between 0 to 1, HD values closer to 0 indicate smaller differences between real
and synthetic data and are thus desirable.

Figure 3 shows the distributions of PK synthetic data generated by xImagand-DKI with the real
data. Computing the Hellinger distance, Table 2, we see an average of 0.11, meaning that our model
produces synthetic data that closely resembles the distribution of real data. Additional DKI HDs
ablations are in appendix A.2.1. Table 2 shows that data generated from our proposed architecture
more closely resembles real data compared to other models.

4.3 BIVARIATE CORRELATIONS OF SYNTHETIC DATA

Figure 5: Boxplot of Pairwise correla-
tions

In addition to univariate comparisons, synthetic PK tar-
get properties can be compared to real data in terms of
bivariate pairwise distributions and correlations. Differen-
tial Pairwise Correlations (DPC) provides a multivariate
metric for evaluating the quality of synthetic data when
compared to real data. We define the DPC as the absolute
difference between the bivariate correlation coefficient of
real and synthetic data, denoted by subscripts r and s,
respectively, as shown in Equation 6.

∆CVcontXY
= |ρXY r − ρXY s | (6)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Overview of bivariate comparison between synthetic and real data. We show pairwise
scatter plots for pairs of PK and DTI target properties. Real data is marked in orange, and synthetic
data is marked in blue. The heatmap plots are the Differential Pairwise Correlations (DPC) using
Pearson Correlation Coefficient for pairs of PK target properties between real and synthetic data.

Models

Real cGAN Imgd Ours

C2
mse 0.63 0.17 0.13 0.06
R2 -3.2 -0.08 0.14 -0.13
pcc 0.35 0.34 0.43 0.35

Li.
mse 0.17 0.14 0.15 0.09
R2 0.04 0.19 0.14 0.01
pcc 0.50 0.47 0.41 0.49

Aq
mse 0.075 0.07 0.08 0.07
R2 0.56 0.57 0.53 0.38
pcc 0.76 0.76 0.73 0.75

FS
mse 0.62 0.20 0.17 0.11
R2 -2.5 -0.09 0.08 -0.22
pcc 0.38 0.42 0.39 0.39

PP
mse 3.5 0.26 0.26 0.04
R2 -13 -0.08 -0.06 -0.05
pcc 0.10 0.23 0.22 0.10

VD
mse 0.54 0.21 0.20 0.04
R2 -1.8 -0.06 -0.02 -0.07
pcc 0.23 0.31 0.30 0.21

Models

Real cGAN Imgd Ours

HL
mse 0.53 0.28 0.26 0.07
R2 -1.6 -0.54 -0.28 -0.09
pcc 0.16 0.13 0.03 0.17

CH
mse 1.9 0.43 0.43 0.15
R2 -4.2 -0.15 -0.20 -0.13
pcc 0.11 0.14 0.10 0.10

CM
mse 0.72 0.20 0.21 0.04
R2 -2.6 -0.04 -0.04 -0.06
pcc 0.13 0.25 0.25 0.17

Kd

mse 0.11 0.11 0.11 0.11
R2 0.22 0.23 0.23 0.23
pcc 0.50 0.49 0.50 0.50

Ki

mse 0.11 0.11 0.11 0.11
R2 0.21 0.21 0.22 0.22
pcc 0.46 0.46 0.47 0.47

I50
mse 0.13 0.13 0.13 0.13
R2 0.16 0.16 0.16 0.16
pcc 0.40 0.40 0.40 0.40

Table 3: Comparing drug discovery Machine Learning Efficiency (MLE) regression performances
between different models and with real train data. Mean Squared Error (mse), R-Squared (R2), and
Pearson Correlation Coefficient (pcc) values are averaged over 30 trials, with the best scores on
the real testset bolded. R2 and pcc values are scale-adjusted relative to Real-Real with cGAN and
Imagand results.

where X and Y denote the two continuous variables, whereas ρXY is the correlation coefficient for
X and Y . If the real and synthetic PK target property datasets are highly similar (i.e., the synthetic
dataset closely resembles the real dataset), then the absolute difference would be close to 0 or very
small, as seen in Figure 5. Heatmaps in Figure 4 show DPC on the Pearson correlation coefficient
(pcc) between both PK and DTI data points. These results indicate that the generated synthetic PK
target properties resemble real data in pairwise correlations.
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4.4 PERFORMANCE ON REAL-WORLD TASKS

Machine Learning Efficiency (MLE) is a measure that assesses the ability of the synthetic data to
replicate a specific use case (Dankar & Ibrahim, 2021; Basri et al., 2023; Borisov et al., 2022). MLE
represents the ability of the synthetic data to replace or augment real data in downstream use cases.
To measure MLE, two models are trained separately, one with synthetic and the other with real
data. Then their performance is compared using Mean-Squared Error (mse), R-Squared (R2), and
Pearson Correlation Coefficient (pcc), is evaluated on real data test sets. Further details on our MLE
experiment setup are included in appendix A.3.

Table 3 shows the results of the PK and DTI regression tasks using real and synthetic augmented
datasets. Results of these experiments suggest that a synthetic augmented dataset can outperform
real data with statistical significance over many PK datasets. Additional DKI MLE ablations are
in appendix A.2.1. Additional tasks will be explored in future work as well as improving MLE
performance for Ki and IC50 DTI tasks. We see that synthetic data from both cGAN and xImagand-
DK can improve MLE over using only the real data.

5 LIMITATIONS AND FUTURE WORK

Our work is a major step towards building a new class of foundational models for drug discovery
trained over a diverse range of datasets. Given the problem of data overlap sparsity, xImagand-
DKI can be utilized primarily as a in silico pre-clinical tool, aimed to reduce the costs of in vitro
experiments and high-throughput screening. As a research tool, scientists can utilize our models to
investigate and generate properties for novel molecules to be used for downstream PBPK simulations
without costly assays. Even as an initial step, xImagand-DKI has many real-world pre-clinical
applications where data overlap sparsity and data scarcity are challenges.

• Limited applicability to in vivo applications. Although we cover a wide variety of ADMET
and DTI datasets, most of these datasets are in vitro. In vivo experiments provides real-world
data that complements in vitro studies, where that data can be used to further improve the
performance of our models.

• Applicability only to numerical drug discovery datasets. With the limitations of our
diffusion methods, we are restricted to utilizing only numerical datasets. This limits the
types of datasets that our model is applicable with, such as ToxCast (Richard et al., 2016)
classification datasets of over 600 experiments.

• Extending beyond PK/DTI drug discovery tasks. PK/DTI data and research makes up
only a small section of pre-clinical drug-discovery. AI for lead optimization, de novo drug
design, and protein-docking are other interconnected research innovating pre-clinical drug
discovery.

Future work will look to extend our model to in vivo datasets and investigate how our generated data
can be used for quantitative in vitro-to-in vivo extrapolation. We will look to extend our model to
categorical diffusion methods as well as investigating integration with other drug discovery tasks
in lead optimization, de novo generation, and protein-docking. Extending our model to categorical
datasets and other drug discovery tasks will allow us to benchmark and train our model on additional
drug discovery datasets, adaptable for a larger number of tasks.

6 CONCLUSIONS

The SMILES/Protein to PK/DTI model xImagand-DTI generates synthetic PK and DTI target
property data that closely resembles real data in univariate and for downstream tasks. xImagand-DKI
provides a solution for the challenge of sparse overlapping PK and DTI target property data, allowing
researchers to generate data to tackle complex research questions and for high-throughput screening.
Future work will expand xImagand-DKI to categorical PK and DTI properties, and scale to more
datasets and larger model sizes. For future work, we will look to extend our model to include in vivo
datasets and to investigate new applications of xImagand-DKI for QIVIVE.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Walid Ahmad, Elana Simon, Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar.
Chemberta-2: Towards chemical foundation models. arXiv preprint arXiv:2209.01712, 2022.

Sameed Ahmed, Jennifer C Sullivan, and Anita T Layton. Impact of sex and pathophysiology on
optimal drug choice in hypertensive rats: quantitative insights for precision medicine. Iscience, 24
(4), 2021.

Suzi A Aleksander, James Balhoff, Seth Carbon, J Michael Cherry, Harold J Drabkin, Dustin Ebert,
Marc Feuermann, Pascale Gaudet, Nomi L Harris, et al. The gene ontology knowledgebase in
2023. Genetics, 224(1):iyad031, 2023.

Heba Askr, Enas Elgeldawi, Heba Aboul Ella, Yaseen AMM Elshaier, Mamdouh M Gomaa, and
Aboul Ella Hassanien. Deep learning in drug discovery: an integrative review and future challenges.
Artificial Intelligence Review, 56(7):5975–6037, 2023.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064–2076, 2021.

Mohammad Ahmed Basri, Bing Hu, Abu Yousuf Md Abdullah, Shu-Feng Tsao, Zahid Butt, and
Helen Chen. A hyperparameter tuning framework for tabular synthetic data generation methods.
Journal of Computational Vision and Imaging Systems, 9(1):76–79, 2023.

Dixit V. Bhalani, Bhingaradiya Nutan, Avinash Kumar, and Arvind K. Singh Chandel. Bioavailability
enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10
(9), 2022. ISSN 2227-9059. doi: 10.3390/biomedicines10092055. URL https://www.mdpi.
com/2227-9059/10/9/2055.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. arXiv preprint arXiv:2210.06280, 2022.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, 2019. doi: 10.1021/acs.jcim.8b00839. URL https://doi.org/10.1021/acs.
jcim.8b00839. PMID: 30887799.
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A APPENDIX

A.1 TRAINING DETAILS

xImagand-DK Model Diffusion Training

Layers 12 Learning Rate 1e-3
Heads 16 Weight Decay 5e-2
MLP Dim. 768 Epoch 3000
Emb. Dropout 10% Batch Size 256
Num Patches 48 Warmup 200
Drug Emb. Size 768 Timesteps (Train) 2000
Time Emb. Size 64 Timesteps (Infer.) 150
PK Emb. Size 256 EMA Gamma (γ) 0.994
Prot Emb. Size 1024
Drug DKI Emb. 768
Prot DKI Emb. 256

Table 4: List of xImagand-DK Model Hyperparameters used across experiments. Model hyperparam-
eters include the number of layers, heads, multilayered perceptron (MLP) size, embedding dropout,
and sizes for the conditional, time, and pharmacokinetic (Y) embeddings. Training hyperparameters
include the learning rate, weight decay, number of epochs, batch size, warmup, diffusion timesteps
used for training and inference, and the Exponential Moving Average (EMA) Gamma (γ).
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DTIs
Model Kd Ki I50
cGAN 0.32 0.08 0.13
Imgd 0.27 0.13 0.11

No DKI 0.26 0.07 0.09
FP DKI 0.28 0.08 0.09
FP-GO DKI 0.23 0.11 0.11
GO DKI 0.24 0.06 0.07

Table 5: Hellinger distance across datasets for ablation experiment configurations.

We train a 19M parameter model for S2PK synthesis. Model hyperparameters were not optimized
and are described in Table 4. For classifier-free guidance, we joint-train unconditionally via dropout
zeroing out sections of the SMILES embeddings with 10% probability for all of our models. For the
machine learning efficiency, and univariate and bivariate distribution analysis, we utilize DeBERTa
embeddings trained on PubChem and DLGN for infilling and as the noise model. We compare our
model configuration to other possible configurations in the ablation experiments. All experiments
were conducted using a single NVIDIA GeForce RTX 3090 GPU.

A.1.1 STATIC THRESHOLDING

We apply elementwise clipping the PK predictions to [−1, 1] as static thresholding, similar to (Saharia
et al., 2022; Jonathan et al., 2020). Since PK data is min-max scaled to the same [−1, 1] range as a
preprocessing step, static thresholding is essential to prevent the generation of invalid and out-of-range
PK values.

A.1.2 CLASSIFIER-FREE GUIDANCE

Classifier guidance uses gradients from a pre-trained model to improve quality while reducing
diversity in conditional diffusion models during sampling (Dhariwal & Nichol, 2021). Classifier-free
guidance (Ho & Salimans, 2022) is an alternative technique that avoids this pre-trained model by
jointly training a diffusion model on conditional and unconditional objectives via dropping the
condition (i.e. with 10% probability). We condition all diffusion models on learned SMILES
embedding and sinusoidal time embeddings using classifier-free guidance through dropout (Ho &
Salimans, 2022; Srivastava et al., 2014).

A.2 ABLATION STUDIES

A.2.1 DTI DOMAIN KNOWLEDGE INFUSION

We conduct ablations for drug-target interaction domain knowledge infusion. From Table 5, we find
that domain knowledge infusion with the human GO embeddings increases the quality of generated
synthetic data over other DKI techniques. Similarly, computing MLE across DTI DKI ablations,
Table 6 shows that human GO embeddings improves the MLE performance of the synthetic data on
downstream tasks. There is limited gain in MLE performance across Kd and IC50 given all ablation
experiments, future work will look to investigate this phenomenon.

A.2.2 ADDITIONAL BASELINES

We compare xImagand-DK with a baseline in Conditional GAN (cGAN) (Mirza & Osindero, 2014)
with 1.8M parameters and Syngand (Hu et al., 2024) with 9M parameters. SMILES-embeddings
from a pre-trained T5 model are used conditionally by the cGAN model to generate PK properties as
output for a specific drug. Compared to earlier results, Table 7, Figure 7, and Figure 6 shows that
xImagand-DK is able to generate more realistic synthetic data compared to cGAN and Syngand.
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DKI Model Ablations

Real None FP FP-GO GO

Kd

mse 0.11 0.11 0.10 0.10 0.10
R2 0.22 0.23 0.26 0.25 0.26
pcc 0.50 0.50 0.50 0.50 0.51

Ki

mse 0.11 0.11 0.11 0.11 0.11
R2 0.21 0.22 0.21 0.21 0.22
pcc 0.46 0.47 0.46 0.46 0.47

I50
mse 0.13 0.13 0.13 0.13 0.13
R2 0.16 0.16 0.16 0.16 0.16
pcc 0.40 0.40 0.40 0.40 0.40

Table 6: Comparing drug discovery Machine Learning Efficiency (MLE) regression performances
between different ablation models and with real train data. Mean Squared Error (mse), R-Squared
(R2), and Pearson Correlation Coefficient (pcc) values are averaged over 30 trials, with the best scores
on the real testset bolded.

Mean Std

Data Real Ours Imgd cGAN Sygd Real Ours Imgd cGAN Sygd

Caco2 0.12 0.13 0.14 0.14 0.58 0.39 0.39 0.38 0.27 0.12
Lipo 0.18 0.19 0.18 0.20 0.62 0.42 0.41 0.39 0.30 0.19
AqSol 0.11 0.18 0.11 0.13 0.10 0.41 0.39 0.36 0.29 0.18
FreeSolv 0.10 0.17 0.12 0.10 0.27 0.42 0.42 0.40 0.29 0.13
PPBR 0.57 0.59 0.56 0.63 0.97 0.50 0.49 0.47 0.37 0.09
VDss -0.60 -0.61 -0.62 -0.66 -0.98 0.44 0.43 0.39 0.31 0.06
Halflife -0.56 -0.60 -0.56 -0.61 -0.98 0.45 0.43 0.42 0.32 0.06
ClH -0.55 -0.58 -0.56 -0.59 -0.97 0.61 0.56 0.55 0.47 0.09
ClM -0.67 -0.69 -0.68 -0.74 -0.98 0.45 0.44 0.38 0.31 0.06

Table 7: Comparing mean and standard deviation values between real and synthetic target property
values, rounded to two significant figures.

A.3 MLE EXPERIMENT SETUP

For this experiment, we train Linear Regression (LR) models using T5 chemical and ProtBERT
embeddings to predict each PK and DTI target property value. To ensure an adequately sized test
set (>300 ligands, i.e. >10% size of our synthetic data) to evaluate our downstream models, we
divide real data into segments Ar and Br using a 50%/50% split. To ensure a synthetic test set
similar in size to real data test sets (∼ 300 ligands), we divide synthetic data into segments As and
Bs using a 90%/10% split. The real train set is defined as Ar, and the real test set is defined as Br.
The augmented train set is defined as Ar ∪ As, and the augmented test set is defined as Br ∪ Bs.
Outliers are removed from both real and augmented train and test sets based on Q1− 1.5IQR lower
and Q3 + 1.5IQR upper bounds on the synthetic data.
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Figure 6: Distributions of ligand PK properties and synthetic PK Data Hellinger Distances (HDs) for
cGAN. Blue, synthetic distributions; orange, real distributions.

Figure 7: Distributions of ligand PK properties (log-scale) and synthetic PK Data Hellinger Distances
(HDs) for Syngand. Blue, synthetic distributions; orange, real distributions.
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