
Introducing Rhetorical Parallelism Detection:
A New Task with Datasets, Metrics, and Baselines

Stephen Bothwell
University of Notre Dame

sbothwel@nd.edu

Justin DeBenedetto
Villanova University

justin.debenedetto@villanova.edu

Theresa Crnkovich Hildegund Müller David Chiang
University of Notre Dame

{tcrnkovi,hmuller,dchiang}@nd.edu

Abstract

Rhetoric, both spoken and written, involves
not only content but also style. One com-
mon stylistic tool is parallelism: the juxtaposi-
tion of phrases which have the same sequence
of linguistic (e.g., phonological, syntactic, se-
mantic) features. Despite the ubiquity of paral-
lelism, the field of natural language processing
has seldom investigated it, missing a chance
to better understand the nature of the structure,
meaning, and intent that humans convey. To
address this, we introduce the task of rhetori-
cal parallelism detection. We construct a for-
mal definition of it; we provide one new Latin
dataset and one adapted Chinese dataset for it;
we establish a family of metrics to evaluate per-
formance on it; and, lastly, we create baseline
systems and novel sequence labeling schemes
to capture it. On our strictest metric, we attain
F1 scores of 0.40 and 0.43 on our Latin and
Chinese datasets, respectively.

1 Introduction

Ueni, uidi, uici,1 or, “I came, I saw, I conquered”
– why is this saying so memorable? One reason
is the high degree of parallelism it exhibits in its
morphology (each verb is first-person, singular, per-
fect tense), phonology (each verb starts with /w/
and ends with /i:/), and prosody (each verb has two
long syllables with accent on the first). In similar
sayings (as in Fig. 1), syntax and semantics also
contribute. The related elements generally occur in
either the same order or in an inverted order.

Parallelism is organically employed in many ar-
gumentative structures (e.g., “on the one hand . . .
on the other hand . . .”), making parallelism a rou-
tine rhetorical figure. The rhetorical impact of

1Popularly attributed to Julius Caesar (Suetonius Tranquil-
lus, 1993). In Classical Latin, u and v were graphical variants
of one letter; as a consonant, it was pronounced /w/. Following
common practice, we write it as u. We also write i and j as i.

quotidie
every day

dicimus
we say

hoc
this

,
,

et
and

quotidie
every day

facimus
we do [it]

,
,

et
and

quotidie
every day

fit
[it] is done

in
in

nobis
us

.

.

Figure 1: Example three-way parallelism from Augus-
tine’s Sermones (Sermon 181, Section 8). Solid lines
connect words with multiple linguistic features in com-
mon; dashed lines indicate a weaker connection.

these structures is apparent even for audiences not
schooled in classical rhetoric. Recognition of paral-
lelism, then, is important for grasping the structure,
meaning, and intent that humans wish to convey;
thus, the computational modeling of parallelism is
both an interesting and practical problem.

However, because parallelism can occur at so
many levels linguistically—often with no lexical
overlap—modeling parallelism computationally is
difficult. As a first foray into studying the problem
of rhetorical parallelism detection (RPD) and en-
abling others to study it, we present in this paper
multiple public datasets, metrics, and models for it.

For one dataset, we turn to the Latin sermons
of Augustine of Hippo (354–430). Augustine had
been trained as a rhetorician and had taught the
craft of secular rhetoric before his conversion to
Christianity. However, upon becoming a preacher,
he consciously replaced the adorned style of late
ancient rhetoric with a style streamlined toward
speaking well with diverse North African congre-
gations. Parallelism frequently marked this style.

Augustine did not just employ parallelism stylis-
tically, however; he also theorized about it. In his
work De Doctrina Christiana, Augustine described
three rhetorical styles, or genera dicendi (“ways of

speaking”) (Augustine of Hippo, 1995); from these,
he characterized the genus temperatum (“moderate
style”) by highly-parallel passages.2 Thus, his ser-
mons are ideal for studying parallelism. In addition,
his theory implies that parallelism detection may be
useful for automatic stylistic analysis. Already, it
has been used to analyze discourse structure (Gué-
gan and Hernandez, 2006), summarize documents
(Alliheedi, 2012), identify idioms (Adewumi et al.,
2022), evaluate student writing (Song et al., 2016),
study political speech (Tan et al., 2018) and detect
fake news (Gautam and Jerripothula, 2020).

Parallelism detection may also have broader
NLP applications. In syntactic parsing, in the sen-
tence I saw a man with a mustache and a woman
with a telescope, the reading where telescope modi-
fies saw is all but ruled out because it would violate
parallelism. Thus, modeling parallelism could as-
sist in syntactic disambiguation. Parallelism is also
vital in disfluency detection, as speakers tend to
maintain prior syntactic context when amending
verbal errors (Zayats and Ostendorf, 2019).

Toward such ends, we establish the task of rhetor-
ical parallelism detection (RPD, Section 2). We
create one dataset from Augustine’s sermons and
adapt another consisting of Chinese student essays
(Section 4), establish evaluation metrics (Section 5),
and investigate baseline models (Section 6). By au-
tomatically learning and exploiting relationships
among linguistic features, we achieve roughly a
40% F1 score on both datasets’ test sets (Section 7).

2 Task Definition

Moving away from the sentence-level conceptions
of Guégan and Hernandez (2006) and Song et al.
(2016), we formalize the task of rhetorical par-
allelism detection (RPD). Broadly, we deem se-
quences to be parallel if they meet two conditions:

1. Locality: Parallel structures should be within
temporal proximity of one another for two re-
lated reasons. First, structures that are close
by are more likely to be intentional rather than
incidental in the mind of the speaker/author.
Second, for parallel structures to be rhetor-
ically effective, they must be consecutive
enough to be recalled by the listener/reader.

2. Linguistic Correspondence: Parallel struc-
tures should have some linguistic features
in common, which could include features of

2See chapters 4.20.40; 20.44; 21.47f.

phonology, morphology, syntax, semantics, or
even style. The features could be the same
(e.g., the repeated sounds in ueni, uidi, uici)
or diametrically opposed (e.g., the opposite
meanings in a time to be born and a time to
die). These features typically occur in the
same order or the opposite order.

Suppose that we have a document w, which is
a sequence of tokens F1 . . . F=. A span of w is a
pair (8, 9), where 1 ≤ 8 ≤ 9 ≤ =, whose contents
are the tokens F8 . . . F 9 . We say that two spans
(81, 91) and (82, 92) are overlapping if they have at
least one token in common—that is, 81 ≤ 82 ≤ 91
or 82 ≤ 81 ≤ 92. Meanwhile, they are nested if
81 ≤ 82 ≤ 92 ≤ 91 or 82 ≤ 81 ≤ 91 ≤ 92.

A parallelism is a set of two or more non-
overlapping spans whose contents are parallel. We
call these spans the branches of a parallelism.
An example of a complete parallelism with three
branches is given in Fig. 1. RPD, then, is the task
of identifying all of the parallelisms in a text.

Let % be a set of parallelisms. Then % falls into
one of three categories:

1. % is flat if all the branches of every parallelism
in % are pairwise non-overlapping.

2. % is nested if some pair of its branches nest
and no pair of its branches overlap without
also being nested.

3. % is overlapping if it contains some pair of
branches which overlap.

Our Augustinian Sermon Parallelism (ASP) dataset
(see Section 4) is nested, and the Paibi Student Es-
say (PSE) dataset (Song et al., 2016) is flat.3 Al-
though our baseline models only predict flat sets of
parallelisms, our evaluations include nested ones.

3 Related Work

In this section, we connect two subareas of NLP
to RPD in order to display their relation to and
influence on its development.

3.1 Automated writing evaluation
Arguably, the main research area that has explored
RPD is automated writing evaluation (AWE). Since
its inception (Page, 1966), AWE has aimed to re-
duce instructor burden by swiftly scoring essays;

3Song et al.’s dataset was not originally named but has
been given a name through its inclusion in this work.

Dataset Documents Sections Tokens Branched Tokens Branches Parallelisms

ASP 80 477 134, 956 19, 701 4, 651 (39) 2, 062 (14)
PSE-I 409 3, 855 241, 203 25, 529 2, 153 (0) 786 (0)

Table 1: Dataset frequency statistics for both of the datasets featured in this paper. “Sections” are defined as natural
partitions of documents, such as divisions determined by editors (ASP) or natural paragraphs (PSE-I). “Branched
Tokens” refer to all tokens involved in a branch. Parenthesized values refer to the nested subset of a given quantity.

Dataset Parallelisms
per Section

Branches
per Parallelism

Branch Distance
(Tokens)

Branch Size
(Tokens)

NLO
(Branches)

% Pairs with
No LO

ASP 4.32 ± 3.22 2.26 ± 0.68 2.54 ± 2.29 4.24 ± 2.72 0.24 ± 0.19 24.17%
PSE-I 1.92 ± 1.47 2.74 ± 0.75 2.41 ± 4.00 11.86 ± 7.09 0.31 ± 0.15 2.30%

Table 2: Dataset derived statistics. All figures but the last one are means with standard deviations. The lexical
overlap (LO) metrics are normalized with respect to the union of branches’ token multisets.

however, especially with the involvement of neural
networks, it seems to be limited in its pedagogical
benefit because of its inability to give sufficient
feedback (Ke and Ng, 2019; Beigman Klebanov
and Madnani, 2020).

Concerning RPD, Song et al. explored parallel
structure as a critical rhetorical device for evaluat-
ing writing quality (Song et al., 2016). Construing
parallelism detection as a sentence pair classifica-
tion problem, they achieved 72% �1 for getting
entire parallelisms correct on their dataset built
from Chinese mock exam essays via a random for-
est classifier with hand-engineered features. Sub-
sequent work used RNNs (Dai et al., 2018) and
CNNs with some custom features (Liu et al., 2022).
Such work has also been applied in the IFlyEA as-
sessment system to provide students with stylistic
feedback (Gong et al., 2021).

Compared to that work, our formalization of
RPD permits a token-level (as opposed to sentence-
level) granularity for parallel structure. In line with
this, we approach RPD in terms of sequence label-
ing instead of classification. Moreover, we provide
the first (to our knowledge) public release of token-
level parallelism detection data (see Section 4).

3.2 Disfluency detection

RPD closely resembles and is notably inspired by
disfluency detection (DD). DD’s objective is gener-
ally to detect three components of a speech error:
the reparandum (the speech to be replaced), the
interregnum (optional intervening speech), and the
repair (optional replacing speech) (Shriberg, 1994).
Because the reparandum and repair often relate
in their syntactic and semantic roles, they (as with
parallelisms) share many linguistic features.

DD has frequently been framed as a sequence
labeling task. Some previous models use schemes
which adapt BIO tagging (Georgila, 2009; Osten-
dorf and Hahn, 2013; Zayats et al., 2014, 2016),
while others (Hough and Schlangen, 2015) have
proposed novel tagging schemes on the basis of
prior theory (Shriberg, 1994) and the Switchboard
corpus’s notation (Meteer and Taylor, 1995), aug-
menting tags with numerical links to indicate rela-
tionships between reparanda and repairs.

We employ elements of both types of tagging
schemes: we directly adapt BIO tags to paral-
lelisms, and, like Hough and Schlangen (2015), we
also augment tags with numerical links to indicate
relationships between branches (see Section 6.1).

4 Datasets

This paper presents two datasets for RPD: the Au-
gustinian Sermon Parallelism (ASP) and Paibi Stu-
dent Essay (PSE) datasets. We first describe steps
taken for the individual datasets in Sections 4.1
and 4.2 before discussing shared preprocessing
steps and data analyses in Sections 4.3 and 4.4.

4.1 Augustinian Sermon Parallelism Dataset

The ASP dataset consists of 80 sermons from the
corpus of Augustine of Hippo (Augustine of Hippo,
2000a,b).4 Our fourth author, an expert classi-
cist and Augustine scholar, labeled these sermons
for parallel structure using our annotation scheme.
This scheme involves labeling branches and linking
them to form parallelisms. We further distinguish
between synchystic (same order) and chiastic (in-

4The ASP dataset is freely available at https://github.
com/Mythologos/Augustinian-Sermon-Parallelisms.

https://github.com/Mythologos/Augustinian-Sermon-Parallelisms
https://github.com/Mythologos/Augustinian-Sermon-Parallelisms

(a) ut
so.that

ipse
itself

[panis
bread:NOM;SG

esuriret
hunger:IPFV;SBJV;3SG

]1 ,
,
[satietas

satiety:NOM;SG
sitiret
thirst:IPFV;SBJV;3SG

]1 ,
,
[uirtus

strength:NOM;SG

infirmaretur
weaken:IPFV;SBJV;3SG

]1 ,
,

[sanitas
health:NOM;SG

uulneraretur
wound:IPFV;SBJV;3SG

]1 ,
,

[uita
life:NOM;SG

moraretur
die:IPFV;SBJV;3SG

]1 ?
?

“... so that bread itself might hunger, satiety might thirst, strength might be weakened, health might be wounded, life might
die?”

(b) [小草
xiǎocǎo
grass

更
gèng
more

绿
lǜ
green

]1 ,
,
,

[天空
tiānkōng
sky

更
gèng
more

蓝
lán
blue

]1 ,
,
,

[生活
shēnghuó
life

更
gèng
more

美好
měihǎo
good

]1 .
.
.

“The grass is greener, the sky is bluer, and life is better.”

Figure 2: Examples from the ASP and PSE datasets. Blue square brackets demarcate each branch, and numbering
indicates the parallelism to which each branch belongs. We provide a word-by-word English translation, gloss
some morphological features in branches, and present an idiomatic translation. Example (a) is from Sermon 207,
Section 1. Example (b) is from Essay 1, Paragraph 5. For more ASP dataset examples, see Figs. 7 and 8.

verted order) parallelisms.5 For more details on
our annotation scheme, see Appendix A; for details
on a verification of the dataset’s quality through an
inter-annotator agreement study, see Appendix C.

An example of Augustine’s use of parallelism is
presented in Fig. 2(a). In this subordinate clause,
Augustine builds up a five-way parallelism. This
parallelism not only boasts shared morphology and
syntax through a series of subject-verb clauses, but
it also presents stylistic parallelism. Each clause
uses the rhetorical device of personification, pre-
senting an object or abstract idea as an agent, and
this device is paralleled to emphasize it. As this
example shows, Augustine frequently layers lin-
guistic features to compose parallelisms.

To preprocess the ASP data, we remove all
capitalization, following previous work on Latin
word embeddings (Bamman and Burns, 2020;
Burns et al., 2021). We also employ the
LatinWordTokenizer from the CLTK library to
tokenize our data (Johnson et al., 2021).

4.2 Paibi Student Essay Dataset

The PSE dataset was created by Song et al. (2016)
to improve automatic essay evaluation.6 They col-
lected a set of mock exam essays from Chinese
senior high school students. Two annotators then
marked parallel structure in these essays. Annota-
tors labeled parallelism on the sentence rather than
span level. On this task, they achieved an inter-
annotator agreement of 0.71 according to the ^
statistic (Carletta, 1996) over a set of 30 essays.

In Chinese, a排比 (pǎibı̌, parallelism) is some-

5The terms synchystic and chiastic are used by analogy
with the traditional rhetorical terms synchysis and chiasmus.

6The PSE dataset and its PSE-I variant are freely
available at https://github.com/Mythologos/
Paibi-Student-Essays.

times defined as having at least three branches (al-
though the PSE dataset has many examples of two-
branch parallelisms). One such three-way paral-
lelism is given in Fig. 2(b), where both lexical repe-
tition of the comparative adverb更 (gèng) and syn-
tactic parallelism help the sentence’s three clauses
to convey its message in a spirited manner.

We obtained 409 of the original 544 essays
from the authors. The essays are annotated for
inter-paragraph parallelisms, intra-paragraph paral-
lelisms, and intra-sentence parallelisms. To adapt
them for our use, we first excluded inter-paragraph
parallelisms, as these do not satisfy our criterion of
locality. Then, for each intra-sentence parallelism
that had been annotated, our annotators marked the
locations of the parallel branches. For more details
about this annotation process, see Appendix A. We
call this version of the dataset PSE-I, or the version
only having parallelisms inside paragraphs. We re-
tained the tokenization generated by the Language
Technology Platform (LTP) (Che et al., 2010).

4.3 Data collection and preprocessing

Both datasets had annotations collected for them
via the BRAT annotation tool (Stenetorp et al.,
2012). In applying the parallelism annotations to
the data, both datasets excluded punctuation from
parallelisms. This was done to reduce annotator
noise brought about by the inconsistent member-
ship of punctuation in parallelisms.

After preprocessing each dataset, we split both
into training, validation, optimization, and test sets.
To do so, we attempted to keep the ratio of tokens
inside parallelisms to tokens outside parallelisms
as even as possible across each set, assuring that
the sets were distributed similarly. For more details
on our data splitting, see Appendix E.

https://github.com/Mythologos/Paibi-Student-Essays
https://github.com/Mythologos/Paibi-Student-Essays

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentile Bins

0

200

400

600

800

1000
Fr

eq
ue

nc
y

26%

12%

23%
20%

6%
8%

3%
<1% <1% <1%

Normalized Lexical Overlaps

Figure 3: Histogram of normalized lexical overlap for
all paired branches in the ASP dataset. Rounded per-
centages indicating the amount of data represented in
each bin (of size 0.1) are placed above each bar.

4.4 Dataset statistics

To summarize our datasets, we provide a numerical
and statistical overview in Tables 1 and 2.

One factor we wanted to examine was the type
of similarity that parallel branches exhibit; are
their similarities surface-level or more linguisti-
cally complex? To measure this, we compute the
normalized lexical overlap (NLO) of all pairs of re-
lated branches. Treating each branch as a multiset
of tokens, we apply the formula

NLO(11, 12) =
|11 ∩ 12 |
|11 ∪ 12 |

where 11, 12 are related branches. This value is 1
if 11 = 12, and it is 0 if 11 ∩ 12 = ∅.

In Fig. 3, we depict a histogram of the ASP
dataset’s NLO across all related branch pairs. (The
PSE-I dataset’s histogram is similar, but it peaks
between 0.2 and 0.3 and has few pairs between 0
and 0.1.) This histogram shows that the vast major-
ity of related branch pairs are frequently lexically
dissimilar from one another; most are below 0.6
NLO, showing that it is very common to have at
least half the words in a parallelism be different
from one another. Thus, as our task definition as-
serted, parallelisms exploit many linguistic features
to produce an effect; in turn, any method for RPD
should try to capture these relationships.

5 Evaluation Metrics

Next, we describe a general family of evaluation
metrics for RPD and specify one instance of it.

Suppose that we have a document w, as above,
and a reference set G and a hypothesis set H of
parallelisms in w. An evaluation metric for RPD
should check both that the branches in H have the
same spans as those in G and that the branches are
grouped into parallelisms in H as they are in G.

Given these criteria, we follow prior work in
coreference resolution (CR) to establish our met-
rics. Coreference resolution involves detecting an
entity of interest and linking all mentions related
to that entity together; in a similar manner, our task
links a set of spans together. As in the Constrained
Entity-Alignment F-Measure metrics (Luo, 2005),
we express our metrics as a bipartite matching be-
tween G and H. We use the Kuhn-Munkres (also
known as “Hungarian”) algorithm (Kuhn, 1955;
Munkres, 1957) to maximally align parallelisms
between G and H. To do this, we must define two
functions: score and size.

The function score(?1, ?2), where ?1 and ?2
are parallelisms, determines how well ?1 matches
?2, and the function size(?), where ? is a par-
allelism, bounds the score that ? can merit with
another parallelism. These functions must sat-
isfy size(?) > 0 and 0 ≤ score(?1, ?2) ≤
min{size(?1), size(?2)}.

With those in place, we can find the bipartite
matching with maximum weight <,

< = max
"

∑
(?1, ?2) ∈"

score(?1, ?2)

where the maximization is over matchings " be-
tween G and H. Having <, we define metrics in
the likeness of precision (%), recall ('), and the
F1-score (�1) as follows:

% =
<∑

?∈H size(?)

' =
<∑

?∈G size(?)

�1 =
2

1/% + 1/' .

The simplest choice of size and score is

size(?) = 1

score(?1, ?2) =
{

1 if ?1 = ?2

0 if ?1 ≠ ?2.

We call this the exact parallelism match (EPM)
metric, where each parallelism in H must perfectly
match one in G to gain credit.

As an example of this metric, consider the pas-
sage given in Fig. 4. Suppose that the depicted
parallelism—call it ?1—is the only parallelism in
G. Furthermore, suppose that the model proposes
two hypotheses, H = {?1, ?2}, where ?2 is a paral-
lelism that does not overlap with ?1. Then

score(?1, ?1) = 1 score(?1, ?2) = 0

From this, we derive the maximally-weighted
matching, " = {(?1, ?1)}, and < = 1. Then

% =
1
2

' =
1
1

�1 =
2
3
.

Appendix B introduces some alternative choices
of score and size that give partial credit for
imperfectly-matching hypothesized parallelisms.7

6 Models

In this section, we propose some models for auto-
matic RPD as a starting point for future research.
Our models here treat RPD as a sequence label-
ing problem, using several novel variants of BIO
tagging (Ramshaw and Marcus, 1995).8

6.1 Tagging schemes
Branches are substrings, like named entities in
NER, and parallelisms are sets of related substrings,
like disfluencies in DD. Variants of BIO tagging
have been successful for these sequence labeling
tasks (Zayats et al., 2016; Reimers and Gurevych,
2017), so they are a natural choice for RPD as
well. In this scheme, the first word of a branch is
tagged B; the other words of a branch are tagged I;
words outside of branches are tagged O.

However, BIO tagging does not indicate which
branches are parallel with which. In each paral-
lelism, for each branch 1 except the first, we aug-
ment the B tags with a link, which is a number
that indicates the previous branch with which 1 is
parallel. We propose two linking schemes.

Suppose we have consecutive parallel branches
11 = (81, 91) and 12 = (82, 92) with 91 < 82. A to-
ken distance link, akin to links used in DD (Hough
and Schlangen, 2015), is 91 − 82; it is the (negative)

7We accompany this paper with the pyrallelism library.
It implements each of our metrics and provides sample formats
for evaluating RPD. It is available on PyPI and at https:
//github.com/Mythologos/pyrallelism.

8Our main modeling and results repository is available at
https://github.com/Mythologos/Intro-RPD. Our mod-
els are implemented in PyTorch (Paszke et al., 2019) and are
initially based on code by Robert Guthrie (2017).

number of word-to-word hops to get from 12’s start
to 11’s end. A branch distance link is the (negative)
number of branch-to-branch hops to get from 12
to 11. If % contains the interlocking parallelisms
?1 = {(1, 3), (7, 9)} and ?2 = {(4, 6), (10, 12)},
then the token distance between (1, 3) and (7, 9) is
−4, while the branch distance is −2.

It is important to form tag sequences that help the
model to learn better, diverging decisions from the
dominant majority class O. Therefore, in addition
to adding links, we include three additional tag
types, each of which is exhibited in Fig. 4.

First, the M tag replaces O tags that occur for
tokens that occur in the middle of consecutive
branches in a parallelism. Lines 2 and 3 of Fig. 4 ex-
hibit this: four non-branch tags become M instead
of O because they are between related branches.
This shift obstructs a model from predicting single-
branch parallelisms by providing a separate path-
way to seek linked branches, as O→ Bℓ (where ℓ
stands for a link) can never occur in the data.

Second, the E tag replaces branch-ending I tags
to indicate the end of a branch. Adding this tag
removes the I→ O transition. This change may en-
courage a model to be more sensitive to a branch’s
endpoint; because most parallelisms are more than
two tokens long, branches largely must transition
from B to either I or E, and E must eventually be
selected before returning to O.

Third, the J tag replaces I tags in non-initial
branches, where an initial branch is the first branch
of a parallelism that occurs in a document. When
paired with M tags, J tags help to promote a se-
quence of transitions which do not include O as a
likely candidate until two branches have concluded.
While the second example of Figure 4 displays this,
Figure 5 shows this behavior across ASP’s entire
training set. Treating a sequence of tags as a linear
chain, we tally all node transition pairs. When com-
pared to the BIO chain of tags (left), we can see that
I→ O no longer exists in the BIOMJ chain (right).
Only non-initial branch tokens (i.e., B_ or J) can
transition to O. Through its supported transitions,
the altered tagset actively enforces the constraint
that a parallelism must have at least two branches.

With these three new tags, we form eight
tagsets—BIO, BIOE, BIOJ, BIOM, BIOJE,
BIOME, BIOMJ, and BIOMJE—and apply each
link type to them, forming sixteen tagging schemes.
These tagging schemes constitute all parallelisms
in each dataset: each level of nesting is an addi-

https://github.com/Mythologos/pyrallelism
https://github.com/Mythologos/pyrallelism
https://github.com/Mythologos/Intro-RPD

Latin quotidie dicimus hoc , et quotidie facimus , et quotidie fit in nobis .
English Every day we say this , and every day we do [it] , and every day [it] is done in us .

BIO-Token B I I O O B−3 I O O B−3 I I I O
BIOMJ-Token B I I M M B−3 J M M B−3 J J J O

BIOME-Branch B I E M M B−1 E M M B−1 I I E O

Figure 4: The example of Fig. 1 from ASP annotated with various tagging schemes. For line 1, bolded words are
part of the parallelism, and all contiguous units represent branches. For line 2, items in brackets indicate words not
directly present (but implied) in the original text. For lines 3–5, “Token” and “Branch” refer to link types.

<STA
RT

> B I B O

<ST
OP>

Following Word

<START>

B

I

B

O

<STOP>

Pr
ec

ed
in

g
W

or
d

0

0

0

0

0

0

19

0

3

0

1.4K

0

0

1.4K

7.3K

1.8K

0

0

0

0

10

0

1.8K

0

663

4

3.2K

6

171K

0

0

0

0

0

682

0

Tag Heatmap

<STA
RT

> B I M B J O

<ST
OP>

Following Word

<START>

B

I

M

B

J

O

<STOP>

Pr
ec

ed
in

g
W

or
d

0

0

0

0

0

0

0

0

19

0

0

10

0

3

1.4K

0

0

1.4K

3.2K

0

0

0

0

0

0

4

1.4K

787

3

375

0

0

0

0

10

1.8K

0

0

0

0

0

0

0

0

1.8K

4.0K

0

0

663

0

0

0

3

1.4K

170K

0

0

0

0

0

0

0

682

0

Tag Heatmap

Figure 5: Two heatmaps tabulating tag transition frequencies across all (two) strata in ASP’s training set. Darker
colors indicate larger values; text colors change for readability. The <START> and <STOP> tokens refer to section
beginnings and ends. The left and right heatmaps are for the BIO and BIOMJ tagsets, respectively.

tional layer, or stratum (pl. strata), of tags.

6.2 Architecture

Inspired by prior success in sequence labeling for
named entity recognition, we employ a conditional
random field (CRF) output layer (Lafferty et al.,
2001) in combination with various neural networks
(Huang et al., 2015; Ma and Hovy, 2016; Lam-
ple et al., 2016). Our general architecture (Fig. 6)
proceeds in five steps. It embeds tokens (words
or subwords) as vectors; it blends token-level em-
beddings into word-level embeddings; it encodes
the sequence of embeddings to incorporate more
contextual and task-specific information; it maps
encodings to tag space with a linear layer; it uses a
CRF to compute a distribution over tag sequences.

Each model examined in Section 7.2 is a vari-
ation on this paradigm. We tested a total of six
models. Following work in NER, we selected a
BiLSTM-CRF baseline (Huang et al., 2015; Ma
and Hovy, 2016; Lample et al., 2016). We also
tried exchanging the BiLSTM for a Transformer

(Vaswani et al., 2017) as an encoder layer.
We tried three embedding options. The first op-

tion was to learn embeddings from scratch. The
second option was to use frozen word2vec embed-
dings (Mikolov et al., 2013). We selected a 300-
dimensional embedding built from Latin data lem-
matized by CLTK’s LatinBackoffLemmatizer
(Johnson et al., 2021) trained by Burns et al. (2021).
The third option was to employ frozen embeddings
from a BERT model—namely, Latin BERT (Bam-
man and Burns, 2020) for the ASP dataset and Chi-
nese BERT with whole word masking (Cui et al.,
2020, 2021) for the PSE-I dataset.

For both the Transformer encoder and the BERT
embeddings, we applied WordPiece tokenization
(Wu et al., 2016) by reusing the tokenizer previ-
ously trained for Latin BERT (Bamman and Burns,
2020) with the tensor2tensor library (Vaswani
et al., 2018). We employed operations (termed
blending functions) to combine subword repre-
sentations into word representations. The choice
of blending function did not heavily impact our

Embedding {learned,word2vec,BERT}

Blender {take-first, sum,mean}

Encoder {BiLSTM,Transformer, none}

Linear

CRF

Figure 6: Generic Encoder-CRF architecture and per-
level options examined. Shapes roughly indicate rela-
tive changes in representation sizes.

results, so we defer discussion of them to Ap-
pendix D.3. For other models, we did not use
subwords, and no blending function was needed.

To reduce the average sequence length seen by
our models, each sequence presented is a section
rather than a whole document. For the ASP dataset,
each sermon’s division into sections was imposed
by later editors of the texts. Meanwhile, for the
PSE-I dataset, we split the data based on para-
graph divisions. When sections remain longer than
BERT’s 512-token limit, we split sections into 512-
token chunks and concatenate the output sequences
after the embedding layer. As noted in previous CR
work (Joshi et al., 2019), this approach is superior
to merging overlapping chunks.

We discuss other design choices in Appendix D.

7 Experiments

In this section, we describe our experiments (Sec-
tion 7.1 and present our results (Section 7.2).

7.1 Experimental design
For each dataset, we performed hyperparameter
searches over several model architecture and tag-
ging scheme combinations. We judged these as the
elements which would likely primarily govern task
performance. For the ASP dataset, we trained six
possible architectures described in Section 6.2 with
each of the sixteen tagging schemes described in
Section 6.1. Meanwhile, for the PSE-I dataset, we
ran the three BERT-based architectures with each
of the same sixteen tagging schemes. The hyperpa-
rameters for each trial were chosen using random
search (Bergstra and Bengio, 2012) described in
Appendix F. Eight trials per configuration were

trained for the ASP and PSE-I datasets, totaling
768 and 384 experiments, respectively.

Each trial’s model trained for up to 200 epochs
using Adam (Kingma and Ba, 2015) and gradient
clipping with an L2 norm of 1 (Pascanu et al., 2013).
We stopped training early if the model’s F1 score
did not improve for 25 epochs on the validation
set using the maximum branch-aware word overlap
(MBAWO) metric (defined in Appendix B).9 Each
trial was assessed on the optimization set. We de-
noted the trial with the highest MBAWO score on
this set per setting as that setting’s best run. We
evaluated each best run on the test set.

7.2 Results

To compare the performance across models, we
determined the best result for each model, as shown
in Table 3. “Best” is defined as the experiment
with the highest F1 score on the test set across
all attempted settings. We also highlight a few
factors which generally improved performance: the
embeddings, encoders, and tagsets selected.10

In terms of embeddings, BERT embeddings
vastly improved performance. As Table 5 depicts,
BERT-based models exceeded every other non-
BERT model by at least 0.2 F1 on the ASP dataset.
We attribute their superiority to the contextual rep-
resentations produced by BERT. This is supported
by the fact that both Burns et al.’s embeddings and
Latin BERT’s embeddings were mainly trained on
the same Internet Archive dataset (Bamman and
Crane, 2011; Bamman and Smith, 2012).

In terms of tagging schemes, we wanted to know
whether any schemes performed significantly better
than the others. We applied the Friedman ranked-
sums test (Friedman, 1937, 1940). Although this
test is usually used to compare multiple classifiers
across multiple datasets (Demšar, 2006), we in-
stead took results across a single dataset (ASP) and
sampling procedure (our hyperparameter search
process) and considered each collection of best
model F1 scores as a sample. Because the Fried-
man test is nonparametric, we circumvent issues
arising from the fact that model performance al-
ready causes F1 scores to differ heavily.

With ? < 0.05, we find the differences between
samples to be significant (? < 0.001). We then

9We opted for MBAWO instead of EPM because we were
concerned that the stricter EPM metric would overly penalize
incremental progress in capturing correct tokens.

10For an error analysis and a full catalogue of our results
and best model hyperparameters, see Appendices G to I.

Dataset Model Components Tagging Scheme Results

Embedding Encoder Tagset Link Type Precision Recall F1

ASP

Learned (Word) BiLSTM BIO Token 0.16 0.13 0.14
word2vec BiLSTM BIOMJE Branch 0.24 0.12 0.16

Learned (Subword) Transformer BIOMJ Token 0.06 0.07 0.07
Latin BERT – BIOMJ Token 0.51 0.33 0.40
Latin BERT BiLSTM BIOMJ Token 0.47 0.34 0.39
Latin BERT Transformer BIOME Branch 0.44 0.31 0.37

PSE-I
Chinese BERT – BIOM Branch 0.30 0.42 0.35
Chinese BERT BiLSTM BIOMJ Token 0.38 0.51 0.43
Chinese BERT Transformer BIOME Token 0.40 0.36 0.38

Table 3: Best test set results, rounded to the second decimal place, on our datasets according to the EPM metric
for each Encoder-CRF configuration. The best result in each column is written in boldface.

Tagset Link Avg. Rank (↓)

BIO Token 9.17
Branch 9.92

BIOE Token 9.83
Branch 12.75

BIOJ Token 11.83
Branch 11.08

BIOM Token 6.83
Branch 6.50

BIOJE Token 11.00
Branch 13.25

BIOME Token 9.17
Branch 4.67

BIOMJ Token 3.33
Branch 4.33

BIOMJE Token 5.50
Branch 6.83

Table 4: Average rank of each tagging scheme’s best
model for all architectures across the ASP test set. The
lowest (i.e., best) result is bolded.

used a post-hoc Nemenyi test (Nemenyi, 1963) via
the scikit-posthocs library (Terpilowski, 2019)
to determine which tagging scheme pairs achieve
significantly different results. With ? < 0.05, only
one pair of tagging schemes significantly differs:
BIOMJ-TD and BIOJE-BD—the best and worst
schemes, according to the average ranks of each
scheme’s F1 scores (as presented in Table 4). Given
our low sample count, we suspect that further sam-
ples might show the superiority of certain schemes.
With this in mind, we tentatively recommend any
M-based tagging schemes, especially in combina-
tion with either of the E or J tags, for use.

In terms of encoders, BiLSTMs generally out-
performed Transformers. Although non-BiLSTM
models achieved peak performance in Table 3, the
average performance by BiLSTMs was consistently
higher. Table 5 depicts this regardless of the type
of embedding used: each BiLSTM model performs

Embedding + Encoder F1 (ASP) F1 (PSE-I)

Learned (W) + BiLSTM 0.08 ± 0.03 –
word2vec + BiLSTM 0.08 ± 0.03 –
Learned (SW) + Transformer 0.02 ± 0.02 –
BERT 0.26 ± 0.07 0.24 ± 0.07
BERT + BiLSTM 0.32 ± 0.04 0.36 ± 0.04
BERT + Transformer 0.28 ± 0.05 0.30 ± 0.05

Table 5: Best test set result averages over each Encoder-
CRF configuration for EPM. “W” and “SW” stand for
“word” and “subword”, respectively. The BERT ver-
sion used corresponds to each dataset’s language.

on average better than its Transformer (or encoder-
less) variant. One possible reason for BiLSTMs’
superiority may be that the subtask of predicting
distance-based links benefits from LSTMs’ ability
to count (Weiss et al., 2018; Suzgun et al., 2019b,a).

8 Conclusions and Future Work

In this paper, we introduced the task of rhetorical
parallelism detection. We described two datasets,
an evaluation framework, and several baseline mod-
els for the task. Our baselines achieved fairly good
performance, and we found that BERT embeddings,
a BiLSTM-based encoder, and an M-inclusive tag-
ging scheme were valuable modeling components.

We identify a few directions for future work. The
models described here have a closed tagset, so they
cannot predict links for distances not seen in the
training data; modeling links in other ways might
be more effective. Our models only predict flat
parallelisms; approaches for nested NER (Finkel
and Manning, 2009; Wang et al., 2020) may be
a viable direction for extending the Encoder-CRF
paradigm toward this end. Finally, applying this
work’s methods to detect grammatical parallelism
might enhance tasks like syntactic parsing, auto-
mated essay evaluation, or disfluency detection.

9 Limitations

This work introduces a novel task in the form of
rhetorical parallelism detection (RPD). Because
it is novel, it is innately exploratory. Although it
establishes approaches for building and organiz-
ing datasets, for evaluating performance at various
granularities, and for constructing models to cap-
ture parallel structure, it does not do all these per-
fectly. Thus, it should not be the last word on the
topic. In the following paragraphs, we highlight
elements of this work which could be improved.

First, this work puts forth two datasets for RPD:
the Augustinian Sermon Parallelism (ASP) and
the Paibi Student Essay (PSE) (Song et al., 2016)
datasets. We annotated both datasets—the former
from scratch and the latter on the basis of prior
annotations. As is noted in Appendix C, our anno-
tation scheme was not perfect.

• For the ASP dataset, we achieved a 0.4124
EPM F1 score (although higher branch-based
and word-based scores) between our two an-
notators on bootstrapping experiments. Our
scores indicate moderate agreement, but the
meaningful disagreement implies that our
guidelines could be sharpened.

• For the PSE-I dataset—the version of the PSE
dataset including our annotations—we did not
perform an inter-annotator agreement study.
We did not consider it necessary because we
were already overlapping with prior annota-
tors’ conclusions, but one could argue that
the sentence- and span-level annotation tasks
differ enough to warrant separate studies.

Second, regarding the ASP dataset, we acknowl-
edge that the use of Latin as a foundation for this
task limits its immediate applicability to modern
NLP contexts. We believe that the ASP dataset
is readily applicable to tasks such as authorship
attribution and authorship authentication, which
both have precedent in Latin (Forstall and Scheirer,
2010; Kestemont et al., 2016; Kabala, 2020; Cor-
bara et al., 2023) and frequently employ stylistic
features in their approaches. Moreover, we be-
lieve that ASP can aid distant reading approaches
(Moretti, 2000; Jockers, 2013) in permitting the an-
notation of large corpora with stylistic annotations.

On the other hand, the inclusion of the PSE
dataset for RPD provides a modern language for
which this task is available. Moreover, late into
this work, we became aware of a vein of literature

that could either add to the available Chinese data
based on an interest in parallelism detection as a
sentence-level or clause-level subtask (Xu et al.,
2021; Zhu et al., 2022) as well as work performing
narrower, more restricted versions of word-level
parallelism detection (Gawryjolek, 2009) or chias-
mus detection (Dubremetz and Nivre, 2015, 2018),
in English. Future work can potentially expand
RPD to the datasets provided by these works.

Third, some modeling decisions were made to
suit the needs of our problem and provide base-
lines without exploring the larger space of pos-
sibilities. Namely, as described in Section 6.2
and Appendix D.3, we use a blending function to
combine subwords into words so that the appropri-
ate number of tags would be produced. However,
we could have also eschewed the CRF altogether
and attempted to follow BERT in selecting every
word’s first tag as its representative tag (Devlin
et al., 2019). Future work could further and more
deeply investigate the search space of model archi-
tectures to improve performance on this task.

Acknowledgements

We thank Wei Song for working with us to not only
provide data used in previous work but also to pre-
pare it for public release. We thank Meng Jiang
and Juliana, Joshua, and Joseph Chiang for refining
the annotations on the PSE dataset. We thank John
Lalor for his suggestions for our inter-annotator
agreement study. Finally, we also thank our anony-
mous reviewers and Brian DuSell, Darcey Riley,
Ken Sible, Aarohi Srivastava, and Chihiro Taguchi
for their comments and suggestions.

This research was supported in part by an FRSP
grant from the University of Notre Dame.

References
Tosin Adewumi, Roshanak Vadoodi, Aparajita Tripa-

thy, Konstantina Nikolaido, Foteini Liwicki, and
Marcus Liwicki. 2022. Potential idiomatic expres-
sion (PIE)-English: Corpus for classes of idioms. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 689–696, Mar-
seille, France. European Language Resources Asso-
ciation.

Mohammed Alliheedi. 2012. Multi-document Summa-
rization System Using Rhetorical Information. Mas-
ter’s thesis, University of Waterloo, Waterloo, On-
tario, Canada.

Ron Artstein and Massimo Poesio. 2008. Survey ar-
ticle: Inter-coder agreement for computational lin-

https://aclanthology.org/2022.lrec-1.72
https://aclanthology.org/2022.lrec-1.72
https://uwspace.uwaterloo.ca/handle/10012/6820
https://uwspace.uwaterloo.ca/handle/10012/6820
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1162/coli.07-034-R2

guistics. Computational Linguistics, 34(4):555–
596.

Saint Augustine of Hippo. 1995. De doctrina Chris-
tiana. Oxford Early Christian texts. Clarendon, Ox-
ford.

Saint Augustine of Hippo. 2000a. Sermones: Part 1,
volume 12 of Saint Augustine: Opera Omnia - Cor-
pus Augustinianum Gissense. Electronic Edition. In-
teLex Corp., Charlottesville, Virginia, U.S.A.

Saint Augustine of Hippo. 2000b. Sermones: Part 2,
volume 13 of Saint Augustine: Opera Omnia - Cor-
pus Augustinianum Gissense. Electronic Edition. In-
teLex Corp., Charlottesville, Virginia, U.S.A.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. arXiv:1607.06450.

David Bamman and Patrick J. Burns. 2020. Latin
BERT: A contextual language model for classical
philology. ArXiv:2009.10053.

David Bamman and Gregory Crane. 2011. Measuring
historical word sense variation. In Proceedings of
the 11th Annual International ACM/IEEE Joint Con-
ference on Digital Libraries, JCDL ’11, pages 1–10,
New York, NY, USA. Association for Computing
Machinery.

David Bamman and David Smith. 2012. Extracting
two thousand years of Latin from a million book li-
brary. Journal on Computing and Cultural Heritage,
5(1).

Beata Beigman Klebanov and Nitin Madnani. 2020.
Automated evaluation of writing – 50 years and
counting. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7796–7810, Online. Association for Computa-
tional Linguistics.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305.

Patrick J. Burns, James A. Brofos, Kyle Li, Pramit
Chaudhuri, and Joseph P. Dexter. 2021. Profiling
of intertextuality in Latin literature using word em-
beddings. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4900–4907, Online. Association for
Computational Linguistics.

Jean Carletta. 1996. Assessing agreement on classifica-
tion tasks: The kappa statistic. Computational Lin-
guistics, 22(2):249–254.

Noe Casas, Marta R. Costa-jussà, and José A. R. Fonol-
losa. 2020. Combining subword representations into
word-level representations in the Transformer archi-
tecture. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
Student Research Workshop, pages 66–71, Online.
Association for Computational Linguistics.

Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. LTP:
A Chinese language technology platform. In Coling
2010: Demonstrations, pages 13–16, Beijing, China.
Coling 2010 Organizing Committee.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Stanley F. Chen and Joshua Goodman. 1998. An em-
pirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard
University, Cambridge, Massachusetts.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Silvia Corbara, Alejandro Moreo, and Fabrizio Sebas-
tiani. 2023. Syllabic quantity patterns as rhythmic
features for Latin authorship attribution. Journal of
the Association for Information Science and Technol-
ogy, 74(1):128–141.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for Chinese natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, pages 657–668, Online. Association for
Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for Chinese BERT. IEEE Transactions on
Audio, Speech and Language Processing.

Yange Dai, Wei Song, Xianjun Liu, Lizhen Liu, and
Xinlei Zhao. 2018. Recognition of parallelism sen-
tence based on recurrent neural network. In 2018
IEEE 9th International Conference on Software En-
gineering and Service Science (ICSESS), pages 148–
151.

Janez Demšar. 2006. Statistical comparisons of clas-
sifiers over multiple data sets. Journal of Machine
Learning Research, 7(1):1–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.48550/ARXIV.1607.06450
http://arxiv.org/abs/2009.10053
http://arxiv.org/abs/2009.10053
http://arxiv.org/abs/2009.10053
https://doi.org/10.1145/1998076.1998078
https://doi.org/10.1145/1998076.1998078
https://doi.org/10.1145/2160165.2160167
https://doi.org/10.1145/2160165.2160167
https://doi.org/10.1145/2160165.2160167
https://doi.org/10.18653/v1/2020.acl-main.697
https://doi.org/10.18653/v1/2020.acl-main.697
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://doi.org/10.18653/v1/2021.naacl-main.389
https://doi.org/10.18653/v1/2021.naacl-main.389
https://doi.org/10.18653/v1/2021.naacl-main.389
https://aclanthology.org/J96-2004
https://aclanthology.org/J96-2004
https://doi.org/10.18653/v1/2020.acl-srw.10
https://doi.org/10.18653/v1/2020.acl-srw.10
https://doi.org/10.18653/v1/2020.acl-srw.10
https://aclanthology.org/C10-3004
https://aclanthology.org/C10-3004
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://aclanthology.org/P96-1041
https://aclanthology.org/P96-1041
https://aclanthology.org/P96-1041
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1002/asi.24660
https://doi.org/10.1002/asi.24660
https://aclanthology.org/2020.findings-emnlp.58/
https://aclanthology.org/2020.findings-emnlp.58/
https://aclanthology.org/2020.findings-emnlp.58/
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/ICSESS.2018.8663734
https://doi.org/10.1109/ICSESS.2018.8663734
http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Marie Dubremetz and Joakim Nivre. 2015. Rhetori-
cal figure detection: The case of chiasmus. In Pro-
ceedings of the Fourth Workshop on Computational
Linguistics for Literature, pages 23–31, Denver, Col-
orado, USA. Association for Computational Linguis-
tics.

Marie Dubremetz and Joakim Nivre. 2018. Rhetorical
figure detection: Chiasmus, epanaphora, epiphora.
Frontiers in Digital Humanities, 5.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 141–150, Singa-
pore. Association for Computational Linguistics.

Christopher Forstall and Walter Scheirer. 2010. Fea-
tures from frequency: Authorship and stylistic anal-
ysis using repetitive sound. Journal of the Chicago
Colloquium on Digital Humanities and Computer
Science, 1(2).

Milton Friedman. 1937. The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Associ-
ation, 32(200):675–701.

Milton Friedman. 1940. A comparison of alternative
tests of significance for the problem of < rankings.
The Annals of Mathematical Statistics, 11(1):86–92.

Akansha Gautam and Koteswar Rao Jerripothula. 2020.
SGG: Spinbot, Grammarly and GloVe based fake
news detection. In 2020 IEEE Sixth International
Conference on Multimedia Big Data (BigMM),
pages 174–182.

Jakub Jan Gawryjolek. 2009. Automated annotation
and visualization of rhetorical figures. Master’s
thesis, University of Waterloo, Waterloo, Ontario,
Canada.

Kallirroi Georgila. 2009. Using integer linear program-
ming for detecting speech disfluencies. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 109–112,
Boulder, Colorado. Association for Computational
Linguistics.

Jiefu Gong, Xiao Hu, Wei Song, Ruiji Fu, Zhichao
Sheng, Bo Zhu, Shijin Wang, and Ting Liu. 2021.
IFlyEA: A Chinese essay assessment system with
automated rating, review generation, and recommen-
dation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 240–248, Online. Association for Computa-
tional Linguistics.

Marie Guégan and Nicolas Hernandez. 2006. Recog-
nizing textual parallelisms with edit distance and

similarity degree. In 11th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 281–288, Trento, Italy. Associa-
tion for Computational Linguistics.

Robert Guthrie. 2017. DeepLearningForNLPInPy-
torch: An IPython Notebook tutorial on deep learn-
ing for natural language processing, including struc-
ture prediction.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian er-
ror linear units (GELUs). arXiv:1606.08415.

Julian Hough and David Schlangen. 2015. Recurrent
neural networks for incremental disfluency detec-
tion. In Proc. Interspeech 2015, pages 849–853.

George Hripcsak and Adam S. Rothschild. 2005.
Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical
Informatics Association : JAMIA, 12(3):296–298.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Matthew Lee Jockers. 2013. Macroanalysis: Digital
Methods and Literary History. Topics in the Digital
Humanities. University of Illinois Press, Urbana.

Kyle P. Johnson, Patrick J. Burns, John Stewart, Todd
Cook, Clément Besnier, and William J. B. Mattingly.
2021. The Classical Language Toolkit: An NLP
framework for pre-modern languages. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing: System Demonstrations, pages 20–29, On-
line. Association for Computational Linguistics.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Jakub Kabala. 2020. Computational authorship attri-
bution in medieval Latin corpora: The case of the
Monk of Lido (ca. 1101–08) and Gallus Anonymous
(ca. 1113–17). Language Resources and Evaluation,
54(1):25–56.

Zixuan Ke and Vincent Ng. 2019. Automated essay
scoring: A survey of the state of the art. In Proceed-
ings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, pages
6300–6308. International Joint Conferences on Ar-
tificial Intelligence Organization.

Mike Kestemont, Justin Stover, Moshe Koppel, Folgert
Karsdorp, and Walter Daelemans. 2016. Authenti-
cating the writings of Julius Caesar. Expert Systems
with Applications, 63:86–96.

https://doi.org/10.3115/v1/W15-0703
https://doi.org/10.3115/v1/W15-0703
https://doi.org/10.3389/fdigh.2018.00010
https://doi.org/10.3389/fdigh.2018.00010
https://aclanthology.org/D09-1015
https://doi.org/10.6082/M1TM789G
https://doi.org/10.6082/M1TM789G
https://doi.org/10.6082/M1TM789G
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1109/BigMM50055.2020.00033
https://doi.org/10.1109/BigMM50055.2020.00033
https://uwspace.uwaterloo.ca/handle/10012/4426
https://uwspace.uwaterloo.ca/handle/10012/4426
https://aclanthology.org/N09-2028
https://aclanthology.org/N09-2028
https://doi.org/10.18653/v1/2021.acl-demo.29
https://doi.org/10.18653/v1/2021.acl-demo.29
https://doi.org/10.18653/v1/2021.acl-demo.29
https://aclanthology.org/E06-1036
https://aclanthology.org/E06-1036
https://aclanthology.org/E06-1036
https://github.com/rguthrie3/DeepLearningForNLPInPytorch
https://github.com/rguthrie3/DeepLearningForNLPInPytorch
https://github.com/rguthrie3/DeepLearningForNLPInPytorch
https://github.com/rguthrie3/DeepLearningForNLPInPytorch
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.21437/Interspeech.2015-264
https://doi.org/10.1197/jamia.M1733
https://doi.org/10.1197/jamia.M1733
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/2021.acl-demo.3
https://doi.org/10.18653/v1/2021.acl-demo.3
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.1007/s10579-018-9424-0
https://doi.org/10.1007/s10579-018-9424-0
https://doi.org/10.1007/s10579-018-9424-0
https://doi.org/10.1007/s10579-018-9424-0
https://doi.org/10.24963/ijcai.2019/879
https://doi.org/10.24963/ijcai.2019/879
https://doi.org/10.1016/j.eswa.2016.06.029
https://doi.org/10.1016/j.eswa.2016.06.029

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Klaus Krippendorff. 2019. Reliability, fourth edi-
tion, chapter 12. SAGE Publications, Inc., Thousand
Oaks.

H. W. Kuhn. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quar-
terly, 2(1-2):83–97.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. Departmental Papers (CIS).

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159–174.

Guanghui Liu, Lijun Fu, Bo Yu, and Li Cui. 2022. Au-
tomatic recognition of parallel sentence based on
sentences-interaction CNN and its application. In
2022 7th International Conference on Computer and
Communication Systems (ICCCS), pages 245–250.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Marie W. Meteer and Ann A. Taylor. 1995. Dysfluency
annotation stylebook for the Switchboard corpus.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Franco Moretti. 2000. Conjectures on world literature.
New Left Review, 1(1):54–68.

James Munkres. 1957. Algorithms for the assignment
and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32–38.

Peter Bjorn Nemenyi. 1963. Distribution-Free Multi-
ple Comparisons. Ph.D. thesis, Princeton Univer-
sity, Princeton, New Jersey, USA.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech & Lan-
guage, 8(1):1–38.

Toan Q. Nguyen and Julian Salazar. 2019. Transform-
ers without tears: Improving the normalization of
self-attention. In Proceedings of the 16th Interna-
tional Conference on Spoken Language Translation,
Hong Kong. Association for Computational Linguis-
tics.

Mari Ostendorf and Sangyun Hahn. 2013. A sequential
repetition model for improved disfluency detection.
In Proc. Interspeech 2013, pages 2624–2628.

Ellis B. Page. 1966. The imminence of . . . grad-
ing essays by computer. The Phi Delta Kappan,
47(5):238–243.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages
1310–1318, Atlanta, Georgia, USA. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
Torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora, pages 82–94.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348, Copenhagen, Denmark. Association for
Computational Linguistics.

Elizabeth Shriberg. 1994. Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California, Berkeley, Berkeley, California, USA.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.4135/9781071878781
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1109/ICCCS55155.2022.9846217
https://doi.org/10.1109/ICCCS55155.2022.9846217
https://doi.org/10.1109/ICCCS55155.2022.9846217
https://aclanthology.org/H05-1004/
https://aclanthology.org/H05-1004/
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://www.cs.brandeis.edu/~cs140b/CS140b_docs/DysfluencyGuide.pdf
https://www.cs.brandeis.edu/~cs140b/CS140b_docs/DysfluencyGuide.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://newleftreview.org/issues/ii1/articles/franco-moretti-conjectures-on-world-literature
https://doi.org/10.1137/0105003
https://doi.org/10.1137/0105003
https://www.proquest.com/openview/c1f3e8829e8351e9c2a1c5e51778c6cf/
https://www.proquest.com/openview/c1f3e8829e8351e9c2a1c5e51778c6cf/
https://doi.org/10.1006/csla.1994.1001
https://doi.org/10.1006/csla.1994.1001
https://aclanthology.org/2019.iwslt-1.17/
https://aclanthology.org/2019.iwslt-1.17/
https://aclanthology.org/2019.iwslt-1.17/
https://doi.org/10.21437/Interspeech.2013-604
https://doi.org/10.21437/Interspeech.2013-604
https://www.jstor.org/stable/20371545
https://www.jstor.org/stable/20371545
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://aclanthology.org/W95-0107/
https://aclanthology.org/W95-0107/
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035

Wei Song, Tong Liu, Ruiji Fu, Lizhen Liu, Hanshi
Wang, and Ting Liu. 2016. Learning to identify
sentence parallelism in student essays. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 794–803, Osaka, Japan. The COLING
2016 Organizing Committee.

Fábio Souza, Rodrigo Frassetto Nogueira, and Roberto
de Alencar Lotufo. 2019. Portuguese named entity
recognition using BERT-CRF. arXiv:1909.10649.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions Session at EACL 2012, Avignon, France. Asso-
ciation for Computational Linguistics.

Gaius Suetonius Tranquillus. 1993. De Vita Caesarum
Libri VIII, volume 1 of Opera. B. G. Teubner.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019a. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Mirac Suzgun, Yonatan Belinkov, and Stuart M.
Shieber. 2019b. On evaluating the generalization of
LSTM models in formal languages. In Proceedings
of the Society for Computation in Linguistics (SCiL)
2019, pages 277–286.

Chenhao Tan, Hao Peng, and Noah A. Smith. 2018.
“You are no Jack Kennedy”: On media selection of
highlights from presidential debates. In Proceedings
of the 2018 World Wide Web Conference, WWW
’18, pages 945–954, Republic and Canton of Geneva,
CHE. International World Wide Web Conferences
Steering Committee.

Maksim Terpilowski. 2019. scikit-posthocs: Pairwise
multiple comparison tests in Python. The Journal of
Open Source Software, 4(36):1169.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2Tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,

Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental algorithms for scien-
tific computing in Python. Nature Methods, 17:261–
272.

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020.
Pyramid: A layered model for nested named en-
tity recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5918–5928, Online. Association for
Computational Linguistics.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep Transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite pre-
cision RNNs for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 740–745, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv:1609.08144.

Guowei Xu, Wenbiao Ding, Weiping Fu, Zhongqin Wu,
and Zitao Liu. 2021. Robust learning for text classi-
fication with multi-source noise simulation and hard
example mining. In Machine Learning and Knowl-
edge Discovery in Databases. Applied Data Science
Track, pages 285–301, Cham. Springer International
Publishing.

Vicky Zayats and Mari Ostendorf. 2019. Giving atten-
tion to the unexpected: Using prosody innovations
in disfluency detection. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 86–95, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency detection using a bidi-

https://aclanthology.org/C16-1076/
https://aclanthology.org/C16-1076/
http://arxiv.org/abs/1909.10649
http://arxiv.org/abs/1909.10649
https://aclanthology.org/E12-2021/
https://aclanthology.org/E12-2021/
https://doi.org/10.1515/9783110963809
https://doi.org/10.1515/9783110963809
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.7275/s02b-4d91
https://doi.org/10.7275/s02b-4d91
https://doi.org/10.1145/3178876.3186142
https://doi.org/10.1145/3178876.3186142
https://doi.org/10.21105/joss.01169
https://doi.org/10.21105/joss.01169
https://aclanthology.org/W18-1819/
https://aclanthology.org/W18-1819/
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_566.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_566.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_566.pdf
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.21437/Interspeech.2016-1247

rectional LSTM. In Proc. Interspeech 2016, pages
2523–2527.

Victoria Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2014. Multi-domain disfluency and repair
detection. In Proc. Interspeech 2014, pages 2907–
2911.

Dawei Zhu, Qiusi Zhan, Zhejian Zhou, Yifan Song,
Jiebin Zhang, and Sujian Li. 2022. ConFiguRe: Ex-
ploring discourse-level Chinese figures of speech. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3374–3385,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

A Annotation Procedures

In Section 2, we described two major guidelines
which directed our study of parallel structures.
Here, we list the specific criteria which were used
by our annotators to locate parallelisms. Moreover,
we describe our annotation scheme in more detail.
We begin by enumerating general criteria in Ap-
pendix A.1 before discussing specific applications
of these criteria in Appendix A.2.

A.1 General Guidelines

In general, branches of parallelisms were tagged
from the first identical (or similar) word to the last
identical (or similar) word; as such, each branch
was maximally represented. Branches were de-
tected, paired, and combined based upon whether
they exhibited at least two of these criteria:

• They contained identical number of words (or
were within approximately two words of one
another).

• They had identical syntactic structure.

• They had two or more pairs of words of an
identical grammatical form in identical order.

• They had two or more pairs of words that
are lexically identical, are synonyms, are cog-
nates, or are antonyms.

• They had at least two words that have a pho-
netically similar ending (e.g., rhyme).

• They were a short distance from one another
(i.e., they had few intervening words). The ac-
ceptable margin was again around two words.

A.2 Specific Applications

As mentioned earlier, we used the BRAT annotation
tool (Stenetorp et al., 2012) to form our datasets.

For the ASP dataset, we developed an annotation
scheme consisting of BRAT’s entities and relation-
ships. An entity could be a ParallelArm or one
of ChiasmA and ChiasmB. A relationship could be
Parallel, linking two ParallelArm entities. This
relationship indicates a synchystic parallel struc-
ture. A relationship could also be Chiasm, linking
a ChiasmA and a ChiasmB and labeling a chiastic
structure. Our two annotators, both for the initial
data collection and the inter-annotator agreement
study (see Appendix C), could nest annotations;
however, they could not overlap them.

Meanwhile, for the PSE-I dataset, we made a
few changes. Because we were mostly interested
in annotating sentences that were already marked as
parallel in the dataset, we did away with the distinc-
tion between synchystic and chiastic parallelisms.
Instead, all branches of a parallelism were tagged
as Branch entities and connected with Parallel
relationships. Annotators were also allowed to use
a dummy entity type to tag sentences if they were
deemed not to be parallel, but this was never done.
The five annotators were told to focus on marked
sentences in BRAT, but they were allowed to con-
nect these sentences to unmarked sentences in the
same paragraph if they noticed a parallelism.

B Additional Metrics

In Section 5, we constructed a framework for defin-
ing parallelism-related metrics. We defined one
such metric for exact parallelism matches between
parallelisms. However, the score and size func-
tions allow for finer granularity. Below, we de-
fine three additional metrics which examine paral-
lelisms in terms of their branches, their words-per-
branch, and their words altogether.

First, we describe the maximum parallel branch
match (MPBM) metric. MPBM focuses on
branches. It retains a sense of parallel structure
by requiring that at least two branches are shared
between the hypothesis and reference parallelisms
to produce any score. The functions of MPBM are:

size(?) = |? |
score(?1, ?2) = hasParBranch(?1, ?2) · |?1 ∩ ?2 |

where

hasParBranch(@, A) = I[|@ ∩ A | ≥ 2]

Next, we proceed to metrics which examine
parallelisms in terms of their words (which we

https://doi.org/10.21437/Interspeech.2016-1247
https://doi.org/10.21437/Interspeech.2014-603
https://doi.org/10.21437/Interspeech.2014-603
https://aclanthology.org/2022.coling-1.298
https://aclanthology.org/2022.coling-1.298

use interchangeably with tokens below). Let
? be a parallelism. We define words(?) =⋃
(8, 9) ∈?{8, . . . , 9} as the set of all token positions

in those branches; this formulation dissolves dis-
tinctions between branches for a parallelism. We
also define branchedWords(?) = {{8, . . . , 9} :
(8, 9) ∈ ?} as the set of all token positions in
branches divided up into a set per branch. This
formulation preserves branch-level distinctions.

The first word-level metric is the maximum
branch-aware word overlap (MBAWO) metric.
The objective of this metric is similar to MPBM:
if at least two distinct branches are matched in a
parallelism, then such a matching should obtain
some score. However, this metric is less strict
than MPBM in that only words from two distinct
branches need to match. In short, if at least two
branches in a hypothesis parallelism have words
that match with at least two branches in a reference
parallelism, then the match merits a nonzero score
based on the number of tokens matched.

To compute this metric, we defineW(?1, ?2) =
branchedWords(?1) ×branchedWords(?2); that is,
W pairs all branches of one parallelism with all
branches of another parallelism in terms of their
word indices. Then we define score and size as:

size(?) = |words(?) |
score(?1, ?2) = max

, ∈W(?1, ?2)
hasParWord(,) ·∑

(?1, ?2) ∈,
|?1 ∩ ?2 |

where

hasParWord(,) = I[wordMatches(,) ≥ 2]
wordMatches(,) =

∑
(?1, ?2) ∈,

I[|?1 ∩ ?2 | > 0]

MBAWO calculates an internal maximally-
weighted bipartite matching for token overlap; how-
ever, it only values those matches which correspond
to parallel structure in the reference data. It en-
forces that through the function wordMatches.

Finally, we define the maximum word overlap
(MWO) metric. MWO is at the opposite extreme
of EPM; it does not necessarily control for the
presence of parallel structure. Even so, its ability
to measure a model’s capacity to find any parallel
words may be useful. Its functions are as follows:

size(?) = |words(?) |
score(?1, ?2) = |words(?1) ∩ words(?2) |

C Inter-Annotator Agreement Study

To provide some measure of the quality of our data,
we performed an inter-annotator agreement study
on the ASP dataset. Due to constraints on time and
expertise, we recruited our third author, an experi-
enced classicist and Latin teacher, to revisit eight
sermons using our annotation scheme. To address
the limited annotated data, we computed a boot-
strapped estimate for agreement across the whole
dataset. After obtaining an initial computation of
inter-annotator agreement, we ran 1,000 trials to
obtain a 95% confidence interval for our agreement
scores. The number of items sampled was equiva-
lent to the total number of matchings made in the
initial computation.

Because the space of possible spans and links be-
tween spans is prohibitively large, we could not use
more traditional inter-annotator agreement metrics
such as Cohen’s ^ (Cohen, 1960) or Krippendorff’s
U (Krippendorff, 2019). Instead, we used our own
metrics as defined in Section 5 and Appendix B.
However, following the conclusions of Hripcsak
and Rothschild that the F1 measure converges to
^ as the number of negative pairs grows increas-
ingly large, we can treat our F1 scores in a similar
manner to chance-corrected agreement statistics.

As a final preprocessing step before matching
annotations, we corrected them with two strategies
to reduce noise. We felt that these strategies were
warranted after discussion unearthed two vague
points in our guidelines. We first describe our is-
sues with the guidelines below, and then we clarify
the annotation cleaning done afterward.

1. Conjunctions: It was unclear whether con-
junctions meaningfully contributed to a par-
allelism. For some parallelisms, they may
have been syntactically necessary—but did
that mean that they should be part of the paral-
lelism? We decided that conjunctions should
be included if every branch of the parallelism
has one; otherwise, they should be omitted.
This allows polysyndeton to be recognized
while avoiding the requisite but incidental con-
nections created by some syntactic structure.

2. Interlocking Parallelisms: Second, it was
difficult to determine the best way to parti-
tion parallel structure into branches. This was
especially the case with longer parallelisms
that involved multiple clauses. Take Fig. 7

Scoring Object Actual F1 Sample Mean and Deviation Confidence Interval

Parallelism 0.4615 0.4124 ± 0.0303 [0.4088, 0.4160]
Branch 0.5084 0.5080 ± 0.0310 [0.5043, 0.5117]
Branched Words 0.5906 0.5973 ± 0.0322 [0.5935, 0.6012]
Words 0.6136 0.6130 ± 0.0312 [0.6092, 0.6167]

Table 6: Aggregated actual and sample inter-annotator agreement scores. All values are rounded to the fourth
decimal place and range between 0 and 1. Higher is better for the actual F1 and the sample mean; lower is better
for the standard deviation. Smaller confidence intervals indicate greater stability of our estimate.

Latin inanis auro, plenus deo; inanis omni transitoria facultate, plenus sui domini uoluntate.
English [he who] lacks gold, [is] full of God; [he who] lacks every transient supply, [is] full of the Lord’s own favor.

Interpretation 1

Stratum 1 P1,1 P1,2 P1,3 P1,4
Stratum 2 – – – –

Interpretation 2

Stratum 1 P1,1 P1,2
Stratum 2 P2,1 P2,2 P3,1 P3,2

Interpretation 3

Stratum 1 P1,1 P1,2
Stratum 2 – – – –

Figure 7: Selection of possible interpretations of parallel structure of a passage from Augustine’s Sermones (Ser-
mon 177, Section 4). Clauses are aligned for the Latin and English at the top of the table. Each subsequent section
of the table relays an interpretation of parallel structure; each P8, 9 indicates branch 9 of parallelism 8.

as an example. Without clear rules, there are
multiple ways to produce parallel structure:

• Interpretation 1 considers each clause its
own branch.

• Interpretation 2 considers each pair of
clauses, which juxtapose inanis (“with-
out, lacking, empty”) and plenus (“filled,
full”), as a single parallelism; moreover,
it also recognizes the similar syntactic
relationships in the individual clauses.

• Interpretation 3 only annotates the first
stratum of the prior interpretation.

Ultimately, we ruled that the third interpre-
tation was best. It maximally captured the
parallel structure in these clauses. Although it
is true that each pair of clauses has its own re-
lationships (e.g., same number of words, same
syntactic structure), these relationships also
contribute to the larger structure they are con-
tained within, as each inanis and plenus takes
a noun of the same case (ablative) as its object.
Thus, these connections are still captured in
the third interpretation. We only advise differ-

ing from a maximal interpretation if the paral-
lelisms intentionally use different features.

To address these issues in our original annota-
tions, we automatically altered the annotations on
two bases. First, if all branches of a parallelism
were preceded by a conjunction, then conjunctions
were included in all branches; otherwise, no con-
junctions were permitted, and any present were re-
moved from annotations. Second, we collapsed in-
terlocking parallelisms into larger branches if they
were adjacent. If these larger branches were part of
a nested parallelism, and such branches produced a
parallelism on an earlier stratum, we removed these
larger branches entirely. Although these alterations
did cause gains in annotation agreement, they were
all between roughly 0.02 to 0.03 F1.

We present our inter-annotator agreement results
in Table 6. Across the board, these scores fall below
traditional standards (i.e., above 0.67 at the very
least) for good chance-corrected reliability in con-
tent analysis (Carletta, 1996). However, as noted
by Artstein and Poesio, acceptable inter-annotator
agreement values remain disputed; the earlier work
by Landis and Koch denotes the range between
0.4 and 0.6 as moderate agreement and the range

between 0.6 and 0.8 as substantial agreement.
Regardless of the exact standard that we follow,

we do believe that the disagreement displayed by
this inter-annotator agreement study is meaningful
and in part due to some vagueness in our original
guidelines. We have already updated our guidelines
to provide greater specifications for future annota-
tors, and we are currently working on improving
our data with these guidelines. We hope to release
an enhanced version of our dataset in future work.

D Model Idiosyncrasies

In Section 6.2, we go over our general Encoder-
CRF model architecture, and we describe some
of the major components of our models. Due to
space considerations, some details were omitted
from that discussion. We discuss such details here.

D.1 Training <UNK> in BiLSTM-CRFs

In Encoder-CRF models which apply a word-level
vocabulary, one necessary issue concerns the han-
dling of unknown words. Usually, such models
maintain an <UNK> token for such cases. However,
if the <UNK> token is not seen during training, the
model will not know how to use it and may confuse
it with other tokens seen during training.

Various strategies have been employed to ad-
dress this problem. Some decide that all words seen
less than : times, where : is some preset value, be-
come <UNK> tokens (Reimers and Gurevych, 2017).
Others select singletons—words which only appear
once in the training data—and alter them to become
<UNK> during training with a predetermined fixed
probability (Lample et al., 2016). We follow the
latter strategy, but we augment it so that we can
adapt the probability to the dataset at hand and can
avoid choosing an arbitrary value.

We propose a singleton replacement probability
analogous to Kneser-Ney smoothing (Ney et al.,
1994). We compute the frequency of each type in
the dataset. Then, we tally the number of types
which occur exactly once, =1, and the number of
types which occur exactly twice, =2. Here, we use
notation from previous work where = represents
the number of word types and the subscripts repre-
sent a conditional frequency on that count (Chen
and Goodman, 1998). Finally, for the singleton
replacement probability ?A , we use the equation:

?A =
=1

=1 + 2=2
(1)

The Kneser-Ney replacement probability for the
ASP dataset, given the current data splits, is ap-
proximately 0.6529.

D.2 Transformer Modifications

We apply the Transformer encoder in some of our
models with a slight change from the usual imple-
mentation. In line with previous work which sees
minor improvements in model performance (Chen
et al., 2018; Wang et al., 2019; Nguyen and Salazar,
2019), we swap the traditional order of layer nor-
malization and skip connections. Applying the
notation of Nguyen and Salazar, we use PreNorm
in the incorporation of the residual connection:

x;+1 = LayerNorm(x; + �; (x;))

where ; is the layer’s index, � represents the layer
itself, and LayerNorm represents the layer normal-
ization operation (Ba et al., 2016).

D.3 Subword Blending

As previously mentioned, we use WordPiece to-
kenization with our models which either have a
Transformer encoder or Latin BERT embeddings.
Using subword-level tokens presents an issue for
a word-level tagging problem: in what way should
the model process subwords to generate word-level
tags? The original BERT paper, which tackles
NER, does not use a CRF and instead lets the tag
classification of each word’s first subword repre-
sent the whole word (Devlin et al., 2019).

We take inspiration from BERT’s methods and
others’ approaches to handling subword-to-word
relationships (Souza et al., 2019; Casas et al., 2020)
by putting a blending layer into the architecture. As
mentioned in Section 6.2, the blending layer’s ob-
jective is to combine subword-level encodings into
word-level encodings. We define three variations:

• Take-First: In this approach, we mimic
BERT and select the first subword of each
word as its representative. (Note that, when
convenient, we abbreviate this variant as “tf”.)

• Mean: In this approach, we take the mean of
all subword encodings per word. This is akin
to a subword-aware mean pooling layer.

• Sum: In this approach, we sum all subword
encodings for a word to represent it. This rep-
resentation may allow for a model to recog-
nize the accumulation of multiple subwords.

Dataset Split Optimal Ratio Inner Tag Ratio Outer Tag Ratio

ASP

Training 0.7 0.7021 0.7020
Validation 0.1 0.0982 0.1008

Optimization 0.1 0.0946 0.0980
Test 0.1 0.1051 0.0992

PSE-I

Training 0.7 0.6947 0.7007
Validation 0.1 0.1026 0.0998

Optimization 0.1 0.1005 0.0997
Test 0.1 0.1022 0.0998

Table 7: Data split ratio results. All ratios are rounded to the fourth decimal place.

Dataset Compared Splits Inner ?-Value Inner Statistic Outer ?-Value Outer Statistic

ASP

Training Validation 0.5797 0.5722 0.6284 0.4990
Training Optimization 0.8347 −0.2162 0.7557 −0.3236
Training Test 0.7210 0.3668 0.4727 0.7405

Validation Optimization 0.5705 −0.5816 0.5631 −0.5942
Validation Test 0.8557 −0.1848 0.9601 0.0509

Optimization Test 0.6751 0.4290 0.4980 0.7038

PSE-I

Training Validation 0.7476 −0.3236 0.6212 −0.4972
Training Optimization 0.9533 −0.0588 0.8240 0.2235
Training Test 0.9882 −0.0148 0.2588 1.1381

Validation Optimization 0.8291 0.2166 0.5779 0.5588
Validation Test 0.7987 0.2560 0.2526 1.1540

Optimization Test 0.9720 0.0353 0.5651 0.5780

Table 8: Data split Welch’s C-Test results. All ?-values and statistics are rounded to the fourth decimal place.

Dataset Split Parallelisms Branches Branched Tokens Tokens

ASP

Training 1448 3264 13833 94740
Validation 208 478 1935 13580

Optimization 191 424 1863 13196
Test 215 485 2070 13440

Total 2062 4651 19701 134956

PSE-I

Training 541 1478 17736 168848
Validation 87 236 2618 24152

Optimization 77 219 2565 24064
Test 81 220 2610 24139

Total 786 2153 25529 241203

Table 9: Data split results per relevant object count. Note that “branched tokens” refers to all tokens in branches—
not the number of tokens in general.

E Data Splitting Approach

As noted in Section 4, parallelisms are not evenly
distributed over sections. Sections are also not
evenly distributed over documents. Because we
performed evaluation in terms of documents, we
wanted to apply a simple heuristic to guarantee that
the data splits would fairly distribute tags.

To do this, we used a straightforward approach
to optimize split creation. To apply the approach,
we supplied it with a set of ratios which govern the
quantity and relative size of the splits. We began
by taking each file in the dataset and computing

counts of its outer and inner tags.11 A tag is an
outer tag if it is O or M; otherwise, it is an inner
tag. Then, we attempted to place a file in each split.
If placing that file in a split minimized the mean-
squared error (MSE) among the splits, then the file
was placed in that split. To be specific, we averaged
the MSE for inner and outer tags to compute the
final MSE. We repeated this process for every file.

As a further heuristic, we sorted the files after
their inner and outer tag counts were computed. We
did so by the number of inner tags from maximum

11As in the main paper, we created strata of tags for each
dataset equal to the maximum nesting depth of a branch.

to minimum, breaking ties by the number of outer
tags. This was in line with our objective to balance
out the parallelisms and branches seen across splits:
the ordering allowed for files which have a greater
effect on MSE to be placed first, thereby letting
files with less tags smooth out error gradually.

To verify our procedure, we provide the result-
ing mean-squared error for our splits. We also used
Welch’s C-test for this purpose. For each pair of
splits created, we ran this test twice with per-file
counts of the inner and outer tags. In this case, we
do not want the test to report significance; rather,
in showing that the difference between the distri-
butions is insignificant (e.g., ? ≥ 0.05), we are
showing that the splits are divided up such that
they could have been drawn from the same distribu-
tion. We use the SciPy implementation of Welch’s
C-test for this purpose (Virtanen et al., 2020).

F Hyperparameter Search Spaces

For our hyperparameter search experiments in Sec-
tion 7.2, we performed a random hyperparameter
search (Bergstra and Bengio, 2012) of eight trials
per setting. However, because we are proposing a
new task, we did not have prior literature on suc-
cessful hyperparameters which we could draw upon
in order to define hyperparameter spaces. Thus, to
perform these experiments, we created our own.

These hyperparameter search experiments were
governed by three main elements:

1. The set of hyperparameters which are selected
for variation. Although many hyperparame-
ters could be varied, only some were chosen
to direct the search toward hyperparameters
which were suspected to be meaningful.

2. The space itself from which hyperparameters
were drawn, as this determines all possible
values which the hyperparameter can take.

3. The set of constraints which are imposed upon
the random trials. Naturally, we want to pre-
vent any trial from being duplicated; however,
there are other inductive biases which may
guide our search.

In the subsections below, we expound upon each
of these elements and provide tables which summa-
rize pertinent information regarding them.

F.1 Selected Hyperparameters

Table 11 provides information about what hyper-
parameters are varied per model. Due to space
considerations, we use a number of abbreviations;
these are supplied in Table 10.

F.2 Designated Hyperparameter Spaces

Table 12 lists the hyperparameter spaces which
we used during the random search process. While
some of the above hyperparameters are relatively
self-explanatory in their functionality, we provide
an explanation for those which may be less clear or
otherwise warrant further explanation:

• Activation Function: The PyTorch (Paszke
et al., 2019) implementation of the Trans-
former (Vaswani et al., 2017) provides inte-
grations for both ReLU and GeLU (Hendrycks
and Gimpel, 2016) as activation functions. We
uphold that support in our modifications (as
presented in Appendix D.2) to see whether
they have any major effects on our results.

• Dimensionalities: For all embedding and hid-
den dimensionality spaces, we let the search
space be in powers of two and at every value
averaged between adjacent powers of two. We
used this approach to explore a decent por-
tion of the search space without leaving big
gaps between larger powers. Furthermore, we
differed the spaces for BiLSTMs and Trans-
formers to adapt more to precedent while
still allowing some exploration. In particu-
lar, we took inspiration from some hyperpa-
rameter LSTM searches in NER (Reimers and
Gurevych, 2017) and the general application
of the Transformer (Vaswani et al., 2017).

• Depth: In initial trials, we found that high
depth values prevented the models from learn-
ing meaningful information. Thus, instead
of setting a maximum of 6 encoder layers
as per the initial Transformer implementation
(Vaswani et al., 2017), we lowered it to 4.

• Learning Rates: In the NER literature, a va-
riety of learning rates have been used (along-
side a variety of optimizers). Values from .1
(Huang et al., 2015) to .015 (Ma and Hovy,
2016) to .01 (Lample et al., 2016) to a vari-
ety of manually-tuned others (Reimers and
Gurevych, 2017) have been proposed. Due
to the differences in our task, however, we
examine a wider range on the basis of those

Abbreviation Full Hyperparameter Name

AF Activation Function
BF Blending Function
HS Hidden Size
IS Input Size
LR Learning Rate
Lemma Lemmatization

Table 10: List of all hyperparameter abbreviations.

Embedding Encoder Varied Hyperparameters

Learned (Word) BiLSTM Depth, HS, IS, LR, Lemma
word2vec BiLSTM Depth, HS, LR
Learned (Subword) Transformer AF, BF, Depth, Heads, HS, IS, LR
(Chinese/Latin) BERT – BF, LR
(Chinese/Latin) BERT BiLSTM BF, Depth, HS, LR
(Chinese/Latin) BERT Transformer AF, BF, Depth, Heads, HS, LR

Table 11: Listing of all hyperparameters varied per model.

Hyperparameter Space

Activation Function {ReLU, GeLU}
Blender {mean, sum, take-first}
Depth {1, 2, 3, 4}
Heads {1, 2, 4, 8}
Hidden Size (BiLSTM) {32, 48, 64, 96, 128, 192, 256, 384, 512}
Hidden Size (Transformer) {256, 384, 512, 768, 1024, 1280, 1536, 1792, 2048}
Input Size (BiLSTM) {64, 96, 128, 192, 256, 384, 512, 768}
Input Size (Transformer) {128, 192, 256, 384, 512, 768, 1024}
Learning Rate {0.0001, 0.0002, . . . , 0.01}
Lemmatization {True, False}

Table 12: Collection of all hyperparameter search spaces.

values. Previous experience in using Adam
(Kingma and Ba, 2015) has seen models strug-
gle with high learning rates, hence the choice
of varying between lower ones.

For all such hyperparameter search spaces, we
sampled from each uniformly.

F.3 Hyperparameter Trial Constraints

Although we could theoretically generate any
combination of hyperparameters in our randomly-
sought trials, it is not necessarily the case that any
combination will be fruitful. With a wide enough
search space, it is possible that random search will
avoid discovering regions of the search space where
performance is approximately maximal. As a re-

sult, we direct the random search process in some
cases by forcing trials to meet a set of constraints.

The main constraint we supplied was for the
BiLSTM-based models. This constraint was the
word-level dimensionality compression constraint,
which assured that HS ≤ IS. The hidden state is in-
tended here to compress and learn how to use word
embedding information. This constraint is applied
implicitly for the model with BERT embeddings
and the BiLSTM encoder, as every dimensionality
in the search space was at or below 768.

G Error Analysis

The main body of this paper, and especially Sec-
tion 7.2, highlights major hyperparameters for our

Parallelism Branch Word Total
FP FN FP FN FM FP FN FM (by Sermon)

Sermon 24 8 22 3 3 2 0 2 0 40
Sermon 175 7 13 0 3 0 1 1 0 25
Sermon 177 11 39 2 2 1 0 1 0 56
Sermon 188 7 7 2 0 0 0 4 0 20
Sermon 207 7 4 2 0 0 1 0 0 14
Sermon 211 4 19 0 1 0 0 1 0 25
Sermon 219 0 9 0 0 0 0 0 0 9
Sermon 222 1 1 0 0 0 0 0 0 2
Sermon 271 0 5 0 0 0 0 0 0 5

Total (by Category) 45 119 9 9 3 2 9 0 196

Table 13: A presentation of our error analysis categorization results on ASP’s validation set with the model with
the highest F1 score from Section 7.2.

Encoder-CRF architecture which improve perfor-
mance. In this section, we attempt to provide
some insight about where our Encoder-CRF mod-
els could still improve by describing the kinds of
errors that these models make. We focus on the
ASP dataset in this section, as this dataset was de-
signed for word-level parallelism detection.

To elucidate relevant and constructive model be-
havior, we defined a set of categories for this error
analysis. That set of categories can be divided into
a three-by-three grid on the basis of three error
granularities and three error types. Following our
metrics, these granularities are at the levels of par-
allelisms, branches, and words. Meanwhile, two
of our error types derive from classification error
types: false positive (FP) and false negative (FN).

Our third error type, false mixture (FM), is a
combination of the FP and FN which applies to
branches and words. Because a model can both
predict a branch or word that a parallelism does not
contain (false positive) and omit a branch or word
that a parallelism contains (false negative), both
error types are simultaneously possible for these
granularities. Conversely, a parallelism cannot both
be entirely missing and entirely distinct from refer-
ence data; thus, the granularity-type combination
of parallelism and false mixture is not possible.
This leaves us with a set of eight categories.

We went over ASP’s validation set with this an-
notation scheme, comparing hypothesized paral-
lelisms from the model with the highest-scoring F1
score from Section 7.2 and reference parallelisms.
We added a category for every matched hypothe-
sis parallelism and reference parallelism. In other

words, a hypothesis and reference are only catego-
rized once if they have some overlap; otherwise,
they are categorized independently. We provide a
more detailed, category-by-category overview of
this scheme in our main code repository.

We present the results of our error analysis cat-
egorization in Table 13. From this table, we see
that the predominant cause of error comes from
the highest level of granularity: parallelisms. Con-
versely, we see that other kinds of error are quite
infrequent. As a result, we can surmise that these
Encoder-CRF models are relatively all-or-nothing
in their sequence labeling approach. They are pro-
ficient at getting entire parallelisms correct, and
largely down to the boundaries, when they detect
a parallelism. However, their ability to confidently
detect them in full needs more work.

To illustrate some of these error categories, we
provide a set of three examples in Fig. 8. Fig. 8(a)
presents the most common case: the false negative
parallelism. Fig. 8(b), in turn, presents its false
positive version. Finally, Fig. 8(c) shows what a
false mixture looks like.

Starting with Fig. 8(a), we find a two-branch
parallelism from ASP. Both branches contain two
clauses spanning four words, are headed by sub-
jects of the same case and number, and apply verbal
forms in their first clauses with the same lemma
(promitto). Augustine plays up contrasts by juxta-
posing human beings and God as well as verbs for
belief (crederes) and doubt (dubitas). The moods
used to define the conditional structures of each
branch, being contrafactual and factual, respec-
tively, further highlight this contrast. In short, these

(a) [homo
human:NOM;SG

si
if

promitteret
promise:IPFV;ACT;SBJV;3SG

,
,

crederes
believe:IPFV;ACT;SBJV;2SG

]1 ;
;

[deus
god:NOM;SG

promittit
promise:PRS;ACT;IND;3SG

,
,

et
and

dubitas
doubt:PRS;ACT;IND;2SG

]1 ?
?

“If a human were promising, you would believe them; God promises, and you doubt Him?”

(b) ...
...

quam
than

illa
that

quae
who

〈 caeli
heaven:GEN;SG

creatorem
maker:ACC;SG

de
from

caelo
sky:ABL;SG

deposuit
put.down:PRF;ACT;IND;3SG

〉1 ,
,

et
and

〈

terreno
earthen:ABL;SG

corpore
body:ABL;SG

terrae
earth:GEN;SG

induit
clothe:PRF;ACT;IND;3SG

conditorem
builder:ACC;SG

〉1 ;
;

...

...
“... than that which put the maker of heaven down from heaven, and that which clothed the builder of the earth with an
earthen body; ...”

(c) fecit
do

enim
for

hoc
this

[per
through

fideles
faithful:ACC;PL

suos
own:ACC;PL

]1 ,
,

[〈 per
through

christianos
christian:ACC;PL

suos
own:ACC;PL

〉1]1 ,
,
〈 per

through
potestates
authority:ACC;PL

〉1 a
by

se
oneself

ordinatas
govern

et
and

christi
christ

iugo
yoke

iam
already

subditas
subject

.

.
“For he did this through his own faithful, through his own Christians, through the authorities governed by him and subjected
already to the yoke of Christ.”

Figure 8: Examples of errors for the ASP dataset’s validation set and the model with the highest F1 score from
Section 7.2. Blue square brackets demarcate branches in the reference data, red triangular brackets demarcate
branches in the hypothesis data, and numbering indicates the parallelism to which a branch belongs relative to its
data source. Below each Latin sentence, we provide a word-by-word English translation, gloss some morphological
features in branches, and present an idiomatic translation. Example (a) is from Sermon 177, Section 11 and displays
a parallelism-level false negative. Example (b) is from Sermon 207, Section 1 and displays a parallelism-level false
positive. Example (c) is from Sermon 24, Section 7 and displays a branch-level false mixture.

clauses contain many distinct cues as to their paral-
lel nature. In spite of this, our model did not detect
this pair. One possibility is that variations on token
order due to function words (si, et) and commas
caused the model to ignore the branch pair.

Next, Fig. 8(b) shows a predicted parallelism that
the reference data did not contain. On the one hand,
there are aspects of this branch pair that make them
seem parallel. The clauses juxtapose heaven (caeli,
de caelo) and earth (terreno, terrae) in the same
grammatical roles. Both also use verbs conjugated
in the same manner, and each takes a direct object
in the same case (creatorem, conditorem) which
are synonymous. On the other hand, the word or-
der in these clauses calls their parallel nature into
question; there is no clear alignment between the
word orders in each clause (e.g., the direct objects
are the second and fifth words, respectively). As a
result, it seems understandable both why the model
was fooled by this sentence as well as why it was
not annotated in the first place.

Finally, we provide an example of a branch-level
false mixture in Fig. 8(c). In this branch-level false
mixture, the model agrees with the reference par-
allelism on its second branch. However, it both
ignores the reference’s first branch and adds an
additional branch after the second. The reference
contains a relatively simple parallelism consisting

of two three-word branches centering around two
prepositional phrases that share the word suos. The
pair are followed by a third clause that is not part
of the parallelism due to its rather elaborate content
and lack of suos (although, it contains the related
form se). To speculate about the model’s mistake,
it may have been drawn by lexical connections be-
tween the second branch and the final clause (i.e.,
per with per, suos with se, and christianos with
christi). However, because of the final clause’s ad-
ditional complexity, it then only selected a couple
words to pair with the second branch.

H Exhaustive Experimental Results

In this section, we display box plots which give
an overview of all F1 scores attained from each of
the best models across all configurations explored
during the hyperparameter search and all metrics.
All box plots are created from 16 data points, as
each model architecture variation (i.e., embedding-
encoder combination) was examined across sixteen
distinct tagging schemes. The ASP dataset’s plots
are presented in Figs. 9 to 12. Meanwhile, the PSE-
I dataset’s plots are presented in Figs. 13 to 16. We
also provide tabular data and CSV data for all our
results, additionally including precision and recall
for all metrics, in our main code repository.

I Exemplary Model Hyperparameter
Tables

In this section, we provide sets of tables which de-
scribe the hyperparameters used for each best trial
catalogued in Appendix H. For the ASP dataset, we
organized the results into three tables—Tables 14
to 16—based upon what hyperparameters were var-
ied. For the PSE-I dataset, we organized them
similarly in Tables 17 and 18.

Lea
rne

d [
Wo

rd]
;

BiL
ST
M Wo

rd;

BiL
ST
M

Lea
rne

d [
Su
bw
ord

];

Tra
nsf
orm

er

Lat
in
BE
RT
;

No
ne

Lat
in
BE
RT
;

BiL
ST
M

Lat
in
BE
RT
;

Tra
nsf
orm

er

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

EPM F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 9: Box plots presenting model-relative results on the ASP dataset’s test set using the Exact Parallelism
Match (EPM) metric.

Lea
rne

d [
Wo

rd]
;

BiL
ST
M Wo

rd;

BiL
ST
M

Lea
rne

d [
Su
bw
ord

];

Tra
nsf
orm

er

Lat
in
BE
RT
;

No
ne

Lat
in
BE
RT
;

BiL
ST
M

Lat
in
BE
RT
;

Tra
nsf
orm

er

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
MPBM F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 10: Box plots presenting model-relative results on the ASP dataset’s test set using the Maximum Parallel
Branch Match (MPBM) metric.

Lea
rne

d [
Wo

rd]
;

BiL
ST
M Wo

rd;

BiL
ST
M

Lea
rne

d [
Su
bw
ord

];

Tra
nsf
orm

er

Lat
in
BE
RT
;

No
ne

Lat
in
BE
RT
;

BiL
ST
M

Lat
in
BE
RT
;

Tra
nsf
orm

er

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
MBAWO F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 11: Box plots presenting model-relative results on the ASP dataset’s test set using the Maximum Branch-
Aware Word Overlap (MBAWO) metric.

Lea
rne

d [
Wo

rd]
;

BiL
ST
M Wo

rd;

BiL
ST
M

Lea
rne

d [
Su
bw
ord

];

Tra
nsf
orm

er

Lat
in
BE
RT
;

No
ne

Lat
in
BE
RT
;

BiL
ST
M

Lat
in
BE
RT
;

Tra
nsf
orm

er

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
MWO F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 12: Box plots presenting model-relative results on the ASP dataset’s test set using the Maximum Word
Overlap (MWO) metric.

Ch
ine

se
BE
RT
;

No
ne

Ch
ine

se
BE
RT
;

BiL
ST
M

Ch
ine

se
BE
RT
;

Tra
nsf

orm
er

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
EPM F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 13: Box plots presenting model-relative results on the PSE-I dataset’s test set using the Exact Parallelism
Match (EPM) metric.

Ch
ine

se
BE
RT
;

No
ne

Ch
ine

se
BE
RT
;

BiL
ST
M

Ch
ine

se
BE
RT
;

Tra
nsf

orm
er

0.25

0.30

0.35

0.40

0.45

0.50

0.55
MPBM F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 14: Box plots presenting model-relative results on the PSE-I dataset’s test set using the Maximum Parallel
Branch Match (MPBM) metric.

Ch
ine
se
BE
RT
;

No
ne

Ch
ine
se
BE
RT
;

BiL
ST
M

Ch
ine
se
BE
RT
;

Tra
nsf
orm

er

0.45

0.50

0.55

0.60

0.65

0.70
MBAWO F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 15: Box plots presenting model-relative results on the PSE-I dataset’s test set using the Maximum Branch-
Aware Word Overlap (MBAWO) metric.

Ch
ine
se
BE
RT
;

No
ne

Ch
ine
se
BE
RT
;

BiL
ST
M

Ch
ine
se
BE
RT
;

Tra
nsf
orm

er

0.50

0.55

0.60

0.65

0.70

0.75
MWO F1 Scores on the Test Set (Groups: embedding; encoder)

Figure 16: Box plots presenting model-relative results on the PSE-I dataset’s test set using the Maximum Word
Overlap (MWO) metric.

Model Components Tagging Scheme Hyperparameters

Embedding Encoder Tagset Link Type DEPTH HS IS LEMMA LR

Learned
(Word)

BiLSTM

BIO
Token 3 384 512 N 0.0013
Branch 4 384 768 N 0.0008

BIOE
Token 4 64 768 N 0.0021
Branch 3 48 256 N 0.0039

BIOJ
Token 1 64 512 N 0.0076
Branch 3 384 384 N 0.0028

BIOM
Token 4 128 384 N 0.0010
Branch 1 128 128 N 0.0035

BIOJE
Token 4 256 768 N 0.0063
Branch 2 256 256 Y 0.0034

BIOME
Token 4 32 192 N 0.0045
Branch 4 128 256 N 0.0082

BIOMJ
Token 4 96 512 N 0.0052
Branch 2 64 768 N 0.0047

BIOMJE
Token 3 192 512 Y 0.0018
Branch 3 128 192 Y 0.0085

word2vec BiLSTM

BIO
Token 4 96 300 Y 0.0028
Branch 3 256 300 Y 0.0040

BIOE
Token 3 32 300 Y 0.0076
Branch 3 128 300 Y 0.0029

BIOJ
Token 3 48 300 Y 0.0072
Branch 4 64 300 Y 0.0059

BIOM
Token 3 256 300 Y 0.0028
Branch 4 256 300 Y 0.0059

BIOJE
Token 3 32 300 Y 0.0035
Branch 4 48 300 Y 0.0049

BIOME
Token 4 192 300 Y 0.0002
Branch 3 32 300 Y 0.0032

BIOMJ
Token 1 256 300 Y 0.0035
Branch 4 96 300 Y 0.0058

BIOMJE
Token 3 128 300 Y 0.0022
Branch 4 192 300 Y 0.0028

Table 14: Best hyperparameters for non-BERT models with a BiLSTM encoder for the ASP dataset.

Model Components Tagging Scheme Hyperparameters

Embedding Encoder Tagset Link Type AF BF Depth Heads HS IS LR

Learned
(Subword) Transformer

BIO Token ReLU sum 3 4 384 192 0.0081
Branch ReLU mean 1 4 768 128 0.0076

BIOE Token ReLU tf 1 1 1280 192 0.0071
Branch GeLU tf 2 8 384 768 0.0095

BIOJ Token GeLU tf 2 4 512 1024 0.0052
Branch GeLU mean 1 8 2048 768 0.0043

BIOM Token ReLU tf 2 8 1792 192 0.0011
Branch GeLU mean 1 4 2048 256 0.0060

BIOJE Token GeLU sum 2 2 512 768 0.0082
Branch ReLU mean 2 1 384 128 0.0051

BIOME Token GeLU sum 4 8 1280 384 0.0071
Branch GeLU sum 2 8 384 384 0.0056

BIOMJ Token ReLU sum 3 2 512 384 0.0065
Branch GeLU tf 2 2 384 512 0.0100

BIOMJE Token ReLU mean 4 4 256 192 0.0087
Branch GeLU sum 3 8 1280 512 0.0100

Latin BERT Transformer

BIO Token GeLU sum 1 8 256 768 0.0090
Branch ReLU mean 4 1 1024 768 0.0086

BIOE Token ReLU sum 4 4 1280 768 0.0028
Branch ReLU sum 3 2 768 768 0.0034

BIOJ Token ReLU mean 4 1 1792 768 0.0007
Branch GeLU mean 4 1 1024 768 0.0021

BIOM Token GeLU sum 3 2 1024 768 0.0035
Branch GeLU sum 3 2 1024 768 0.0035

BIOJE Token GeLU mean 2 1 1792 768 0.0048
Branch GeLU mean 2 4 1536 768 0.0037

BIOME Token GeLU mean 4 4 1024 768 0.0016
Branch GeLU sum 2 2 1536 768 0.0033

BIOMJ Token ReLU tf 3 1 384 768 0.0061
Branch ReLU mean 2 1 1536 768 0.0014

BIOMJE Token ReLU mean 4 1 256 768 0.0086
Branch GeLU mean 3 8 384 768 0.0045

Table 15: Best hyperparameters for models with a Transformer encoder on the ASP dataset.

Model Components Tagging Scheme Hyperparameters

Embedding Encoder Tagset Link Type BF DEPTH HS LR

Latin BERT –

BIO
Token sum – – 0.0055
Branch tf – – 0.0010

BIOE
Token sum – – 0.0012
Branch sum – – 0.0055

BIOJ
Token tf – – 0.0077
Branch sum – – 0.0070

BIOM
Token tf – – 0.0064
Branch sum – – 0.0012

BIOJE
Token sum – – 0.0063
Branch mean – – 0.0005

BIOME
Token mean – – 0.0045
Branch mean – – 0.0021

BIOMJ
Token tf – – 0.0005
Branch mean – – 0.0030

BIOMJE
Token sum – – 0.0001
Branch mean – – 0.0061

Latin BERT BiLSTM

BIO
Token mean 3 384 0.0007
Branch sum 3 96 0.0022

BIOE
Token tf 4 48 0.0024
Branch mean 3 512 0.0012

BIOJ
Token mean 3 256 0.0008
Branch sum 4 128 0.0066

BIOM
Token sum 2 192 0.0048
Branch tf 3 192 0.0073

BIOJE
Token mean 4 48 0.0017
Branch sum 3 128 0.0010

BIOME
Token mean 2 64 0.0083
Branch sum 4 128 0.0026

BIOMJ
Token sum 3 96 0.0028
Branch tf 4 192 0.0013

BIOMJE
Token sum 4 192 0.0055
Branch mean 2 96 0.0086

Table 16: Best hyperparameters for models with BERT-based embeddings and a non-Transformer encoder on the
ASP dataset.

Model Components Tagging Scheme Hyperparameters

Embedding Encoder Tagset Link Type AF BF Depth Heads HS IS LR

Chinese
BERT Transformer

BIO Token ReLU sum 2 8 1280 768 0.0010
Branch ReLU sum 2 2 1792 768 0.0040

BIOE Token ReLU tf 1 1 256 768 0.0088
Branch GeLU tf 2 2 1280 768 0.0010

BIOJ Token ReLU tf 4 8 1536 768 0.0063
Branch ReLU tf 1 1 512 768 0.0078

BIOM Token GeLU tf 4 1 256 768 0.0100
Branch ReLU mean 1 8 1792 768 0.0094

BIOJE Token GeLU tf 2 4 1536 768 0.0016
Branch ReLU sum 1 2 1536 768 0.0061

BIOME Token GeLU mean 2 4 2048 768 0.0001
Branch GeLU mean 1 8 1536 768 0.0086

BIOMJ Token GeLU mean 2 4 768 768 0.0025
Branch ReLU mean 3 2 1280 768 0.0076

BIOMJE Token ReLU mean 3 4 512 768 0.0073
Branch GeLU sum 3 4 384 768 0.0020

Table 17: Best hyperparameters for models with a Transformer encoder on the PSE-I dataset.

Model Components Tagging Scheme Hyperparameters

Embedding Encoder Tagset Link Type BF DEPTH HS LR

Chinese
BERT

–

BIO
Token tf – – .0002
Branch mean – – .0089

BIOE
Token mean – – .0063
Branch mean – – .0012

BIOJ
Token mean – – .0043
Branch sum – – .0072

BIOM
Token sum – – .0020
Branch mean – – .0006

BIOJE
Token mean – – .0050
Branch tf – – .0028

BIOME
Token mean – – .0087
Branch tf – – .0037

BIOMJ
Token mean – – .0092
Branch tf – – .0017

BIOMJE
Token tf – – .0052
Branch mean – – .0066

Chinese
BERT

BiLSTM

BIO
Token mean 4 192 .0012
Branch sum 2 96 .0019

BIOE
Token sum 3 32 .0025
Branch sum 2 64 .0043

BIOJ
Token sum 2 512 .0002
Branch mean 1 48 .0007

BIOM
Token mean 3 128 .0080
Branch mean 2 32 .0056

BIOJE
Token mean 4 64 .0040
Branch sum 4 128 .0003

BIOME
Token tf 4 32 .0016
Branch tf 4 32 .0010

BIOMJ
Token sum 3 128 .0004
Branch sum 4 48 .0011

BIOMJE
Token tf 1 32 .0058
Branch mean 2 32 .0025

Table 18: Best hyperparameters for models with BERT-based embeddings and a non-Transformer encoder on the
PSE-I dataset.

