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IMPROVED QUALITY, SYNCHRONY, AND PREFERENCE
ALIGNMENT FOR JOINT AUDIO-VIDEO GENERATION

Anonymous authors
Paper under double-blind review

Prompt: Several pigeons are gathered on a rocky shore near the water. One pigeon splashes energetically, sending up 
ripples, while the others stand watching. The sound of splashing water, gurgling, and flapping wings fills the air.

Prompt: A young girl plays the piano.

Prompt: A sports car races around a track bordered by 
grass and fences. The engine roars through the air.

Prompt: A brown bear is walking towards the camera, growling
in a natural setting with greenery in the background.

Figure 1: Examples of joint audio-video generation results by our proposed method.

ABSTRACT

Recent AIGC advances have rapidly expanded from text-to-image generation to-
ward high-quality multimodal synthesis across video and audio. Within this con-
text, joint audio-video generation (JAVG) has emerged as a fundamental task, en-
abling synchronized and semantically aligned sound and vision from textual de-
scriptions. However, compared with advanced proprietary systems such as Veo3,
existing open-source methods still suffer from limitations in generation quality,
temporal synchrony, and alignment with human preferences. This paper presents
a concise yet powerful framework for efficient and effective JAVG. First, we
introduce a modality-specific mixture-of-experts (MS-MoE) design that enables
effective cross-modal communication while enhancing single-modality genera-
tion quality. Then, we propose a temporal-aligned RoPE (TA-RoPE) strategy to
achieve explicit, frame-level synchronization between audio and video tokens.
Besides, we develop an audio-video direct preference optimization (AV-DPO)
method to align model outputs with human preference across quality, consistency,
and synchrony dimensions. Built upon Wan2.1-1.3B-T2V, our model achieves
state-of-the-art performance merely with around 1M training entries, significantly
outperforming prior approaches in both qualitative and quantitative evaluations.
Comprehensive ablation studies have been conducted to validate the effective-
ness of our proposed modules. We hope this work can set a milestone for the
field of native JAVG and bring new inspiration to the community. The code im-
plementation can be found in https://anonymous.4open.science/r/
iclr26-19605-code/.
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1 INTRODUCTION

AIGC (Artificial Intelligence Generated Content) technologies have evolved from text-to-image gen-
eration towards more complex domains such as video and audio (Wan et al., 2025; Zheng et al., 2024;
Liu et al., 2024b; Jiang et al., 2025). The intrinsic correlation between audio and video modalities
has also been increasingly explored, giving rise to related research on video-to-audio (Xing et al.,
2024; Cheng et al., 2025; Tian et al., 2025) and audio-to-video (Jeong et al., 2023a; Yariv et al.,
2024b; Gao et al., 2025b) generation. With the rapidly growing demands for AI-generated content
in domains like short videos, film, gaming, and VR, native joint audio-video generation (JAVG) from
textual inputs has become increasingly crucial in this era (Wang et al., 2025a; Gao et al., 2025b).
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Figure 2: Comparison with recent JAVG models.

MM-Diffusion (Ruan et al., 2023) represents a
series of early works that study unconditional
audio-video generation, with a scope limited
to natural landscapes (Landscape (Lee et al.,
2022)) and human dancing (AIST++ (Li et al.,
2021)). Then, Uniform (Zhao et al., 2025)
extended the task to label-name-conditioned
JAVG and evaluated the model on the relatively
broader VGGSound dataset (Chen et al., 2020).
More recently, JavisDiT (Liu et al., 2025c)
and Universe-1 (Wang et al., 2025a) have be-
gun to employ free-form text prompts as in-
puts, systematically exploring sounding video
generation in real-world scenarios. Despite
these efforts, current approaches still struggle
to produce high-quality, temporally synchro-
nized sounding videos compared with advanced
proprietary models such as Veo3 (DeepMind,
2025). Fig. 2 quantitatively show the cap be-
tween previous methods and Veo3 (details are provided in Sec. B.3). Current JAVG methods fail to
capture human preferences regarding the aesthetics and harmony of audio-visual content.

To bridge the gap, we propose a concise and elegant framework to efficiently train a DiT model to
generate high-quality, better-synchronized, and human-preference-aligned sounding videos.

First, to improve generation quality, we introduce a modality-specific mixture-of-experts (MS-
MoE) module, where audio and video tokens exchange information through shared multi-head self-
attention layers, and then each modality aggregates information via two separate FFN layers (Deng
et al., 2025). This architecture enhances single-modality generation quality compared with Uni-
form (Zhao et al., 2025), which processes aggregated audio-video tokens using a single FFN mod-
ule. On the other hand, MS-MoE is simpler, more efficient, and more unified than dual-DiT plus
audio-visual interaction block designs such as JavisDiT (Liu et al., 2025c) and Universe-1 (Wang
et al., 2025a). Sec. C provides detailed architectural comparison with related works.

Second, to enhance audio-video synchrony, we propose an temporal-aligned multimodal RoPE
(TA-RoPE) strategy, which aligns the position IDs of audio and video tokens on a unified temporal
axis Xu et al. (2025), enabling direct and frame-level fine-grained temporal synchronization. On
one hand, this strategy modulates audio-video temporal synchrony more explicitly and effectively
against the ST-Prior in JavisDiT (Liu et al., 2025c) and the Stitching strategy in Universe-1 (Wang
et al., 2025a). On the other hand, TA-RoPE is actually compatible with these methods — it can be
combined with ST-Prior and frame-level cross-attention for slightly better performance. However,
we ultimately abandon these combinations to maintain overall simplicity and efficiency.

Finally, to capture human preference, we design an audio-video direct preference optimization
(AV-DPO) method to align the baseline model with curated preference data (Liu et al., 2025b), fur-
ther enhancing the video-audio quality and synchronization. To curate robust preference data, we
leverage diverse reward models to comprehensively evaluate the generated audio and video across
multiple dimensions (e.g., quality, consistency, and synchrony) and then adopt normalized modality-
aware ranking to select winning-losing pairs. To the best of our knowledge, we are the first to in-
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troduce preference alignment into JAVG, enabling the model to generate high-quality, synchronized
sounding videos, more faithfully aligned with the input text and human preferences.

Our model is built upon Wan2.1-1.3B-T2V (Wan et al., 2025), and is efficiently trained using only
780K diversified audio-text pairs (Liu et al., 2025c) and 360K high-quality sounding videos (Mao
et al., 2024), supporting arbitrary duration and resolution ranging from 2–5 seconds and 240p–480p
across different aspect ratios. It achieves state-of-the-art performance, surpassing JavisDiT (Liu
et al., 2025c) and Universe-1 (Wang et al., 2025a) across both qualitative and quantitative evaluations
on various dimensions. Extensive ablation studies demonstrate the effectiveness and rationality of
the proposed modules. We hope this work will set a milestone for the field of native joint audio-video
generation and provide further inspiration in the field.

In summary, our main contributions are threefold:

• We propose a concise JAVG model architecture, which employs a modality-specific MoE strat-
egy for efficient and high-quality audio-video generation, and introduces temporally aligned
RoPE to achieve precise temporal synchronization.

• We are the first to introduce human preference alignment into JAVG, with the AV-DPO algo-
rithm to consistently improve quality, consistency, and synchrony of sounding video generation.

• We train a state-of-the-art JAVG model using only 1M data entries, providing an important
reference milestone and new inspirations for the field of native joint audio-video generation.

2 RELATED WORK

Joint Audio-Video Generation. Recent JAVG approaches have taken several forms. Some studies
use a unified representation, projecting both modalities into a shared latent space, such as CoDi
(Tang et al., 2023; 2024), MM-LDM (Sun et al., 2024), and UniForm (Zhao et al., 2025). How-
ever, this strong constraint can cause modality-specific information loss and provide insufficient
temporal control. Another line of studies performs intermediate fusion. MM-Diffusion (Ruan et al.,
2023), SyncFlow (Liu et al., 2024a), and AV-DiT (Wang et al., 2024) exchange information between
modalities within the model’s layers using cross-modal attention or adapters. Other methods like
Seeing (Xing et al., 2024) and MMDisCo (Hayakawa et al., 2024) use online discriminators to adjust
the outputs of separately pre-trained models. More recently, JavisDiT (Liu et al., 2025c) develops a
two-stream DiT with a spatio-temporal prior estimator to guide alignment, and UniVerse-1 (Wang
et al., 2025a) leverages two pretrained DiTs with a stitching strategy for crossmodal information
exchange. However, these methods all rely on complicated model architectures and ad-hoc implicit
synchrony modulation, hindering the scalability of unified sounding video generation.

RL in Generative Models. Reinforcement learning (RL) has been widely applied to align genera-
tive models with human preferences. Early approaches use policy-based algorithms such as Proxi-
mal Policy Optimization (PPO) to improve diffusion models (Black et al., 2023; Fan et al., 2023),
and Direct Preference Optimization (DPO) is subsequently introduced to align text-to-image gener-
ation without explicit reward models (Wallace et al., 2024; Yang et al., 2024). This area continues
to develop, with recent work improving DPO (Dang et al., 2025; Huang et al., 2025) and adopting
newer strategies like Group-wise Ranking Preference Optimization (GRPO) (Wang et al., 2025b;
Xue et al., 2025; Liu et al., 2025a; Yuan et al., 2025). Although these alignment techniques are now
widely used for other modalities like video and audio (Zhang et al., 2023; Liu et al., 2025b;d; Furuta
et al., 2024; Wu et al., 2025; Gao et al., 2025a; Chen et al., 2025), their application to complex,
cross-modal tasks remains limited. To the best of our knowledge, we are the first to successfully
apply a preference alignment algorithm to the field of joint audio-video generation.

3 METHODOLOGY

3.1 PRELIMINARY

We use flow-matching as the noise scheduler to optimize our DiT model, where RoPE plays a vital
role in ensuring temporally synchronized audio-video generation.

3
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Figure 3: Illustration of the DiT architecture. We use shared attention layers to encourage audio-
visual mutual information modeling, with modality-specific FFN layers to enhance intra-modal ag-
gregation. The Temporal-Aligned RoPE strategy is applied to ensure audio-video synchrony.

Flow-Matching. Let p0 denote the target data distribution and p1 be a simple prior distribution (e.g.,
a standard Guassian N (0, I)). Rectified Flow (Liu et al., 2023) constructs straight-line paths from
noise samples x1 ∼ p1 to data samples x0 ∼ p0, where the trajectory xt at time t ∈ [0, 1] is defined
as xt = (1 − t)x0 + tx1. The corresponding target velocity field becomes v = x1 − x0. A neural
network vθ(xt, t) is then trained to regress this target field by minimizing the following objective:

LFM(θ) = Et∼[0,1],x0∼p0,x1∼p1

[
||vθ(xt, t)− v||2

]
(1)

Once trained, new samples can be generated by solving the ordinary differential equation dx/dt =
vθ(x, t) from t = 0 to t = 1, starting from an initial noise sample x0 ∼ p0.

Joint Audio-Video Generation. The goal of JAVG is to model the conditional distribution p(A, V |
c), where V ∈ RTv×H×W×3 denotes a video with Tv frames of resolution H×W , and A ∈ RTa×M

denotes the audio in a mel-spectrogram with Ta temporal steps and M frequency bins. Given a
condition c (e.g., a text prompt), a model pθ is trained to generate synchronized audio-video pairs:

(x̂a, x̂v) = vθ(x
a
t ,x

v
t , t, c); Lav

FM(θ) = Et∼[0,1],x0∼p0,x1∼p1

[
||x̂a − va||2 + ||x̂v − vv||2

]
(2)

Rotary Position Embedding (RoPE). In video generation (Wan et al., 2025), position IDs are
assigned along temporal (T ), height (H), and width (W ) dimensions, and their rotational position
embeddings are applied to queries and keys in attention layers:

R(t, h, w) = [RT (t);RH(h);RW (w)] ; (q′i, k
′
j) = (R(ti, hi, wi)qi, R(tj , hj , wj)kj). (3)

This design captures the relative positional relationships of tokens across all three dimensions.

3.2 THE DIT MODEL ARCHITECTURE

From Dual-Stream DiT to a Unified Backbone. Unlike dual-stream DiT frameworks such as
JavisDiT (Liu et al., 2025c) and UniVerse-1 (Wang et al., 2025a), this paper aims to design a concise,
efficient, and unified DiT architecture to jointly process audio and video tokens, ensuring better
scalability. As shown in Fig. 3, we first flatten and concatenate video and audio tokens, feeding them
into subsequent modules for full self-attention to enable dense and rich cross-modal interaction.
The tokens are then separated and passed through modality-specific FFNs, which ensure sufficient
intra-modal aggregation. The video VAE from Wan2.1 (Wan et al., 2025) and audio VAE from
AudioLDM2 (Liu et al., 2024b) are retained and frozen during the whole training process.

Modality-Specific Feed-Forward Network. In contrast to conventional MoE architectures with
dynamic routing (Cai et al., 2025), our MS-FFN (or MS-MoE) deterministically assigns audio and

4
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Figure 4: Illustration of temporal-aligned rotary position encoding for video and audio tokens.

video tokens to their modality-specific FFNs/Experts. This design is similar to BAGEL (Deng et al.,
2025), which allocates understanding and generation tokens to separate FFNs, while we instead
assign tokens based on modality. The advantage is that, after sufficient cross-modal interaction
through attention, modality interference in FFN is isolated, allowing each branch to focus on intra-
modal feature modeling. Similar to traditional MoE benefits, although the total parameter size
increases from 1.3B to 2.1B, the number of activated parameters per token remains 1.3B. Thus, we
expand model capacity to improve performance without adding inference overhead.

3.3 TEMPORAL-ALIGNED ROTARY POSITION ENCODING

Establishing a shared temporal reference for audio and video tokens is crucial for achieving gen-
eration synchrony (Liu et al., 2025c; Wang et al., 2025c). In contrast to the spatial-temporal prior
(ST-Prior) employed in JavisDiT (Liu et al., 2025c) and the frame-level cross-attention mechanism
in UniVerse-1 (Wang et al., 2025a), this paper proposes a more direct and precise control strategy:
an audio-visual Temporally Aligned Rotary Position Encoding (TA-RoPE). Specifically, absolute
temporal alignment is enforced along the first dimension (dimension 0) of the 3D position IDs for
both audio and video tokens, as illustrated in Fig. 4.

We first retain the 3D RoPE formulation for video tokens as introduced in Wan2.1 (Wan et al.,
2025). Given video tokens of shape Tv × H × W , their 3D position IDs range from (0, 0, 0) to
(Tv − 1,H − 1,W − 1). For audio tokens of shape Ta ×M (extracted from mel-spectrograms as
in AudioLDM2 (Liu et al., 2024b)), we first augment them with an additional leading dimension
(dimension 0) to align with the video tokens along the absolute time axis. This means, audio tokens
corresponding to the same time window of video tokens with temporal ID i are assigned temporal ID
i as well. Subsequently, to ensure that audio and video position IDs remain strictly non-overlapping,
we offset the original mel-spectrogram dimensions (Ta and M ) by adding H and W , respectively.
Consequently, the audio position IDs span from (H,W ) to (H + Ta − 1,W + M − 1). Further
discussion and comparisons are provided in the Sec. C.

Formally, for an audio token at timestamp t and frequency bin m, its positional ID is defined as:

Ra(t,m) =

([
t · Tv

Ta

]
, t+H,m+W

)
(4)

where [·] denotes the round operation. This formulation explicitly enforces temporal alignment and
synchrony between audio and video tokens.

Note that, thanks to the full attention design in Wan2.1, we can logically emulate the interleaved
audio-video temporal arrangement shown in Fig. 3 purely through position ID manipulation, without
physically reordering tokens. In contrast, within a causal (autoregressive) DiT framework, achieving
temporal alignment would require physically interleaving audio and video tokens such that those
with smaller temporal position IDs are placed earlier in the sequence. However, such physical
reordering entails non-contiguous memory accesses and incurs additional computational overhead.

3.4 DIRECT PERFORMANCE OPTIMIZATION FOR JOINT AUDIO-VIDEO GENERATION

To further improve the video and audio quality and synchronization, we propose an audio-video
direct preference optimization (AV-DPO) algorithm to align JAVG models with human preferences.
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Figure 5: Illustration of preference data collection and training pipeline of audio-video DPO.

The overall pipeline is shown in Fig. 5, and our designed AV-DPO features some core contributions:
(1) AV-DPO is the first one to align rectified flows with preference data for joint audio-video gener-
ation; (2) AV-DPO adopts various reward models to automatically and comprehensively evaluate the
generated audio-video samples, and perform ranking based on modality-aware dimensions to ensure
modality consistency in selected chosen-rejection pairs. The details are introduced as follows.

Reward Models. We employ various reward models to evaluate audio-video data from three
modality-aware dimensions: audio reward, video reward, and audio-video alignment. Specifically,
for audio reward, we leverage AudioBox (Tjandra et al., 2025) to comprehensively evaluate the au-
dio quality, with ImageBind (Girdhar et al., 2023) to measure text-audio semantic similarity (align-
ment). As for video reward, we take VideoAlign (Liu et al., 2025b) to assess visual and motion
quality, with ImageBind (Girdhar et al., 2023) to measure text-video semantic alignment. For audio-
video alignment, we also utilize ImageBind to calculate audio-video semantic similarity, with Sync-
former (Iashin et al., 2024) to estimate temporal synchrony. To solve the problem that different
reward indicators yield various magnitudes, we first normalize the scores of each metric and average
them to obtain the reward for the corresponding modality-aware dimension.

Preference Data Acquisition. To construct the preference data, we first curate a prompt pool Pt

with 30k text captions apart from the SFT training data, and then prompt the reference model to
generate N = 3 audio-video pairs for each prompt. To stabilize the preference optimization, we
also add the ground truth audio-video pairs into the generated ones to form the candidate preference
data, which are evaluated by previously mentioned reward models from three modality-specific di-
mensions. Afterwards, we select the winner sample awi , v

w
i yielding better ranking scores than

the loser sample ali, v
l
i across all dimensions, forming around 25k audio-video preference pairs

D⊔ =
{
(awi , v

w
i , a

l
i, v

l
i, yi) | yi ∈ Pt

}
. It is worth mentioning that winning pairs from our generated

samples occupy around 30% of the total preference data, indicating that the baseline model itself
already possesses fairly strong generative capabilities.

Direct Preference Optimization. Unlike prior single-modality DPO approaches (Liu et al., 2025b),
our AV-DPO enhances joint audio-video generation by considering modality-aware preference:



Diffvpolicy = ∥ vθ(x
v,w
t , t)− vv,w ∥22 − ∥ vθ(x

v,l
t , t)− vv,l ∥22,

Diffvref = ∥ vref(x
v,w
t , t)− vv,w ∥22 − ∥ vref(x

v,l
t , t)− vv,l ∥22,

Diffapolicy = ∥ vθ(x
a,w
t , t)− va,w ∥22 − ∥ vθ(x

a,l
t , t)− va,l ∥22,

Diffaref = ∥ vref(x
a,w
t , t)− va,w ∥22 − ∥ vref(x

a,l
t , t)− va,l ∥22,

Lav
DPO =−Et∼[0,1],(xa,w

0 ,xv,w
0 ,xa,l

0 ,xv,l
0 )∼D

[
log σ

(
−βv

(
Diffvpolicy−Diffvref

)
−βa

(
Diffapolicy−Diffaref

))]
(5)

Using curated preference pairs, AV-DPO increases the likelihood of well-aligned (winner) samples
and decreases that of misaligned (loser) ones. To prevent over-optimization, we follow (Hung et al.,
2024) to incorporate the flow matching loss as a regularization term.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results on JavisBench for generating 240p4s sounding videos. The best results are
marked with bold, and the second ones are marked with underline. “†” means reproduction.

Method AV-Quality Text-Consistency AV-Consistency AV-Synchrony

FVD ↓ KVD ↓ FAD ↓ TV-IB ↑ TA-IB ↑ CLIP ↑ CLAP ↑ AV-IB ↑ AVHScore ↑ JavisScore ↑ DeSync ↓

- T2A+A2V
TempoTkn 539.8 7.2 - 0.085 - 0.198 - 0.137 0.122 0.103 -
TPoS 839.7 4.7 - 0.103 - 0.238 - 0.142 0.129 0.095 -

- T2V+V2A
ReWaS - - 9.4 - 0.109 - 0.236 0.111 0.104 0.079 -
See&Hear - - 7.6 - 0.072 - 0.248 0.164 0.143 0.112 -
FoleyC - - 9.1 - 0.173 - 0.299 0.204 0.186 0.151 -
MMAudio - - 6.1 - 0.160 - 0.407 0.198 0.182 0.150 -

- T2AV
MM-Diff 2311.9 12.2 27.5 0.080 0.032 0.173 0.048 0.119 0.109 0.070 -
JavisDiT † 204.1 0.6 7.2 0.195 0.151 0.308 0.328 0.197 0.179 0.154 1.039
UniVerse-1 194.2 0.5 8.7 0.272 0.111 0.309 0.245 0.104 0.098 0.077 0.929
Ours 141.5 0.4 5.5 0.282 0.164 0.316 0.424 0.198 0.184 0.159 0.832

4 EXPERIMENTS

Sec. 4.1 and Sec. 4.2 present the setup and results of the main experiments, while Sec. 4.3 provides
an in-depth analysis of the key modules. More ablation studies are included in Sec. D.

4.1 EXPERIMENTAL SETUP

Implementation Details. Our model is built upon Wan2.1-1.3B-T2V (Wan et al., 2025) and pro-
gressively adapted for joint audio-video generation: audio pre-training, audio-video SFT, and audio-
video DPO. Rectified flow (Liu et al., 2023) is adopted as the noise scheduler for diffusion optimiza-
tion. All the hyper-parameter details are provided in Sec. B.1.

Training Datasets. For audio data, we directly adopt the 780K audio-text pairs collected by Jav-
isDiT (Liu et al., 2025c) for audio pre-training. For video data, we filtered 330K audio-video-text
triplets from TAVGBench for audio-video SFT, along with an additional 25K samples for audio-
video DPO. Further details and investigations are provided in Sec. B.2 and Sec. D.2.

Evaluation Benchmarks. We mainly follow JavisDiT (Liu et al., 2025c) to conduct experiments on
JavisBench (10,140 samples for the main experiments) and JavisBench-mini (1,000 samples for ab-
lation studies). The evaluation covers 11 metrics across various audio-video dimensions, including
quality, consistency, and synchrony. Further details and explanations are provided in Sec. B.3.

4.2 MAIN RESULTS

As shown in Tab. 1, our model significantly outperforms previous methods in all three dimensions
of audio-video generation (i.e., quality, consistency, and synchrony), achieving new state-of-the-
art performance. In particular, we surpass UniVerse-1 (Wang et al., 2025a) by a large margin on
quality and consistency, which also adopts Wan2.1-1.3B (Wan et al., 2025) as the backbone. This
improvement is attributed to the unified and efficient design of MS-MoE, rather than simply stitching
two pretrained models together as in UniVerse-1. On the other hand, our model also substantially
outperforms both JavisDiT and UniVerse-1 on synchrony metrics, benefiting from the explicitly
designed TA-RoPE strategy that provides accurate audio-video temporal alignment. Fig. 6 further
presents qualitative comparisons, where our generated results consistently surpass JavisDiT and
UniVerse-1, narrowing the gap with powerful proprietary models such as Veo3 (DeepMind, 2025).
In addition, Fig. 6 compares inference latency across different JAVG models, showing that our model
introduces around only 18% additional inference cost over the Wan2.1 baseline (1m5s), while being
significantly more efficient than two-stream methods like UniVerse-1 and JavisDiT.

4.3 IN-DEPTH ANALYSIS

In this section, we JavisBench-mini (Liu et al., 2025c) with 1,000 prompts as the test set for evalua-
tion. To avoid redundancy, we report 7 out of the 11 full metrics of audio-video generation.
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Prompt: A turtle swims in turquoise water among 
small fish, with birds chirping in the background.

Veo-3

JavisDiT

UniVerse-1

Ours

Prompt: A girl in a white headscarf, black top, and 
red skirt plays the flute beside another on piano.

Latency

-

3m55s

1m42s

1m17s

Veo-3

JavisDiT

UniVerse-1

Ours

Figure 6: Generations from recent JAVG models. Best viewed in zoom or supplementary materials.

Table 2: Investigation on architectural designs to adapt Wan2.1-T2V to joint audio-video generation.

Arch Design Quality Consistency Synchrony

FVD ↓ FAD ↓ TV-IB ↑ TA-IB ↑ AV-IB ↑ JavisScore ↑ DeSync ↓
Shared-DiT + LoRA 227.6 6.51 0.283 0.138 0.127 0.098 1.018
Shared-DiT + Full-FT 269.3 5.66 0.276 0.159 0.164 0.137 1.026
MS-MoE (Ours) 221.3 5.51 0.283 0.163 0.194 0.153 0.901

The proposed modality-specific MoE is capable for JAVG. Tab. 2 compares three different strate-
gies for performing audio pre-training and audio-video SFT within a unified model. First, we reuse
Wan2.1-T2V as the shared DiT (Zhao et al., 2025) and apply either LoRA or full-parameter finetun-
ing for text-to-audio-video (T2AV) adaptation, which serve as two important baselines. According to
Tab. 2, the LoRA scheme suffers from poor audio quality and consistency due to its limited trainable
capacity; the full-finetuning scheme, on the other hand, shifts too many parameters during the audio
pre-training stage, which severely degrades video quality and consistency. In contrast, our MS-MoE
design preserves strong video generation ability while equipping the model with high-quality audio
generation, and simultaneously maintains excellent audio-video synchrony.

FVD FAD TV-IB TA-IB AV-IB JavisScore DeSync 

A-LoRA + AV-LoRA (r=64)
A-noLoRA + AV-AttnLoRA (r=64)

A-noLoRA + AV-LoRA (r=64)
A-noLoRA + AV-LoRA (r=32)

A-noLoRA + AV-LoRA (r=128)

Figure 7: Comprehensive ablation studies on LoRA configurations.
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Our LoRA configuration is a suitable choice. Fig. 7 illustrates the effects of different settings for
T2AV adaptation, from which we can draw several conclusions: (1) Adding LoRA to the attention
layers during the audio pre-training stage cannot improve audio generation quality but significantly
reduces video generation performance, as it alters parameters in the video branch. (2) Compared
with adding LoRA only to the attention layers, also applying LoRA to FFN leads to a notable
improvement in audio-video generation performance, since the T2AV adaptation task remains rela-
tively challenging. (3) The model performance is not highly sensitive to the choice of LoRA rank
and alpha parameters; empirically, setting rank = 64 brings slightly better performance.

Table 3: Comparison of synchronization mechanisms.

Mechanism JavisScore ↑ DeSync ↓ Latency ↓
None 0.142 1.044 1m17s
ST-Prior 0.145 0.973 1m33s
FrameAttn 0.124 0.951 1m45s
TA-RoPE (Ours) 0.153 0.901 1m17s
TA-RoPE + ST-Prior 0.155 0.953 1m33s
TA-RoPE + FrameAttn 0.151 0.890 1m45s

The proposed TA-RoPE synchro-
nization mechanism is effective and
efficient. Tab. 3 compares several de-
signs for audio-video generation syn-
chrony. First, although both the ST-
Prior proposed in JavisDiT (Liu et al.,
2025c) and the frame-level cross-
attention used in UniVerse-1 (Wang
et al., 2025a) improve synchrony,
they bring an unaffordable increase
in inference latency. In contrast, our
TA-RoPE strategy achieves better performance with zero additional inference cost. On the other
hand, TA-RoPE can also be combined with ST-Prior or FrameAttn to yield slightly better synchrony,
but we ultimately discard these combinations to maintain inference efficiency and overall simplicity.

The AV-DPO reward strategy is reasonable and effective. Tab. 4 compares different reward
strategies for selecting win–lose pairs in DPO training. First, applying modality-agnostic micro av-
eraging (averaging across all metrics before ranking (Liu et al., 2025b)) or macro averaging (ranking
within each metric and then averaging (Xue et al., 2025)) fails to achieve consistent improvements in
audio-video generation. This is because such strategies may form a win sample by combining better
video but worse audio, which conflicts with eq. (5). In contrast, calculating rewards separately for
audio and video and ensuring modality-consistent chosen samples effectively improves generation
quality, consistency, and synchrony. Meanwhile, removing normalization for single-dimension re-
wards (i.e., w/o norm) reduces the accuracy of pair ranking due to scale and range differences across
rewards, which in turn degrades DPO performance. Likewise, discarding ground-truth samples and
forming pairs only from generated candidates (i.e., w/o gt) even gets worse results, as differences
among generated samples are often too small to guide preference shifts.

Table 4: Investigation on the effectiveness of different AV-DPO reward strategies.

Reward Design Quality Consistency Synchrony

FVD ↓ FAD ↓ TV-IB ↑ TA-IB ↑ AV-IB ↑ JavisScore ↑ DeSync ↓
None (baseline) 221.3 5.51 0.283 0.163 0.194 0.153 0.901
Average-Micro 199.7 5.28 0.281 0.166 0.199 0.154 0.902
Average-Macro 203.3 5.31 0.281 0.166 0.196 0.152 0.903
Modality-Micro 198.5 5.32 0.284 0.168 0.201 0.156 0.888
Modality-Macro 191.1 5.41 0.282 0.166 0.197 0.156 0.882
Modality-Micro (w/o norm) 210.0 5.34 0.281 0.167 0.197 0.153 0.925
Modality-Micro (w/o gt) 234.7 5.43 0.281 0.164 0.197 0.154 0.937

5 CONCLUSION

In this work, we presented a concise and efficient framework for native joint audio-video genera-
tion. By introducing the MS-MoE design for modality-specific quality enhancement, the TA-RoPE
strategy for explicit temporal alignment, and the AV-DPO algorithm for preference alignment, our
model achieves state-of-the-art performance in quality, consistency, and synchrony. Built upon
Wan2.1-1.3B-T2V and trained with only 1M data entries, our model significantly outperforms ex-
isting open-source approaches while maintaining efficiency. We believe this work establishes an
important milestone for JAVG and opens new directions for future research in the field.
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A DISCUSSION

A.1 POTENTIAL LIMITATIONS

While our framework demonstrates state-of-the-art performance in joint audio-video generation,
several limitations remain and open promising directions for future work:

• Training Data Scale. Our model is trained on roughly 1M entries, which, although efficient,
may constrain scalability compared with larger proprietary systems. Expanding the dataset
with more diverse and high-quality audio-video pairs could further improve generalization and
robustness.

• Model Size. We adopt a 1.3B-parameter backbone with parameter-efficient adaptations. Scal-
ing up to larger backbones may unlock stronger representational capacity, especially for captur-
ing subtle temporal and semantic correlations across modalities.

• Full-Parameter Training. Our approach relies on parameter-efficient tuning (e.g., LoRA).
Exploring full-parameter finetuning could provide additional performance gains, albeit with
higher computational cost.

• Controllable Generation. Current experiments focus on general text-to-audio-video genera-
tion. Extending controllability to domains such as music or speech, with fine-grained control
over rhythm, pitch, timbre, or lexical content, is an important next step.

• Unified Cross-Modal Generation. Beyond text-conditioned JAVG, broader tasks such as
audio-to-video (A2V), video-to-audio (V2A), and audio-image-to-video (AI2V) offer oppor-
tunities for a unified multimodal generative framework. Developing models that seamlessly
perform across these modalities would mark a significant milestone toward general-purpose
audio-visual content generation.

We hope these directions inspire future research toward building more scalable, controllable, and
unified multimodal generative systems.

A.2 ETHICS STATEMENT

All datasets and models used in this work are publicly available on the internet and do not involve
any private or sensitive information. In addition, part of the DPO data we plan to release is generated
by models themselves, ensuring that no personal privacy is infringed.

A.3 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of model design, training, and evaluation in both the main paper
and the appendix. Furthermore, all code, pretrained checkpoints, and processed datasets will be
publicly released to ensure full reproducibility of our results.

A.4 LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely as writing assistants, including tasks such as
language polishing and presentation refinement. They were not involved in the conception of core
ideas or designs.

B DETAILED IMPLEMENTATIONS

B.1 MODEL DETAILS

Audio VAE. We reuse and freeze the audio encoder and decoder from AudioLDM2 (Liu et al.,
2024b). All 1D audio signals are resampled to 16 kHz and converted into 64-bin mel-spectrograms
using a window size of 64 ms and a hop size of 10 ms. The spectrograms are then 8×8 compressed
via VAE into 8-channel audio embeddings. To further reduce the token count, we apply a 2×2
patchify operation before feeding the tokens into the DiT for diffusion and denoising.
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Freeze

Stage 1 Stage 2 / Stage 3

Full Finetuning LoRA Finetuning

Figure A1: Illustration of trainable parameters at different stages.

Table A1: Detailed settings for the three-stage training pipeline.

Setting Stage 1 Stage 2 Stage 3
training purpose Audio PreTrain Audio-Video SFT Audio-Video DPO
trainable modules Audio FFN/Embedder/Head LoRA LoRA
trainable params 794M 121M 121M
learning rate 1e-4 1e-4 1e-5
warm-up steps 1000 1000 100
weight decay 0.0 0.0 0.0
training samples 780K 330K 25K
resolution - dynamic dynamic
duration dynamic dynamic dynamic
batch size dynamic dynamic dynamic
epoch 50 2 1
GPU days (H100) 16 16 3

Video VAE. We reuse and freeze the video VAE from Wan2.1 (Wan et al., 2025). Except for the
first frame, all subsequent video frames are temporally compressed by a factor of 4, while every
frame is spatially compressed by 8×8, resulting in 16-channel video embeddings. To ensure further
compactness, these video embeddings are also compressed with a 2×2 spatial patchify operation
before being fed into the DiT.

Text Encoder. We also reuse and freeze Wan2.1’s umT5-xxl (Chung et al., 2023) as the text-
encoder, whose context length is 512.

Backbone DiT. Our model is built on the powerful Wan2.1-1.3B-T2V (Wan et al., 2025) model,
and progressively extends from text-to-video generation to text-conditioned joint audio-video gen-
eration. The Wan2.1-1.3B base model has 30 layers with a hidden dimension of 1536. We keep
the original parameters frozen throughout the entire training process, updating only the newly in-
troduced audio FFN (along with audio embedder, audio head, etc) and the LoRA components at
different stages. The final model has only 2.1B parameters after merging LoRA components. De-
tailed training settings are presented as follows.

B.2 TRAINING DETAILS

Details of the three-stage training pipeline. Our model progressively extends from Wan2.1-1.3B-
T2V (Wan et al., 2025) to JAVG through three stages: (1) Audio Pre-Training, where the Audio FFN
is trained on 780K audio-text pairs for 50 epochs with a learning rate of 1e-4; (2) Audio-Video SFT,
where LoRA is applied to train on 330K audio-video-text triplets for 1 epochs with a learning rate
of 1e-4; and (3) Audio-Video DPO, where the LoRA parameters are retained and further trained on
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Figure A2: (Left): Diversified audio-text sources. (Right): Data filtering process from TAVGBench.

25K entries for 1 epoch with a learning rate of 1e-5 and β of 500. The specific trainable modules
and other training settings can be found in Fig. A1 and Tab. A1.

Details of the audio-video training data. Fig. A2 demonstrates the detailed data composition
and filtering procedure. For audio data, we directly adopt 780K audio-text pairs from Javis-
DiT (Liu et al., 2025c) for audio pretraining, which covers various public datasets, including Au-
dioSet (Gemmeke et al., 2017), AudioCaps (Kim et al., 2019), VGGSound (Chen et al., 2020),
WavCaps (Mei et al., 2024), Clotho (Drossos et al., 2020), ESC50 (Piczak, 2015), GTZAN (Sturm,
2013), MACS (Martı́n-Morató & Mesaros, 2021), and UrbanSound8K (Salamon et al., 2014). We
apply no data filtering strategy to ensure maximal text-to-audio generation capability spanning gen-
eral sound, music, and speech.

For video data, we adopt a subset of 1.1 million text-video-audio triplets from TAVGBench (Mao
et al., 2024) and conduct a series of filtering strategies. We first eliminate a large part of videos
containing human speech by using the FunASR (Gao et al., 2023) detection tool, and then follow
OpenSora (Zheng et al., 2024) to filter out the videos with relatively lower quality through aesthetic
scoring (Schuhmann, 2022), flow (motion) scoring (Xu et al., 2023), and OCR scoring (Liao et al.,
2020). In the final filtered pool, 330K data entries are divided for audio-video SFT, and the other 25K
samples are used for audio-video DPO to avoid overlapping. We also provide empirical evaluations
on the data diversity and quality in Sec. D.2.

B.3 EVALUATION DETAILS

Evaluation Setup. We mainly follow JavisDiT (Liu et al., 2025c) to evaluate the models on Jav-
isBench, which consists of 10,140 prompts for joint audio-video generation in various real-world
scenarios. In ablation studies, we take the JavisBench-mini for fast evaluation, where the 1,000
prompts are randomly selected from the total 10,140 samples from JavisBench. All models are
required to generate 240P, 4-second sounding videos for quantitative evaluation.

JavisBench provides a comprehensive evaluation of quality, consistency, and synchrony for audio-
video generation results. Here, we briefly introduce the mechanisms of each evaluation dimension:

• Audio / Video Quality: measuring the perceptual quality of the generated audio and video,
including (1) Fréchet Video Distance (FVD): FVD = ∥µr−µg∥22+Tr(Σr+Σg−2(ΣrΣg)

1/2),
where (µr,Σr) and (µg,Σg) are the mean and covariance of ground-truth and generated video
features extracted by a pretrained I3D encoder (Carreira & Zisserman, 2017). Lower is better,
indicating the generated video distribution is closer to the real one; (2) Kernel Video Distance
(KVD): similar to FVD, but estimates distribution differences via a kernel-based method (Kernel
Inception Distance style), which is more stable on smaller datasets; lower is better; and (3)
Fréchet Audio Distance (FAD): same concept as FVD, but computed on audio features extracted
by a pretrained AudioClip model (Guzhov et al., 2022), measuring distribution distance between
generated and real audio; lower is better.

• Text Consistency: evaluating how well the generated audio and video semantically match the
input text description, including (1) ImageBind (Girdhar et al., 2023) text-video cosine simi-
larity: sim(t, v) = ftext(t)·fvideo(v)

∥ftext(t)∥·∥fvideo(v)∥ ; (2) ImageBind text-audio cosine similarity: same pro-
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cess but with the audio encoder faudio; (3) CLIP-Score: using CLIP (Radford et al., 2021) to
compute semantic similarity between text and video (video frames are sampled, encoded, and
averaged); and (4) CLAP-Score: using CLAP (Wu* et al., 2023) to compute semantic similarity
between text and audio.

• Audio–Video Semantic Consistency: measuring the semantic alignment between generated
audio and generated video, including (1) ImageBind audio-video cosine similarity, encoding
both modalities into the same space and computing cosine similarity between video and audio
features; and (2) Audio-Visual Harmony Score (AVHScore): introduced in TAVGBench (Mao
et al., 2024) as a way to quantify how well the generated audio and video align semanti-
cally in a shared embedding space. It is defined by computing the cosine similarity be-
tween each video frame and the entire audio, then averaging across all frames: AVHScore =
1
N

∑N
i=1 cos

(
fframe(vi), faudio(a)

)
. A higher AVHScore indicates stronger audio–video se-

mantic consistency. Note that we remove the CAVP-Score (Luo et al., 2023) used in Jav-
isDiT (Liu et al., 2025c) because this metric keeps a range from 0.798 to 0.801 and cannot
capture the difference when evaluating semantic consistency.

• Audio–Video Spatio-Temporal Synchrony: evaluating spatiotemporal alignment in gener-
ated audio-video pairs, including (1) JavisScore: a new metric proposed in JavisDiT (Liu
et al., 2025c). The core idea is to use a sliding window along the temporal axis to split
the audio-video pair into short segments. For each segment, compute cross-modal similarity
with ImageBind and take the mean score: JavisScore = 1

N

∑N
i=1 σ(ai, vi), σ(vi, ai) =

1
k

∑k
j=1 top-k

min
{cos (Ev(vi,j), Ea(ai))}; and (2) DeSync: a metric adapted from Synch-

former(Iashin et al., 2024), which measures fine-grained temporal misalignment between audio
and video streams. Specifically, it estimates the temporal offset of audio–visual events by per-
forming a 21-category classification task (predicting the offset/asynchrony degree ranging from
-10 to 10 and taking the absolute values). A lower DeSync score indicates better synchroniza-
tion.

Compared Methods. Since open-source models that support text-conditioned joint audio-video
(JAVG) generation are still very limited, we also follow JavisDiT (Liu et al., 2025c) and in-
clude cascaded generation pipelines (i.e., T2A+A2V (Yariv et al., 2024a; Jeong et al., 2023b) and
T2V+V2A (Jeong et al., 2024; Xing et al., 2024; Zhang et al., 2024; Cheng et al., 2025)) for com-
parison. For JAVG-capable models, we treat the unconditional MMDiffusion (Ruan et al., 2023) as a
simple baseline, while focusing on comparisons against text-conditional models like JavisDiT (Liu
et al., 2025c) and UniVerse-1 (Wang et al., 2025a). For JavisDiT, we directly downloaded its re-
leased checkpoints and performed JavisBench generation locally, enabling us to compute the newly
introduced DeSync (Iashin et al., 2024) metric and update other metrics consistently. For UniVerse-
1, since it essentially supports audio-video generation from Text + Reference Image, we use the
first frame of our model’s generated video as the reference image, allowing UniVerse-1 to perform
audio-synchronized image animation.

Details of Fig. 2. In Sec. 1, we present a radar chart (Fig. 2) to illustrate the performance differences
among various JAVG models. Specifically, we randomly sample 100 prompts from JavisBench (Liu
et al., 2025c) for audio-video generation. For open-source models, we run inference locally, while
for Veo3 (DeepMind, 2025), we obtain results via its API. After collecting outputs from all models,
we follow the DPO reward setup in Sec. 3.4 to comprehensively evaluate the performance, including
(1) VideoAlign (Liu et al., 2025b) and AudioBox (Tjandra et al., 2025) to assess video and audio
quality; (2) ImageBind (Girdhar et al., 2023) to compute semantic similarity across TV-Align, TA-
Align, and AV-Align; and (3) SynchFormer (Iashin et al., 2024) to compute DeSync as the synchrony
metric. Since DeSync is defined as a “lower-is-better” score, whereas all other metrics are “higher-
is-better”, we invert DeSync values in Fig. 2 to ensure visual consistency.

C DETAILED COMPARISON WITH RELATED WORKS

Architectural Difference with Recent JAVG Models. Fig. A3 presents a comparison between
our model design and recent JAVG approaches. First, UniForm (Zhao et al., 2025) attempts to use
a single set of attention and FFN parameters to process both audio and video tokens. This poses
a significant challenge when extending a pretrained T2V model with audio generation capability
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(A) UniForm (B) JavisDiT (C) UniVerse-1 (D) Ours

Cross Attn

Self Attn

Figure A3: Architectural comparison with Uniform, JavisDiT, UniVerse-1.
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Figure A4: Comparison of our audio-video frame interleaving with Qwen2.5-Omni’s strategy.

while preserving its original video generation performance, as validated in Tab. 2. To address this,
JavisDiT (Liu et al., 2025c) introduces a dual-stream architecture with separate parameter sets for
video and audio generation, along with ST-Prior and frame-level audio-video bidirectional cross-
attention to enhance synchrony. However, this design introduces a large number of additional pa-
rameters, making training more difficult and inference more expensive. UniVerse-1 (Wang et al.,
2025a), on the other hand, employs a pretrained T2V model (Wan et al., 2025) and a pretrained
T2A model (Gong et al., 2025), with a complex cross-attention mechanism to enable information
exchange between audio and video, which still suffers from inefficiencies in both training and infer-
ence stages.

In contrast to these prior works, our proposed framework is simpler and more effective: it uses
shared attention to enable cross-modal interaction between audio and video tokens, while adopting
modality-specific FFNs to enhance intra-modal modeling quality. This design achieves a better
trade-off between efficiency and performance, and provides higher scalability.

Design Difference with Qwen2.5-Omni’s RoPE Strategy. Considering audio-video alignment,
our TA-RoPE design shares some similarity with Qwen2.5-Omni Xu et al. (2025)’s RoPE solution:
both approaches align audio and video through the position IDs along a specific dimension to en-
sure temporal alignment. However, as shown in Fig. A4, there exists a key difference between us:
whether the position IDs of audio and video tokens overlap. Qwen2.5-Omni treats audio, like lan-
guage, as a 1D token sequence and assigns the same position IDs across the three RoPE dimensions.
This inevitably introduces overlaps between audio and video, e.g., an audio token with position ID
(0, 0, 0) coinciding with a video token (0, 0, 0), or potentially (25, 25, 25), (50, 50, 50), and so on.
For multimodal understanding models such as Qwen2.5-Omni, such overlaps have negligible influ-
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Figure A5: Illustration of different audio positional encoding strategies.

Table A2: Ablation study on positional encoding strategy for both audio and video generation.

Strategy AudioCaps JavisBench-mini (audio) JavisBench-mini (video)

FAD ↓ TA-IB ↑ CLAP ↑ FAD ↓ TA-IB ↑ CLAP ↑ FVD ↓ TV-IB ↑ CLIP ↑ AV-IB ↑ JavisScore ↑ DeSync ↓

AudioLDM2 5.06 0.200 0.460 8.81 0.153 0.300 - - - - - -
JavisDiT-audio 6.58 0.162 0.306 8.11 0.182 0.381 - - - - - -

Vanilla 6.03 0.193 0.411 6.41 0.157 0.417 238.2 0.281 0.316 0.184 0.142 1.044
Interpolate 12.87 0.155 0.325 10.73 0.149 0.349 239.9 0.282 0.320 0.183 0.144 1.011
Interleave 5.49 0.195 0.420 6.20 0.153 0.418 225.8 0.284 0.318 0.187 0.144 0.926
Interleave+Offset 4.65 0.198 0.420 6.81 0.154 0.417 221.3 0.283 0.317 0.200 0.153 0.901

ence on inference performance. However, for generative tasks like JAVG, overlaps cause non-trivial
position confusion and lead to performance degradation, as quantitatively demonstrated in Sec. D.1.

By comparison, our TA-RoPE design treats audio as a 2D image (represented by the form of mel-
spectrogram (Liu et al., 2024b)). When ensuring temporal alignment by matching the 0-th dimension
of position IDs between audio and video along the time axis, we introduce adaptive offsets in the
other two dimensions of the mel-spectrogram corresponding to video width and height (as formu-
lated in eq. (4)). This strategy completely avoids overlap between the two modalities and enables
more accurate audio-video synchrony.

About AudioGen-Omni’s RoPE Strategy. Focusing on the domain of video-to-audio generation,
AudioGen-Omni Wang et al. (2025c) also identifies RoPE as a key component for achieving tempo-
ral alignment between audio and video, and proposes a specific design. However, due to the lack of
detailed descriptions in their paper and the unavailability of their code, we are currently unable to
conduct a thorough comparative analysis.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION ON POSITIONAL ENCODING STRATEGY

This section systematically investigates the impact of different audio position encoding strategies
(illustrated in Fig. A5) on final audio-video generation quality, including:
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Table A3: Ablation study on training data composition in the AV-SFT stage.

Data Quality Epoch Quality Consistency Synchrony

FVD ↓ FAD ↓ TV-IB ↑ TA-IB ↑ AV-IB ↑ JavisScore ↑ DeSync ↓
120K High 1.0 230.6 6.24 0.282 0.154 0.183 0.144 0.936
120K High 2.0 239.9 5.81 0.283 0.157 0.189 0.151 0.905
120K High 3.0 233.7 5.64 0.281 0.159 0.188 0.148 0.911
330K Medium 1.0 225.5 5.62 0.283 0.161 0.190 0.145 0.912
330K Medium 2.0 221.3 5.51 0.283 0.163 0.194 0.153 0.901
720K Low 0.5 229.8 5.53 0.281 0.154 0.182 0.142 0.929
720K Low 1.0 217.8 5.64 0.280 0.159 0.185 0.145 0.919
+120K Low+High 2.0 223.8 5.46 0.282 0.161 0.191 0.150 0.918
+330K Low+Med 1.0 212.0 5.45 0.283 0.160 0.187 0.146 0.918

• Vanilla, ignores video positions entirely, encoding audio purely along the time and frequency
axes of its mel-spectrogram: Ra(t,m) = (t, t,m)

• Interpolate, aligns the audio temporal axis with video frames by interpolating intermediate
IDs: Ra(t,m) =

(
t · Tv

Ta
, t · Tv

Ta
,m

)
• Interleave, aligns the audio temporal axis (0-th dimension) with the video temporal axis, while

unfolding the other two dimensions along the mel-spectrogram: Ra(t,m) =
([

t · Tv

Ta

]
, t,m

)
• Interleave+Offset, similarly aligns the audio 0-th dimension with the video temporal axis, but

shifts the remaining two dimensions by the video width and height to fully avoid overlapping
position IDs between modalities: Ra(t,m) =

([
t · Tv

Ta

]
, t+H,m+W

)
(eq. (4)).

We conduct full audio-pretraining and AV-SFT training on Wan2.1-1.3B-T2V (Wan et al., 2025) to
examine how these strategies affect both audio and video generation. Results in Tab. A2 lead to
three main conclusions:

1. Preserving integer audio position IDs is essential for audio quality — e.g., Interpolate performs
significantly worse, since frozen attention layers during audio pretraining cannot learn relative
offsets represented by fractional IDs;

2. The more overlap exists between audio and video position IDs, the poorer the video quality
becomes (Vanilla → Interleave → Interleave+Offset), consistent with our analysis in Sec. C;

3. Generation models require non-overlapping position IDs to disentangle modalities, as well as
temporal alignment along one axis for audio-video synchrony (e.g., Vanilla yields much worse
synchrony than Interleave-based designs).

Based on these findings, we adopt Interleave+Offset as our final position encoding scheme.

D.2 INVESTIGATION ON TRAINING DATA QUALITY AND DIVERSITY

In this section, we conduct an in-depth investigation into the impact of diversity and quality of
training data during the Audio-Video SFT stage. Specifically, we first construct a low-quality dataset
of 720K text–audio–video triplets by extracting a large portion of speech videos from the full data
pool (see Sec. B.2). Next, we filter out low-quality data using multiple scoring metrics such as
aesthetics, motion, and OCR, resulting in a medium-quality dataset of 330K samples, which is the
set adopted for AV-SFT in the main paper. Finally, we further raise the thresholds of the scoring
filters, obtaining a high-quality dataset of 120K samples for comparative analysis. After audio
pretraining, we conduct experiments with different data compositions in the AV-SFT stage, and the
results are presented in Tab. A3. Accordingly, several conclusions can be drawn:

First, data with high quality but low diversity cannot bring optimal performance. Models trained
solely on the 120K high-quality dataset underperform those trained on the 330K medium-quality
dataset. This is because transitioning from unimodal audio/video generation to joint generation is
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a relatively challenging task, requiring sufficient data quantity or diversity to enable the model to
acquire new capabilities.

Second, data quality is also indispensable. Models trained on the 720K low-quality dataset show
clearly inferior generation quality compared to those trained on the 330K medium-quality dataset.
This degradation occurs because low-quality data undermine the priors learned by the Wan2.1 (Wan
et al., 2025) backbone during pretraining on high-quality data. Even introducing a second round of
SFT with 120K high-quality or 330K medium-quality data cannot fully recover the lost performance.

In summary, we adopt the 330K medium-quality dataset for AV-SFT training as a reasonable trade-
off. We believe that further enhancing both the diversity and quality of training data will yield better
scaling properties.

D.3 ABLATION ON HYPER-PARAMETERS OF AV-DPO

In this section, we further investigate the stability of hyperparameters in the AV-DPO algorithm
proposed in eq. (5), focusing primarily on two factors: the choice of β and the learning rate. Since
different parameters influence the magnitude of the loss unevenly, we adopt implicit accuracy as a
unified proxy metric to evaluate the impact of various hyperparameter settings:

Acca =
1

N

n∑
i=1

I(Diffapolicy < Diffaref); Accv =
1

N

n∑
i=1

I(Diffvpolicy < Diffvref) (A1)

Recalling eq. (5), the implicit accuracy can measure whether the model successfully shifts toward the
distribution of the chosen data while moving away from that of the rejected data. The experimental
results, shown in Fig. A6 and Fig. A7, lead to the following conclusions:
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Figure A6: Implicit accuracy on β selections.
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Figure A7: Implicit accuracy on learning rates.

Analysis on β selection. In the original DPO algorithm, β primarily controls the divergence between
the policy model and the reference model (Rafailov et al., 2023; Liu et al., 2025b). As shown in
Fig. A6, audio achieves its best performance at β = 1000, whereas video converges faster and
reaches higher final accuracy at β = 3000. This observation is closely related to our proposed
framework. Our model is built upon the pretrained Wan2.1-T2V, which already aligns well with
human preferences; thus, a larger β (e.g., 3000 or 5000) is needed to keep the video policy model
closer to the reference model. In contrast, the audio branch is newly trained and initially less aligned
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with human preferences, so a smaller β (e.g., 1000) is required to shift the model closer to the
preferred data distribution. However, setting β too small (e.g., 100) leads to excessive divergence
from the reference model and overfitting to imperfect preference data. Based on these findings, we
set β = 3000 for the audio DPO loss and β = 1000 for the video DPO loss to achieve relatively
better performance.

Analysis on learning rate. Fig. A7 presents three experimental groups with learning rates set
to 1 × 10−5, 5 × 10−6, and 1 × 10−6, respectively. The results show that 1 × 10−5 achieves
both the fastest convergence and the highest final accuracy. This observation is consistent with
prior works (Liu et al., 2025b), which suggests that setting the learning rate in the DPO stage to
approximately one-tenth of that in the SFT stage is a suitable choice. Therefore, we adopt a learning
rate of 1× 10−5 for training.

D.4 MORE VISUALIZATIONS

Fig. A8 and Fig. A9 showcase additional cases of joint audio-video generation, illustrating the strong
generative capability of our proposed model across multiple dimensions.
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Prompt: A small wooden cabin stands in a rainy forest, with misty trees around it and the sound of heavy rain and distant 
thunder.

Prompt: A black-and-white image shows suited musicians on stage playing saxophones, trumpets, and a tuba, music filling the 
air before a curtain backdrop.

Prompt: A man with long curly hair and a beard plays an electric guitar in a studio, wearing a black t-shirt and gray pants. 
Behind him are a monitor, speakers, and a poster, as the sound of the guitar fills the room.

Prompt: A group of sharks swim gracefully underwater, their fins and tails sending ripples through the clear water. The sound of
gurgling and splashing follows their movement and the currents, with the sandy, rocky seabed visible below.

Prompt: A large cartoonish alien head with big eyes and a small mouth appears on screen, looking concerned. Behind it, a dusk
cityscape with tall buildings and a river sets the scene, as a deep boom echoes, followed by a softer one.

Figure A8: More examples for high-quality audio-video generation results.
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Prompt: A woman in a red dress walks barefoot across a sandy desert at sunset, her hair flowing as wind blows and faint footsteps sound 
in the sand.

Prompt: At night, a narrow alley is lined with traffic cones and a rope barrier, its wet ground reflecting street lamps. Worn walls show
faded posters, and a bright light glows at the far end. The sound of rain falls over the empty scene.

Prompt: A large waterfall cascades down a rocky cliff into a body of water below, creating a dramatic scene. The water is a deep
blue color, and there are greenish areas on the rocks near the waterfall. The sound of rushing water fills the air, steady and loud.

Prompt: A young man with dark hair, wearing a green shirt, plays the violin, holding it under his chin and drawing the bow to produce
clear, melodic tones. The background is a plain wall, with soft shadows cast across it.

Prompt: A yellow car with the number 34 on it is driving on a dirt road surrounded by trees, its engine revving up and then 
accelerating as the tires skid on the dirt road.

Figure A9: More examples for high-quality audio-video generation results.
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