Under review as a conference paper at ICLR 2022

A JOINT SUBSPACE VIEW TO CONVOLUTIONAL NEU-
RAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by the intuition that important image regions remain important across
different layers and scales in a CNN, we propose in this paper a joint subspace
view to convolutional filters across network layers. When we construct for each
layer a filter subspace by decomposing convolutional filters over a small set of
layer-specific filter atoms, we observe a low-rank structure within subspace coef-
ficients across layers. The above observation matches widely-known cross-layer
filter correlation and redundancy. Thus, we propose to jointly model filter sub-
space across different layers by enforcing cross-layer shared subspace coefficients.
In other words, a CNN is now reduced to layers of filter atoms, typically a few
hundred of parameters per layer, with a common block of subspace coefficients
shared across layers. We further show that such subspace coefficient sharing can
be easily extended to other network sub-structures, from sharing across the entire
network to sharing within filter groups in a layer. While significantly reducing the
parameter redundancy of a wide range of network architectures, the proposed joint
subspace view also preserves the expressiveness of CNNs, and brings many ad-
ditional advantages, such as easy model adaptation and better interpretation. We
support our findings with extensive empirical evidence.

1 INTRODUCTION

Modern developments of deep network components (loffe & Szegedy, 2015} |Xu et al.| [2015)), struc-
tures (He et al.l [2016; Huang et al., 2017), and training techniques (Kingma & Bal [2014} Zoph &
Le, [2017) have enabled deep convolutional neural networks to consistently grow deeper and wider,
with hundreds of millions of parameters. The trend of growing network scales leads to both severe
challenges and urgent needs to fast adaptations (Finn et al.,|2017; |Lopez-Paz & Ranzatol|2017;|Shin
et al.,|2017), parameter efficiency (Cheng et al., [2017; [Han et al., 2015a; |Luo et al., 2017} [Savarese
& Mairel [2019; Yang et al., 2019; |Wang et al.| [2018b), and interpretability (Selvaraju et al., 2017}
Zhou et al.| [2016). While recent works on efficient convolution operations (Chollet, 2017} [Howard
et al., 2017; Ma et al.l 2018} |[Zhang et al.l 2018)) alleviate the long recognized over-parametrization
problem of deep CNNs, and practical methods on modeling the shared components across CNN fil-
ters have been proposed (Ha et al.,|2016;|Savarese & Mairel [2019), there is still a lack of a principled
view to exploiting the common structure of the filters within a CNN.

While preliminary studies have revealed the redundancies in deep network parameters (Michel et al.|
2019; Raghu et al., 2017), and the fact that deep features across layers are highly correlated under
certain linear transforms (Kornblith et al., 2019; Morcos et al.,2018; Raghu et al.,|2017)), exploiting
this potential redundancy remains challenging. We suspect that the spatial patterns of convolutional
filters, which correspond to different semantics levels, are the main reason why we cannot observe
obvious cross-layer filter low-rankness. To validate our hypothesis, we decouple the spatial patterns
and channel mixing of a convolutional filter by decomposing it over layer-specific 2D filter atoms,
linearly combined using atom coefficients. Then with proper alignments to the layer outputs, we
finally observe a low-rank structure among those atom coefficients across different layers. This
highly non-trivial observation, which to our knowledge has never been reported before, hints the
feasibility of enforcing a common block of atom coefficients across layers and suggests a joint
subspace view to CNNSs.

Applying to a wide range of network architectures, this joint subspace view leads subsequently to a
novel CNN architecture in which the majority of parameters are shared across layers as a common

Under review as a conference paper at ICLR 2022

Conv 3 Atoms 3 N
K, € R¢ xc!xIx1 D; € RMxIx1 25
i
Conv 2 [> Shared Coefficients ® Atoms 2 3
K, € R® xc!xIxl A e[REXE'xm D, € RMX*Ix 2o
i
Conv 1 Atoms lz z
K; €R¢ xc!xIxl D, € R™MXIX

Black-footed Albatross

Figure 1: Atom-coefficient decomposition disentangles spatial convolution and channel mixing. So
that each feature map after atom convolution now preserves spatial correspondence to the original
image; and channels that describe important region features, e.g., wings, beak, and tail of a bird,
will highly likely be consistently assigned with weights across layers, in order to carry on those
critical information. Thus, atom coefficients, i.e., weights to linearly combine channels, now become
shareable across layers to permit a joint subspace view. Such joint subspace view leads naturally to
anovel CNN architecture in which the majority of parameters are shared across layers as a common
block of atom coefficients, with only a few hundred parameters remaining specific to each layer as
filter atoms.

block of atom coefficients, with only a few hundred parameters remaining specific to each layer as
filter atoms as shown in Figure[I] This matches the intuition visualized in Figure [T that important
image regions, e.g., the wings, beak, and tail of a bird, remain important across different layers and
scales to output an informative deep representation. Atom-coefficient decomposition disentangles
spatial convolution and channel mixing. Thus, channels that describe important region features
will highly likely be consistently assigned with large weights across layers, in order to carry on
those critical information. Thus, atom coefficients, i.e., weights to linearly combine channels, now
become shareable across layers to permit joint subspace CNN modeling.

Our approach accepts many easily constructed variants, e.g., using different filter atom numbers and
sharing substructures, to allow highly flexible trade-offs between parameter reduction and model
expressiveness. This simple and plug-and-play joint subspace view opens the door to better inter-
preting, training, adapting, and compacting deep models. We support our findings with extensive
empirical evidence in this paper. By using variants of ACDC as plug-and-play replacements to the
standard convolutions, we observe comparable and even better performance on challenging image
classification datasets with orders of magnitude smaller models. We further demonstrate with few
shot learning experiments that ACDC improves the adaptation of deep networks on novel tasks with
limited supervisions. We end our paper with a model interpretability discussion.

Our main contributions are summarized as follows:

e We introduce a joint subspace view to CNN, which is compatible to a wide range of net-
work architectures, to provide a structural regularization over CNN filters for better model
interpretability, training, adaptation and compaction.

e Highlighting the remarkable flexibility and compatibility, we introduce various model vari-
ants constructed easily by sharing coefficient within different network sub-structures.

e We validate the effectiveness of our approach by plug-and-playing them into modern CNN
architectures for various real-world tasks.

2 RELATED WORK

Before presenting the connections of our method with the literature, let us comment on the com-
plementary efforts on network compression. Contrary to recent efforts on network compression and
efficient architectures, we instead explore and exploit the underlying correspondence and correla-
tions among convolutional layers within a given CNN. We decompose the convolutional kernels
among layers, and enforce shared composition coefficients within sub-structures of a CNN. This

Under review as a conference paper at ICLR 2022

plug-and-play reparametrization of convolutional kernels significantly reduces the network redun-
dancy while maintaining performance, improving adaptation, providing additional interpretability,
reducing computational cost, and adding compression (as a by-product) comparable to many mod-
ern heavily tailored light-weight networks. We consider directions such as neural architecture search
(Howard et al 2019)), post processing methods to deep networks (Phan et al., |2020; [Stock et al.,
2020; L1 et al., |2019aj; [Wu et al., [2018};|Son et al., [2018]), and heavily tailored efficient networks and
training (Tan & Lel 2019) complementary to our efforts.

CNN architectures. The tremendous success of applying convolutional neural networks (CNNs)
on numerous tasks has stimulated rapid developments for more effective and efficient network ar-
chitectures in both hand-crafted (Chen et al., [2017; [He et al.l [2016; [Howard et al., 2017 landola
et al.,2016; Sandler et al.,[2018)) and automatically discovered (Elsken et al., 2018; Liu et al., 2018;
Pham et al., [2018; Zoph & Le, [2017) manners. We consider our work orthogonal to such topology-
based methods, as the plug-and-play property of the proposed ACDC allows it to be added to all the
aforementioned methods as a replacement to the standard convolution. Besides efforts on studying
efficient network architectures, methods for network compression and pruning (Han et al., 2015a;
2016; [2015b; He et al.l 2017; [Li et al.l [2016; [Luo et al., |2017) have been extensively studied for
decreasing the model size by pruning the inconsequential connections and weights of a network.
Methods (Ha et al., 2016; Savarese & Maire, [2019)) align with our direction as they are also insensi-
tive to network topologies. And as shown in the experiments, ACDC can achieve higher performance
in terms of parameter reduction and classification accuracy with greater flexibility.

Kernel decomposition in CNNs Convolutional kernel decomposition has been studied for various
objectives. (Sosnovik et al., [2019) utilizes kernel decomposition as a tool for constructing same
kernel with multiple receptive fields. DCFNet (Qiu et al.l [2018)) is proposed as a principle way of
regularizing the convolutional filter structures by decomposing convolutional filters in CNN as a
truncated expansion with pre-fixed bases. Split-wise decomposition over basis elements is intro-
duced in (L1 et al.; 2019a) to retrain a CNN with reduced parameters.

Weight sharing in networks Exploiting sharing weight within CNNss is discussed in (Son et al.,
2018; [Wu et al., |2018) as a post-processing step for model compression. Hypernetworks (Ha et al.,
2016)) adopt weight generation from a shared network (denoted as Hypernet) to exploit correlations
among weights empirically.

3 JOINT SUBSPACE CNN MODELING

In this section, we start with a brief introduction to atom-coefficient filter decomposition, which
builds the foundation of our joint subspace CNN modeling (Section[3.T)). We then present the empiri-
cal support for the joint subspace view to CNN filters through a motivating experiment (Section [3.2)).
We show in this motivating experiment that, with atom-coefficient decomposition, a jointly low-rank
structure can be clearly observed among coefficients trained independently in different layers of a
CNN under certain linear transformations. This observation, together with the well recognized over-
parametrization problem of CNNss, leads to the idea of subspace coefficients sharing enforced across
network sub-structures, which can then be constructed as plug-and-play replacements to the standard
convolutions (Section [3.3]and Section [3.4).

3.1 CONVOLUTIONAL FILTER DECOMPOSITION

Previous works have shown that a convolutional filter in a CNN can be decomposed as a linear com-
bination of pre-fixed basis (Qiu et al., 2018)). In our approach, we adopt a similar decomposition as
shown in Figure 2} in which a convolutional filter is represented as a linear combination of trainable
2D filter atoms. After decomposition, a convolution layer with ¢-channel output Y and ¢’-channel
input X becomes

Y=Kx+X, K=AD, (1

where * denotes the convolution operation. As illustrated in Figure 2] in (IJ), a convolutional filter
K e RCXC/XM, which can be seen as a stack of ¢ x ¢’ 2D convolutional filters with the size of
[x 1, is reconstructed by multiplying m 2D filter atoms, denoted collectively as D € R™**! with
the corresponding atom coefficients A € Rex€¢"*m Note that square filters are assumed here for
simplicity, while all filter shapes are supported. Since both convolution and tensor multiplication
are commutative, a convolutional layer can now be decomposed into two:

Under review as a conference paper at ICLR 2022

o A atom sub-layer where each atom involves spatial-only convolution with the filter atoms,
ie., Z € RIm*hxw = D x X;

o A coefficient sub-layer that linearly combines feature channels from the atom sub-layer:
Y € Re*'xw — AZ. Note that Z here denotes atom sub-layer outputs, and stride 1 and
same padding are assumed for the sake of discussion.

3.2 THE MOTIVATION BEHIND

Deep CNNss are long recognized to be over-parametrized. A D K

The very deep layers in modern CNN structures (He P < ”‘ <
etal,[2016};Huang et al} 2017} [Zagoruyko & Komodakis, 47 o @ y ¢

2016) and the high-dimensional filters with little struc- " ! ;

tural regularizations lead to hundreds of millions of pa-

rameters. Such over-parametrization problem is also ob- Figure 2: Atom-coefficient filter de-
served in the studies of deep representations (Raghu etal, composition. A convolutional kernel K
2017), and empirically alleviated by new network struc- is decomposed over a set of m 2D fil-
tures (Chollet, 2017; Howard et al, 2017, network com- ter atoms D linearly combined by atom

pression, and parameter reduction methods (Ha et al, coefficients A.
2016; Savarese & Mairel [2019).

Meanwhile, recent studies on deep representations (Kornblith et al., 2019; |Morcos et al., 2018;
Raghu et al.,[2017)) have shown that there exists obvious correlations in features across layers within
a CNN after proper linear transformations. The correlation of features across network layers moti-
vates us to explore and exploit correlations across filters for structural regularizations.

We present here a motivating experiment on MNIST by applying CCA alignments as in (Raghu et al.|
2017) to the atom sub-layer outputs and the coefficient sub-layer outputs of layer ¢ and layer ;. Note
that no atom coefficient sharing is yet imposed here, and the network reports the same testing accu-
racy before and after filter decomposition. Formally, ¢, m, d, and hw denote the number of channels,
number of filter atoms, test set size, and the 2D feature dimensions, respectively. The atom sub-layer
outputs of the i-th and j-th layer, Z; and Z; € Remxdhw are firstly aligned by linear transforma-
tions P; and P; € R">*“" that maximize the correlation p, = Inax corr(P;Z;,P;Z;). And
KAl

similarly, the coefficient sub-layer outputs of both layers, Y; and Y; € R4 are aligned by Q;
and Q; € R°*¢ that maximize the correlation p = (Snag corr(Q;Y;,Q,Y;). Omitting the layer

iy]

indexes, the feed forwards of both layers can be rewritten as
Y = QAP 'P(D x X). (2)

By merging the transform into the coefficients A by A= QAP !, we obtain ‘aligned coefficients’
A; and A, that reside in a low rank structure reflected by the very similar effective ranks of A;
and [A;, A;]. For example, in our MNIST experiment using a 4-layer 32-channel CNN, out of the 6

possible (7, j) pairs, the average effective rank of A; and [A;, A ;] are 31.98 and 38.56, respectively.
Our observations agree with and further support recent studies on cross-layer feature correlations
(Kornblith et al., 2019; Morcos et al., 2018; Raghu et al., [2017). This observation hints that, in-
stead of treating filters in each layers independently, it is feasible to exploit such intrinsic low-rank
structure of coefficients across layers, and impose a joint subspace view to filters in a CNNs. And
practically, this observation supports the feasibility of directly reducing the parameter redundancy
of a CNN by enforcing shared atom coefficients across layers.

3.3 COEFFICIENTS SHARING ACROSS LAYERS

Based on the observations above and (), a joint subspace CNN modeling is constructed by enforcing
common atom coefficients A across layers in a CNN, as illustrated in Figure[T] Formally, given a
N-layers CNN, the n-th convolutional filter is constructed by

K, =AD,,Vn=1,...,N. 3)

Assuming for now all layers have identical channel number with ¢’ = ¢, the amount of parameters
is reduced from c2c?N to ¢?m + NkI2.

Under review as a conference paper at ICLR 2022

Figure 3: Illustration on how coefficients
are shared across three layers with increas-
ing numbers of channels. The shared co-
efficients are initialized with the largest di-
mensions required.

\ Output Features at layer n Ye RO |

Shared Coefficients Channel Shuffle

‘Y,e]m"/thxw ‘ ‘Yzem"/thxw ‘ ‘ Y,e]m"/axhxw ‘
7

Kerneln_2
Ky, R X oxixt

Atoms n_I
D, ,eR™xl

Atoms n_2
D, LER™ X!

Atoms n_3

Kernel n_1
D, sERTXIX)

Ky ERY5*/axixt

)

Kernel n_3
K, 4 €R7: X /x1xt

; ; -
[xerTw | [xerrw | [xerTeow |

Channel Grouping

‘ Input Features at layer n X€ REX"XW ‘

Figure 4: atom coefficient sharing with three groups at layer n. The
input feature is first equally divided into groups (denoted as boxes
with different grey scales), each of which is convolved with one group
of filters reconstructed by multiplying the corresponding filter filter
atoms and the shared coefficients. The output of three groups are com-
bined by channel shuffle.

In practice, convolution layers within a network can have different numbers of channels. When
sharing coefficients across layers with different channels numbers, we initialize the dimensions of
the shared coefficients to be the largest dimensions needed by the corresponding layers. For ex-

ample, given a N-layer CNN with convolutional kernels {K,, € Ren*cnxixlip — 1 N},

the network is constructed by initializing the shared coefficient as A € REmas XCmas XM where
Cmaz = max{cp;n = 1,...,N} and ¢,,,, = max{c,;n = 1,...,N}. The filters with fewer
channels are reconstructed by multiplying the filter atoms with a subset of the shared coefficients
K, =A[l:¢,,1:¢),,1:m]D,. A 3-layer illustration with progressively increased channels is
shown in Figure[3] Such a design choice is motivated by multi-scale decomposition 11999),

and proves to be highly effective with our extensive experimental validation.

Note that a relaxed version can be formulated as follows: Instead of enforcing common coefficients
across all layers, we allow the sharing to happen among a few consecutive layers in a network. We
refer a group of consecutive layers with identical number of output channels and identical feature
sizes as a block in a deep network, and enforce coefficient sharing in each block. For example, a
VGG16 (Simonyan & Zisserman,[2014) can be implemented by sharing coefficients within 5 groups,
each of which consists of conv layers with 64, 128, 256, 512, 512 channels, respectively.

3.4 COEFFICIENTS SHARING ACROSS FILTER GROUPS

Motivated by the observation in (Raghu et al., 2017) that the representation learned at a layer is
not fully determined by the number of neurons in the layer, and the existence of parameter redun-
dancy within a single layer as studied in (Michel et al.| 2019), we suggest to further extend our
joint subspace view from coefficient sharing across layers to sharing across groups of filters in a
convolutional layer.

Practically, we further break down the smallest sharing unit from a layer to part of a layer. A
high-dimensional convolutional layer can now be separated into several groups with identical sizes,
and sharing coefficients are imposed across groups. Formally, given a convolutional layer with ¢’
input channels and ¢ output channels, respectively, we divide input channels into g identical-sized

groups, and each group is convolved with a convolution kernel K; € Rs*s X! j =1 ... ¢
After grouping, we decompose {K;;j = 1,..., g} into shared coefficients A € R5*T*™ and g
independent sets of filter atoms {D; € R™>!xl 5 = 1,..., g}. In this way, the number of shared
coefficients is reduced by g2 times, and the number of filter atoms is increased by g times. Since
filter atoms have orders of magnitude smaller dimension comparing to the coefficients, we achieve

further parameter reduction. Since each K; only convolves with a subset of the input feature, this
method reduces the overall computations.

However, directly deploying this sharing mechanism breaks the network into several paralleled sub-
networks with no feature passing and gradient propagation among them. To remedy this without
adding any additional parametric components, we utilize channel shuffle (Zhang et al.| [2018) that
enables information to be efficiently propagated among groups in a non-parametric way. An illus-
tration is presented in Figure[d Since the size of the shared coefficient now does not depend on the

Under review as a conference paper at ICLR 2022

largest feature dimension of a network but the size of the groups, we obtain a more compact model.
In practice, to handle the expanding channels numbers in typical CNNs, we can easily allow each
group in the shallow layer to feed the features to multiple groups in the deep layer. Therefore the
proposed coefficient sharing across filter groups permits remarkable parameter sharing with little
modification to the original network structures such as the numbers of channels and layers.

Table 1: Comparisons on CIFAR-10 with parameter sizes, parameter reduction rates, and test error.
Those with higher than baseline accuracy but fewer parameters are marked in bold.

Architect) VGG16 ResNet18 WRN-40-4
rehitectures mos Size Error Size Error Size Error
Baseline \ - - \ 14.72M 6.20 \ 11.17M 5.81 \ 8.90M 4.97

ACDC-net 8 - | 211IM (85.7%)) 5.67 | 2.28M (79.6%)) 5.98 | 0.58M (93.5%)) 4.85
16 - | 42IM (71.4%])) 5.44 | 4.38M (60.8%)) 543 | 1.11IM (87.5%])) 4.42

ACDC-block 8 - | 4.89M (66.8%)) 5.47 | 296M (73.5%]) 5.50 | 0.74M (91.7%]) 4.46
oc 16 - | 978M (33.6%]) 5.40 | 5.76M (48.4%)) 4.92 | 1.43M (83.9%]) 4.38
ACDC-o-net 8 321 0.03M (99.8%])) 10.24 | 0.20M (98.2%])) 7.30 | 0.07M (99.2%)) 8.20
8 16 64 | 0.08M (99.5%])) 9.87 | 0.26M (97.7%)) 791 | 0.13M (98.5%]) 6.85
ACDC-g-block 8 32] 0.06M (99.6%])) 9.71 | 0.22M (98.0%])) 7.48 | 0.09M (99.0%)) 8.92
8 16 64 | 0.35M (97.6%])) 6.63 | 0.45M (96.0%])) 7.22 | 0.26M (97.1%]) 6.88
ACDC-o-laver 8 321 0.13M (99.1%])) 6.68 | 0.89M (92.0%]) 5.23 | 0.36M (96.0%]) 5.02
§-iay 16 64 | 0.80M (94.6%])) 5.67 | 0.60M (94.6%)) 6.20 | 1.98M (77.8%])) 4.23

4 EXPERIMENTS

In this section, we support our findings with extensive empirical evidence, and evaluate variants
of our joint subspace CNN modeling, referred to as ACDC, as plug-and-play replacements to the
standard convolution, with several different levels of atom coefficient sharing:

o ACDC-net: Sharing across all layers.
e ACDC-block: Sharing across blocks of layers.
e ACDC-g: Sharing across filter groups.

ACDC-g naturally further leads to three variants by allowing sharing within the entire network,
blocks within a network, and layers within a network, and are thus named as ACDC-g-net, ACDC-
g-block, and ACDC-g-layer, respectively. We use m and s to denote the number of filter atoms and
grouping size, respectively.

4.1 IMAGE CLASSIFICATION

In this section, we perform standard image classification experiments, and validate our joint sub-
space CNN modeling with extensive experiments on CIFAR-10, CIFAR-100, TinylmageNet, and
ImageNet.

Evaluating variants of ACDC. We first report on CIFAR-10 self-comparisons on variants of
ACDC constructed with different numbers of filter atoms as well as grouping sizes. We present
performance in terms of both parameter size and classification error in Table[T} VGG16 (Simonyan
& Zisserman, 2014), ResNetl8 (He et al., 2016), and Wide ResNet (WRN) (Zagoruyko & Ko-
modakis, 2016) are adopted as the underlying network architectures in order to show the remarkable
compatibility of the proposed approach. This set of experiments show our joint subspace model-
ing maintains or improves CNN performance with a significantly more compact model, e.g., 98%
reduction with comparable performance, and 70% reduction with even higher accuracy.

CIFAR-10, CIFAR-100 and TinyImageNet. We further present experiment results on CIFAR-10,
CIFAR-100, and TinyImageNet in Table 2] We compare exampled variants of ACDC against Hy-
perNetworks (Ha et al.,|2016) and Soft Parameter Sharing (Savarese & Maire| [2019), both of which
serve as plug-and-play replacements to standard convolutions as well. Though HyperNetworks (Ha
et al.| [2016) achieves remarkable parameter reduction, ACDC is able to achieve higher accuracies

Under review as a conference paper at ICLR 2022

Table 2: Classification performances on CIFAR-10, CIFAR-100, and TinylmageNet datasets. Per-
formance on state-of-the-art light CNN architectures are listed in the upper block. The middle block
shows the performance of plug-and-play methods with parameter sharing in CNNs. We present the
results of variants of ACDC in the bottom block. Performance obtained by our reproductions are
marked with *.

Methods | Size | CIFAR-10 CIFAR-100 TinyImageNet
SqueezeNet (landola et al.|[2016) 2.36M 6.98* 29.56* 48.22*
ShuffleNet (Zhang et al.[[2018) 0.91M 7.89* 29.94* 54.72%
ShuffleNet-V2 (Ma et al.|[2018) 1.3M 8.96* 29.68* 51.13*
MobileNet-V2 (Sandler et al.|[2018) 2.36M 5.52* 30.02* 48.22*
NASNet (Zoph et al.|[2018) 3.1M 3.59 21.77* 47.17*
DCFNet (K=6, FB) VGG16 (Qiu et al.|[2018) 9.84M 5.98* 32.75* 57.70%
Learning filter bases VGG16 (L1 et al.[[2019b) 3.21M 6.23 - -
LegoNet-VGG16-w(0=4,m=0.25) (Yang et al.||2019) | 0.9M 8.65 30.11* 55.22%
LegoNet-VGG16-w(0=2,m=0.5) (Yang et al.|[2019) 3.7TM 6.77 20.45* 48.42%
WRN-40-1 HyperNets (Ha et al.|2016) 0.10M 8.02 - -
WRN-40-2 HyperNets (Ha et al.||2016) 2.24M 7.23 - -
SWRN 28-10-1 (Savarese & Maire||2019) 12M 4.01 19.73 43.05*
SWRN 28-10-2 (Savarese & Maire!2019) 17M 3.75 18.37 41.12*
VGG16 ACDC-g-layer m8 s32 0.13M 6.68 28.81 49.96
VGG16 ACDC-net m8 2.11M 5.67 22.13 43.34
WRN-40-1 ACDC-block m8 0.043M 7.19 30.23 51.47
WRN-40-1 ACDC-block m?24 0.114M 7.02 28.14 49.05
WRN-40-4 ACDC-g-layer m16 s32 0.67TM 4.38 20.04 45.87
WRN-28-10 ACDC-g-block m24 s160 2.27TM 4.25 19.64 41.24
WRN-28-10 ACDC-net m12 5.21M 3.52 18.81 39.96
WRN-28-10 ACDC-block m24 13.20M 3.26 17.85 38.74

Table 3: Performance on ImageNet. Parameters, minilmageNet

top-1 and top-5 errors are reported. Numbers ob- ~ 70%

tained by our reproductions are marked with *. 50, r/z-——--ﬁ—-’_—.:_—_'?.:
We use ResNet34 and ResNet50 as baselines.

60%
Methods | Size Top-1 Top-5 55% -
~
ResNet34 21.28M 27.42* 9.02* 50% — e
Structured Conv A 9.832M 27.19 - . e
Structured Conv B 5.60M 30.56 - 45% i
ACDC-g-layer m12s64 (ours) 1.66M 32.82 12.14 Conv4 Conv6 Resnet10 Resnet18 Resnet34
ACDC-net m12 (ours) 3.34M 30.85 11.25 _) S .
ACDC-stage m16 (ours) 577M 2778 9.72 &~ MAML 5W18 *— MAML-ACDCSWIS
ResNet50 2506M 24.17° 782" =+~ MAML 5W5S —&— MAML-ACDC 5W5S
ChPrune 17.890M 277 92
LegoNlét_W 93M _ 8.7 Figure 5: Few-shot image classification with
Versatile 11.0M 255 8.2 deeper CNN architectures. SW1S and SW5S de-
gtmciureg (éonvg 183;5479;\1/\1’1 iggg - note 5-way 1-shot and 5-way 5-shot experiments,
ructure: onv . . - . . .
ACDC-net m8 (ours) 1429M 2538 8.08 respect.lvely. Performance (Y-axis) is evaluated by
ACDC-stage m8 (ours) 1637M 2404 7.68 averaging 3,000 rounds of randomly sampled test-
ing tasks.

with even fewer parameters. The parameter reductions in Soft Parameter Sharing (Savarese & Maire,
2019) are highly restricted by the large scale elements in the filter bank. For example, SWRN 28-10-
1, as the smallest variant of Soft Parameter Sharing on WRN, adopts a single template per sharing
group, and can only achieve 66% of parameter reduction. By adopting ACDC-net and ACDC-block
to WRN, we are able to achieve both higher parameter reductions and accuracy. Though model
compaction is not our mere objective, we include here as references some state-of-the-art light CNN
architectures (landola et al., [2016; |[Zhang et al.l 2018; Ma et al., 2018} [Sandler et al., |2018)) and
architecture based on neural architecture search (Zoph et al.,|2018)). Additional comparisons against
network compression and pruning methods are in supplementary material Section [C]

ImageNet. To fully validate our joint subspace CNN modeling, we perform further experiments
on the large-scale ImageNet dataset (Deng et al.,|2009). We use ResNet34 and ResNet50 as baseline
models, and compare ACDC against LegoNet (Yang et al., 2019), Versatile (Wang et al., 2018b),

Under review as a conference paper at ICLR 2022

Performance with Different Number of Atoms
97.00% Atom-drop
o 96.00%

216M 2.43M 2.60M
96.00% LUM 137M LedM 190M 95.00%
.00%
95.00% osom B
2 94.00%
o400% 033

93.00%
93.00% 0 0.01 0.05 0.1 0.2 0.3 0.4 0.5
4 8 12 16 20 24 28 kY] 36 40

Number of Atoms

Accuracy
Accrucy

Atom Drop Rate

Figure 6: Accuracy with different number of Figure 7: Accuracy with different atom drop rate

filter atoms m. Parameter sizes are denoted p.
as #M.

network pruning method ChPrune (He et al.| 2017), and recently proposed Structured Conv (Bhalgat
et al| 2020). Results are presented in Table [3] For ResNet34, one variant of ACDC with grouping
in layers uses only 1.66 million parameters with acceptable performance decrease. For ResNet50,
since a large proportion of the parameters are in the 1 x 1 conv layers, ACDC achieves fair parameter
reductions with maintained performance.

4.2 FEW-SHOT EXPERIMENTS

We further demonstrate that our joint subspace modeling improves deep model adaptation on novel
tasks with limited supervisions, which is validated by few-shot classification using commonly
adopted experimental settings. Specifically, we adopt ACDC-net on the model-agnostic meta-
learning (MAML) (Finn et al.l 2017) algorithm, which is a method that adapts to a novel task by
tuning the entire network from a learned initialization. Although MAML is designed to be model-
agnostic, we consistently observe that it struggles for further performance improvements when using
deeper and wider networks. Same observations are reported in (Chen et al., [2019). We show that
such limitation can be alleviated by structural regularizations with ACDC. We follow the same ex-
perimental settings as (Chen et al., 2019) and perform both 5-way 1-shot and 5-way 5-shot image
classifications on minilmageNet dataset. The comparisons are shown in Figure [5] Though adopt-
ing ResNet10 with MAML achieves improvements over simple network with few stacked layers,
the performance drops with more residual layers as shown by the results on ResNet18. By using
ACDC-net with deeper ResNets, performance is not only maintained but also improved when more
layers are used, which thus permits larger models in MAML.

Table 4: Comparisons of FLOPs and speed with different variants of ACDC with grouping.

Networks \ Baseline \ ACDC m8 s64 ACDC ml6 s64 ACDCm8s32 ACDC ml6 s32
VGGl16 125.66B 64.15B 64.17B 32.29B 32.30B
ResNet18 222.4B 116.76B 116.78B 60.13B 60.14B
Speed (ms/batch) 8.9 5.8 5.8 4.2 4.3

4.3 COMPUTATIONAL EFFICIENCY

ACDC enjoys another merit of being computationally efficient when using sharing with grouping.
Since after grouping, each group of convolutional filters only convolves with a subset of input fea-
tures, ACDC-g-block and ACDC-g-net substantially reduce the number of FLOPs and accelerate the
speed. We report comparisons with ResNet18 and VGG16 in Table 4] All numbers are obtained by
feeding the network a typical batch with 100 64 x 64 images. It is clearly shown that by using small
groups, the computation can be reduced dramatically, and larger number of filter atoms only effects
the speed the total FLOPs slightly. We present further speed comparisons against recent efficient
network structures in Appendix Table [B

Number of filter atoms One additional hyperparameter introduced is the number of filter atoms
m per sub-structure. As shown in Figure [6] having more filter atoms in each sub-structure leads to
performance improvements that saturate at m = 32. More filter atoms also result in larger parameter
sizes, which are unfavourable.

Under review as a conference paper at ICLR 2022

Regularization by atom-drop. To improve the robustness of the filter atoms and the correspond-
ing reconstructed kernels, we further propose a structural regularization to filter atoms named atom-
drop inspired by widely used dropout. Specifically, when training the network, we randomly drop
a filter atom with probability p, which is referred as atom drop rate, by temporarily setting values
of the dropped filter atoms to 0, and the values of all other remained filter atoms are multiplied by
1%}) in order to maintain consistent scales of the reconstructed convolutional kernels. At test time,
all filter atoms are presented with no dropping. As shown in Figure [7] atom-drop improves gen-
eralization when p < 0.1. Higher values of p potentially degrade the performance as the training
becomes unstable. Thus we use p = 0.1 as the default setting. We show in Appendix Section

further comparison against typical dropout methods.

Standard CNN
ACDC-net .

Standard CNN

ACDC-net

Figure 8: Illustration on extending CAM to all layers (shallow — deep) with standard CNN and
ACDC-net. While CAM is originally introduced to explain the feature at the final convolutional
layer, we show that sharing coefficients allows CAM to better explain the shallow layers. The
network is progressively extracting features that attend to the discriminative regions, e.g., the wings
or the head of a bird.

5 CONCLUSION AND INTERPRETABILITY DISCUSSION

In this paper, we introduced a joint subspace approach to CNNs. We presented observations that, due
to the underlying cross-layer correlations, atom coefficients in the decomposed convolution layers
across a CNN reside in a low-rank structure. We explicitly exploited such observations by enforcing
atom coefficients to be shared within sub-structures of CNNs. Variants of the proposed method can
be constructed with different sharing structures, number of atoms, and grouping sizes. We reported
extensive experiment results that show the effectiveness of the proposed method on standard image
classification and adaptations.

This joint subspace modeling has the potential for better interpretability of CNNs, due to the cross-
layer shared coefficients. Class activation mapping (CAM) (Zhou et al. 2016), is a method that
is originally proposed to explain the importance of image regions only at the final convolution
layer, and is calculated by weighted averaging the features of the final convolution layer by the
weight vector of a particular class. We close our paper with an illustration in Figure [§] that extends
class activation mapping (CAM) to all layers of a ResNet-18 and a ResNet-18 with ACDC-net.
The networks are trained from scratch on CUB-200 high-resolution (448 x 448)
fine-grained bird classification dataset.

It is clearly shown that, in ACDC-net, while the class activation maps for shallow layers are in-
evitably noisy due to the limited receptive fields, features in deeper layers are progressively refined
to the discriminative regions. However, in standard CNNs, due to no explicit correspondence among
filters across layers, CAM can only explain the feature of the last Conv layer. This shows the great
potential for better interpretability with ACDC, and we will keep this as a direction of future effort.

Under review as a conference paper at ICLR 2022

REFERENCES

Yash Bhalgat, Yizhe Zhang, Jamie Lin, and Fatih Porikli. Structured convolutions for efficient neural
network design. arXiv preprint arXiv:2008.02454, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks. In Advances in Neural Information Processing Systems, pp. 4467-4475, 2017.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, July 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248-255. Ieee, 2009.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126-1135. JMLR. org,
2017.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135-1143,
2015b.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
arXiv preprint arXiv:1607.04381, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770-778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389-1397,
2017.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700-4708, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and;j 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

10

Under review as a conference paper at ICLR 2022

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
PMLR, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. arXiv preprint arXiv:1905.00414, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. International Conference on Learning Representations, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 5623-5632, 2019a.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 5623-5632, 2019b.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision, pp. 19-34, 2018.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467-6476, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision,
pp- 5058-5066, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision, pp. 116-131, 2018.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, pp. 14014—14024, 2019.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems, pp.
5727-5736, 2018.

Anton Obukhov, Maxim Rakhuba, Stamatios Georgoulis, Menelaos Kanakis, Dengxin Dai, and Luc
Van Gool. T-basis: a compact representation for neural networks. International Conference on
Machine Learning, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8026-8037, 2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavsky, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor de-
composition for compression of convolutional neural network. In Proceedings of the European
Conference on Computer Vision, pp. 522-539. Springer, 2020.

11

Under review as a conference paper at ICLR 2022

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, and Guillermo Sapiro. DCFNet: Deep neural
network with decomposed convolutional filters. International Conference on Machine Learning,
2018.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, pp. 6076-6085, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.

Pedro Savarese and Michael Maire. Learning implicitly recurrent cnns through parameter sharing.
arXiv preprint arXiv:1902.09701, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618626,
2017.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990-2999, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Clustering convolutional kernels to compress
deep neural networks. In Proceedings of the European Conference on Computer Vision, pp. 216—
232, 2018.

Ivan Sosnovik, Michat Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. arXiv
preprint arXiv:1910.11093, 2019.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. International Conference on Learning
Representations, 2020.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Wengi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compres-
sion: Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018a.

Yunhe Wang, Chang Xu, XU Chunjing, Chao Xu, and Dacheng Tao. Learning versatile filters for
efficient convolutional neural networks. In Advances in Neural Information Processing Systems,
pp. 1608-1618, 2018b.

Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan, and Yingyan Lin. Deep
k-means: Re-training and parameter sharing with harder cluster assignments for compressing
deep convolutions. International Conference on Machine Learning, 2018.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen, Chunjing Xu, Boxin Shi, Chao Xu, and
Chang Xu. LegoNet: Efficient convolutional neural networks with lego filters. In International
Conference on Machine Learning, pp. 7005-7014, 2019.

12

Under review as a conference paper at ICLR 2022

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848-6856, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921-2929, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. International
Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8697-8710, 2018.

13

Under review as a conference paper at ICLR 2022

APPENDIX

A IMPLEMENTATION DETAILS

All experiments are conducted on a server with 8 Nvidia RTX 3090 graphic cards, and each has
24GB memory. Experiments with few-shot image classification and CIFAR trained and tested on a
single card. Experiments with ImageNet are trained with 8 cards in parallel. The machine is also
equipped with 512GB memory and two AMD EPYC 7502 CPUs.

All experiments are performed using PyTorch (Paszke et al., 2019).

Initialization. We train every ACDC network from scratch. We use orthogonal initialization for
all filter atoms, and Kaiming normal initialization for all coefficients.

Training details. All networks for CIFAR10 and CIFAR100 are trained for 350 epochs. The initial
learning rate is set to be 0.1. The learning rate decays by a factor of 10 at the 150-th and the 250-th
epoch. All ACDC networks are trained with a weight decay of 10~*. The reported numbers are
averaged over 5 runs. Networks for ImageNet are trained for 90 epochs. The initial learning rate is
0.1 and decays by a factor of 10 every 30 epochs. The weight decay for ImageNet experiments are
set to be 2.5 x 1075, We consistently observe that lower values for weight decay yield better results
on ACDC networks. We believe the reason is that the structural regularization of ACDC already
reduces the risk of overfitting.

B COMPARISONS OF ATOM-DROP

The proposed atom-drop shares the similar motivation with dropout, which is introduced to im-
prove the robustness of networks weights by randomly closing activations in the training of the the
deep network. Atom-drop is introduced in ACDC as a method to improve the robustness of the
learned atoms at each layer. Most importantly, since atom-drop is performed on atoms, which are
network parameters, and dropout is performed on feature activations, they can be applied simulta-
neously. We present in Table [A] the performance of ACDC-net m16 with WRN-40-4 and different
dropping regularizations. Dropout-1d and dropout-2d correspond to randomly dropping pixels and
feature channels, respectively. Using drop-atom alone delivers better performance comparing to
both dropout-1d and dropout-2d, and drop-atom is compatible with dropout-1d and dropout-2d for
better performance.

Table A: Performance comparisons with different dropping regularizations.

| dropout-1d ~ dropout-2d ~ atom-drop atom-drop + dropout-1d atom-drop + dropout-2d
Error | 4.92 4.90 4.85 4.83 4.82

C COMPARISONS AGAINST NETWORK COMPRESSION AND PRUNING
METHODS

We present here further comparisons against network compression and pruning methods. Perfor-
mance is measured with error rates and proportion of remained parameters (both lower the better).
Note that different from post-processing using compression and pruning, ACDC is primarily pro-
posed as a structural regularization and a plug-and-play replacement to standard convolutional lay-
ers, so the networks with ACDC remain trained end-to-end. We include SNIP (Lee et al.,|2018), TR
(Wang et al.,[2018a), and recently proposed T-Basis (Obukhov et al.|[2020) and GraSP (Wang et al.,
2020) into the comparisons. Results shown in Figure[A]clearly demonstrate that ACDC can achieve
even smaller parameter size with negligent scarification to accuracy.

D COMPARISONS ON SPEED

We present the comparisons on speed against some recent efficient network structures in Table
All numbers are obtained by an average of 10,000 runs. Each run contains a batch of 100 samples

Under review as a conference paper at ICLR 2022

22.5 A * ACDC-net m8
20.0 A * ACDC-g-net m8 s64
* ACDC-g-block m16 s64
1759 —e— T-Basis ICML2020
 15.0 1 TR CVPRR2018
2 —e— SNIP ICLR2018
@ 12,5 —e— GraSP ICLR2020
10.0
*
7.5 1 N
5.0 - *
1072 101 10°

% of parameter

Figure A: Comparisons against network compression and pruning methods on CIFAR-10 dataset.
Performance is measured with error rates and proportion of remained parameters (both lower the bet-
ter).As a plug-and-play method, ACDC can outperform network compression and pruning methods
in terms of both parameter reduction rate and prediction accuracy.

with a resolution of 224 x 224, which saturate the GPU cores. While fast speed is not the primary
goal of the paper, our joint subspace modeling allows comparably fast speed with the state-of-the-art
efficient network structures.

Networks | Speed (ms)
ResNet18 (He et al.,|2016) 25.8
MobileNet-v3 (Howard et al.,|2019) 234
ShuffleNet (Zhang et al.,|2018) 13.3
SqueezeNet (landola et al.;|2016) 259
ResNet-18 ACDC m16 s64 18.6
ResNet-18 ACDC m16 s32 16.4

Table B: Comparisons on speed against some recent efficient network structures.

Training stages \ 1. ACDC-net m=8 2. ACDC-block m=8 3. ACDC-block m=12

Parameters 3.57 4.59 6.74
Error 41.76 40.28 39.06

Table C: Experiments with expanding network capacity.

E ARCHITECTURE ADAPTIVITY

ACDC offers a variety of variants with varying degrees of sharing and performance. The selection
of the variants can be determined based on the factors like the size and difficulty of the datasets at
hand. Furthermore, the shared atom-coefficients decomposition for all ACDC variants allows for
easy transfer and, as a result, an adaptive model adaptation scheme. For example, one can start
training the network with coefficients sharing across all layers (ACDC-net) with a relatively small
number of atoms. And the network capacity can be gradually increased by relating the coefficient
sharing to blocks only and adding more atoms. Meanwhile, the majority of the parameters can
be inherited from the earlier trained model to guarantee training efficiency. To show this, we use
WideResNet (WRN-28-10) as the backbone and train an expanding model on the TinylmageNet
dataset. As shown in Table in stage 1, we start with training ACDC-net m=8. When further
performance improvement is desired, we can relax the sharing by using the parameters obtained
with ACDC-net m=8 to initialize ACDC-stage m=8 and continue training the network at stage 2.
Similarly, we can further expand the network to ACDC-stage m=12 with most of the parameter
inherited from ACDC-stage m=38.

	Introduction
	Related Work
	Joint Subspace CNN Modeling
	Convolutional Filter Decomposition
	The Motivation Behind
	Coefficients Sharing Across Layers
	Coefficients Sharing Across Filter Groups

	Experiments
	Image Classification
	Few-shot Experiments
	Computational Efficiency

	Conclusion and Interpretability Discussion
	Implementation Details
	Comparisons of Atom-drop
	Comparisons Against Network Compression and Pruning Methods
	Comparisons on Speed
	blueArchitecture Adaptivity

