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ABSTRACT

Many organisms and cell types, from bacteria to cancer cells, exhibit a remarkable
ability to adapt to fluctuating environments. Additionally, cells can leverage mem-
ory of past environments to better survive previously-encountered stressors. From
a control perspective, this adaptability poses significant challenges in driving cell
populations toward extinction, and is thus an open question with great clinical
significance. In this work, we focus on drug dosing in cell populations exhibiting
phenotypic plasticity. For specific dynamical models switching between resistant
and susceptible states, exact solutions are known. However, when the underlying
system parameters are unknown, and for complex memory-based systems, ob-
taining the optimal solution is currently intractable. To address this challenge,
we apply reinforcement learning (RL) to identify informed dosing strategies to
control cell populations evolving under novel non-Markovian dynamics. We find
that model-free deep RL is able to recover exact solutions and control cell popu-
lations even in the presence of long-range temporal dynamics. To further test our
approach in more realistic settings, we demonstrate performant RL-based control
strategies in environments with dynamic memory strength.

1 INTRODUCTION

In order to survive, organisms must adapt to unpredictable environmental stressors occurring over
diverse timescales. As a result, biological systems display remarkable adaptive capabilities, making
it exceptionally challenging to control them through environmental modulation, marking an open
and significant question in the physics of living systems. Two examples of adaptive systems with
great clinical importance are cancer cell resistance to chemotherapy Vasan et al. (2019), and bacterial
resistance to antibiotics Blair et al. (2015). In both settings, the control problem of drug application
is complicated by unknown model parameters and non-Markovian dynamics. Notably, the constant
application of a drug does not typically result in population extinction, as drug application also drives
a certain fraction of the population to alter their phenotypic state to become drug-resistant. This new
resistant state can then persist even after drug removal and across cell lineages, thus encoding a
memory of the stressful environment which allows populations to more quickly adapt if the drug
is reapplied Harmange et al. (2023); Mathis & Ackermann (2017); Banerjee et al. (2021). Thus,
it is unclear how to devise a control strategy that can effectively mitigate the population in these
scenarios. We will address this open problem in the present work.

Previous literature Padmanabhan et al. (2017); Engelhardt (2020); Gallagher et al. (2024); Fischer
& Bluethgen (2024) has studied temporal drug dosing protocols to slow or prevent adaptation in
various cancer or bacterial models using different methods. However, these models fail to account
for the variety of adaptive timescales present in real biological systems. The presence of such
memory effects greatly complicates the control problem, making the study of more realistic models
imperative. Thus, to study the control of such memory-based adaptive systems, in this work we
introduce a novel population model exhibiting phenotypic plasticity with non-Markovian dynamics.
Prior work has shown that learning-based methods are able to form the basis of patient-specific
treatment protocols Miotto et al. (2016); Ahn et al. (2021). We show that insights from control theory
can be coupled with deep reinforcement learning to discover treatment protocols which successfully
prevent proliferation. We highlight our main contributions below:
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MAIN CONTRIBUTIONS

1. We develop a novel memory-based model for phenotypic switching relevant for bacterial
and cancerous population dynamics.

2. We pose the problem of optimal drug dosing in this model and provide insights on the
solution from control theory.

3. We find a robust optimal policy with deep RL that is independent of memory strength,
requiring only clinically-accessible observations.

In the following sections, we first introduce the new model, derive bang-bang optimal control, and
experimentally show it is required to find a high-performing policy. Because of the non-Markovian
dynamics, we introduce a short history to the agent’s state which we implement via framestacking.
Using ideas from optimal control theory and deep reinforcement learning, we thus simplify the
original control problem in a well-principled manner. We then apply standard and more advanced
RL techniques to solve different versions of the posed problem.

2 PROPOSED MODEL AND APPROACH

In this section, we develop our novel non-Markovian model for cellular dynamics. These
dynamics are based on a simple but general switching model (Figure 1) with switching
rates dependent on drug concentration. We then introduce a physically motivated non-
linear memory kernel, before discussing general approaches to the optimal control problem.

𝑆(𝑡) 𝑅(𝑡)

𝛼(𝑢)

𝛿(𝑢)

𝜅!(𝑢)
𝜅"(𝑢)

Figure 1: Depiction of the deterministic phe-
notypic switching model. The susceptible
subpopulation S transitions to the resistant
state R at a concentration-dependent rate, δ.
Similarly, the resistant state switches back to
a susceptible state at a rate α. The subpopu-
lations each have a concentration-dependent
growth or death rate, κ.

2.1 NON-MARKOVIAN
PHENOTYPIC SWITCHING MODEL

To model the treatment response of an adaptive cell
population, we use a general phenotypic switching
model which captures the time evolution of a sus-
ceptible subpopulation, with size S(t), and a re-
sistant subpopulation, with size R(t). Phenotypic
switching models have been successful in describ-
ing a wide variety of biological scenarios, including
development of persister cells and resistant cells in
bacteria, and development of drug resistance in can-
cer cells Balaban et al. (2004); Fischer & Bluethgen
(2024); Witzany et al. (2023); Kumar et al. (2019);
Kratz & Banerjee (2024). In our model, susceptible
cells with a net growth rate κS(u) (κS(u) < 0 corre-
sponds to net cell death) switch to a resistant state at
a rate α(u), where u is the drug concentration. Simi-
larly, when the drug is removed, resistant cells with a
net growth rate κR(u) switch back to the susceptible
state at a concentration-dependent rate δ(u) (Fig. 1). All growth and switching rates are a func-
tion of drug concentration normalized by the maximum allowable dose, thus u ∈ [0, 1]. The time
evolution of the size of each subpopulation, x(t) = [S(t), R(t)]T , is then given by the dynamical
system:

ẋ(t) = f(x(t), u(t)) = A(u(t))x(t) (1)

where the state-transition matrix is given by:

A(u) =

[
κS(u)− α(u) δ(u)

α(u) κR(u)− δ(u)

]
. (2)

To relate the net growth rate to drug concentration for each subpopulation, we assume that both rates
take the general form:

κS(u) = κmax
S − (κmax

S − κmin
S )g(u) , κR(u) = κmin

R + (κmax
R − κmin

R )h(u) ,

2
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where g(u), h(u) ∈ [0, 1] is a monotonic dose-response function which relates drug dose to net
growth rate, κmax

S > 0 denotes the maximum growth rate of the susceptible subpopulation in the
absence of drug application, and where κmin

S < 0 is the maximum death rate of the susceptible
subpopulation caused by application of the maximum drug dose (u = 1). Importantly, κmax

R > 0
denotes the maximum growth rate of the resistant subpopulation, which occurs in the presence of
the maximum drug dose, and κmin

R < 0 corresponds to the maximum death rate of the resistant
subpopulation, which occurs when the drug is removed. This parametrization corresponds to “drug
addiction” behavior in the resistant subpopulation, a robust phenomenon which has been observed
not only in cell culture Suda et al. (2012); Sun et al. (2014); Moriceau et al. (2015), but in animal
models Das Thakur et al. (2013) and in vivo Seifert et al. (2016); Dooley et al. (2016). Similarly, δ(u)
decreases with u while α(u) increases with u, as drug application drives the population to become
more resistant, while reduction in drug concentration causes the system to recover susceptibility.
These switching rates can then be defined as:

α(u) = αmaxj(u) and δ(u) = δmax(1− k(u)) ,

where j(u), k(u) ∈ [0, 1] and where αmax, δmax > 0 denote the phenotypic switching rates of cells
switching from the susceptible state to the resistant state, and vice versa.

Recently, cell populations of many types, including human cancer cell lines, yeast, and bacteria, have
been shown to maintain a memory of past environments which facilitates adaptation to previously-
seen stressors over many timescales Shaffer et al. (2020); Harmange et al. (2023); Larkin et al.
(2024); Wolf et al. (2008); Mathis & Ackermann (2017). To better capture this memory depen-
dence on treatment response, we introduce a memory kernel into the previously-described dynamics
(equation 1), making them non-local in time. Specifically, we choose a fractional differential equa-
tion (FDE) formulation as a phenomenological way to introduce multiple timescales of adaptation,
one which has been used successfully to model memory effects in other biological Lundstrom et al.
(2008), ecological Khalighi et al. (2022), and physical contexts Bonfanti et al. (2020). With this
addition the dynamics now become:

ẋ(t) = F(x(t), u(t)) =
∫ t

0

(t− τ)µ−2

|Γ(µ− 1)|
f(x(τ), u(τ))dτ , (3)

where Γ(·) denotes the Gamma function, f(·) is given by equation 1, and here we introduce the
parameter µ ∈ (0, 1] which controls memory strength. A value of µ = 1 corresponds to the memo-
ryless case (first order derivative), whereas smaller values of µ correspond to an increased influence
of past states on the current dynamics (lower order fractional derivative).

We seek to obtain a temporal drug concentration protocol u(t) which minimizes the growth of a
population and thus choose the final cost as C := logN(T )/N(0) over the time interval T , where
N(t) = S(t) + R(t) represents the total population. Thus, we aim to solve the following control
problem:

min
u

C(x(0), x(T ;u(·))) subject to ẋ(t) = F(x(t), u(t)), x(0) = x0, u(t) ∈ [0, 1] , (4)

where x(T ;u(·)) denotes the state of x at terminal time T subject to control u from 0 ≤ t ≤ T .
Interestingly, in our minimal model (equation 3), as long as κS(u), κR(u), α(u), and δ(u) are
monotonic functions, we can show that the optimal control solution follows “bang-bang” control,
regardless of model parameters and memory strength.

2.2 DERIVATION OF BANG-BANG CONTROL

Using equation 1 and the fact that N(t) = S(t) + R(t), the model dynamics can be rewritten as a
single fractional differential equation in terms of the fraction of resistant cells, ϕ := R/N , namely:

Dµ
0ϕ(t) = f(ϕ, u) = (κS(u)− κR(u))ϕ

2 + (κR(u)− κS(u)− δ(u)− α(u))ϕ+ α(u) , (5)

where Dµ
0 denotes the Caputo fractional derivative of order µ starting at t = 0 Garrappa (2018), and

here we drop the explicit time dependence for notational clarity. This can equivalently be written as
the continuous delay differential equation (we use this form in equation 3):

ϕ̇(t) =

∫ t

0

(t− τ)µ−2

|Γ(µ− 1)|
f(ϕ(τ), u(τ))dτ . (6)
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Given these definitions, the Hamiltonian associated with this control problem is then

H(ϕ(t), u(t), λ(t)) = λ(t)f(ϕ(t), u(t)) , (7)

where the trajectory of the Lagrangian multiplier λ(t) is the solution to the costate equation Go-
moyunov (2023):

λ(t) = −∂ϕC(x(0), x(T ;u(·)))
Γ(µ)(T − t)1−µ

+
1

Γ(µ)

∫ T

t

∂ϕλ(τ)f(ϕ(τ), u(τ))

(τ − t)1−µ
dτ . (8)

Applying Pontryagin’s minimum principle, we obtain the resulting inequality

H(ϕ∗(t), u∗(t), λ∗(t)) ≤ H(ϕ∗(t), u(t), λ∗(t)) , (9)

which along with equation 5 and equation 7 can be used to obtain the optimal control policy:

u∗ = argmin
u

λ∗[∆S(ϕ
∗ − ϕ∗2)g(u) + ∆R(ϕ

∗ − ϕ∗2)h(u) + δmaxϕ
∗k(u) + αmax(1− ϕ∗)j(u)] ,

where the following shorthand notation is introduced: ∆S = κmax
S −κmin

S and ∆R = κmax
R −κmin

R .

Critically, the fact that κmax
S , κmax

R , αmax, δmax > 0, κmin
S , κmin

R < 0, and g, h, j, k, ϕ ∈ [0, 1]
ensures that the bracketed sum which multiplies λ∗ is positive for u > 0. As a result, as long as
g(u), h(u), j(u), and k(u) are monotonically increasing functions of u, then the resulting optimal
control is said to be “bang-bang”, where u∗(t) only takes on its extreme values. Furthermore, the
switching times between the maximum and minimum values of u are determined by λ∗(t), yielding
the optimal control solution:

u∗(t) = 0 if λ∗(t) > 0,

u∗(t) = 1 if λ∗(t)) < 0, and
u∗(t) ∈ [0, 1] otherwise.

In principle, the optimal control trajectory can be obtained through numerical integration of the
model dynamics (equation 5) along with the corresponding costate equation (equation 8). In the con-
text of bang-bang control on non-Markovian systems however, using this approach can be difficult,
as it requires careful choice of integration technique and update rule. Thus, we turn to reinforcement
learning.

As shown above, the optimal control solution to Problem 4 follows bang-bang control, regardless
of model parameters. This allows the continuous model of equation 1 to be simplified to a discrete
model with binary controls without altering the optimal solution. This yields:

ẋ(t) = f(x(t), u(t)) =
{

Tx(t) for u = 1 (Treatment Phase)
Px(t) for u = 0 (Pause Phase) , (10)

where now there are two state-transition matrices, given by:

T =

[
κmin
S − αmax 0
αmax κmin

R

]
, P =

[
κmax
S δmax
0 κmin

R − δmax

]
. (11)

We use this formulation of the environment when training the reinforcement learning agent.

2.3 CONTROL STRATEGIES

Despite this simplification in action space, model control remains difficult, as the number of times
and duration of drug application must be optimized. Constant application of the drug at the maxi-
mum dose (u = 1) results in cell adaptation and proliferation (Fig. 3): a highly suboptimal solution
to Problem 4 and a catastrophic result in the clinical context.

Previous work Fischer & Bluethgen (2024) has shown that in the memoryless case (µ = 1), the
optimal solution for this type of model requires an initial drug application phase, followed by puls-
ing between treatment and pause phases at a regular interval dependent on the model parameters.
However, as seen in Fig. 3, we find that the addition of memory (µ < 1) renders the control strategy
of the memoryless case ineffective, as cells which have previously encountered treatment switch to
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Figure 2: Left: The learned policy shows a resemblance to the optimal memoryless strategy, with
an initial constant application phase followed by a pulsatile phase. However, in the case of memory-
based dynamics, the frequency of pulsing must be increased over time as discussed in Sec. 4. Since
the policy is eventually limited by the simulation time, the pulsing frequency becomes bottlenecked
by our choice of time discretization ∆ after ≈ 20 hours. Despite this, the policy is still able to
perform well with rapid pulsing. Right: Effect of learned policy on resistant fraction. for different
memory strengths. The RL agent finds (for distinct µ values) appropriate lower and upper bounds
for the fraction of resistant cells. Maintaining the subpopulation in this range ensures the population
can be controlled.

the resistant state faster upon subsequent applications. Furthermore, in the clinical or experimental
setting, obtaining the values which parameterize equation 3 is usually not feasible, and one can only
rely on direct and more macroscopic measurements from the cell populations. Thus, obtaining the
appropriate switching frequencies through direct computation via optimal control (OC) theory be-
comes impossible. One may propose to learn these values directly before feeding them into an OC
solution, but this may be a brittle pipeline, especially as the model discussed may not fully describe
the underlying biological dynamics. As a result, we seek to learn the optimal policy end-to-end,
directly through experience using deep reinforcement learning (Sec. 3).

2.4 OBTAINING THE OPTIMAL SOLUTION IN THE MEMORYLESS CASE

Previous work Fischer & Bluethgen (2024) has shown that the optimal pulsing protocol for the mem-
oryless case requires an initial drug application phase until the resistant fraction reaches some upper
threshold ϕh, followed by a pause phase (“drug holiday”) in which the resistant fraction naturally
relaxes back to some lower bound ϕl. This is followed by similarly repeated cycles of treatment
and pause phases where the switching time occurs when the resistant fraction reaches ϕh and ϕl,
respectively. To obtain the optimal values of ϕh and ϕl for our specific model parameterization, we
swept over values of ϕh and ϕl between 0.1 and 0.9, with increments of 0.011, selecting the values
which yielded the highest net death rate: ϕl = 0.494 and ϕh = 0.505.

To compare as baselines against our learned policy in non-Markovian environments, we repeated
the same procedure for different values of µ. The optimal switching fractions are given in Table 1.

3 REINFORCEMENT LEARNING

Reinforcement learning (RL) allows an agent to learn an optimal control strategy (policy) directly
from the experience it collects. This data may be from simulation Akkaya et al. (2019), or from real-
world data Haarnoja et al. (2024), or even from fully offline datasets Levine et al. (2020). In RL,
the interactive agent receives observations from the environment. As a result of this input, the agent
outputs a control or action (denoted u throughout), yielding a transition to a new state and a scalar
reward (negative cost). The goal of the agent, analogous to OC, is to act in a way that maximizes
the expected long-term accumulated rewards. In our problem formulation, this will correspond to
the use of drug to minimize the total population count.

We consider the online setting in simulation, where a drug protocol is learned through experience
(Fig. 2, left) by continually improving a policy as it is learned. Despite the non-Markovian dynamics
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Figure 3: Performance comparison of constant drug application, solution for the memoryless case,
resistant fraction-based pulsing technique, and policy learned by RL. For the fraction-based policy,
an optimal lower and upper bound for resistant fractions are found through sweeping (Appendix 2.4).
The RL policy is capable of controlling the cell population better than any other scheme.

and even without access to the underlying environment-specific model parameters, we show that
RL is capable of providing high-performing policies. To formulate the RL problem, we define
the relevant characteristics as follows (in the following, let ∆ denote the simulation time between
actions):

µ ϕl ϕh

1.0 0.494 0.505
0.9 0.483 0.494
0.8 0.466 0.477
0.7 0.448 0.459
0.6 0.428 0.439

Table 1: Optimal switching fraction
values for the baseline policy for each
memory strength µ.

State: The state (st) of the agent’s environment is a list
of the last K = 5 estimates of the instantaneous growth
rate and one-hot encoded actions, st = [ct−K,..t, at−K,..t]
where ct = ∆−1 logNt/Nt−∆ is the cost defined above.
Thus, a history of past observations is encoded in the state
vector, a crucial design choice if the agent is to learn con-
trol without a recurrent hidden state. Action: As mo-
tivated in Section 2.1, we choose a binary action space
u ∈ {0, 1} representing whether the drug is applied or not,
as this is suitable to recover optimal control. Reward: As
we seek to solve Problem 4, the reward is simply the neg-
ative growth rate, rt = −ct. Notice that with this choice
of reward function, the sum of rewards across a trajectory

simplifies as R0:T = ∆−1 logN0/NT , ensuring the agent’s objective is aligned with a reduction
in total cell population. Dynamics: The dynamics of the total cell population Nt are governed by
the dynamical system described in 2.1, initialized to be fully susceptible (x0 = [1000, 0]). After
an action is executed, the simulation (a numerical solution 1 of equation 3) is computed with the
action (dose) fixed for ∆ = 0.01 hours to compute the next state (st+∆). To encourage the agent
to reduce the cell population while decreasing computational runtime and allowing for exploration,
we terminate the episode if the number of cells ever exceeds 150% of its initial amount. The goal in
RL is to learn the policy π∗ which maximizes the expected cumulative discounted sum of rewards
across a trajectory τ = (s1, a1, s2, a2, . . . ):

π∗(a|s) = argmax
π

Eτ∼p,π

[ ∞∑
t=0

γtr(st, at)

]
. (12)

To solve this optimization problem, we consider discrete-action value-based methods. Within this
framework, the optimal action-value function Q∗(s, a) is learned based on off-policy data observed
during exploration. The value function satisfies the Bellman optimality equation (written to match
the control notation introduced above for actions):

Q∗(st, ut; θ) = r(st, ut) + γmax
u′

Q∗(st+∆, u
′; θ) . (13)

Within this class of methods, DQN Mnih et al. (2015) learns Q∗ by exploring with an annealed
greedy exploration strategy. After an action is taken, the experience tuple (s, a, r, s′) is stored in an

1The numerical solution of fractional differential equations requires some care; cf. Garrappa (2018) for
details.
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experience replay buffer for later use. In deep RL, the action-value function is parameterized with
a neural network (denoted by the trainable parameters θ), and trained via SGD by sampling mini-
batches uniformly at random from the buffer. The temporal-difference loss function is defined as the
Bellman residual loss – the squared difference between left and right hand sides of equation 13:

Lθ =
∑

{s,u,r,s′}∈B

∣∣∣Q∗(st, ut; θ)−
(
r + γmax

u′
Q∗(st+∆, u

′; θ̄)
)∣∣∣2 . (14)

As common in value-based algorithms, we use an additional target network to reduce the effect of
bootstrapping during training. The target network (denoted with parameters θ̄) has its parameters
frozen during training, and updated periodically directly by copying the online network parameters
θ → θ̄. We additionally use the double DQN approach to mitigate the over-estimation bias in
standard DQN Van Hasselt et al. (2016). Further details on reinforcement learning can be found
e.g. in Sutton & Barto (2018); Hessel et al. (2018). We tune over several hyperparameters (whose
values we list in the Appendix) to optimize performance. We implement double DQN Van Hasselt
et al. (2016) (and later FQF) based on open-source code from Stable-Baselines3 Raffin et al. (2021).
Each agent is trained for 3× 105 environment steps. All code to reproduce our experimental results
can be found at https://anonymous.4open.science/r/iclr-7B12/README.md.

4 CASE STUDY OF FIXED MEMORY ENVIRONMENTS

We first test DQN in the memoryless case (µ = 1), for which an optimal controller is known Fischer
& Bluethgen (2024). In this case, the optimal policy can be derived based only on two consecutive
resistant fractions. However, recall that the RL agent is only given access to the instantaneous growth
rates, not the resistant fractions. Nevertheless, the RL agent is surprisingly able to reliably recover
the optimal policy with only two frames and without any access to underlying model parameters.
The control strategy found by the agent involves first applying the drug and then pulsing regularly,
in agreement with the OC solution, as seen in Fig. 3 (rightmost plot). Indeed, Fig. 2 (right panel)
shows that the agent discovers an internal representation based on growth rates that is compatible
with fraction-based switching.

With confirmation that RL can find the optimal dosing strategy in the memoryless case, we turn
to the more difficult memory-based dynamics (µ < 1). We do not have a solution to Prob-
lem 4 in this regime, so we compare to two baselines: The memoryless protocol and a mod-
ified version in which switching times occur when the resistant fraction reaches a threshold
value. We note that these baselines can have arbitrarily small switching times, which is prac-
tically infeasible. Remarkably, we find that using a small but bounded ∆, our learned pol-
icy outperforms both of these baselines (Fig. 3). In addition, our experiments show that de-
creasing ∆ beyond a certain threshold does not considerably increase performance (Fig. 6).

Figure 4: PPO and SAC fail to find a bang-bang
control policy and have a lower performance than
DQN; highlighting the need for discrete action al-
gorithms, as informed by optimal control.

Interestingly, the learned policy reveals that
the agent initially maintains constant drug ap-
plication before transitioning to a memory-
dependent pulsing protocol. The agent in-
creases the frequency of pulsing throughout the
trajectory until saturation at the maximum rate
(∆−1) (Fig. 2). For cases with memory, this
increase in dosing frequency can be understood
as the result of faster cellular adaptation back to
the resistant state after multiple drug encoun-
ters. Thus, to maintain a susceptible popula-
tion, the policy’s pulse frequency must con-
tinuously be increased to compensate for the
memory-based adaptability. We also find that
the agent maintains a lower average resistant
fraction at higher memory strengths (Fig. 2,
right). This qualitative trend is in agreement
with the optimal switching fractions found by
optimal control.
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To independently show the benefit of using discrete actions, the original problem can instead be
approached with continuous action algorithms, such as PPO Schulman et al. (2017) or SAC Haarnoja
et al. (2018). As shown in Fig. 4, these algorithms considerably underperform relative to DQN.

Qualitatively, we find that these continuous action algorithms successfully find the constant appli-
cation period at the beginning of the episode. As the episode continues, though, both PPO and
SAC attempt a short-lived bang-bang policy before defaulting to the average action for the remain-
der of the episode. These results were obtained from an equal-compute hyperparameter sweep in a
fixed µ = 0.9 environment. We conjecture that continuous action algorithms struggle because of
the saturating gradient effect at the limits of action space, which correspond to bang-bang control.
Additionally, continuous action algorithms that give bonuses for policy entropy (e.g. SAC) make
learning these deterministic policies even more difficult.

5 MODEL SUCCESSFULLY GENERALIZES TO MEMORY AND OBSERVATION
NOISE PERTURBATIONS

In the previous sections, we construct RL agents that are each trained on specific dynamics deter-
mined by a fixed µ value. However, this can be problematic in practice, as the memory strength µ
is difficult to measure (it would require fitting equation 5 to entire episodes of data), which could
correspond to adverse costs in the clinical setting. Furthermore, adaptive cell populations such as
cancer can dynamically change their memory capacity over time Ringrose & Paro (2004); Acar et al.
(2005). Thus, a useful policy should be able to interact immediately without requiring additional
samples, and with no access to the value of µ. The unknown value of µ thus represents “side infor-
mation” that is not given to the agent but provides a context for the agent to understand the current
environment. This places the new problem setting in the framework of contextual MDPs Hallak et al.
(2015); Sodhani et al. (2022). To approach this problem while maintaining clinical applicability, we
train a general agent over a range of memory strengths. This approach of “domain randomization”
(DR) has been applied with great success in other RL problems Tobin et al. (2017); Akkaya et al.
(2019).

To tackle this more challenging environment, we use FQF Yang et al. (2019), a recent algorithm for
distributional RL, where the distribution (rather than only the mean) of future returns is learned. FQF
and its variants have shown success in discrete control environments. In particular, we use a noisy
variant that combines the approach of NoisyNets Fortunato et al. (2018) for improved exploration.
Further, we find it useful to supplement the RL state with the one-hot encoded actions used in the
last K steps. This allows the agent to observe the response of the environment to the presence of
drug: At lower µ, application of drug has a drastically different effect than at higher µ values at
similar growth rates. With these changes, we sweep over hyperparameters (cf. Appendix) to find a
model capable of reducing cell populations in any memory strength.

Although the µ-specific models outperform the generalist agent in their own finetuned environments,
the generalist agent can achieve good performance across a range of memory strengths 5. It is worth
noting that this model now enables use in settings where memory strength is entirely unknown
and possibly dynamical or noisy in nature. Experimentally, we find this agent is very robust to
perturbations of various types: namely large changes in µ and large amounts of observation noise.
In both cases, the learned policy employed by the agent is able to successfully adapt and continue to
minimize population growth 5.

6 RELATED WORK

The use of reinforcement learning in control of biological systems, especially in dosage control, has
been investigated by others. We will briefly highlight the most relevant prior work in this section.
(Padmanabhan et al., 2017) studies a deterministic memory-less model of cancer dynamics with
additional “immune” and “normal” cell types included. The number of tumor cells is used as a
discrete RL state, and hence a tabular method is used. In Engelhardt (2020), a coupled SDE governs
dynamics of d-many phenotypic subpopulations and the RL state is composed of measurements of
individual phenotype populations. Although the specific dynamical model varies, prior work often
requires unrealistic inputs to define the RL observation. An important contribution of the current
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Figure 5: Left: Policy is robust to observation noise, as tested in memoryless environment. Noise
draw from a normal distribution with standard deviation σ was added to each state before given to the
agent. Despite large amounts of observation noise, the agent was able to drive population reduction
and maintain a similar resistant fraction. Each trace represents the mean over 10 trajectories, with
the standard error represented by the shaded region. Right: Learned policy is general and robust to
changes in memory strength. Every 20 decision steps the memory strength is reset to a new value,
draw from a uniform distribution from [0.6, 1]. Agent is able to quickly adapt to mitigate population
growth in the new environment.

work is in advancing the model class itself while maintaining clinical relevance by using easily
measured quantities and providing a policy that generalizes across memory strengths.

7 FUTURE WORK

We utilize frame-stacking Mnih et al. (2015) to encapsulate the history of the agent’s trajectory, but
in future work we will test the use of recurrent policies to capture more nuanced long-term effects
and perhaps further improve performance. We also plan to extend our deterministic framework to
the stochastic setting, as population heterogeneity is known to further complicate the control pro-
cess. This work demonstrates the benefits of combining OC and RL, showing how their frameworks
can be effectively integrated. This connection can be further developed by using the memoryless
OC solution to enhance RL training through reward shaping Ng et al. (1999); Wiewiora (2003);
Adamczyk et al. (2023) or pre-training Uchendu et al. (2023) techniques.

8 DISCUSSION

In this work, we study the control of a highly non-Markovian model of adaptive cellular growth dy-
namics using deep reinforcement learning. Although we focus here on a specific parameterization
most relevant to cancer, we expect this methodology to be applied successfully to other scenarios,
including resistance development in bacteria. We find that deep RL is capable of recovering the
known optimal policy for the memoryless case and can successfully find a policy for memory-based
systems which prevents proliferation, all without access to the underlying model parameters. Fur-
thermore, we obtain a policy that is robust to observation noise and memory strength perturbations.

Exact methods from OC require direct access to the population’s resistant fraction and underlying
model parameters to determine switching rates. In practice, experimentally measuring the growth
rate of a pathogenic population is simpler than determining its corresponding resistant fraction.
Surprisingly, we find that model-free RL can provide successful policies directly from the growth
rate itself, making it a promising method for use in clinical settings.
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A REINFORCEMENT LEARNING DETAILS

We adapted DQN from Stable-Baselines3 Raffin et al. (2021) with a Double DQN action selection
rule Van Hasselt et al. (2016). We train the RL agent for 3×105 total environment steps. We limited
the episodes to be of length 104 steps (corresponding to 100 hours in simulation). An MLP of fixed
size (2 hidden layers with 64 dimensions each and ReLU activation) was used to parameterize the
Q-function.

Regarding the environment and training, we list several key implementation choices: At the be-
ginning of an episode, the state is zero-padded to always be of length K = 5. We experimented
with adding a penalty for allowing the number of cells to increase beyond the initial amount upon
termination, but found this was not necessary for successful training. Borrowing terminology from
the literature on Atari environments Mnih et al. (2015), we stack K frames (previous cost values) to
form the RL agent’s state vector. Although initially we let K be a µ-dependent hyperparameter, we
found a constant choice of K = 5 to work well across the values of µ studied.

We find exponentially decaying the exploration parameter ε to work better than the typical linear
annealing (with constant, positive final ε) scheduling. We conjecture that this is because non-greedy
actions can be quite detrimental (causing the environment to terminate), and exponentially decaying
ε ensures some exploration continues to occur but with increasingly fewer random actions. To ensure
the agent is not overly myopic (especially for such long episodes) we found a large discount factor
of γ = 0.999 (corresponding to an effective horizon of H = (1− γ)−1 = 103) to be helpful. When
training the agent, we wait until the completion of one rollout episode, and take as many gradient
steps as environment steps have occurred.

A.1 HYPERPARAMETERS

We find that sweeping over a range of hyperparameters (as shown in Table 5) did not have a signif-
icant effect on performance, though for reproducibility we list the final hyperparameters used (for
µ = 0.7) below in Table 4.

Table 2: Finetuned Hyperparameter Values for Double DQN

Hyperparameter Finetuned Value

batch size 32
buffer size 100,000
exploration rate 0.05
frames stacked 5
gradient steps (UTD / RR) 1
learning rate 3.60× 10−4

target update interval 1, 000
discount factor 0.999
learning starts 10, 000

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameter Sweep Ranges for Double DQN

Hyperparameter Sweep Values

batch size 16, 32, 64
exploration rate 0.01− 0.2
learning rate 10−5 − 10−3

target update interval 1,000, 5,000, 10,000, 30,000
target Polyak averaging 0.95, 0.99, 0.995, 1.0

Table 4: Finetuned Hyperparameter Values for (NoisyNet) FQF

Hyperparameter Finetuned Value

batch size 8
buffer size 100,000
exploration rate 0.2
learning rate 2.7× 10−3

target Polyak averaging 0.005
n-step TD 1
entropy coeff. 0.003

Table 5: Hyperparameter Sweep Ranges for (NoisyNet) FQF

Hyperparameter Sweep Values

batch size 8, 64
exploration rate 0.02− 0.2
learning rate 5× 10−4 − 5× 10−3

target Polyak averaging 0.001, 0.005, 0.01
n-step TD 1, 2, 4, 32
entropy coeff. 0, 0.0005, 0.001, 0.003
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B FURTHER EXPERIMENTAL RESULTS

Figure 6: We find that the simulation time can have a significant effect on RL performance. For
each choice of ∆, we run a random sweep of size 30 over various hyperparameters, selecting the
highest-performing run for each ∆. Since smaller values of ∆ require longer compute-times for
simulations, there is a tradeoff between the amount of time (also, the inverse of max pulsing rate,
which may be more relevant in clinical settings) and the best performance. We have chosen to use
∆ = 0.01 throughout.

Figure 7: Robustness experiment on changing switching rates α, δ. The black box in the center
highlights the rates at which the agent was trained. On each axis, the rate is varied by ±20%,
representing a large range of biologically plausible parameters. As α increases (or δ decreases), the
cells are more often in the resistant state (cf. Fig. 1), making the control problem more difficult for
the agent.
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