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Abstract
Kernel methods are powerful tools for nonlinear
learning with well-established theory. The scala-
bility issue has been their long-standing challenge.
Despite the existing success, there are two limita-
tions in large-scale kernel methods: (i) The mem-
ory overhead is too high for users to afford; (ii)
existing efforts mainly focus on kernel ridge re-
gression (KRR), while other models lack study. In
this paper, we propose Joker, a joint optimization
framework for diverse kernel models, including
KRR, logistic regression, and support vector ma-
chines. We design a dual block coordinate descent
method with trust region (DBCD-TR) and adopt
kernel approximation with randomized features,
leading to low memory costs and high efficiency
in large-scale learning. Experiments show that
Joker saves up to 90% memory but achieves com-
parable training time and performance (or even
better) than the state-of-the-art methods.

1. Introduction
Kernel methods, a formidable paradigm in nonlinear learn-
ing, stand alongside deep learning as a prominent approach
in the machine learning landscape. Recently, theoretical
progress that connects the modern deep neural network with
the kernel machines has been made (Jacot et al., 2018; Geif-
man et al., 2020; Chen & Xu, 2020), highlighting the great
potential of kernel methods. In the big data era, kernel
methods’ scalability has become a concern. Kernel ridge re-
gression (KRR) is the simplest kernel model. However, it is
associated with a linear system potentially requiring O(n3)
operations, where n is the size of the training set. Another
instance is the kernel support vector machine (SVM) (Cortes
& Vapnik, 1995). Despite its prevalence, it also faces scal-
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ability challenges with large datasets due to the induced
large-scale quadratic programming (Wen et al., 2018).

Numerous researchers have dedicated their efforts to tack-
ling the scalability issues. Nyström method (Williams &
Seeger, 2000) and randomized features (Rahimi & Recht,
2007) are two representative techniques to reduce the com-
putation of kernel methods. Nevertheless, researchers pre-
ferred the former one (Yang et al., 2012). Based on Nyström
method, Rudi et al. (2017) proposed a KRR model, Falkon,
for large-scale data. Its variants (Rudi et al., 2018; Meanti
et al., 2020) still hold the state-of-the-art performance and
efficiency for large-scale kernel methods. However, the
outstanding performance is priced at the expense of high
memory usage. Meanti et al. (2020) suggests that a good
performance of Falkon-based methods necessitates a large
number of Nyström centers. Yet, they require O(M2) mem-
ory to store the preconditioner for acceleration, where M is
the number of Nyström centers. This leads to a dilemma be-
tween memory consumption and performance. To perform
Falkon with M = 1.2 × 105 on the HIGGS dataset as in
(Meanti et al., 2020) using single precision, one needs at
least 55GB of memory, which is unaffordable for most users.
In other words, memory resources become a bottleneck for
large kernel machines (Abedsoltan et al., 2023).

We also note that the existing large-scale kernel methods
mainly focus on KRR while other models lack study. For
classification models, to our knowledge, the recent refer-
ences about large-scale kernel logistic regression (KLR) and
SVM 1, which are two classifiers commonly used in prac-
tice, are relatively sparse. (Marteau-Ferey et al., 2019) and
(Wen et al., 2018) are the two latest influential works about
KLR and SVM, respectively. However, they still meet the
bottlenecks of either high memory or time consumption.

In short, this paper aims to address two issues of the large-
scale kernel methods: expensive memory requirement and
limited model diversity. We propose a joint optimization
framework for kernel machines, Joker, which significantly
reduces memory footprint while keeping comparable per-
formance and efficiency to the state of the art, and covers a
broad range of models with a unified optimization scheme.
The contributions, some backgrounds, and a detailed review

1SVM includes SVC and SVR, where “C ” and “R” stand for
classification and regression, respectively. Here we refer to SVC.
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Table 1. Comparison of large-scale kernel methods on the HIGGS
dataset. The “hybrid” means Joker supports both exact and inexact
kernel models.

Method Type Memory Time Models

Falkon inexact > 50GB < 1 hour KRR
LogFalkon inexact > 50GB < 1 hour KLR
EigenPro3 inexact ≈ 7GB > 15 hours KRR
LIBSVM exact < 2GB > 1 week SVC, SVR

ThunderSVM exact ≈ 8GB > 1 week SVC, SVR

Joker (ours) hybrid ≈ 2GB ≈ 1 hour see Table 2

of related work are presented in the rest of this section.

1.1. Contributions

Our contributions are summarized as three breakthroughs:

• Unified scheme: We develop Joker, a joint optimiza-
tion framework for diverse kernel models beyond KRR,
presenting a general scheme to support a wide range
of large-scale kernel machines.

• Low consumption: Joker is lightweight. We propose
a novel solver, dual block coordinate descent with trust
region (DBCD-TR). Owing to its low space and time
complexity, the hardware requirement of large-scale
learning is significantly reduced.

• Superior performance: We implemented KRR, KLR,
SVM, etc. based on Joker, and conducted experiments
with a single RTX 3080 (10GB). It shows that Joker
achieves state-of-the-art performance with a low mem-
ory budget and moderate training time.

1.2. Preliminaries

This paper focuses on supervised learning problems. Let
X be a compact sample space, and Y be a label set. The
training dataset {(xi, yi)}ni=1 includes n samples, where
xi ∈ X is the feature vector of the i-th sample and yi ∈ Y
is its label. For a function f , its domain is dom f = {x ∈
X : f(x) < ∞}, and its gradient and Hessian at x are
∇f(x) and ∇2f(x), respectively. The Fenchel conjugate
of f is f∗(y) := supx∈dom f ⟨y,x⟩ − f(x). The infimal
convolution of f and g is (f□g)(u) := infu f(u) + g(x−
u). Let [n] := {1, 2, · · · , n}. For two vectors a, b ∈ Rn,
a ≤ b means ai ≤ bi for all i ∈ [n]. Notation ⟨a, b⟩
represents the inner product between a and b.

A Mercer’s kernel K(·, ·) : X × X 7→ R uniquely induces
a reproducing kernel Hilbert space (RKHS) H with the
endowed inner product ⟨·, ·⟩H, such that K(x, ·) ∈ H for
all x ∈ X , and ⟨f,K(·,x)⟩H = f(x) for all f ∈ H and
x ∈ X (Schölkopf & Smola, 1998). We denoteK ∈ Rn×n

the kernel matrix with Kij = K(xi,xj), where i, j ∈ [n].

Let I,J ⊆ [n] be index sets, and KI,J be the submatrix
of K with rows indexed by I and columns indexed by J .
We useKI,: :=KI,[n] andK:,J :=K[n],J for short. Let
ℓ(·, ·) be a proper and convex loss function. A generic kernel
machine can be written as:

min
θ∈H

λ

2
∥θ∥2H +

n∑
i=1

ℓ (yi, ⟨θ,φ(xi)H⟩) , (1)

where φ(x) is a nonlinear map satisfying K(x,x′) =
⟨φ(x),φ(x′)⟩H. The Representer Theorem (Schölkopf &
Smola, 1998) states that the optimal solution θ⋆ satisfies
θ⋆ =

∑n
i=1 α

⋆
iφ(xi), for some α⋆ ∈ Rn. Exact models

seeks such α⋆ without kernel approximation. For exam-
ple, KRR uses ℓ(y, ŷ) = (y − ŷ)2/2 and corresponds to a
closed-form solution α⋆ = (K + λI)−1y, however, which
is computationally expensive for large-scale data. Inexact
models approximate the kernel functions with less computa-
tional cost. For example, the Nyström-based method utilizes
approximation K ≈ K:,IK

−1
I,IKI,: with a specific index

set I ⊂ [n] satisfying |I| = M and M ≪ n. It equivalent
to restricting θ in a subspace: θ =

∑
i∈I αiφ(xi), making

dimension of parameters largely reduced.

1.3. Related work

1.3.1. LARGE-SCALE KERNEL MACHINES

We start from KRR. Ma & Belkin (2017) proposed Eigen-
Pro to solve the exact KRR using preconditioned gradi-
ent descent. Despite its success, its computational cost is
still prohibitive. The Nyström method has become a dom-
inant technique for inexact kernel models. Among them,
Falkon (Rudi et al., 2017) leverages the conjugate gradient
descent with a Cholesky-based preconditioner, which made
significant progress on large-scale KRR with remarkable
performance. The Falkon-based method (Rudi et al., 2018;
Marteau-Ferey et al., 2019) usually requires O(M2) mem-
ory to store the Cholesky factor, where M is the number of
Nyström centers, resulting in memory limitation in practice.
To this end, EigenPro3 avoids high space complexity by
projected gradient descent (Abedsoltan et al., 2023), how-
ever, compromising with high time complexity per iteration.
Hence, Abedsoltan et al. (2024) proposed a delayed projec-
tion technique to improve its efficiency. Finally, despite the
relevance of KRR, we do not elaborate on works about Gaus-
sian Process (de G. Matthews et al., 2017; Gardner et al.,
2018) in this paper as the techniques are quite different.

Another focus of this paper lies in kernel models for clas-
sification. ThunderSVM implements the kernel SVM ac-
celerated with GPU for large-scale data (Wen et al., 2018),
emerging as a competent alternative to LIBSVM (Chang &
Lin, 2011). However, their solver, Sequential Minimization
Optimization (SMO) (Platt, 1998), becomes out of date for
coping with big data in modern applications, causing high
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Table 2. Fenchel conjugate associated with the losses. bEnt(x) := x log x+(1− x) log(1− x) denotes binary entropy, and 0 log 0 := 0.
In the Lp-regression, we have p, q > 1 and p−1 + q−1 = 1.

Task Model Loss functions Y ξy(u) ξ∗y(v) dom ξ∗y

Regression KRR Square loss R (y − u)2/2 (v)2/2 + vy R
Regression Lp-Reg. Lp loss R |y − u|p/p |v|q/q + vy R
Regression L1-Reg. Absolute loss R |y − u| vy −1 ≤ v ≤ 1

Regression Huber Reg. Huber loss R
(
(·)2/2□δ|y − ·|

)
(u) (v)2/2 + vy −δ ≤ v ≤ δ

Regression SVR ε-insensitive R
(
| · |□π|y−·|≤ε

)
(u) ε|v|+ vy −1 ≤ v ≤ 1

Classification L1-SVC Hinge {−1, 1} max{0, 1− yu} vy −1 ≤ vy ≤ 0

Classification L2-SVC Squared hinge {−1, 1} max{0, 1− yu}2/2 (v)2/2 + vy vy ≤ 0

Classification KLR Logistic {−1, 1} log(1 + exp(−yu)) bEnt(−vy) −1 ≤ vy ≤ 0

time consumption. Based on the Newton method, (Marteau-
Ferey et al., 2019; Meanti et al., 2020) implements Log-
Falkon, a fast large-scale KLR, yet has the same memory
issue with Falkon. In this paper, we delve into a joint op-
timization scheme for lightweight kernel models, reaching
a remarkable balance between performance, memory us-
age, and training time. We present an intuitive comparison
between the prevalent kernel methods and Joker in Table 1.

1.3.2. DUAL COORDINATE DESCENT ALGORITHMS

Coordinate descent methods (CD) iteratively select one vari-
able for optimization while keeping all other variables fixed,
aiming to decrease the objective function incrementally. In
machine learning, CD has succeeded in the fast training of
linear SVM (Hsieh et al., 2008; Dai & Qiu, 2023). Moreover,
Shalev-Shwartz & Zhang (2013) proposed a dual optimiza-
tion framework with coordinate ascent methods for linear
models. A Newton-based dual CD method is investigated
for unconstrained optimization (Qu et al., 2016). In Joker,
we design a unified optimization scheme also using duality.
Nevertheless, our work has crucial differences from theirs
in two aspects. (i) We focus on kernel models, which are
usually ill-conditioned and more challenging in optimiza-
tion than the linear models. (ii) We employ block coordinate
descent (BCD) for more efficient optimization. Note that
Tu et al. (2016) and Rathore et al. (2024) also proposed to
address KRR with the BCD algorithm. Notably, (Rathore
et al., 2024) introduces the Nesterov acceleration technique
for BCD and proves its convergence under proper condi-
tions. Beyond their scope, we investigate a general class of
kernel models, including but not limited to KRR, KLR, and
SVM, and tackle the intricate constrained optimization.

2. Joker

Joker focus on convex problem (1) reformulated as:

min
θ

1

2
∥θ∥2 + 1

λ

n∑
i=1

ℓ(yi, ⟨θ,φ(xi)⟩). (2)

We begin with its dual problem (Section 2.1) and present an
optimization roadmap (Section 2.2). Inexact Joker is then
proposed in Section 2.3.

2.1. Joint Optimization Problem by Duality

We first present a direct result for the dual problem of (2).
Theorem 2.1. Let ξy(·) : R 7→ R+ defined as ξy(u) :=
ℓ(y, u). Then the optimal solution of (2) is given by

θ⋆ =

n∑
i=1

α⋆
iφ(xi), (3)

α⋆ = arg min
α∈Ω

1

2
α⊤Kα+

1

λ

n∑
i=1

ξ∗yi
(−λαi) , (4)

where Ω = {α : −λαi ∈ dom ξ∗yi
, i ∈ [n]} is the feasible

region, ξ∗y(·) is the Fenchel conjugate of ξy(·), and K is
kernel matrix with Kij = ⟨φ(xi),φ(xj)⟩.

The proof is shown in Appendix A. We first present some
important properties. (i) Problem (4) is convex due to the
convexity of ξ∗yi

(·). (ii) The strong duality holds according
to Slater’s condition (Boyd et al., 2004), meaning that if α⋆

is optimal for (4), then θ⋆ is optimal for (2). (iii) Based on
the closeness and the convexity of the conjugate function
(Beck, 2017, Theorem 4.3), the domain of ξ∗yi

(·) should
be a closed interval. Therefore, the constraints in (4) are
simply box constraints, i.e., αi ∈ [τLi , τ

U
i ] with −∞ ≤

τLi < τUi ≤ ∞. (iv) Problem (4) can be better conditioned
than the primal form (2), as the dual Hessian is linearly
dependent onK and the primal Hessian is a quadratic form
ofK. SinceK is usually ill-conditioned, dual optimization
should converge faster than the primal one. This benefit is
also noted by Tu et al. (2016) and Rathore et al. (2024).

Theorem 2.1 covers a wide range of kernel models using
different loss functions. We list representative ones in Table
2. Notably, problem (4) can easily adapt to some sophisti-
cated loss functions, whereas its primal problem (2) may be
tricky. To state this, we introduce the following proposition:
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Algorithm 1: Trust region (twice-differentialable f )
Input :Initial point αB, block kernel matrixKB,B,

kernel gradient ḡ =KB,:α, function f(·).
Max region size ∆max , threshold η ∈ [0, 1/4],
tolerance ϵ > 0, and max iteration TTR.

αB,0 ← αB, ∆0 ← ∆max /4;
τU
B ← f(αB).upper, τL

B ← f(αB).lower;
for k = 1 to TTR do

gk ← ḡ +∇f(αB,k),Qk ←KB,B +∇2f(αB,k);
sk ← TCG-Steihaug(Qk, gk,αB,k, τ

U
B , τL

B ),
i.e. Algorithm 2;
ρk ← (J(αB,k)−J(αB,k +sk))/(µ(0)−µ(sk));
if ρk < 0.5 then

∆k+1 ← ∆k/4;
else if ρk > 0.75 and ∆k − ∥s∥ < ϵ then

∆k+1 ← min{2∆k,∆max };
else

∆k+1 ← ∆k;
end
if ρk > η then

αB ← αB + s;
ḡ ← ḡ +KB,Bs;

end
end

Proposition 2.2. If ξy(·) can be written as ξy(u) : z =
(ξy,1□ξy,2□ · · ·□ξy,s)(u), then the dual problem of (2) is

min
α∈Ω

1

2
α⊤Kα+

1

λ

n∑
i=1

s∑
r=1

ξ∗yi,r (−λαi) . (5)

with Ω = {α : −λαi ∈
⋂

r dom ξ∗yi,r, (i, r) ∈ [n]× [s]}.

Proof. The result is simply by induction and the property
of infimal convolution: (ξ1□ξ2)

∗ = ξ∗1 + ξ∗2 (Beck, 2017,
Theorem 4.16).

For example, Huber loss is used for robust regression, which
is defined as

ℓ(y, u) =

{
1
2 (u− y)2, if |u− y| ≤ δ,

δ|u− y| − 1
2δ

2, Otherwise.

It may be uneasy to optimize its primal problem directly.
However, as it can be written as the infimal convolution
form: ξy(u) =

(
1
2 (·)

2□δ|y − ·|
)
(u), the Fenchel conjugate

ξ∗y(u) is easily derived via Proposition 2.2. Interestingly,
Huber loss and square loss (KRR) have almost the same
dual problem, with the only difference in the feasible region.
The commonalities of the two models imply that they can
be solved similarly.

2.2. Dual Block Coordinate Descent with Trust Region

Coordinate descent (CD) is particularly suitable for the op-
timization of (4) for its separable structure (Nutini et al.,
2022). The key idea of CD is to optimize one variable while
fixing others in each iteration, exhibiting inexpensive com-
putation and storage. Despite its simplicity, it suffers from
slow convergence for large-scale kernel machines since it
only updates one variable at a time. Thus, we propose up-
dating multiple variables (i.e., a block) simultaneously to
leverage the merit of parallel computing, leading to our core
solver, Dual Block Coordinate Descent with Trust Region
(DBCD-TR). We show the main idea and leave some details
in Appendix B.

In each iteration of block coordinate descent, we pick an
index set B = {i1, · · · , i|B|} ⊂ [n] and B∁ := [n]\B is
the index set associated with the fixed variables. We define
f(αB) :=

∑
i∈B ξ∗yi

(−λαi)/λ for simplicity, where αB is
the subvector of α indexed by B. Minimizing (4) w.r.t αB
while fixing αB∁

, we have:

min
αB

J(αB) :=
1

2
α⊤

BKB,BαB +α⊤
B∁
KB∁,BαB + f(αB),

s.t. τL
B ≤ αB ≤ τU

B , (6)

There are two challenges in solving subproblem (6): (i) The
smoothness of f(αB) is unknown; (ii) even with smooth
f(αB), the box constraints are still tricky. For (ii), the
projected Newton method (Gafni & Bertsekas, 1984) is a
good choice to cope with the box constraints. However,
its difficulty is the step size tuning. An improper step size
could degrade the projected Newton step (Schmidt et al.,
2011; Nutini et al., 2022).

To solve (6), we employ the trust region method (Sorensen,
1982), which is an iterative algorithm for efficient optimiza-
tion. Denote αB,k the k-th iterate of the trust region proce-
dure. The next iterate is given byαB,k+1 := αB,k+sk with
a proper step sk restricted in the trust region {s : ∥s∥ ≤
∆k}, where ∆k is the radius. Define a quadratic model
function:

µk(s) := J(αB,k) + g
⊤
k s+

1

2
s⊤Qks. (7)

such that µk(s) ≈ J(αB,k + s) for ∥s∥ ≤ ∆k. Then we
find the step sk by minimizing an easier quadratic function
µk(s). The trust region method can overcome two chal-
lenges in our problem (6) naturally. Firstly, it is compatible
with non-smooth optimization (Baraldi & Kouri, 2025), and
secondly, it implicitly tunes the step size by adjusting the
radius ∆k in each iteration, giving a crucial safeguard for
convergence (Baraldi & Kouri, 2024).

We first study the most common scenario where f is twice
differentiable, which is applicable to most losses listed in
Table 2. The procedure described below is summarized in

4



Joker

Algorithm 2: Truncated CG-Steihaug
Input :Quadratic modelQ, g, initial guess αB,

region size ∆, bounds τU
B , τL

B , tolerance ε.
Output :Truncated CG step s.
s = 0, r ← −g,d← r,r2old← r⊤r;
while not converged do

ω ← (r2old)/(d⊤Qd), snext ← s+ ωd;
if ∥snext∥ > ∆ then

Determines ω′ > 0 such that ∥s+ ω′d∥ = ∆;
s← s+ ω′d and break;

else if snext violates box constraints then
break;

end
s← snext, r ← r − ωQd, r2new← r⊤r;
if r2new ≤ ε then

break;
end
ν ← r2new/r2old, d← r + νd;

end
return max{min{s, τU

B −αB}, τL
B −αB};

Algorithm 1. In this case, we can construct the quadratic
model µk(·) using Taylor expansion. That is, let Qk =
KB,B +∇2f(αB,k) and gk = KB,:α+∇f(αB,k) in (7).
Then the “next step” sk is given by:

sk = argmin
τL
B ≤αB,k+s≤τU

B

1

2
s⊤Qks+ g

⊤
k s, s.t. ∥s∥ ≤ ∆,

(8)
However, sk may not be the good enough step when µk(s)
does not approximate J(αB,k + s) well. Considering
this, we should evaluate the quality of sk and only apply
αB,k+1 = αB,k + sk for the qualified step, and keep un-
moved otherwise, i.e., αB,k+1 = αB,k. A generic trust
region procedure evaluates sk by the ratio:

ρk :=
J(αB,k)− J(αB,k + sk)

µk(0)− µk(sk)
. (9)

A large ρk suggests that the objective J(·) is decreased
sufficiently, and we tend to accept sk. Specifically, sk is
qualified if ρk > η, where η ∈ (0, 1/4] is the acceptance
threshold. On the other hand, we can know that µk(s)
cannot approximate J(αB,k + s) when ρk is small. In this
case, the radius of the trust region should be reduced, e.g.,
∆k+1 := ∆k/4. Oppositely, we can enlarge the radius in
the next iteration to allow a larger step when ρk is large.

The subsequent issue is to find an effective solver for (8).
The vanilla trust region problem can be solved efficiently
with the conjugate gradient method (CG) proposed by Stei-
haug (1983). However, for (8), extra consideration should
be taken on the box constraints. To this end, we propose a

heuristic truncated CG-Steihaug method, as shown in Al-
gorithm 2. The key is to terminate the CG procedure if s
violates the box constraints or goes beyond the trust region
boundary, and finally project s back to the feasible region.
Compared with the projected Newton method suggested in
(Gafni & Bertsekas, 1984; Nutini et al., 2022), Algorithm 2
computes a truncated CG step instead of the exact inverse
Q−1g, and thus is more efficient than their projected New-
ton step. Moreover, Algorithm 2 elegantly embeds the step
size tuning into the projected Newton by the nature of the
trust region, which also eases the implementation.

Now we consider the complexity of DBCD-TR per iteration.
Its space complexity is only O(|B|2) lying in the storage of
KB,B. In each iteration, Algorithm 2 is repeated TTR times,
resulting in a time complexity of O(TTRTCG|B|2), where
TCG is the number of CG iterations. In our implementation,
TTR ≤ 50 and TCG is generally tiny (≤ 10) due to CG’s fast
convergence and the truncations. The most expensive com-
putation lies inKB,:α with a time complexity of O(nd|B|)
supposing a single kernel evaluation costs O(d) time. This
brings us to the next major issue to be overcome.

2.3. Inexact Joker via Randomized Features

A blueprint to solve the pivotal problem (4) is presented
in Section 2.2. If KB,B and KB,:α are computed exactly
in DBCD-TR, we obtain exact Joker. However, its bot-
tleneck occurs in computingKB,:α for the O(nd|B|) time
complexity, which becomes a heavy computational burden
when n ≥ 106. To alleviate it, we propose inexact Joker.
The goal is to approximate the exact kernel evaluations
with a finite-dimensional mapping ψ(·) : X 7→ RM with
M ≪ n such thatK(x,x′) ≈ ψ(x)⊤ψ(x′). The following
discussion and our implementation are based on the Ran-
dom Fourier feature (RFF) (Rahimi & Recht, 2007), a well-
studied kernel approximation approach. Using Bochner’s
theorem, one can write a shift-invariant kernel (i.e, the value
of K(x,x′) only depends on x− x′) as

K(x,x′) =

∫
ejw

⊤(x−x′)dpK(w) = Ew[ζw(x)ζ̄w(x′)],

where j =
√
−1 denotes imaginary unit, pK is a proper

probability distribution associated with the kernel K, and
ζw(x) = exp(−jw⊤x). Considering K is real-valued, we
can further derive

K(x,x′) = E
w∼pK,b∼U[0,2π]

[2 cos(w⊤x+b) cos(w⊤x′+b)],

where U[0,2π] denotes the uniform distribution on [0, 2π].
Based on the Monte Carlo method, ψ(x) can be defined as:

ψ(x) =

√
2

M
cos(Wx+ b), bi ∼ U[0,2π],wi ∼ pK,

(10)
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Algorithm 3: DBCD-TR for problem (4)
Input :Kernel K, feasible region Ω, function ξy(·),

parameter λ, block size b, max iteration T .
Output :The multiplier α (predictor θ)
Initialize α ∈ Ω, partition [n] into blocks B1, · · · ,Bm;
if using inexact model then

SampleW ∈ RM×d ∼ pK, b ∈ RM ∼ U[0,2π];
Define map ψ(x) := cos(Wx+ b);
Initialize θ such that θ =

∑n
i=1 αiψ(xi).

end
for t = 1, 2, · · · , T do

Randomly pick a block B ∈ {B1, · · · ,Bm};
Let f(αB) :=

∑
i∈B ξ∗yi

(−λαi)/λ;
if using inexact model then

KB,B ← ψ(XB)
⊤ψ(XB);

KB,:α← ψ(XB)
⊤θ;

end
αnew

B ← TrustRegion(αB,KB,B,KB,:α, f) to
solve problem (6), i.e., Algorithm 1;

if using inexact model then
θ ← θ +ψ(XB)(α

new
B −αB);

end
αB ← αnew

B ;
end
return α (and θ if using inexact model);

where cos(·) is applied element-wise, W ∈ RM×d, b ∈
RM and each row wi, bi are sampled from the probability
distributions pK(w) and U[0,2π], respectively. Gaussian ker-
nel K(x,x′) = exp(−∥x− x′∥2/(2σ2)) is a widely used
kernel in RFF, which corresponds to pK(w) = N (0, σ2I),
i.e., the Gaussian with zero mean and covariance σ2I . Note
that although RFF is initially proposed for shift-invariant
kernels, it has been sufficiently developed to diverse kernels,
such as dot-product kernels and additive kernels. One can
find a comprehensive summary of RFF for various kernels
in the latest report of (Dai et al., 2014).

Now we use a new kernel Krff(x,x
′) := ψ(x)⊤ψ(x′) to

replace the exact one K. Then the kernel matrix becomes
Kij = ψ(xi)

⊤ψ(xj). Let φ(x) := ψ(x) in Theorem 2.1,
we obtain θ =

∑n
i=1 αiψ(xi), leading to

KB,:α =

n∑
i=1

ψ(XB)
⊤ψ(xi)αi = ψ(XB)

⊤θ. (11)

where ψ(XB) := [ψ(xi)]i∈B. Therefore, time complexity
of evaluating KB,:α is reduced to O(Md|B|). To imple-
ment this, we must maintain the weight vector θ during the
optimization. Once αB is updated, θ is updated with only
O(M |B|) time complexity:

θnew := θold +
∑
i∈B

(αnewi − αoldi )ψ(xi), (12)

Table 3. Complexity comparison, |B| ≪ M ≪ n. (Log)Falkon
has extra setup time of O(M3) and post-process time of O(M2).
Mep2 is the memory cost of EigenPro2 (Ma & Belkin, 2019).

Methods Space Operations per epoch

(Log)Falkon M2 +Md nMd

EigenPro3 Mep2 +Md nMd+ n
|B|O(M2)

Exact Joker |B|2 n2d+ n
|B| (d|B|

2)

Inexact Joker |B|2 +Md nMd+ n
|B| (M |B|

2 +Md|B|)

Inexact Joker needs extra memory of O(Md) to storeW .
Notably, increasing M generally produces better approxima-
tion and performance, but also costs more time and storage.
One can find a theoretical guide for setting M in (Lanthaler
& Nelsen, 2023). Up to this point, we can present the com-
plete DBCD-TR procedure in Algorithm 3.

Finally, we justify why we do not consider the Nyström
method in the proposed Joker, although it is the preferred
approximation method in many works such as (Yang et al.,
2012; Rudi et al., 2017). In short, Nyström method is un-
suitable in our scenario due to its heavy computation and
storage in each iteration. AssumeZ ∈ XM are the Nyström
centers and M is the number of centers. Then the non-
linear map becomes ψ(x) := L−1K(Z,x), where L is
the Cholesky factor of K(Z,Z). Therefore, to utilize the
Nyström method, one should first compute L with O(M3)
time complexity and store it with O(M2) space complexity.
When updating a block B during training, the computation
of ψ(x) costs O(M2 +Md) time, where O(M2) is from
the inverse of the triangular matrix L. In other words, the
time complexity per block update is at least O(M2 +Md),
so it is too expensive when M is large. Unfortunately, the
existing works (Rudi et al., 2017; Abedsoltan et al., 2023)
have shown that a large M is necessary to yield a satisfying
performance. Therefore, the Nyström method does not fit
Joker. In contrast, RFF is more efficient and scalable. We
compare the complexity of different methods in Table 3.

3. Practical Instances
This section presents some example models of Joker and
the associated implementation issues. Additionally, SVR is
also discussed in Appendix B.2.

3.1. Simple cases: KRR, Huber regression and L2-SVC

Based on Table 2 and Theorem 2.1, the dual problems of
KRR, Huber, and L2-SVC share the same form:

min
α∈Ω

1

2
α⊤(K + λI)α− y⊤α, (13)

where Ω = Rn for KRR, Ω = {α : ∥α∥∞ ≤ δ/λ} for
Huber, and Ω = {α : αiyi ≥ 0} for L2-SVC. That is, the
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three models only have differences in the feasible region.
Their similarity eases the practical implementation. Due to
the simplicity of the quadratic functions, their convergence
is usually fast. The empirical results (Table 4) show that the
elapsed time of these three models is close, suggesting that
they can achieve comparable speed. That is, Joker fills the
potential efficiency gap between different kernel models.

3.2. A Complicated case: KLR

The case of KLR is more complicated and has some practical
problems. From now on, we define α̂ := y ⊙ α, where
⊙ denotes the element-wise product. We obtain the dual
problem for KLR:

min
α∈Ω

1

2
α⊤Kα+

n∑
i=1

α̂i log α̂i+(λ−1− α̂i) log(λ
−1− α̂i).

The feasible region is Ω = {α : 0 < α̂i < 1/λ}. Due to
limx→0 x log x = 0, it can be extended to 0 ≤ α̂i ≤ 1/λ
by defining 0 log 0 = 0. However, a problem arises when
α̂i is near the boundary. Consider the gradient and Hessian:

∇f(α̂B)i = log(α̂i)− log(λ−1 − α̂i),

∇2f(α̂B)ii = [α̂i(1− λα̂i)]
−1

.

We can see that they are unbounded at 0 and 1/λ. This
poses two issues. First, the quadratic model in (8) becomes
ill-conditioned near the boundary, causing a rapid shrinkage
of the trust region (i.e., ∆ → 0) and slow convergence
(Baraldi & Kouri, 2025). The second issue is the potential
catastrophic cancellation (Yu et al., 2011). When α̂i ≈
0, the result of 1/λ − α̂i may be inaccurate because of
the limited precision of the computer, further leading to
incorrect logarithms in the gradient computation.

To mitigate these issues, we first redefine the feasible region
as ε ≤ α̂i ≤ 1/λ− ε, where ε is the distance from 1/λ to
its next smaller floating-point number. In this way, 1/λ− α̂i

will always be precise for all feasible α̂i. Moreover, we uti-
lize a modified Hessian H̃ii = min(∇2f(α̂B)ii, ε

−1/2) to
avoid the ill-conditioned model. This also alleviates possible
catastrophic cancellation when computing the frequent op-
erationQs. Finally, we increase the block size as suggested
in (Nutini et al., 2022) to overcome the slow convergence
issue. We found that these strategies significantly improve
the numerical stability and convergence speed.

4. Experiments
To highlight that Joker can obtain promising performance
under a limited computational budget, we conduct experi-
ments on a machine with a single consumer GPU (NVIDIA
RTX 3080, 10GB) and 64GB RAM. The experiments al-
ways use single precision unless otherwise specified. The

implementation2 of Joker is based on PyTorch without extra
acceleration libraries.

The used datasets cover both regression (MSD, HEPC) and
classification tasks (SUSY, HIGGS, CIFAR-5M) with the
sample size ranging from 105 to 107. They are frequently
used in the literature of large-scale kernel methods, and the
details are summarized in Appendix C. The largest dataset,
CIFAR-5M, has 10 classes and 5 million samples, each with
3072 dimensions, barely fitting within the machine’s RAM.
All datasets are normalized using the z-score trick.

Using Joker’s framework, we implement three regressors:
KRR, Huber, and SVR, and two classifiers: (L2-)SVC
and KLR. The compared methods are their state-of-the-art
counterparts, including Falkon (KRR), EigenPro3 (KRR),
LogFalkon (KLR), ThunderSVM (SVC, SVR). We uti-
lize one-versus-rest (OVR) in Joker to support multi-class
problems. OVR is also available in ThunderSVM, while
LogFalkon only supports binary classification (Meanti et al.,
2020) and thus is not applicable on CIFAR-5M, a 10-class
dataset. The kernels used in the experiments include the
Gaussian and Laplacian kernels, which are two prevalent
choices in practice. The regularization parameter λ in Joker
is tuned from {2i : i = −7,−6, · · · , 7} via grid search.
According to (Nutini et al., 2022), increasing the block size
reduces the needed iterations for the convergence of BCD.
In most cases, we employ the inexact Joker models with the
block size |B| = 512 considering the trade-off between total
training time and memory consumption. Except for MSD,
we can employ the exact Joker with block size |B| = 2048
due to its relatively small sample size. Exact Joker needs
not to store RFF random matrixW and can afford a larger
block size than the inexact Joker. We also increase the
block size to 1024 for Joker-KLR to accelerate convergence.
Falkon and LogFalkon can be run with M = 2.5 × 104

within the limited memory. Details of further parameter
settings are shown in Appendix C.

4.1. Results and Analysis

Table 4 shows the result of the performance comparison.
Note that ThunderSVM and Joker-SVM both include SVR
and SVC cases, where SVR is applied to MSD and HEPC
datasets, and SVC is applied to others. We observe that
Joker-based methods reach the lowest memory usage on all
tested datasets. To obtain equivalent performance in (Meanti
et al., 2020) on HIGGS (≈ 74.22% with M = 105, unaf-
fordable for the used machine), Joker only needs 1.9GB
GPU memory, saving at least 95% storage costs compar-
ing (Meanti et al., 2020). Despite low memory, Joker still
outperforms the state-of-the-art methods in most cases, pre-
senting almost no accuracy sacrifice. Joker’s time is signifi-

2Code available at GitHub: https://github.com/
Apple-Zhang/Joker-paper.
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Table 4. The performance comparison on regression (MSD, HEPC) and classification (SUSY, HIGGS, CIFAR-5M) datasets. “↓”: lower
is better, and vice versa for “↑”. “NA”: meaning not applicable. “Timeout”: the running time exceeds the limit of 1 week. “†”: using
the double floating-point precision. Data below each term indicates the time and peak GPU memory consumption. ThunderSVM and
Joker-SVM apply the SVR model on MSD and HEPC datasets and the SVC model on others. The top-2 results are highlighted in bold.

Methods MSD (n ≈ 0.5M) HEPC (n ≈ 2M) SUSY (n ≈ 5M) HIGGS (n ≈ 11M) CIFAR-5M

rel. error (×10−3, ↓) RMSE (×10−2, ↓) AUC (%, ↑) ACC (%, ↑) AUC (%, ↑) ACC (%, ↑) ACC (%, ↑)

Falkon 4.4984±0.0013 5.4642±0.0178† 87.61±0.00 80.38±0.00 80.90±0.09 73.42±0.07 68.24±0.33
(6min, 9.8GB) (19min, 9.9GB) (9min, 6.0GB) (31min, 9.9GB) (1.9h, 9.9GB)

LogFalkon NA NA 87.77±0.05 80.49±0.00 80.43±0.02 73.04±0.02 NA
(13min, 6.5GB) (45min, 9.9GB)

EigenPro3 4.5512±0.0047 5.0417±0.0014 86.99±0.01 80.08±0.01 79.74±0.13 72.46±0.06 72.94±0.00
(1.0h, 1.6GB) (2.2h, 1.8GB) (2.2h, 1.7GB) (18h, 7.0GB) (80h, 6.9GB)

ThunderSVM 4.6431±0.0257 6.0834±0.0847 79.32±0.01 80.22±0.01 Timeout Timeout(3.2h, 5.0GB) (3.2h, 8.0GB) (15h, 7.8GB)

Joker-KRR 4.4868±0.0012 4.7170±0.0007 87.63±0.00 80.41±0.01 81.94±0.17 74.03±0.14 73.32±0.01
(35min, 0.7GB) (31min, 1.5GB) (25min, 1.2GB) (1.0h, 1.9GB) (2.1h, 5.3GB)

Joker-Huber 4.5058±0.0109 4.7160±0.0004 87.64±0.00 80.41±0.01 81.83±0.27 74.01±0.21 73.66±0.01
(36min, 0.7GB) (36min, 1.5GB) (23min, 1.2GB) (57min, 1.9GB) (2.1h, 5.3GB)

Joker-SVM 4.6004±0.0073 4.8376±0.0342 87.72±0.01 80.44±0.02 82.40±0.06 74.41±0.05 74.47±0.02
(35min, 0.7GB) (27min, 1.5GB) (25min, 1.2GB) (56min, 1.9GB) (2.0h, 5.3GB)

Joker-KLR NA NA 87.73±0.01 80.42±0.01 82.11±0.03 74.17±0.01 74.88±0.08
(1.1h, 1.7GB) (1.6h, 2.6GB) (3.2h, 5.9GB)

cantly lower than EigenPro3 and ThunderSVM. Falkon-
based methods are the fastest and have a substantial gap com-
pared to EigenPro3 and ThunderSVM. However, Joker
alleviates this gap. Specifically, EigenPro3 and Thunder-
SVM use at least 10x training time compared to Falkon on
MSD, and Joker reduces it to 5x time. On the other hand,
EigenPro3 needs 36x time (18 hours) of Falkon (0.5 hour),
and Joker reduces such gap to 2x time. Thus, Joker obtains
comprehensively better results under the same hardware
conditions, and achieves a good trade-off between mem-
ory, time, and accuracy, demonstrating that Joker is highly
scalable for large-scale learning.

The performance of various models in Joker is worth noting.
The exact Joker-KRR obtains the best performance on MSD
using less than 1GB of memory, showing the efficacy of
the exact Joker on relatively small datasets. Joker-Huber
surpasses other regression models on the HEPC dataset,
which may benefit from its robustness. Joker-SVM shows
outstanding performance on the classification tasks. Thun-
derSVM is the most time-consuming method. Particularly,
it converges slowly when its penalty parameter c (equiv-
alent to 1/λ in (2)) is large. Such inefficiency may stem
from the SMO solver, which updates only two variables at
each iteration, significantly slower than DBCD-TR. In com-
parison, Joker-SVM converges fast when utilizing large
penalty c = 1/λ and always outperforms ThunderSVM
with less time and memory. We use a larger block size,
|B| = 1024, in Joker-KLR rather than |B| = 512 in other
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Figure 1. Performance versus the model size on HIGGS.

inexact Joker models to overcome the slow convergence
caused by the ill-conditioned Hessian. Thus, Joker-KLR
takes more time and memory than other Joker models, De-
spite the ill-conditioning issue, Joker-KLR never meets
numerical error degrading the performance in single preci-
sion, and still obtains promising accuracy.

Figure 1 illustrates the time and performance versus the
model size. In general, a larger model size yields better
performance. Joker obtains the best accuracy even with the
smallest model. The time of EigenPro3 increases rapidly
with the model size, while Joker’s time is almost unaffected.
In spite of the lowest elapsed time, Falkon fails to scale up
the model size due to its expensive memory cost.

A comparison of the training progress of different models
is shown in Figure 2. The curves of Joker are not mono-
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Figure 2. Test performance versus time.

tonical since Joker optimizes the dual problem, which does
not guarantee the monotonic decrease of the primal objec-
tive. Nonetheless, Joker eventually converges with the best
performance. HEPC is a challenging regression dataset,
where Falkon obtains suboptimal results using the single
precision (RMSE ≈ 17 × 10−2). It is mitigated by using
double precision (RMSE ≈ 5.4× 10−2). The reason may
be the loss of precision caused by matrix decomposition,
while Joker and EigenPro3 are free of this issue and obtain
better results than Falkon. Nonetheless, the slow conver-
gence of EigenPro3 makes it less competitive than Joker.
EigenPro3 just finished the first epoch on HIGGS when
Joker and LogFalkon are nearly convergent.

We illustrate the convergence pattern of Joker in Figure 3.
The proposed method optimizes (4), i.e., minimizing the
negative of the dual objective. Therefore, the dual objective
keeps increasing, which fits the pattern shown in the figures.
The primal objective is always larger than or equal to the
dual objective due to weak duality. As mentioned before, the
primal objective and loss may not decrease monotonically.
Nonetheless, Figure 3 shows their major trend of decreasing.
With sufficient iterations, dual and primal objectives tend to
get close and merge, indicating the convergence of Joker.

5. Conclusion and Future Directions
Scalability is a crucial issue for kernel methods. In this
paper, we propose a novel optimization framework for large-
scale kernel methods named Joker, breaking the memory
bottleneck and pushing the development of models beyond
KRR. The proposed solver, DBCD-TR, provides a modern
and efficient solution to dual optimization in kernel ma-
chines. We show the effectiveness of Joker on a variety
of kernel methods, including KRR, SVM, KLR, etc. Even
with consumer hardware and limited memory, Joker obtains
state-of-the-art performance within acceptable training time,
making the low-cost kernel methods possible in practice.

Regarding future work, generalizations of model (2) can
be explored, e.g., multi-class SVM proposed by (Crammer
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Figure 3. The primal, dual objectives, and validation loss of Joker
versus the iteration steps.

& Singer, 2001) and softmax regression, whose equality-
constrained dual problems are the major issue. In addition,
the convergence speed of DBCD-TR is still unclear. Exist-
ing theoretical results, e.g., (Richtárik & Takáč, 2014; Nutini
et al., 2015; 2022), suggest that DBCD-TR has at least a
linear convergence rate. A sharper rate is worth exploring.
We feel it is non-trivial and leave it as future work.
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Appendix
A. Proof of Theorem 2.1
Proof. Note that problem (2) is equivalent to:

min
θ,u

1

2
⟨θ,θ⟩+ 1

λ

n∑
i=1

ξyi
(ui), s.t. ⟨θ,φ(xi)⟩ = ui. (A.1)

Introducing the Lagrange multipliers α ∈ Rn, we can obtain the Lagrangian function:

L(θ,u,α) =
1

2
⟨θ,θ⟩+ 1

λ

n∑
i=1

ξyi(ui) +

n∑
i=1

αi(⟨θ,φ(xi)⟩ − ui). (A.2)

The first-order Karush-Kuhn-Tucker (KKT) condition gives

θ⋆ = argmin
θ

L(θ,u,α) =

n∑
i=1

αiφ(xi), (A.3)

u⋆ = argmin
u

L(θ,u,α) = argmin
u

n∑
i=1

1

λ
ξyi(ui) + αiui = −

1

λ
argmax

u

n∑
i=1

−λαiui − ξyi(ui). (A.4)

Recall the definition of the Fenchel conjugate, the maximum in (A.4) is
∑n

i=1 ξ
∗
yi
(−λαi). Therefore, the dual problem is

max
α

min
u,θ

L(θ,u,α) = max
α
−1

2

n∑
i=1

n∑
j=1

αiαk⟨φ(xi),φ(xj)⟩ −
1

λ

n∑
i=1

ξ∗yi
(−λαi), s.t. − λαi ∈ dom ξ∗yi

. (A.5)

Or equivalently, by applying a negative sign to the objective function, we have the minimization problem:

α⋆ = arg min
α∈Ω

1

2
α⊤Kα+

1

λ

n∑
i=1

ξ∗yi
(−λαi) , where Ω = {α ∈ Rn : −λαi ∈ dom ξ∗yi

}. (A.6)

Equations (A.3) and (A.6) give the primal-dual relationship, which completes the proof.

B. Details of Dual Block Coordinate Descent with Trust Region (DBCD-TR)
B.1. Strategies of Block Coordinate Descent

As pointed out by Nutini et al. (2022), there are several aspects to consider when designing the BCD algorithm:

• (i) How to obtain the block candidates?

• (ii) How to select the block size?

• (iii) How to choose the block to update?

• (iv) How to update the block?

In fact, (iv) has been discussed in the main paper. Here we elaborate on the other three aspects.

(i): We adopt the fixed block strategy, i.e., the potential selected block is static during the optimization. Specifically, the
block candidates are obtained by partitioning the index set {1, · · · , n}. Although Nutini et al. (2022) suggests “variable
blocks” (the block is dynamically constructed during the optimization) for its faster convergence, its computational expense
is higher (e.g., the gradient of all samples should be maintained during optimization). So we choose the fixed block strategy
for its simplicity, which also shows satisfactory efficiency in practice.

(ii): Increasing block size generally decreases the iterations to reach convergence of BCD (Nutini et al., 2022), but it may
increase the computation cost and memory usage of each iteration. So we should find a trade-off between the storage
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S = |B|2 and the time TBCDtinner, where TBCD is the number of BCD iterations and tinner the time complexity of each inner
iteration. We have shown that tinner = O(|B|2) in the main paper. For TBCD, Nutini et al. (2022) points out that larger block
sizes generally lead to faster convergence. (Richtárik & Takáč, 2014; Nutini et al., 2015) show a linear convergence rate of
proximal gradient descent for σ-strongly convex functions:

TBCD ≤ O

(
Ln

σ|B|
log

(
1

ε

))
, (A.7)

where L is the sum of Lipschitz constants of all blocks. However, this result is not tight. Borrowing the analysis from
(Nutini et al., 2022), DBCD-TR adopts the “optimal updates” paradigm, which should be faster than (A.7), even possibly
superlinear, but the precise rate is still unclear. Despite this, we still use (A.7) as a tool to analyze the block size setting. In
our experiments, we find that |B| = 512 is a balanced choice for KRR, SVC, SVR and Huber. However, because of the
ill-conditioned problem, i.e., extremely large L in (A.7), the convergence of Joker-KLR is slower than other Joker models.
To overcome it, except for the numerical techniques mentioned in the main paper, increasing the block size is also feasible
(by reducing the upper bound of TBCD). Regarding this, we set |B| = 1024 for Joker-KLR in our experiments.

(iii): Based on the fixed block strategy, we randomly select the block from the candidates with equal probability. Its
advantage over the cylic approach is that it can avoid the potential bias of the fixed selection order. The alternative and
probably better strategy is the greedy approach, e.g. Gauss-Southwell rules presented in (Nutini et al., 2022). However, they
need to evaluate the gradient (and possibly the Hessian) of all blocks, which is expensive in the large-scale data scenario.

B.2. Discussion of Nonsmoothness: SVR as an Example

Nonsmoothness is an intrinsic issue for trust region methods. The universal solutions include proximal gradient descent
(Aravkin et al., 2022) and proximal Newton projected step (sometimes intractable) (Nutini et al., 2022). ℓ1-norm and
piecewise linear functions are typical examples of nonsmooth functions. The dual problem of SVR is a representative one of
the former:

min
α

1

2
α⊤Kα− y⊤α+ ε∥α∥1, s.t. ∥α∥∞ ≤

1

λ
. (A.8)

A commonly used trick was used in (Chang & Lin, 2011) and (Schmidt, 2010). That is, take α+,α− ≥ 0 such that
α = α+ −α−, and obtain the following problem:

min
α+,α−

1

2
(α+ −α−)⊤K(α+ −α−)− (α+ −α−)⊤y + ε1⊤(α+ +α−), s.t. 0 ≤ α+

i , α
−
i ≤

1

λ
. (A.9)

It can be proven that the optimal solution to (A.8) and (A.9) satisfies α+
i = max{0, αi}, α−

i = max{0,−αi}. Then the
SVR problem becomes a quadratic programming problem that can be solved with DBCD-TR.

On the other hand, we provide a simpler strategy. Minimizing J(αB + s) is equivalent to:

min
s∈Ω

1

2
s⊤KB,Bs+ s

⊤(KB,:α− yB) + ε∥αB + s∥1, s.t. ∥s∥2 ≤ ∆, (A.10)

where Ω = {s : ∥αB + s∥∞ ≤ λ−1} is the feasible set. Now we assume ∥αB + s∥1 ≈ ∥αB∥1 + sign(αB)
⊤s. The

equality holds when all elements αB and αB + s have the same sign, and the errors occur on the different signed elements.
Therefore, the trust region size should be sufficiently small to keep the sign consistency as much as possible. Then the trust
region subproblem becomes the following:

min
s∈Ω

1

2
s⊤KB,Bs+ s

⊤(KB,:α− yB + sign(αB)), s.t. ∥s∥2 ≤ ∆, (A.11)

which falls back into the framework discussed in the main paper withQ =KB,B, g =KB,:αB − yB + sign(αB).

C. Details of Experiments
C.1. Datasets

We evaluate the models with the datasets that are commonly used in the literature on kernel methods. In these datasets,
MSD, SUSY, and HIGGS were used in (Rudi et al., 2017; Meanti et al., 2020), etc. The HEPC dataset was used in (Lin
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et al., 2024), and the CIFAR-5M dataset was benchmarked in (Abedsoltan et al., 2023). Like most of the previous works,
the z-score normalization is always applied to make data with zero mean and unit variance. The information on the datasets
is summarized in Table A.1.

Table A.1. Summary of datasets used in experiments

Dataset Task n d Data Split Metrics

MSD Regression 5.1× 105 90 90% train, 10% test Relative Error (↓)
HEPC Regression 2.05× 106 11 90% train, 10% test RMSE (↓)
SUSY Binary Classification 5.0× 106 18 80% train, 20% test AUC (↑), Accuracy (↑)
HIGGS Binary Classification 1.1× 107 28 80% train, 20% test AUC (↑), Accuracy (↑)

CIFAR-5M 10-class Classification 5.0× 106 3072 80% train, 20% test Accuracy (↑)

• Million-song dataset (MSD) (Bertin-Mahieux et al., 2011). This dataset contains audio features for year prediction.
Available at https://archive.ics.uci.edu/dataset/203/yearpredictionmsd.

• Household Electric Power Consumption (HEPC) dataset: It is the same as the “HouseElec” dataset used in (Lin et al.,
2024), available using the python package https://github.com/treforevans/uci_datasets.

• Supersymmetric particle classification (SUSY) dataset (Baldi et al., 2014): This is a binary classification task to
distinguish between supersymmetric particles and background process. Available at https://archive.ics.
uci.edu/dataset/279/susy.

• HIGGS dataset (Baldi et al., 2014): This is a binary classification task to distinguish between the Higgs boson and the
background process. Available at https://archive.ics.uci.edu/dataset/280/higgs.

• CIFAR-5M dataset (Nakkiran et al., 2021): This is a generated dataset based on CIFAR-10. Available at https:
//github.com/preetum/cifar5m.

C.2. Implementation details

We implement RFF of two widely-used kernels, the Gaussian and Laplacian, in inexact Joker. RFF is constructed by the
following formulas:

ψ(x) =

√
2

M
cos(Wx+ b), (A.12)

whereW ∈ RM×d and b ∈ RM are random matrices. Each element of b is always sampled from the uniform distribution
U[0,2π] independently. The distribution ofW depends on the kernel:

• Gaussian kernel: Each element wij is sampled independently from Gaussian distribution with zero mean and variance
σ2:

K(x,x′) = exp

(
−∥x− x

′∥2

2σ2

)
, p(w) = N (0, σ2), (A.13)

• Laplacian kernel: Each element wij is sampled independently from the Cauchy distribution with scale 1/σ:

K(x,x′) = exp

(
−∥x− x

′∥1
σ

)
, p(w) =

σ

π(w2σ2 + 1)
. (A.14)

In our experiments, we implement five Joker models: KRR, Huber, SVC, SVR, and KLR. In the main paper, we merge
SVC and SVR into Joker-SVM. The summary is shown in Table A.2.
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Table A.2. Lookup table of Joker models in the experiments. bEnt(x) := x log x+ (1− x) log(1− x) is the binary entropy function
and [·]+ := max{0, ·}.

Model Primal problem Dual problem Constraint

Joker-KRR min
θ

1

2
∥θ∥2 + 1

2λ

n∑
i=1

(yi − ⟨θ,φ(xi)⟩)2 min
α

1

2
α⊤(K + λI)α− y⊤α −∞ ≤ αi ≤ ∞

Joker-Huber min
θ

1

2
∥θ∥2 + 1

2λ

n∑
i=1

(yi − ⟨θ,φ(xi)⟩)2 min
α

1

2
α⊤(K + λI)α− y⊤α − δ

λ
≤ αi ≤

δ

λ

Joker-SVC min
θ

1

2
∥θ∥2 + 1

2λ

n∑
i=1

[1− yi⟨θ,φ(xi)⟩]2+ min
α

1

2
α⊤(K + λI)α− y⊤α 0 ≤ αiyi ≤ ∞

Joker-SVR min
θ

1

2
∥θ∥2 + 1

λ

n∑
i=1

[|yi − ⟨θ,φ(xi)⟩| − ε]+ min
α

1

2
α⊤Kα+ ε∥α∥1 − y⊤α − 1

λ
≤ αi ≤

1

λ

Joker-KLR min
θ

1

2
∥θ∥2 + 1

λ

n∑
i=1

log(1 + e−yi⟨θ,φ(xi)⟩) min
α

1

2
α⊤Kα+

1

λ

n∑
i=1

bEnt(−λαiyi) 0 ≤ αiyi ≤
1

λ

C.3. Parameter settings

The major hyperparameters of the models are shown in the experiments in Table A.3. We tend to use the best parameters
reported in literature. Median heuristic is used to set the bandwidth parameter σ of kernels, denoted as “median” in Table
A.3. Our empirical results show that it always produces satisfying performance, and its rationality is also supported by
(Garreau et al., 2018).
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Table A.3. The major hyperparameters of the models in the experiments. “NA” means not applicable.

Methods Parameters
Dataset

MSD HEPC SUSY HIGGS CIFAR-5M

Falkon

λfal 10−6 10−9 10−6 10−8 10−8

M 25000 25000 10000 25000 20000
precision float32 float64 float32 float32 float32
kernel, σ Gaussian, 6 Gaussian, 4 Gaussian, 4 Gaussian, 5 Gaussian, median
epochs 20 50 20 10 50

LogFalkon

λlgf

NA NA

10−9 10−9

NA
M 25000 25000
#Newton step 8 8
kernel, σ float32 float32
epochs 15 15

EigenPro3
M 80000 80000 50000 105 105

kernel, σ Laplacian, median Laplacian, median Laplacian, median Laplacian, median Laplacian, median
epochs 30 50 50 30 50

ThunderSVM
c 1 16 8 32 32
kernel, σ Gaussian, median Gaussian, median Gaussian, median Gaussian, median Gaussian, median
ϵ in SVR 0.25 0.25 NA NA NA

Joker-KRR

λ 1 2−7 2−5 2−7 2−7

M Exact model 50000 105 105 2× 105

kernel, σ Gaussian, median Laplacian, median Laplacian, median Laplacian, median Gaussian, median
block size 2048 512 512 512 512
#iterations 10000 25000 10000 50000 40000

Joker-Huber

λ 1 2−7 2−5 2−7 2−7

M Exact model 50000 105 105 2× 105

δ 2 1 1 1 1
kernel, σ Gaussian, median Laplacian, median Laplacian, median Laplacian, median Gaussian, median
block size 2048 512 512 512 512
#iterations 10000 25000 10000 50000 40000

Joker-SVM

λ 1 2−7 2−5 2−7 2−7

M Exact model 10000 105 105 2× 105

kernel, σ Gaussian, median Laplacian, median Laplacian, median Laplacian, median Gaussian, median
ϵ in SVR 0.25 0.25 NA NA NA
block size 2048 512 512 512 512
#iterations 10000 25000 10000 50000 40000

Joker-KLR

λ

NA NA

2 2−3 2−7

M 105 105 2× 105

kernel, σ Laplacian, median Laplacian, median Gaussian, median
block size 1024 1024 1024
#iterations 40000 50000 50000
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