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Sanjay Kariyappa 1 Freddy Lécué 1 Saumitra Mishra 1 Christopher Pond 1 Daniele Magazzeni 1

Manuela Veloso 1

Abstract

This paper proposes Progressive Inference–a
framework to compute input attributions to ex-
plain the predictions of decoder-only sequence
classification models. Our work is based on the in-
sight that the classification head of a decoder-only
Transformer model can be used to make interme-
diate predictions by evaluating them at different
points in the input sequence. Due to the causal
attention mechanism, these intermediate predic-
tions only depend on the tokens seen before the
inference point, allowing us to obtain the model’s
prediction on a masked input sub-sequence, with
negligible computational overheads. We develop
two methods to provide sub-sequence level at-
tributions using this insight. First, we propose
Single Pass-Progressive Inference (SP-PI), which
computes attributions by taking the difference be-
tween consecutive intermediate predictions. Sec-
ond, we exploit a connection with Kernel SHAP
to develop Multi Pass-Progressive Inference (MP-
PI). MP-PI uses intermediate predictions from
multiple masked versions of the input to compute
higher quality attributions. Our studies on a di-
verse set of models trained on text classification
tasks show that SP-PI and MP-PI provide signifi-
cantly better attributions compared to prior work.

1. Introduction
Large language Models (LLMs) based on the decoder-
only Transformer architecture (Vaswani et al., 2017) (e.g.
GPT (Radford et al., 2018)) have gained widespread adop-
tion over the past few years with a burgeoning open-source
community creating increasingly performant models. Ow-
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Figure 1. 1 Input tokens are fed to the decoder-only models to
produce 2 intermediate predictions. 3 Progressive inference
(PI) uses these predictions to produce 4 attributions over input
tokens/words/sentences. While Single-Pass PI uses the intermedi-
ate predictions produced by the original input tokens, multi-pass
PI collects multiple sets of intermediate predictions with different
masked versions of the input to compute the attribution.

ing to their impressive generalization capability, these mod-
els can be used directly for zero/few-shot classification
tasks (Brown et al., 2020; Wu et al., 2023b) or indirectly to
generate pseudo labels to train custom models (Gekhman
et al., 2023; Zhang et al., 2023). They also serve as base
models that can be fine-tuned on specific classification
tasks (Wang et al., 2023; Kheiri & Karimi, 2023; Li et al.,
2023), achieving performance that matches/surpasses other
architectures. Companies like OpenAI even provide APIs
to fine-tune LLMs on custom data (OpenAI, 2023).

With the growing adoption of these models in critical appli-
cations such as healthcare and finance (Wu et al., 2023a),
there is a strong need to provide accurate explanations to
improve trust in the model’s predictions. Input attribution is
a form of explanation that addresses this need by highlight-
ing input features that support/oppose the prediction of the
model. This can be used to easily evaluate the correctness
of the model’s prediction, debug model performance (An-
ders et al., 2022), perform feature selection (Zacharias et al.,
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Figure 2. Comparing the attributions produced by MP-PI with prior
works on a misclassified movie review from the IMDB dataset.
Only MP-PI manages to correctly identify negative sentences.

2022), and also to improve model performance by guiding
the model to focus on the relevant parts of the input (Krishna
et al., 2023). While there are several prior works on generat-
ing input attributions using input perturbations (Lundberg &
Lee, 2017), relevance propagation (Ali et al., 2022a), atten-
tion scores (Abnar & Zuidema, 2020b), or gradients (Sun-
dararajan et al., 2017a), they are either expensive or yield
low-quality attributions that do not accurately reflect the
model’s behavior (see Fig 2 for an example). The goal
of our work is to design a framework that provides high-
quality explanations for decoder-only Transformer models
by leveraging the unique properties of this architecture.

To this end, we start by observing that decoder-only mod-
els that are trained autoregressively use the masked self-
attention mechanism. This mechanism enforces the property
that the prediction of the model at any position only depends
on the tokens seen at or before that position. Our key insight
is that this property can be exploited to obtain the model’s
predictions on perturbed versions of the input, which can
then be used to compute token/word/sentence-level attribu-
tions. To illustrate, consider the example in Fig. 1. The input
sequence {t1, t2, ..., tn} when passed through the decoder-
only model produces the predictions {p⃗1, p⃗2, ..., p⃗n}. Due
to the causal attention mechanism, the prediction at the i-th
position p⃗i only depends on tokens {t1, t2, ...ti}, which ap-
pear at or before the i-th position. As such, pi can be treated
as the model’s prediction on a perturbed/masked version
of the input, where only the tokens/features {t1, t2, ...ti}

are active and the remaining tokens {ti+1, ti+2, ...tn} are
masked out. Thus, simply by computing the intermediate
predictions, we can obtain the model’s prediction on n per-
turbed versions of the input, for almost no extra cost!

We develop a framework called progressive inference to
produce highly-faithful explanations using the intermediate
predictions from decoder-only models. We propose two
methods that can be used under different compute budgets
to explain decoder-only sequence classification models.

1. Single-Pass Progressive Inference (SP-PI): SP-PI com-
putes attributions over input features by taking the difference
between consecutive intermediate predictions. This tech-
nique does not require additional forward passes and incurs
negligible computational overheads to compute intermedi-
ate predictions. Despite its simplicity, we show through
our experiments that it yields attributions that are on par or
better than prior explainable AI (XAI) techniques that have
a comparable amount of computational overhead.

2. Multi-Pass Progressive Inference (MP-PI): A key limi-
tation of SP-PI is that it does not have any control over the
distribution of the masked inputs. E.g. in Fig. 1, SP-PI only
provides predictions associated with masked inputs, where
the set of active features are of the form {t1, t2, ..., ti}. It
is not possible to get the prediction on a masked input with
an arbitrarily set of active features like {t1, t4, t9}. MP-PI
solves this problem by performing multiple inference passes
with several randomly sampled masked versions of the in-
put. Each inference pass yields intermediate predictions
corresponding to a new set of perturbed inputs. To compute
attributions with these predictions, we make a connection
to Kernel SHAP (Lundberg & Lee, 2017) by noting that
intermediate predictions can be used to solve a weighted
regression problem to compute input attributions. These
attributions approximate SHAP values if the intermediate
masks follow the Shapley distribution (Hsiao & Raghavan,
1993). To this end, we design an optimization problem to
find a probability distribution for sampling input masks,
which results in the intermediate masks following the Shap-
ley distribution. Owing to its principled formulation, MP-PI
provides SHAP-like attributions that more accurately reflect
the model’s behavior compared to SP-PI and prior works.

In summary, we make the following key contributions:

1. We propose the Progressive Inference framework that
interprets the intermediate predictions of a decoder-only
model as the approximate prediction of the model on
masked versions of the input.

2. We develop Single-Pass Progressive inference – a simple
method that uses intermediate predictions to produce
input attributions that explain the predictions of decoder-
only models with negligible computational overheads.

3. We propose Multi-Pass Progressive inference– a more
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complex explanation method, which uses multiple in-
ference passes with masked versions of the input. A
key part of our method is developing an optimization
procedure to find a probability distribution for sampling
input masks that results in SHAP-like attributions.

4. We perform extensive perturbation studies to evaluate the
quality of attributions. We show that our methods pro-
duce significantly better attributions compared to a wide
suite of prior works, across different models (GPT-2,
Llama-2 7b (Touvron et al., 2023)), fine-tuned on a 7 dif-
ferent text classification tasks (sentiment classsification,
natural language inference and news categorization).

2. Background and Related Work
There is a rich body of prior works that have been proposed
to compute feature attributions for DNNs. Additionally,
several XAI methods have been developed specifically in
the context of Transformer models. In this section, we
start by formally defining the objective of input attribution
techniques. We then provide an overview of these prior
works. Through experimental evaluations, we show that
our proposed SP-PI and MP-PI techniques provide higher
quality explanations compared to these prior works.

2.1. Problem Formulation

Consider a model f : Rn → Rk that is trained to perform a
k-class classification task. Let N = {1, 2, .., n} denote the
set of feature indices and x⃗ = [t1, t2, ...tn] denote the input
vector, where ti represents the ith feature/token. The goal
of input-attributions techniques is to compute feature-level
attributions ϕ⃗ = [ϕ1, ϕ2, ..., ϕn] that reflects the influence
of each feature on the prediction of the model. These attri-
butions can either be computed for each token or groups of
tokens (representing words/sentences).

2.2. Perturbation-based Methods

Perturbation-based methods are based on the idea that the
importance of input features can be measured by examin-
ing how the prediction of the model changes for different
perturbed versions of the input. The most principled for-
mulation of this idea is the SHAP framework (Strumbelj &
Kononenko, 2010; Lundberg & Lee, 2017) that computes
input attributions by using a game-theoretic approach that
views input features as players and the prediction of the
model as the outcome in a collaborative game. The attri-
bution ϕi for the ith feature can be computed by taking a
weighted average of the marginal contributions of the ith

feature, when added to different coalitions of features S, as

shown below

ϕi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
f(xS∪{i})− f(xS)

]
.

(1)
The feature attributions computed this way are called SHAP
values (Shapley et al., 1953) and have been shown to satisfy
several desirable axiomatic properties like local-accuracy,
missingness, and consistency (Young, 1985; Lundberg &
Lee, 2017). Since the number of terms in the SHAP equa-
tion grows exponentially with the number of input features,
computing it exactly is intractable when there are a large
number of features in the input. To mitigate this issue,
sampling-based methods such as Sampling SHAP and Ker-
nel SHAP (Lundberg & Lee, 2017) have been proposed
to compute approximate SHAP values in a tractable way.
Sampling SHAP simply evaluates a subset of the terms in
Eqn. 1, while Kernel SHAP uses the idea that SHAP values
can be viewed as a solution to the following weighted linear
regression problem (with weights w(S)):

{ϕi} = argmin
ϕ1,..ϕn

∑
S⊆N

w(S)
(
f(tS)− g(S)

)2

(2)

where, g(S) = ϕ0 +
∑
i∈S

ϕi (3)

Our proposed methods SP-PI and MP-PI also fall under
the category of perturbation based methods, as they both
leverage the model’s prediction on perturbed versions of the
input to compute feature attributions. Furthermore, MP-PI
uses a connection with Kernel SHAP to compute SHAP-like
attributions more efficiently compared to Kernel SHAP.

2.3. Gradients, Activations, and Propagation Rules

Several methods to compute attributions have been proposed
by using some combination of gradients, activations, and
propagation rules to compute input attributions. Gradient ×
Input (Shrikumar et al., 2016) is one such method that uses
a product of gradients and inputs to compute attributions.
Integrated gradients (Sundararajan et al., 2017b) general-
izes this approach by first computing the average gradient
along the straightline path between a baseline input t⃗b and
the actual input t⃗. This average gradient is multiplied with
difference in the input and baseline to compute the attribu-
tion. Layer-wise Relevance Propagation (LRP) (Bach et al.,
2015) is another XAI method for DNNs that is based on the
idea that the relevance score of the output neurons of a layer
can be redistributed to the input neurons using propagation-
rules. LRP recursively applies propagation rules, starting
from the last layer, going backwards, until the relevance-
scores for the input features (i.e. attributions ϕ⃗) can be
computed. DeepLIFT (Shrikumar et al., 2017) is a gener-
alization of LRP that uses a baseline input as reference to
compute relevance scores.
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Figure 3. a SP-PI uses the original input x⃗ to produce interme-
diate predictions {p⃗i}. b The PI framework treats these inter-
mediate predictions as approximations of the model’s prediction
on the corresponding masked versions of the inputs: p⃗i ≈ f(x⃗′

i).
c SP-PI takes the difference in the intermediate predictions to

compute feature-level attributions {ϕi}.

2.4. Methods for Transformers

Recent works have developed XAI techniques, specifically
to explain Transformer models. Transformer models are
based on the attention mechanism, where attention scores
are used in each Transformer block to produce the output
by taking a weighted average over the input tokens. Several
works have repurposed the attention scores to produce input
attributions. Among these methods are attention-last (Hol-
lenstein & Beinborn, 2021), which directly uses the last-
layer attention. Attention-flow and attention-rollout (Abnar
& Zuidema, 2020a) compute attributions by capturing infor-
mation flow using the attention weights. Generic attention-
model explainability (GAE) (Chefer et al., 2021) uses a
combination of attention and gradient maps to generate rele-
vance maps. LRP for Transformers (Ali et al., 2022b) is a
recent technique that adapts the LRP technique to the Trans-
former architecture by changing the way relevance scores
are propagated through the layers.

3. Progressive Inference
We propose the Progressive Inference (PI) framework for
computing input attributions to explain the predictions of
decoder-only models. PI exploits the key observation that
the intermediate predictions of a decoder-only model only
depends on the tokens that appear at or before that position.
We use this observation to interpret intermediate predic-
tions as representing the prediction of the model on masked
versions of the input.

To explain, consider Fig. 3a, where the input x⃗ =
[t1, t2, .., tn] is passed through the model f to produce the
intermediate predictions {p⃗1, p⃗2, ..., p⃗n}. Due to the causal
attention mechanism, we can intuitively view p⃗1, p⃗2, ..., p⃗n

as representing the predictions of the model on the masked
inputs [t1,m, ...,m], [t1, t2, ...,m], ..., [t1, t2, ..., tn] respec-
tively. More formally, we interpret p⃗i as an approximation
of the model’s prediction on perturbed/masked versions of
the original input as shown in Eqn. 4.1

p⃗i ≈ f(x⃗′
i), (4)

where x⃗′
i = hx⃗(z⃗i) = z⃗i ⊙ x⃗+ (1− z⃗i)⊙m. (5)

Here, z⃗i is a binary mask vector which indicates the features
that are active in the perturbed input x⃗′

i as shown in Fig. 3b.
To reflect the causal attention mechanism, we set z⃗i to be
the ith row of a n× n lower triangular matrix of ones L1.
hx⃗ : Z → X is a masking function that maps the binary
mask to the masked input as defined by Eqn 5. m denotes
the mask token that is used to replace inactive tokens.

Using the above interpretation, with a single forward pass
of the model, we can obtain the prediction of the model on
up to n perturbed inputs: {(x⃗′

i, p⃗i)}. We can use this set of
(x⃗′

i, p⃗i) pairs to compute input attributions that explain the
prediction of the model.

We describe two methods to compute input attributions. We
start by describing Single-Pass Progressive Inference (SP-
PI)–a simple low-cost technique to compute attributions that
only requires a single forward inference pass through the
network. We then propose a more complex technique called
Multi-Pass Progressive Inference (MP-PI), which uses the
intermediate predictions collected from multiple inference
passes using masked versions of the inputs. MP-PI leverages
a connection with Kernel SHAP to compute higher quality
attributions.

3.1. Single-Pass Progressive Inference

SP-PI requires a single forward-pass with the original input
x⃗. Let p⃗i = [p1i , p

2
i , ..p

k
i ] denote the logit-vector associated

with the ith intermediate prediction. To explain the model’s
prediction on class c, SP-PI computes attribution for the ith

feature by taking the difference between successive interme-
diate predictions as follows:

ϕi = pci − pci−1 (6)

We note that the attribution ϕi is quite simply the change
in the model’s prediction after seeing the ith feature. More
formally, the attribution ϕi can be viewed as the marginal
change in the prediction of the model, when the ith feature
is added to the coalition of features S̄i−1 = {1, 2, ..i− 1}
that came before it. This can be seen more clearly by using

1The approximation error in Eqn. 4 can vary with prediction
position, length of the input and the model being used. Regard-
less, this is a useful interpretation that lets us connect progressive
inference with other perturbation techniques like SHAP.

4



Progressive Inference: Explaining Decoder-Only Sequence Classification Models Using Intermediate Predictions

Eqn. 4, 5 to rewrite Eqn. 6 as follows:

ϕi ≈ f c(x⃗′
i)− f c(x⃗′

i−1), (7)
ϕi ≈ f c(hx⃗(z⃗S̄i−1∪{i}))− f c(hx⃗(z⃗S̄i−1

)). (8)

Here, S denotes a set of active features and z⃗S denote the
corresponding binary mask vector such that zjS = [1 for j ∈
S, and 0 otherwise].

Connection to SHAP Values. Both SHAP and SP-PI com-
pute attributions by evaluating the change in the model’s pre-
diction by adding a feature to a coalition of features. SHAP
computes feature attribution by considering the weighted
average of a feature’s marginal contribution across multiple
coalitions (Eqn. 1). In contrast, SP-PI computes attribution
by only considering a single coalition (Eqn. 7). While both
SP-PI and SHAP satisfy desirable axiomatic properties like
local accuracy (see Proposition 1 in Appendix A for proof),
the quality of attributions computed with SP-PI falls short
of SHAP values as SP-PI only considers a single coalition.

3.2. Multi-Pass Progressive Inference

A key limitation of SP-PI is that, to compute ϕi, it con-
siders a single coalition of features of the form S̄i−1 =
{1, 2, 3, ..., i − 1} (i.e. the set of all features that appear
before the ith feature). This prevents us from evaluating the
marginal contribution on arbitrary subsets of features as is
done with SHAP values. To bridge this gap, we propose
multi-pass progressive inference (MP-PI).

3.2.1. OVERVIEW

MP-PI performs multiple rounds of progressive inference,
each time with a different masked version of the input, al-
lowing us to sample a more diverse coalition of features.
Fig. 4 provides a visual depiction of MP-PI. In each round,
we start by sampling a binary mask z⃗′ from a pre-defined
masking distribution P ′ (Fig. 4a). We use z⃗′ to obtain a
masked version of the input x⃗′ = hx⃗(z⃗

′) (Fig. 4b). We
perform inference on this masked input to obtain the set
of intermediate predictions {p⃗i} (Fig. 4c). Using the PI
interpretation (Fig. 4d), we have

p⃗i ≈ f(x⃗†
i ), (9)

where x⃗†
i = hx⃗(z⃗

†
i ), z⃗

†
i = z⃗′ ⊙ z⃗i. (10)

Here, x⃗†
i denotes the perturbed input corresponding to p⃗i,

z⃗†i is the binary mask applied to x⃗ to produce x⃗†
i . z⃗†i can

be expressed as the Hadamard product of z⃗′ (the masking
vector used to produce x⃗′) and z⃗i (ith row of L1 i.e. the
lower triangular matrix of ones). We use S†

i to denote the
set (i.e. coalition) of active features in z⃗†i . Let Dr represent
the set {S†

i , p⃗i} collected in the rth round. Note that Dr

can have redundant coalitions (e.g. S2 and S3 in Fig. 4 have

the same set of features). We filter Dr to only retain unique
coalitions to create D†

r (Fig. 4e). The D†
r from each round

are combined to construct the dataset D† (Fig. 4f). We then
use Kernel SHAP (Fig. 4g) with this dataset to compute the
feature attributions {ϕi} (Fig. 4h). This procedure is also
described more formally in Algorithm 1

Algorithm 1 Multi-pass progressive Inference
Inputs: model f , input vector x⃗, budget B, mask sam-
pling distribution P ′

n← |x|, {z⃗i ← L1[i]}, D† ← {}
for r ← 1 to B do

z⃗′ ∼ P ′

x⃗† ← hx⃗(z⃗
′)

{p⃗i} ← finter(x⃗
†)

{z⃗†i ← z⃗′ ⊙ z⃗i}
{S†

i ← S(z⃗†i )}
Dr ← {S†

i , p⃗i}
D†

r ← filter unique coalitions(Dr)
D† ← D ∪D′

r

end for
{ϕi} = KernelSHAP (D†)

3.2.2. USING KERNEL SHAP TO COMPUTE ϕi

Kernel SHAP starts by defining a linear model g(S) = ϕ0 +∑
i∈S

ϕi, where S ⊆ N denotes a coalition of input features.

The coefficients {ϕi} are optimized using the dataset D† by
solving the weighted linear regression problem in Eqn. 11.

{ϕ∗
i } = argmin

ϕ1,..ϕn

∑
(S†

i ,p⃗i)∈D†

w(S†
i )
(
pci − g(S†

i )
)2

. (11)

If the coalitions in D† are sampled independently and their
distribution (denoted by PD) follows the Shapley distribu-
tion P ∗, then the solution {ϕ∗

i }, obtained by optimizing
Eqn 11 with uniform weights w(S†

i ), represent the SHAP
values. Unfortunately, the samples in D† are not indepen-
dently sampled. However, we have the ability to control PD

by carefully selecting the distribution of masks P ′, which is
used to generate the perturbed inputs x⃗′ (i.e. the masked in-
put to the model in Fig. 4a). Thus, for {ϕ∗

i } to approximate
SHAP values, we need to find an optimal P ′ that results
in PD following the Shapley distribution P ∗.

3.2.3. OPTIMIZING P ′

We start by introducing some notation to express P ∗ (Shap-
ley distribution) and P ′ (input masking distribution). We
then establish a connection between P ′ and PD (distribu-
tion of intermediate coalitions). Finally, we formulate an
optimization procedure to find the P ′ that minimizes the
distance between PD and P ∗.
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Figure 4. MP-PI runs progressive inference multiple times with different masked versions of the input. It starts by a sampling a binary
mask z⃗′ to create a b masked input x⃗′. PI interprets the c intermediate predictions {p⃗i} generated from x⃗′ as predictions of the model
on d different perturbed versions of the input {x⃗′

i = hx⃗(z⃗
′
i)}. e The set of (coalition, prediction) pairs (Si, p⃗i) are filtered to remove

repeated coalitions and f added to the dataset D. Finally, we use g Kernel SHAP on D to produce the h input attributions {ϕi}.

Notations for P ∗: The Shapley distribution can be ex-
pressed in a vector form as [P ∗

1 , P
∗
2 , ..., P

∗
n−1], where P ∗

i =
1

Ci(n−i) denotes the probability of sampling a coalition of
size i. Here, C =

∑
i

1
i(n−i) is the normalization constant

that ensures that
∑

i P
∗
i = 1. Alternatively, P ∗ can also be

expressed as an (n− 1)×n matrix, where each entry of the
matrix P ∗

ij indicates the probability of sampling coalitions
of size i, where j is the last active feature. More formally,
we can write this as

P ∗
ij = Pr (Sij : |Sij | = i, j ∈ Sij ,∀k ∈ N/Sij , k > j) .

(12)

Note that Sij does not refer to any single coalition of fea-
tures as there are multiple coalitions that could satisfy the
conditions for Sij in Eqn. 12. We can express P ∗

ij in terms of
P ∗
i as follows (see Proposition 2 in Appendix A for proof):

P ∗
ij =

{
P ∗
i

(
j−1
i−1

)
/
(
n
i

)
if j ≥ i

0 otherwise.
(13)

Notations for P ′: Similarly, we can express the masking
distribution P ′ as a (n− 1)× n matrix consisting of entries
P ′
ij that indicate the probability of sampling coalitions of

the form Sij , where |Sij | = i and j is the last active feature.

Connecting P ′ and PD: In the PI framework, predic-
tions on an input coalition S′

ij (representing the input x⃗′

in Fig. 4b), yields additional predictions for coalitions of the
form {S†

kl}ik=1 i.e. coalitions of sizes 1, 2, .., i (represented
by D†

r in Fig. 4e). We can view the distribution of these
additional coalitions S†

kl as being conditioned on S′
ij . As-

suming i, j, k, l ∈ N , this conditional distribution is given
by (see Proposition 3 in Appendix A for proof):

P †
kl|ij =

{(
l−1
k−1

)(
j−l
i−k

)
/(
(
j−1
i−1

)
i) if k ≤ i, l ≤ j, j ≥ i

0 otherwise.
(14)

There are n(n− 1) values for i, j and k, l. Thus, P †
kl|ij can

be written as a n(n − 1) × n(n − 1) matrix. We can use
this conditional distribution matrix to express PD in terms
of P ′ as follows

P⃗D = P⃗ ′P †
kl|ij . (15)

Here, P⃗D and P⃗ ′ are the vectorized representation of the
matrices PD and P ′. Note that our goal is to optimize P ′

to minimize the distance between PD and P ∗. We can do
so by solving the following optimization problem:

P ′ = argmin
P ′

|P⃗ ′P †
kl|ij − P⃗ ∗| s.t. P ′

ij ≥ 0. (16)

Note that the P ′ obtained from Eqn. 16 may not result in
PD exactly matching P ∗. We remedy this issue by setting
w(Sij) = P ∗/PD in Eqn. 2 when computing the attribu-
tions with Kernel SHAP.

3.2.4. MAXIMIZING THE NUMBER OF SAMPLES

While the procedure described thus far is sufficient to find
SHAP-like attributions, we can perform one final opti-
mization to maximize the number of coalitions that we
obtain when running MP-PI. We start by noting that the

Table 1. Details of datasets, models and attribution types used in
our experiments.

Dataset (n. classes) Model (size) Acc.% Source Attr.

IMDB (2) GPT-2 (124M) 94.06 FFT (HF) Sent.
SST-2 (2) GPT-2 (355M) 92 FFT (HF) Word
AG-News (4) Llama-2 (7B) 94.96 PEFT Word
Twitter-Fin (3) Llama-2 (7B) 91.08 PEFT Word
Twitter-Sentiment (3) GPT-2 (124M) 68.18 FFT Word
Twitter-Emotion (4) GPT-2 (124M) 80.29 FFT Word
TrueTeacher NLI (2) GPT-2 (1.5B) 86.21 PEFT Sent.
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Table 2. AUC (↑) for the activation study comparing different XAI methods. A higher AUC indicates better performance. Cost indicates
the compute (normalized to a single inference pass) required to generate attributions for each method. For each dataset, the best AUC
among all methods is marked in bold and among methods with cost ≤ 1× is marked with an underline. SP-PI and MP-PI provide the
best explanations for most datasets in their respective cost categories.

Method Cost (×) IMDB SST-2 AG-news Twitter-Fin Twitter-Sen Twitter-Emo TrueTeacher

Random 0 0.855 0.756 0.763 0.763 0.583 0.624 0.699
A-Last 0 0.873 0.754 0.855 0.808 0.627 0.715 0.781
SP-PI 0 0.951 0.84 0.817 0.814 0.747 0.869 0.879
GAE 1 0.916 0.863 0.782 0.795 0.687 0.792 0.829
Inp X Grad 1 0.903 0.811 0.772 0.806 0.646 0.779 0.833
LRP for Trfm. 1 0.901 0.826 0.776 0.811 0.648 0.781 0.835

Int. Grad 2n 0.9 0.877 0.755 0.791 0.739 0.832 0.826
Kernel SHAP 2n 0.959 0.899 0.778 0.821 0.816 0.871 0.811
MP-PI 2n 0.97 0.946 0.867 0.847 0.887 0.929 0.921

intermediate coalitions {S†} obtained by an input coali-
tions S′

ij is a subset of the intermediate coalitions obtained
by the input coalition S+

ij = S′
ij ∪ {j + 1, j + 2, ..., n},

where n is the total number of input features. To illus-
trate, consider the input coalition S′ = {1, 3, 4}, with
n = 6. By running PI with S′, we obtain 3 unique coali-
tions {S†}: {{1}, {1, 3}, {1, 3, 4}}. Instead, if we mod-
ify S′ to include {5, 6} i.e. S+ = {1, 3, 4, 5, 6}, we
get the following unique intermediate coalitions with PI:
{S†} : {{1}, {1, 3}, {1, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 5, 6}}.
Note that this contains all the coalitions provided by S′,
and two extra coalitions: {1, 3, 4, 5} and {1, 3, 4, 5, 6}.

To maximize the number of coalitions, we use S+
ij in MP-PI

instead of S′
ij . Due to this modification, the conditional

distribution in Eqn. 14 changes to the following

P †
kl|ij =


(
l−1
k−1

)(
j−l
i−k

)
/(
(
j−1
i−1

)
i′) if k < i, l < j, j ≥ i

1/i′ if l ≥ j, k = i+ l − j

0 otherwise.
(17)

Here, i′ = (i+ n− j), which denotes the total number of
active features in S+

ij . We use the conditional distribution in
Eqn. 17 instead of the one in Eqn. 14 to optimize P ′.

4. Experiments
In this section, we compare the quality of attributions for
our two proposed methods against a suite of prior works
using a diverse set of classification tasks and models. We
start by describing the experimental setup and then present
the results showing the efficacy of our proposed techniques.

4.1. Experimental Setup

Datasets and Models: We pick a diverse set of sequence
classification datasets (Table 1) and fine-tune decoder-only
models of different sizes on these datasets. We gener-
ate explanations on the predictions of these models us-

ing different XAI methods and compare relative perfor-
mance. For IMDB (Maas et al., 2011) and SST-2 (Socher
et al., 2013) datasets, we use models that are available
on the HuggingFace repository.2 For AG-News (Zhang
et al., 2015), Twitter-Finance, Twitter-Sentiment (Rosenthal
et al., 2017), Twitter-Emotion (Mohammad et al., 2018) and
TrueTeacher (Gekhman et al., 2023) datasets, we fine-tune
GPT-2 (Radford et al., 2018) or Llama-2 (Touvron et al.,
2023) models with full fine tuning (FFT) for smaller models
and parameter efficient fine tuning (PEFT) with LoRA (Hu
et al., 2022) for larger models. Additional details on training
are provided in Appendix B.1

Attribution Type: We compute attributions for groups of
tokens (instead of individual tokens) at either word or sen-
tence level, as attributions at token-level may be too granular
for a human reviewer to interpret. Note that Kernel SHAP,
SP-PI and MP-PI can be straightforwardly adapted to com-
pute word/sentence level attributions by considering groups
of tokens (representing a word/sentence) as a single feature.
For other methods, we aggregate token-level attributions to
produce word/sentence level scores.

Measuring the Quality of Attributions: We randomly
sample 500 examples from the test set of each dataset and
compute attributions to explain the model’s prediction on
the true class c with these examples. To quantify the quality
of explanations, perform two studies with the attributions:

1. Activation study (AS): AS (Schnake et al., 2021; Ali et al.,
2022b) measures the ability of attributions to identify input
features that increase the model’s prediction on the chosen
class. It works by sorting the input features in a descend-
ing order of attribution values NAS = argsort({−ϕi})
(i.e. most positive to most negative). It then creates a fully
masked version of the input and incrementally adds individ-
ual features from NAS . Note that the model’s prediction

2IMDB: hipnologo/gpt2-imdb-finetune, SST-2: michele-
cafagna26 /gpt2-medium-finetuned-sst2-sentiment. The authors of
these models are not affiliated with this paper.
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Table 3. AUC (↓) for the inverse activation study comparing different XAI methods. A lower AUC indicates better performance. For each
dataset, the best AUC among all methods is marked in bold and among methods with cost ≤ 1× is marked with an underline. SP-PI and
MP-PI provide the best explanations for most datasets in their respective cost categories.

Method Cost(×) IMDB SST-2 AG-news Twitter-Fin Twitter-Sen Twitter-Emo TrueTeacher

Random 0 0.863 0.735 0.758 0.761 0.595 0.638 0.671
A-Last 0 0.839 0.763 0.62 0.743 0.557 0.539 0.556
SP-PI 0 0.698 0.653 0.692 0.706 0.429 0.347 0.455
GAE 1 0.761 0.603 0.688 0.737 0.513 0.412 0.476
Inp x Grad 1 0.793 0.671 0.697 0.743 0.529 0.418 0.476
LRP for Trfm. 1 0.795 0.651 0.698 0.741 0.519 0.423 0.468

Int. Grad 2n 0.815 0.582 0.779 0.761 0.427 0.361 0.554
Kernel SHAP 2n 0.688 0.533 0.734 0.709 0.348 0.337 0.547
MP-PI 2n 0.613 0.431 0.596 0.684 0.273 0.214 0.355

changes as new features are added. The probability corre-
sponding to the correct class is plotted as a function of the
number of features added and the Area Under the Curve
(AUC) of this plot can be used to measure the quality of
attribution.

2. Inverse Activation study (IAS): In contrast to AS, the
inverse activation study measures the ability of the attribu-
tions to identify features that reduce (negatively influence)
the predictions of the model on the chosen class. Identi-
fying such features is especially useful in the event of a
misprediction–to override or debug the model’s prediction
(see Fig 6, 7 in Appendix D.1 for examples). IAS works
by sorting features in an increasing order of attributions
values NIAS = argsort({ϕi}) (i.e. most negative to most
positive). It then measures the AUC of the curve obtained
by plotting the prediction of the model on the correct class
f c(x′). A lower AUC indicates better performance for IAS
since features with negative influence are added first.

Prior Works: Table 2 lists the representative set of prior
works that are considered in our evaluations. This includes
methods that use attention mechanism (GAE, A-Last), gra-
dient based techniques (Inp x Grad, integrated gradients),
relevance propagation methods(LRP for Transformers) and
perturbation based method (Kernel SHAP). Note that these
methods have different costs associate with computing the
attribution. Random, A-last and SP-PI are 0 cost methods
as they require minimal/no additional compute. GAE, Inp x
Grad and LRP for Transformers require an additional cost
(expressed as a multiple of a single inference pass) of 1× as
they require some form of backpropagation or gradient com-
putation. For Kernel SHAP and MP-PI, we set the number
of samples to 2n, where n is the number of input features
(i.e. number of words/sentences). For integrated gradients,
we set number of samples to n, making the cost 2n as each
sample requires a forward and backward pass. We use ‘...’
as the mask token for perturbation-based methods.

4.2. Results

Table 2 shows the average AUC for each dataset (across
500 examples) from the activation study (higher AUC is
better). The best AUC among all the methods is marked
in bold and the best AUC among methods with a cost of
≤ 1× is marked with an underline. For most datasets, SP-PI
provides the best attributions among techniques that have
a cost of ≤ 1×. Among all techniques, MP-PI provides
the best attributions, offering up to a 10.3% improvement in
AUC compared to the best performing prior work.

Table 3 shows the average AUC from the inverse activation
study (lower AUC is better). Once again, SP-PI provides
the best attribution amongst techniques that have a cost
of ≤ 1× for most datasets. MP-PI provides significantly
better attributions compared to all prior works, offering up
to 57.5% reduction in AUC over the best performing prior
work. The results from the IAS study highlights the ability
of our methods to identify input features that do not support
the class being considered for explanation.

We also note that for the same budget (2n), MP-PI provides
a higher quality attribution compared to Kernel SHAP. This
improvement is owed to the higher sample efficiency of
MP-PI resulting from the use of intermediate predictions.

Due to space limitations, we present the rest of our empirical
finings in the Appendix. Appendix C contains the results
quantifying the impact of choosing P ′. Qualitative exam-
ples comparing attributions produced by different XAI tech-
niques are provided in Appendix D.1. Plots for AS and IAS
are provided in Appendix D.2. We compare the similarity
between attributions provided by MP-PI with that of Kernel
SHAP (with a high sample budget) in Appendix D.4. Fi-
nally, the limitations of our work are detailed in Appendix E.
Code is provided in the supplementary material.

5. Conclusion
We propose a new framework to explain the predictions
of decoder-only sequence classification models called Pro-
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gressive Inference (PI). The key insight of our work is that
the intermediate predictions of decoder-only models can be
viewed as the predictions of the model on masked versions
of the input. We leverage this insight to propose a near
zero-cost input attribution technique called Single-Pass PI.
We also propose a more sophisticated approach–Multi-Pass
PI–that uses multiple inference passes to compute attribu-
tions by drawing a connection to SHAP values. Through
extensive experiments on a variety of datasets and models
we show that SP-PI and MP-PI can significantly outperform
prior XAI techniques in terms of the quality of explanations,
offering an improvement in AUC of 10.3% for the activation
study and 57.5% for the inverse activation study.

Impact Statement
Our paper proposes new methods to explain the predictions
of decoder-only sequence classification model through input
attributions. By providing better attributions, our methods
improve the interpretability of ML models, enabling human
reviewers to better understand model predictions. Thus,
by providing high-quality explanations, our work improves
the trustworthiness of ML models, supporting the safe and
responsible deployment of AI.
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A. Proofs
Proposition 1. SPPI’s attribution ϕi = pci − pci−1 satisfies
the local accuracy property: pcn − pc0 =

∑n
i=1 ϕi.

Proof. From Eqn. 6, we have ϕi = pci − pci−1. Expanding∑n
i=1 ϕi, we have

n∑
i=1

ϕi =

n∑
i=1

pci − pci−1 (18)

n∑
i=1

ϕi = (pc1 − pc0) + (pc2 − pc1) + (pc3 − pc2) + ..

...+ (pcn − pcn−1). (19)

All the terms except pc0 and pcn cancel out, yielding∑n
i=1 ϕi = pcn − pc0

Proposition 2. Let P⃗ ∗ = [P ∗
1 , P

∗
2 , ..., P

∗
n−1] denote the

vector representation of the Shapley distribution, where P ∗
i

denotes the probability of sampling a coalition of size i. Let
P ∗ denote the matrix representation of the Shapley distribu-
tion consisting of entries P ∗

ij that indicate the probability of
sampling coalitions of size i, where j is the last active fea-
ture. Then, P ∗

ij can be expressed in terms of P ∗
i as follows:

P ∗
ij =

{
P ∗
i

(
j−1
i−1

)
/
(
n
i

)
if j ≥ i

0 otherwise.
(20)

Proof. Since we have n features, the total number of ways
in which a subset of i can be formed is

(
n
i

)
. If j ≥ i, the

total number of subsets where j is the last active feature is
given by

(
j−1
i−1

)
. Thus, the probability of selecting a subset

of i features, where j is the last active feature is
(
j−1
i−1

)
/
(
n
i

)
.

Multiplying this with the probability of sampling a coalition
of size i, we have, P ∗

ij = P ∗
i

(
j−1
i−1

)
/
(
n
i

)
if j ≥ i. Note that

no coalition of size i can be selected such that the index of
the last active feature is less than i. Thus, P ∗

ij = 0 when
j < i.

Proposition 3. In PI, predictions on an input coalition S′
ij

(representing the input x⃗′ in Fig. 4b), yields additional pre-
dictions for coalitions of the form {S†

kl}ik=1 i.e. coalitions
of sizes 1, 2, .., i (represented by D†

r in Fig. 4e). We can
view the distribution of these additional coalitions S†

kl as
being conditioned on S′

ij . Assuming i, j, k, l ∈ N , this
conditional distribution is given by

P †
kl|ij =

{(
l−1
k−1

)(
j−l
i−k

)
/(
(
j−1
i−1

)
i) if k ≤ i, l ≤ j, j ≥ i

0 otherwise.
(21)

Proof. The total number of coalitions of the form S′
ij is

given by
(
j−1
i−1

)
. For S′

ij to yield an intermediate coalition
of the form S†

kl, we need two conditions to hold:

• Feature l to be the kth active feature.

• There need to be exactly i − k active features after
feature l.

There are
(
l−1
k−1

)
possible ways of satisfying the first condi-

tion and
(
j−l
i−k

)
ways of satisfying the second. Thus, totally,

there are a total of
(
l−1
k−1

)(
j−l
i−k

)
possible coalitions of the

form S′
ij that satisfy both conditions. Expressed as a frac-

tion of the total number of possible coalitions of the form
S′
ij , this yields

(
l−1
k−1

)(
j−l
i−k

)
/
(
j−1
i−1

)
. Since we get a total of i

intermediate coalitions, we divide by i to obtain the normal-
ized conditional probability P †

kl|ij =
(
l−1
k−1

)(
j−l
i−k

)
/(
(
j−1
i−1

)
i).

Note that this probability only holds when k ≤ i, l ≤ j and
j ≥ i. Under all other conditions, there are no intermedi-
ate coalitions that satisfy the conditions above, resulting in
P †
kl|ij = 0.

B. Additional Experimental Details
B.1. Training Setup

We train all models for 10 epochs with a learning rate of
5×10−5. We use the Adam optimizer and a batch size of 16.
We truncate the inputs when necessary so that it fits within
the support input lengths for GPT-2 and Llama-2. For the
TrueTeacher dataset, we use the following format in the in-
put: “[Assertion]: hypothesis [Document]: premise”. Note
that putting the hypothesis up front allows us to make inter-
mediate predictions on masked versions of the premise. For
LoRA, we use a rank=16, alpha=32 and lora dropout=0.1

B.2. Note on LRP and inp x grad

For the LRP and inp x grad methods, we found that taking
the l2 norm improves the AUC for both activation and in-
verse activation studies. This empirical finding is consistent
with the results reported in prior work (Atanasova et al.,
2020). Thus, to have the best performing version of prior
work, we use the l2 norm for computing attributions with
LPR and inp x grad.

C. Quantifying MP-PI’s Sensitivity to P ′

A key component of our proposed MP-PI method is finding
an optimal P ′ that results in the distribution of intermediate
samples resembling the Shapley distribution. Table 4 quanti-
fies the marginal benefit of choosing this optimal P ′ over an
alternative sampling scheme of directly using the Shapley
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distribution to sample. For most datasets we find that the
optimized sampling scheme provides higher quality expla-
nations, measured in terms of the AUC of the activation and
inverse activation studies.

Table 4. Comparing the performance of MP-PI with the optimal
sampling scheme and the default Shapley sampling

Dataset AUC Act. (↑) AUC Inv. Act. (↓)
Opt Shap Opt Shap

IMDB 0.9697 0.9696 0.6128 0.6263
SST-2 0.9562 0.9461 0.4261 0.4307
AG-News 0.8669 0.8758 0.5957 0.5958
Twitter-Fin 0.847 0.856 0.67 0.6842
Twitter-Sentiment 0.8866 0.8843 0.2733 0.2779
Twitter-Emotion 0.932 0.9292 0.2144 0.2242
TrueTeacher NLI 0.921 0.9198 0.3545 0.3702

D. Additional Results
D.1. Qualitative Evaluation of Attributions

Fig. 6, 7 compares the attributions produced by different
XAI techniques on two mispredicted examples from the
IMDB dataset. Note that the example contains a negative
movie review, which is mispredicted as a positive review
by the model in both cases. We compute the attribution
with respect to the predicted class (i.e. the positive class).
Attributions are computed at the sentence level. Sentences
that support the prediction (i.e. positive sentences) are high-
lighted in green and ones that don’t support the prediction
(i.e. negative sentences) are highlighted in red. The shade
of red/green indicates the magnitude of the normalized attri-
bution. Note that for a human reviewer to catch this mistake,
it is important for the XAI technique to highlight sentences
that don’t support the prediction. We see that in both cases,
A-last and GAE fail to highlight any sentence in red. The
attributions provided by inp x grad, LRP and integrated gra-
dients are incorrect as they fail to properly highlight positive
and negative sentences3. Only Kernel SHAP, SP-PI and
MP-PI provide attributions that are consistent with the sen-
timent of each sentence. This shows that perturbation based
attribution methods such as the ones proposed in this paper
provide attributions that are the most helpful in the event
of a misprediction. Our quantitative results in Section 4.2
support these qualitative findings.

D.2. Plots for Activation and Inverse Activation Studies

Fig. 8, 9 show the plots for activation and inverse activation
studies.

3Just for collecting these qualitative samples, we don’t take the
l2 norm of the attributions for inp x grad and LRP as taking the
norm would result in only positive attributions.

D.3. Statistical Significance of Activation and Inverse
Activation Studies

Table 5 and Table 6 list the 95% confidence intervals for
the mean AUC reported in Table 2 and Table 3 respectively.
Note that the width of the confidence intervals is smaller
than the magnitude of improvements offered by our proposal
over prior works.

D.4. Similarity with SHAP values

Our work uses intermediate predictions to compute input
attributions that approximate SHAP values. To validate
this claim, we compare the attributions produced by our
method with those obtained by running Kernel SHAP with a
very high sample budget (budget =16n, where n represents
the number of features). We plot the distribution of cosine
similarity between the attributions to understand how closely
the two attributions match up. The results are shown in
Fig. 5. We find that there is a high degree of similarity
between the attributions provided by MP-PI and that of
Kernel SHAP for most datasets.
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Figure 5. Distribution of cosine similarities between Kernel SHAP
and MP-PI attributions. For most datasets, we see a high cosine
similarity, indicating that the attributions produced by MP-PI in-
deed approximates SHAP values.

E. Limitations
While our methods are capable of providing high quality
attributions, there are some limitations that need to be con-
sidered when using them in practice.

• Validity of masked inputs: Our methods compute attri-
butions by considering the prediction of the model on
masked/perturbed versions of the input. This assumes that
masked versions of the input are valid inputs to the model.

• Difference with SHAP values: The attributions computed
by MP-PI differ from SHAP values due to two key reasons.
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Table 5. 95% Confidence intervals for Activation Study (Table 2)
Method IMDB SST-2 AG-news Twitter-Fin Twitter-Sen Twitter-Emo TrueTeacher

Random ±0.018 ±0.024 ±0.022 ±0.029 ±0.03 ±0.028 ±0.025
A-Last ±0.017 ±0.024 ±0.022 ±0.026 ±0.03 ±0.027 ±0.025
SP-PI ±0.008 ±0.019 ±0.021 ±0.026 ±0.027 ±0.021 ±0.019
GAE ±0.017 ±0.021 ±0.022 ±0.026 ±0.029 ±0.027 ±0.024
Inp x Grad ±0.018 ±0.023 ±0.022 ±0.025 ±0.032 ±0.028 ±0.025
LRP for Transformers ±0.018 ±0.023 ±0.022 ±0.025 ±0.032 ±0.029 ±0.025
Int. Grad ±0.016 ±0.019 ±0.023 ±0.027 ±0.029 ±0.024 ±0.024
Kernel SHAP ±0.009 ±0.016 ±0.021 ±0.024 ±0.025 ±0.021 ±0.022
MP-PI ±0.007 ±0.011 ±0.019 ±0.022 ±0.018 ±0.015 ±0.015

Table 6. 95% Confidence intervals for Inverse Activation Study (Table 3)
Method IMDB SST-2 AG-news Twitter-Fin Twitter-Sen Twitter-Emo TrueTeacher

Random ±0.017 ±0.024 ±0.023 ±0.029 ±0.03 ±0.027 ±0.026
A-Last ±0.02 ±0.024 ±0.021 ±0.03 ±0.029 ±0.027 ±0.029
SP-PI ±0.026 ±0.029 ±0.024 ±0.033 ±0.031 ±0.028 ±0.032
GAE ±0.018 ±0.026 ±0.022 ±0.031 ±0.031 ±0.026 ±0.033
Inp x Grad ±0.017 ±0.024 ±0.021 ±0.03 ±0.029 ±0.025 ±0.034
LRP for Transformers ±0.018 ±0.024 ±0.021 ±0.03 ±0.03 ±0.024 ±0.034
Int. Grad ±0.02 ±0.029 ±0.023 ±0.03 ±0.033 ±0.029 ±0.032
Kernel SHAP ±0.026 ±0.03 ±0.023 ±0.033 ±0.03 ±0.028 ±0.031
MP-PI ±0.026 ±0.029 ±0.024 ±0.035 ±0.029 ±0.021 ±0.031

First, the samples obtained in PI are correlated due to the
masked attention mechanism and second, the intermediate
predictions may not accurately reflect the prediction of
the model on the equivalent masked input.
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Figure 6. Comparing the attributions provided by different XAI techniques on a mispredicted sample from the IMDB dataset. The above
example is a negative movie review (class 0). The model incorrectly classifies this example as a positive review (class 1). Sentences
with positive attributions are highlighted in green and sentences with negative attributions in red. Our proposed methods (SP-PI, MP-PI)
provide attributions that are consistent with the sentiment of each sentence, while most prior works provide inconsistent attributions.
Faithful explanations such as the ones provided by SP-PI and MP-PI allow a human reviewer to easily identify the misprediction.
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Figure 7. Comparing the attributions provided by different XAI techniques on a mispredicted sample from the IMDB dataset. The above
example is a negative movie review (class 0). The model incorrectly classifies this example as a positive review (class 1). Sentences
with positive attributions are highlighted in green and sentences with negative attributions in red. Our proposed methods (SP-PI, MP-PI)
provide attributions that are consistent with the sentiment of each sentence, while most prior works provide inconsistent attributions.
Faithful explanations such as the ones provided by SP-PI and MP-PI allow a human reviewer to easily identify the misprediction.
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Figure 8. Plots for activation and inverse activation studies.
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Figure 9. Plots for activation and inverse activation studies.
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