

000 ENERGY-EFFICIENT RANDOM VARIATE GENERATION 001 002 VIA COMPRESSED LOOKUP TABLES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Generating (pseudo-)random variates lies at the core of probabilistic machine
011 learning and prediction algorithms and yet remains a major bottleneck due to its
012 high computational and energy cost. In this paper, we introduce a general and
013 scalable sampling strategy that enables fast and energy-efficient random variate
014 generation from arbitrary distributions. Our approach is based on efficient lookup
015 tables combined with a fast index sampling scheme. Using only a handful of fast
016 and energy-efficient compute operations on simple array structures, we achieve
017 superior speed, energy efficiency, and precision at near-optimal entropy cost com-
018 pared to state-of-the-art techniques. Microbenchmarking our approach with a C
019 implementation shows up to 40% savings in time and 50% in energy compared to
020 state-of-the-art approaches. Compared to commonly employed Python samplers,
021 we achieve a 100 \times time improvement.

022 023 1 INTRODUCTION

024 Sampling from probability distributions is a fundamental yet computationally expensive operation in
025 machine learning. In representation learning and in broader machine learning, sampling underpins
026 core methods such as variational autoencoders (Kingma and Welling, 2022), contrastive learning
027 with negative sampling (Chen et al., 2020), diffusion-based generative models (Ho et al., 2020b),
028 and probabilistic inference techniques such as Bayesian deep learning (Sommer et al., 2025). While
029 the quality and efficiency of sampled variables directly shape the expressiveness and scalability of
030 learned representations, sampling costs often remain a primary barrier to scalability and widespread
031 deployment. In this paper, we address this bottleneck by introducing a novel, efficient sampling
032 approach for arbitrary distributions. Our method achieves 10-100 \times speedups and up to 60% reduc-
033 tion in energy consumption compared to commonly employed approaches, significantly reducing
034 the resource-intensity of many machine learning tasks.

035 The continued deployment of machine learning methods in data centers, cloud devices, and user
036 appliances alike is accompanied by increased concerns about the growing energy demand of the
037 field (International Energy Agency, 2025; Gadepally, 2025). Countermeasures include reducing the
038 carbon-intensity of the electricity supply or shifting training and inference to times or physical loca-
039 tions with a higher share of renewable energy sources throughout the day (Yang et al., 2023; Wiesner
040 et al., 2023). However, we argue that reducing the energy demand of the operations themselves is
041 worthwhile, with emphasis on frequently performed actions like sampling. Motivating us to per-
042 form extensive energy measurements in addition to speed measurements, comparing our method to
043 classical, widely used approaches and recent state-of-the-art advances.

044 On digital computers, sampling from arbitrary probability distributions is reduced to sampling from
045 finite discrete distributions due to fundamental constraints of finite precision and memory. All prob-
046 ability distributions, whether continuous or infinite discrete, must be discretized for computational
047 implementation (see Appendix B for discretization techniques). Standard sampling algorithms in
048 widely used libraries (NumPy, PyTorch, JAX) assume infinite precision arithmetic, where computa-
049 tion can be performed with arbitrarily precise real numbers (Shamos 1978; Devroye 1986, Chapter
050 2, p.1, Assumption 1). Additionally, they assume the ability to generate infinitely precise samples
051 from the real unit interval (Devroye 1986, Chapter 2, p.1, Assumption 2). However, actual imple-
052 mentations rely on finite floating-point representations and don't have access to exact samples from
053 the real unit interval, causing generated distributions to deviate from their intended target distribu-

054 tions in uncontrolled ways. These deviations are often intractable to quantify, precluding theoretical
 055 guarantees about sampling accuracy. To address this issue, our proposed sampling method features
 056 controllable precision and exactly represents target distributions with clear theoretical guarantees.
 057

058 **Problem formulation** In what follows, we will describe a novel method to generate random variates
 059 from any finite discrete distribution, represented by n probabilities $p_1, \dots, p_n \in [0, 1]$ of the
 060 corresponding n outcomes $x_1, \dots, x_n \in \mathcal{X}$. As we denote no constraints on the structure of \mathcal{X} the
 061 outcomes can be of arbitrary types, such as real numbers, strings, pointers to more complex data
 062 structures, or any mixture of those. Our objective is to make this generation process fast, energy
 063 efficient, and adjustable to an arbitrary and controllable precision.

064 **Our contributions** This work introduces a new sampling approach for arbitrary distributions
 065 based on operations with lookup tables. Besides being a generic method for efficient and arbitrary
 066 precise sampling, our approach is especially suitable for situations where floating-point operations
 067 are either unavailable or too error prone, and situations with a low power supply. We summarize our
 068 contributions as follows:
 069

- 070 1. We propose a novel a random variate generator based on compressed lookup tables (cLUT),
 071 optimized for highly efficient sampling. We introduce a lossless compression strategy for
 072 compact representations of distributions achieving an exponential compression ratio.
- 073 2. We compare cLUT against state-of-the-art approaches in terms of speed, energy efficiency,
 074 memory usage, and entropy efficiency. It runs 30-40% faster and saves 25-50% energy in
 075 a diverse set of distributions. For larger distribution sizes, it performs particularly well.
- 076 3. We benchmark cLUT against standard sampling routines from widely used Python
 077 machine learning libraries. cLUT achieves up to 10-100 \times acceleration in speed. Furthermore,
 078 we illustrate the impact of our approach in real-world machine learning applications by
 079 showcasing that cLUT substantially reduces the execution time and energy consumption of
 080 the exemplary TrueSkill application.

082 2 RELATED WORK

084 Sampling methods are classically divided into two categories: *exact methods*, which produce samples
 085 from the target distribution \mathbf{p} as specified, and *approximate methods*, which generate samples
 086 from a distribution $\tilde{\mathbf{p}}$ that only approximately matches the desired distribution, i.e., $\tilde{\mathbf{p}} \approx \mathbf{p}$. Note
 087 that our approach is exact.
 088

089 **Exact methods** Knuth and Yao (1976) established the theoretical foundation for exact discrete
 090 sampling using discrete distribution generating trees. Their seminal result shows that any optimal
 091 sampling algorithm requires between $H(\mathbf{p})$ and $H(\mathbf{p}) + 2$ bits per sample, where $H(\mathbf{p}) =$
 092 $\sum_i -p_i \log_2(p_i)$ is the Shannon entropy. While entropy-optimal, discrete distribution generating
 093 trees typically require exponential memory in the distribution precision. Lumbroso (2013) overcame
 094 this limitation for uniform and Bernoulli distributions with a linear-memory implementation,
 095 but the approach does not generalize to arbitrary distributions. The generic interval algorithm (Hao
 096 and Hoshi, 2006) achieves linear memory usage while consuming at most $H(\mathbf{p}) + 3$ bits per sample.
 097 However, implementations require expensive binary searches at each sampling step, limiting practical
 098 efficiency (Devroye and Gravel, 2020; Uyematsu and Li, 2003). Saad et al. (2020) presented the
 099 FLDR algorithm that combines entropy-optimal sampling with rejection sampling, achieving an upper
 100 bound of $H(\mathbf{p}) + 6$ bits per sample. ? improved this to $H(\mathbf{p}) + 2$ bits with faster sampling speed
 101 for the ALDR algorithm, though at a higher memory cost. Building on Marsaglia (1963), Marsaglia
 102 et al. (2004) proposed compressed lookup tables for discrete sampling. However, their compression
 103 scheme requires conditional branching and searches across multiple tables during sampling,
 104 reducing efficiency. In contrast, our approach uses a single compressed table with direct indexing,
 105 eliminating conditional overhead.

106 **Approximate methods** Most samplers for discrete and continuous distributions used in practice
 107 are so-called approximate samplers (for an introduction, see Schwarz, 2011). These methods typically
 108 rely on the assumptions of the *real Random Access Machine* (RAM) model (Shamos, 1978,

computations can be performed with arbitrarily precise real numbers), and the assumption of having infinitely precise uniform random generators (Devroye, 1986), which cannot be fully realized on digital computers. For a comprehensive overview, Devroye (1986) presents the mathematical foundations of random sampling and details numerous approximate samplers built on the real RAM model. As noted by Draper and Saad (2025), implementations consequently suffer from multiple sources of approximation error and are often inefficient in their use of bits, since generating a single uniform random variable typically already consumes 32 or 64 bits. A widely employed general approximate sampler is the Alias method (Walker, 1974), which preprocesses distributions into probability and alias arrays, enabling sampling via one uniform random variable and a single coin flip (see Schwarz (2011) for a detailed explanation). While being fast, it produces approximate samples and lacks controllable error bounds. Similarly, the Index method (Chen and Asau, 1974) uses preprocessed index tables to guide inversion-based approximate sampling, but still requires expensive search operations.

In contrast, our proposed method does not rely on the real RAM assumption or on access to arbitrarily precise random samples from the unit interval. It achieves exact sampling while remaining highly entropy-efficient, using close to the minimum number of bits required to represent the target distribution (see Figure 4).

3 APPROACH

Our approach is based on the idea of lookup tables, reusing precomputed results, while conserving memory requirements and memory accesses as detailed in this section. A schematic of the sampling pipeline is given in Figure 1a.

Naive approach We will describe a method to generate random variates from any finite discrete distribution, represented by n probabilities $p_1, \dots, p_n \in [0, 1]$ of the n outcomes $x_1, \dots, x_n \in \mathcal{X}$. Ideally, we would construct a lookup table containing duplicates of each outcome proportional to its probability:

$$\frac{\text{occurrences of } x_i \text{ in table}}{\text{table size}} = p_i. \quad (1)$$

Sampling would then reduce to uniformly selecting a random table index $I \sim \text{Uniform}\{1, \dots, N\}$ and returning $S = \text{Table}[I]$, where N is the table size. See Figure 1b for an exemplary ‘naive’ lookup table.

Memory constraints In practice, memory constraints bound the table size N , limiting representable probabilities to multiples of $1/N$. Approximating probabilities to precision b bits requires quantizing each p_i to $f_i = \text{round}(p_i \cdot 2^b)$, yielding frequencies $\mathbf{f} = (f_1, \dots, f_n)$ and a table of size $N = \sum_i f_i = 2^b$ (see the Appendix C for rounding schemes and error analysis). While approximation error decreases logarithmically with b , memory requirements grow exponentially, making high-precision sampling prohibitive. Our approach also handles continuous and infinite discrete distributions through discretization techniques detailed in the Appendix, Section B. The basis of our main approach is a lossless compression strategy for the lookup tables and the following sampling scheme.

Compression scheme To tackle the prohibitive memory requirements of lookup tables, we propose to use the following compression scheme. Intuitively, the compressed lookup table can be viewed as a two-dimensional array consisting of $r + 1$ rows and 2^c columns, with $r, c \in \{0, \dots, b\}$ satisfying $2^{r+c} = 2^b = N$. Each row i of the first r rows corresponds to a frequency of 2^{r-i} , where row indices run from 1 to r . The $r+1$ -th row corresponds to the same frequency as the r -th row, namely $2^{r-r} = 1$. For an exemplary compression, see Figure 1b. This lossless compression scheme preserves the total frequencies

$$\sum_{i=1}^r 2^{i-1} \cdot 2^c + 2^c = (2^r - 1 + 1) \cdot 2^c = 2^{r+c} = N,$$

while drastically decreasing the size of the lookup table. Compressing a naive lookup table with $N = 2^{r+c}$ entries to a compressed lookup table with $(r + 1) \cdot 2^c$ entries (organized in $r + 1$ rows and 2^c columns) yields a compression ratio of $\rho = 2^r/(r + 1)$.

169
170
171
172
173
174
175
176
177

Figure 1: **a.** Schematic of generating a single sample using our approach: i.i.d. $\text{Ber}(0.5)$ bits are drawn from an entropy source to compute a row and a column index, yielding in a single lookup on the precomputed table. **b.** Illustration of the precomputation step: A naive and compressed lookup table for an example distribution given by $x = (a, b, c, d)$ and $p = (\frac{7}{16}, \frac{5}{16}, \frac{3}{16}, \frac{1}{16})$. The naive lookup table (left table) contains each value according to its frequency $f = (7, 5, 3, 1)$ at a precision of $b = 4$ bits. The compressed lookup table (middle table) stores the same distribution when considering the geometric frequency scheme (right table). For example, the frequency of “a” is given by the compressed lookup table as $4 + 2 + 1 = 7$ and thus equals the frequency of “a” in the naive lookup table.

178
179
180
181
182
183
184
185
186
187

In the example of Figure 1b, the compression ratio would be $\rho = 2^3/(3 + 1) = 2$, which yields a compressed table half the size of the naive table. The compression ratio ρ improves exponentially with r , up to a linear correction factor of $r + 1$, with the concrete values of r , and therefore of ρ , depending on the frequencies f . Intuitively, better compression corresponds to an increase in the number of rows (larger r) accompanied by an exponential decrease in the number of columns, resulting in a “taller” and much “narrower” lookup table. This compression scheme is always possible for lookup tables of size 2^b . To see that, note that the compressed and the naive lookup table coincide for the choice of $r=0$ and $c=b$.

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Sampling step To generate a sample $S \in \mathcal{X}$ using a compressed lookup table, we generate two indices independently: a row index $I \in \{1, \dots, r+1\}$ and a column index $J \in \{1, \dots, 2^c\}$. We sample the index I according to a truncated geometric distribution, and the column index J uniformly:

$$\mathbb{P}(I = i) = \max(2^{-i}, 2^{-r}) \text{ for } i = 1, \dots, r+1, \quad \text{and} \quad \mathbb{P}(J = j) = 2^{-c} \text{ for } j = 1, \dots, 2^c.$$

Therefore, we sample a table-index $(I, J) = (i, j)$ with probability $2^{-\min(i, r) - c}$. The column index J can be efficiently sampled using any uniform sampler. The row index I can also be sampled extremely efficiently using the entropy optimal procedure detailed in Algorithm 1 in lines 2-8. A sample is then generated by returning the value stored in the compressed lookup table at that index:

$$S = \text{compressedTable}[I, J].$$

Algorithm 1 Sampling from compressed lookup tables

Require: number of samples K , compressed lookup table `compressedTable` of size $(r+1) \times 2^c$
Ensure: array of samples S

- 1: **for** $k = 1$ **to** K **do**
- 2: $I \leftarrow 1$
- 3: **while** $I < r + 1$ **do** // Sample row index geometrically:
- 4: **if** `randomBit()` = 1 **then**
- 5: **break**
- 6: **end if**
- 7: $I \leftarrow I + 1$
- 8: **end while**
- 9: $J \leftarrow \text{Uniform}\{1, \dots, 2^c\}$ // Sample column index uniformly.
- 10: $S[k] \leftarrow \text{compressedTable}[I, J]$ // Generate a sample from the distribution.
- 11: **end for**
- 12: **return** S

216 **Preprocessing step** Before sampling, we must construct the compressed table. Conveniently,
 217 we do not have to construct the uncompressed lookup table, which could induce severe memory
 218 issues. We rather construct the compressed lookup table directly from the binary expansion of the
 219 frequencies f_i . A value x_i appears in row j if and only if the j -th bit $f_i^{(j)}$ of f_i is one. The
 220 frequencies f can be adjusted to sum to exactly 2^b by using a sum-preserving rounding scheme,
 221 making our sampling procedure rejection-free. Although the total probability mass and relative
 222 ratios are preserved in the compressed lookup table, the number of active bits across the binary
 223 representations of the f_i may differ, which results in rows of unequal width in the initial construction
 224 of the compressed lookup table. To improve the sampling speed, we ensure that all rows have
 225 uniform width as detailed in Algorithm 2 and Figure 2.

	distribution	binary expansion	initial compressed lookup table	rectified compressed lookup table
	Frq.		Frq.	
227	$\mathbf{x} = (a, b, c, d, e)$	$(f_1)_2 = 1110$	8 a	4 a
228		$(f_2)_2 = 0110$	4 b	2 b
229		$(f_3)_2 = 0111$	2 c	1 c
230	$\mathbf{p} = (\frac{14}{32}, \frac{6}{32}, \frac{7}{32}, \frac{3}{32}, \frac{2}{32})$	$(f_4)_2 = 0011$	1 d	1 d
231		$(f_5)_2 = 0010$	1 e	1 a
232	$\mathbf{f} = (14, 6, 7, 3, 2)$		1	1 a

233 Figure 2: The initial and final compressed lookup table for an example distribution given by
 234 $\mathbf{x} = (a, b, c, d, e)$ and $\mathbf{p} = (\frac{14}{32}, \frac{6}{32}, \frac{7}{32}, \frac{3}{32}, \frac{2}{32})$. In a first step, the table is filled according to the binary
 235 expansion of the frequencies (left table). Then, the table is rectified by moving entries from higher
 236 to lower rows while doubling (right table). For example, the “a” in the top row corresponding to a
 237 frequency of 8 (blue), is replaced by one “a” in the second row, which corresponds to a frequency of
 238 4, and 4 “a”’s in the bottom rows, which correspond to a frequency of 1, while the “a” in the third
 239 row (frequency of 2) is replaced by further two “a” in the bottom rows. The total frequency of each
 240 value is preserved, and the rows have equal length. In this case, $b = 5$, $r = 3$, and $c = 2$.

243 4 EVALUATION

244 To demonstrate the advantage of our sampling method, we compared it to state-of-the-art sampling
 245 methods in five experiments.

246 **Evaluation Setup** All measurements were taken on a standard laptop equipped with an Intel i7-
 247 1255U CPU and 16 GiB DDR4 memory running Ubuntu Linux.

248 Modern CPUs provide hardware counters that monitor the current power and energy demand. On
 249 the x86_64 platform, *Running Average and Power Limit* (RAPL; David et al. 2010) counters provide
 250 energy readings at a 1 ms resolution. RAPL is organized into different power domains, representing
 251 different parts of the system. For this work, we focus on the CPU domains *cores* and *package* (pkg).
 252 The latter includes the former and additionally other parts of the CPU socket, such as caches and
 253 the memory controller. There are several factors that make energy measurements noisy, apart from
 254 default hardware noise. They include background activities, battery charging, artificial noise against
 255 side-channel attacks for security reasons (Lipp et al., 2021), etc. We limit these influences by dis-
 256 abling CPU security features, keeping the laptop charged, providing additional warm-up rounds, and
 257 measuring multiple iterations. Additionally, we set a constant CPU frequency and CPU core to get
 258 meaningful energy readings, as detailed in the Appendix, Section J. We evaluate all methods (both
 259 in Python and in C) on a fixed set of synthetically generated distributions of sizes $n \in [10^1, 10^7]$
 260 drawn from exponential distributions with varying parameters to span a broad range of entropy val-
 261 ues, with zero probabilities removed. The bit precision is set to $b = 16$ for $n \in [10^1, 10^4]$, $b = 20$
 262 for $n \in [10^4, 10^6]$ and $b = 23$ for $n \in [10^6, 10^7]$. Evaluations on further distributions are in the
 263 Appendix, Section G.

264 **Sampling speed in Python** We benchmarked our method against standard discrete sampling rou-
 265 tines from widely used Python machine learning libraries: `RandomGenerator.choice()` from
 266 NumPy, `multinomial()` from PyTorch, and `random.choice()` from JAX (Harris et al.,
 267 2020; Paszke et al., 2019; Bradbury et al., 2018). As shown in Figure 3, our method achieves a
 268 10–100× speedup across a wide range of distributions. The performance advantage is most pro-

Figure 3: Comparison of our cLUT approach with standard sampling methods from popular machine learning libraries (NumPy, JAX, PyTorch). Shown are (1) the average wall time (in seconds) to generate 10^7 samples from distributions of varying sizes $n \in [10^1, 10^7]$, (2) the preprocessing time, and (3) the compression ratios ρ of the cLUT algorithm. Distributions are discretized Exponential distributions with varying parameters to cover a broad range of entropies, with zero probabilities excluded. The plots are shown on a log-log scale. Each measurement was repeated ten times and averaged.

Table 1: Average wall time (in seconds, mean \pm std) for generating 10^7 samples and the preprocessing step in Python. Evaluated in two subsets of the distributions from Figure 3, split by size.

# Outcomes:	$n \in [10^1, 10^5]$		$n \in [10^6, 10^7]$	
	Method	Sampling time (s)	Preprocessing time (s)	Sampling time (s)
NumPy	0.6680 ± 0.2650	0.0001 ± 0.0001	9.6248 ± 3.5823	0.0308 ± 0.0202
PyTorch	0.6073 ± 0.2436	0.0003 ± 0.0006	3.3768 ± 1.0615	0.1028 ± 0.0655
JAX	0.3647 ± 0.1277	0.2898 ± 0.0894	0.7982 ± 0.1815	0.6528 ± 0.0948
cLUT	0.0374 ± 0.0051	0.0006 ± 0.0011	0.1016 ± 0.0129	0.3925 ± 0.2219

nounced for distributions with a large number of outcomes: Table 1 reports a $10\times$ improvement for distributions with 10^4 to 10^5 entries, with the speedup growing to over $100\times$ already for distributions with 10^6 to 10^7 entries. This is particularly relevant when targeting high-precision and high-diversity random variate generation: a 16-bit data type can already represent 65,536 distinct values, whereas 32-bit and 64-bit types can represent vastly more (over 10^9 and 10^{19} , respectively), making conventional sampling increasingly inefficient. Furthermore, one should note that the samplers in NumPy, PyTorch, and JAX build on the Inversion method (Devroye, 2006) and produce distributions that are only approximately similar to the desired distribution, whereas our proposed method produces exactly the specified distribution.

For evaluations including graphics processing units see the Appendix, Section F, and Figure 7.

Sampling speed compared to SOTA implementations in C We compare our cLUT sampler to the following state-of-the-art sampling methods: the Alias method (Walker, 1974), ALDR, and FLDR (Draper and Saad, 2025). All samplers are implemented in C, as it provides a lower execution overhead compared to, e.g., Python. This allows for proper assessment of the actual costs of the algorithm. To ensure comparability, we apply the same degree of fair but not over-engineered optimization across these methods. We avoid multi-threading or (auto) vectorized code and use identical compiler flags. All methods use the identical entropy source.

For our experiment, we distinguish between the preprocessing phase (ten repetitions) and the actual sampling operation (ten million repetitions). The latter can be performed quickly and repeatedly

Figure 4: Comparison of our cLUT approach with existing state-of-the-art sampling methods in C. Shown are (1) the wall time required for generating a single sample (averaged over 10^7 repetitions) and (2) preprocessing (averaged over 10 repetitions), as well as (3) the cumulative energy demand of the CPU socket for generating 10^7 samples. Time and energy are shown on a log-log scale. The fourth subfigure shows the average consumed bits per sample from the entropy source.

Table 2: Average energy demand, wall time, and power draw of a single sampling operation in C. The power draw series is computed by dividing the energy series by wall time. It averages over all CPU instructions of a sampling iteration. High variance in entropy and distribution size results in the high standard deviation here. Shown are distributions from Figure 4, split by size.

# Outcomes:	$n \in [10^3, 10^4]$			$n \in [10^7, 10^8]$			
	Method	Energy (nJ)	Time (ns)	Power (W)	Energy (nJ)	Time (ns)	Power (W)
ALDR	263.451 ± 50.309	22.431 ± 1.250	11.836 ± 2.694	1223.520 ± 194.457	102.792 ± 12.066	12.168 ± 2.899	
Alias method	319.804 ± 72.045	26.803 ± 2.934	12.156 ± 3.549	887.653 ± 185.627	55.946 ± 13.709	16.502 ± 3.897	
FLDR	290.223 ± 47.274	21.268 ± 2.373	14.031 ± 3.770	1214.382 ± 177.125	101.404 ± 9.702	12.195 ± 2.753	
cLUT	199.233 ± 38.579	15.475 ± 1.689	13.271 ± 4.091	450.155 ± 74.604	33.026 ± 4.880	14.188 ± 4.188	

after the higher, one-time upfront cost. Figure 4 shows our results, indicating that our cLUT method samples consistently faster for all distributions than our competitors in terms of sampling time. Table 2 shows mean and standard deviation of the sampling time on two representative subsets of the distributions ($n \in [10^3, 10^4]$ and $n \in [10^7, 10^8]$).

Energy consumption compared to SOTA implementations in C To demonstrate the energy-saving potential of our approach, we compare the energy demand of all implementations. Due to space restrictions, Figure 4 only shows the energy demand of the sampling operation across the entire RAPL package domain (CPU socket and memory controller), which is representative of the other measurements. Again, our cLUT approach works best across all sizes.

Although the energy demand roughly follows the same trend as the required time, the scale is not linear. This is because time is not an accurate indicator of the energy required by complex real-life computing systems. Rather, energy is the integral of the dynamic power demand over time.

Our cLUT’s single index-based memory lookup requires fewer switching transistors in the memory subsystem, compared to, e.g., ALDR with multiple memory accesses to a flattened search tree.

Memory usage and preprocessing overhead We measure peak memory usage for all approaches and perform a break-even analysis for sampling time and energy consumption compared to the commonly used Alias method. *Peak memory usage* refers to the maximum amount of memory utilized by a program during execution. As shown in Figure 5, the cLUT approach consumes slightly more memory at peak times than other state-of-the-art algorithms. However, the constructed compressed

Figure 5: Comparison of cLUT with state-of-the-art sampling methods in terms of memory usage and break-even analysis: (1) peak memory usage for all methods (including preprocessing), (2) memory usage of compressed cLUT table, and (3) break-even analysis against the Alias method. The break-even point n^* is the minimum number of samples needed for cLUT to offset its preprocessing overhead relative to the Alias method (in terms of sampling time or energy consumption).

lookup tables and therefore the memory usage after preprocessing is relatively small, especially for low-entropy distributions due to high compression ratios (see Figure 5, middle Figure; and compare Figure 3 for compression ratios). A break-even analysis against the Alias method shows that this overhead is offset after a reasonable number of sampling iterations.

As shown in Figure 4, the preprocessing phase (look-up table creation) scales log-linear with the distribution size across all investigated methods. Our cLUT method shows the highest time demand for the preprocessing phase and the Alias method the lowest one. Thus, our approach requires more sampling operations to offset its higher initial costs, but is then more time efficient, especially for larger distributions. As shown in Figure 5, the break-even point n^* for sampling time compared to the Alias method is approximately linear in the distribution size. For energy efficiency, it ranges from 1 to below 10^3 , indicating that the energy efficiency gains of our algorithm outweigh the increased preprocessing overhead already for small sampling sizes, even for large distributions.

Bit efficiency compared to SOTA algorithms Sampling algorithms are commonly evaluated based on the average number of independent fair coin flips (i.e., i.i.d. Bernoulli(0.5) bits) required to generate a single sample. Generating a single sample with our cLUT method requires c random bits to generate the column index $J \in \{1, \dots, 2^c\}$ (i.e., uniformly sampling one of the 2^c entries in a row, cmp. Line 9 in Algorithm 1) and between 1 and r bits to generate the row index $I \in \{1, \dots, r+1\}$ (cmp. Lines 2-8 in Algorithm 1). Since I follows a truncated geometric distribution, the expected number of random bits required to generate the row index I is $\sum_{i=1}^r i \cdot 2^{-i} + r \cdot 2^{-r} = 2 - 2^{-(r-1)}$. Hence, the expected number of required random bits to produce a single sample is $b - r + 2 - 2^{-(r-1)}$.

Furthermore, 50% of the generated samples consume as few as $b - r + 1$ random bits, as in these cases only a single bit is needed to generate the row index. Empirical evaluations indicate that our method is close to the information-theoretic minimal cost of sampling ($-\sum_i p_i \cdot \log_2(p_i)$, see Knuth and Yao (1976)) and approaches the minimum for high-entropy distributions (see Figure 4).

Typical values Discretizing (using the *finite tail extension* as detailed in the Appendix, Section B) a standard gaussian distribution to the values of the 16-bit floating point format at a precision of $b = 20$ bits (removing values with probability less than 2^{-20}) yields $n = 20136$ values with non-zero probability, covering 99.66% of the total probability mass. Applying cLUT yields a compressed table with $r = 6$, $c = 14$, and 114688 entries (229.38 kB, $\rho = 9.14 \times$ smaller than the uncompressed table). Discretizing a Gamma distribution with parameter $k = 2$ to the 16-bit format at a precision of $b = 24$ bits yields $n = 11058$ values with non-zero probability, covering 99.99% of the total probability mass. Applying cLUT yields a compressed table with $r = 11$, $c = 13$, and 98304 entries (196.61 kB, $\rho = 170.67 \times$ smaller than the uncompressed table). Values for other precisions and distributions are shown in Figure 6 in the Appendix, Section B.

432 Table 3: Average energy consumption and wall time for TrueSkill with different sampling methods.
433

434 Method	435 mcp (J)	436 rapl:cores (J)	437 rapl:pkg (J)	438 Sampling time (s)
439 NumPy’s discrete sampler	440 201.05 ± 2.45	441 91.19 ± 1.71	442 116.31 ± 1.91	443 1.65 ± 0.01
444 NumPy’s continuous sampler	445 160.26 ± 1.89	446 72.65 ± 1.34	447 93.36 ± 1.71	448 0.88 ± 0.03
449 cLUT (ours)	450 132.69 ± 1.13	451 60.82 ± 0.72	452 77.99 ± 0.91	453 0.46 ± 0.01

440 **4.1 SAMPLING OF UNIFORM FLOATING-POINTS**

441 Besides the proposed cLUT method, our index-based sampling scheme is ideally suited for generating uniformly distributed floating-point numbers over fixed intervals, such as the unit interval [0, 1]. Specifically, by considering their binary expansions, we can interpret the row and column indices generated by our method as the exponent and mantissa of the floating-point representation, respectively. Using this approach, we achieve truly uniform sampling with maximal coverage of representable values. In contrast, classic approaches for generating random numbers in fixed intervals cover only a small fraction of all representable numbers in the intervals and oftentimes fail statistical tests on uniformity (see Appendix K).

442 **4.2 EXEMPLARY APPLICATIONS**

443 In addition to evaluating the algorithm, we aim to show the potential impact of our approach on real machine learning applications. To reduce overhead and avoid confounding factors, we select a task in which sampling accounts for a significant share of total energy consumption. One example of such a task is sampling Bayesian posteriors with non-conjugate priors, and TrueSkill (Herbrich et al., 2006) system serves as an illustrative case.

444 The purpose of TrueSkill is to infer posterior skill distributions of players from match outcomes; this probabilistic machine learning system currently in use on a large scale. Although the original algorithm is limited to closed-form solutions for Gaussian priors, we extend its applicability to arbitrary prior distributions through an importance sampling scheme, as detailed in the Appendix, Section H. This extension enables more flexible modeling of assumptions about the skill distributions, allowing for non-conjugate priors.

445 First, we conduct experiments against a fair discrete competitor (`RandomGenerator.choice` from NumPy). We then highlight the broader applicability of the approach by testing it against a fast distribution-specific sampler for a Gaussian mixture (`RandomGenerator.normal` with mixture logic from NumPy), showing that our method is effective not only for discrete unparameterized distributions but also for parametrized distributions that are (slightly) more complex than standard ones. We measure the end-to-end energy demand in the setup detailed in the Evaluation section, recording core and pkg RAPL domains. As an additional ground truth and better electricity bill proxy, we include the laptop’s wall socket energy consumption using a Microchip MCP39F511N device. As a result, our method reduces the total execution time of TrueSkill by 72% and decreases the total energy consumption by 34% compared to the discrete sampler. Even against the specialized mixture sampler, cLUT demonstrates competitive performance with a 48% reduction in sampling time and a 17% decrease in overall energy consumption, as shown in Table 4. At the same time, cLUT outputs near identical posterior distribution as the two NumPy-based methods (see the Appendix H).

446 Additionally, an exemplary application of cLUT to the training and inference of a diffusion model is given in the Appendix, Section I.

447 **5 CONCLUSION**

448 We present cLUT, a new fast and energy-efficient sampling method for sampling from arbitrary distributions, based on operations with compressed lookup tables. Time to sample a distribution speeds up 10-100× compared to commonly used machine learning Python libraries. It saves up to 50% in energy compared to state-of-the-art methods. We further showcase the value of our sampler in real-world applications by reducing up to 34% energy consumption and 72% execution time in the TrueSkill example.

486 We provide a fairly optimized, robust, and understandable reference implementation of our algo-
487 rithm in C, as well as a wrapper library that can be used with other programming languages, such
488 as Python. We have not vectorized or parallelized our implementation to improve understandability
489 and facilitate comparison with other methods. However, our sampling method only requires a sin-
490 gle index-based memory lookup and some arithmetic and bit-shift operations. This makes it better
491 suited than competing approaches for single instruction, multiple data devices (Flynn, 1972), such
492 as modern vector and graphics processing units, given a compatible streaming source of entropy.

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 L. A. Barroso and U. Hözle. The case for energy-proportional computing. *Computer*, 40(12):33–37,
543 2007. doi: 10.1109/MC.2007.443.

544 J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
545 J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
546 Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

547 H.-C. Chen and Y. Asau. On Generating Random Variates from an Empirical Distribution. *AIEE Transactions*, 6(2):163–166, June 1974. ISSN 0569-5554. doi: 10.1080/05695557408974949.
548 URL <http://www.tandfonline.com/doi/abs/10.1080/05695557408974949>.

549 T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning
550 of Visual Representations, July 2020. URL <http://arxiv.org/abs/2002.05709>.
551 arXiv:2002.05709 [cs].

552 H. David, E. Gorbato, U. R. Hanebutte, R. Khanna, and C. Le. Rapl: memory power estimation
553 and capping. In *Proceedings of the 16th ACM/IEEE International Symposium on Low Power
554 Electronics and Design*, ISLPED ’10, page 189–194, New York, NY, USA, 2010. Association for
555 Computing Machinery. ISBN 9781450301466. doi: 10.1145/1840845.1840883.

556 L. Devroye. *Non-Uniform Random Variate Generation*. Springer New York, New York, NY, 1986.
557 ISBN 978-1-4613-8645-2 978-1-4613-8643-8. doi: 10.1007/978-1-4613-8643-8. URL <http://link.springer.com/10.1007/978-1-4613-8643-8>.

558 L. Devroye. Nonuniform random variate generation. *Handbooks in operations research and man-
559 agement science*, 13:83–121, 2006.

560 L. Devroye and C. Gravel. Random variate generation using only finitely many unbiased, indepen-
561 dently and identically distributed random bits, Nov. 2020. URL <http://arxiv.org/abs/1502.02539>. arXiv:1502.02539 [cs].

562 T. L. Draper and F. A. Saad. Efficient rejection sampling in the entropy-optimal range, Apr. 2025.
563 URL <http://arxiv.org/abs/2504.04267>. arXiv:2504.04267 [cs].

564 M. J. Flynn. Some computer organizations and their effectiveness. *IEEE Transactions on Comput-
565 ers*, C-21(9):948–960, 1972. doi: 10.1109/TC.1972.5009071.

566 V. Gadepally. Ai has high data center energy costs — but there are solutions,
567 2025. URL <https://mitsloan.mit.edu/ideas-made-to-matter/ai-has-high-data-center-energy-costs-there-are-solutions>.

568 T. S. Hao and M. Hoshi. Interval algorithm for random number generation. *IEEE Trans. Inf. Theor.*,
569 43(2):599–611, Sept. 2006. ISSN 0018-9448. doi: 10.1109/18.556116. URL <https://doi.org/10.1109/18.556116>.

570 C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
571 J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
572 A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
573 W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy.
574 *Nature*, 585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL <https://doi.org/10.1038/s41586-020-2649-2>.

575 R. Herbrich, T. Minka, and T. Graepel. Trueskill™: a bayesian skill rating system. *Advances in
576 neural information processing systems*, 19, 2006.

577 J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. *Advances in neural infor-
578 mation processing systems*, 33:6840–6851, 2020a.

579 J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models, Dec. 2020b. URL <http://arxiv.org/abs/2006.11239>. arXiv:2006.11239 [cs].

594 M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
 595 *international solid-state circuits conference digest of technical papers (ISSCC)*, pages 10–14.
 596 IEEE, 2014.

597 International Energy Agency. Energy demand from ai, 2025. URL <https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai>.

600 D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes, Dec. 2022. URL <http://arxiv.org/abs/1312.6114>. arXiv:1312.6114 [stat].

603 D. Knuth and A. Yao. Algorithms and complexity: New directions and recent results. Academic
 604 Press, 1976. Section: The complexity of nonuniform random number generation.

605 E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: the laws of diminishing returns.
 606 In *Proceedings of the 2010 International Conference on Power Aware Computing and Systems*,
 607 HotPower’10, page 1–8, USA, 2010. USENIX Association.

609 S.-g. Lee, H. Kim, C. Shin, X. Tan, C. Liu, Q. Meng, T. Qin, W. Chen, S. Yoon, and T.-Y. Liu.
 610 Priorgrad: Improving conditional denoising diffusion models with data-dependent adaptive prior.
 611 *arXiv preprint arXiv:2106.06406*, 2021.

612 M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and D. Gruss. PLATYPUS:
 613 Software-based Power Side-Channel Attacks on x86. In *2021 IEEE Symposium on Security and*
 614 *Privacy (SP)*. IEEE, 2021.

615 J. Lumbroso. Optimal Discrete Uniform Generation from Coin Flips, and Applications, Apr. 2013.
 616 URL <http://arxiv.org/abs/1304.1916>. arXiv:1304.1916 [cs].

618 G. Marsaglia. Generating discrete random variables in a computer. *Communications of the ACM*, 6
 619 (1):37–38, Jan. 1963. ISSN 0001-0782, 1557-7317. doi: 10.1145/366193.366228. URL <https://dl.acm.org/doi/10.1145/366193.366228>.

621 G. Marsaglia, W. W. Tsang, and J. Wang. Fast generation of discrete random variables. *Journal of*
 622 *Statistical Software*, 11:1–11, 2004.

624 A. J. Martin, M. Nyström, and P. I. Pénzes. Et2: A metric for time and energy efficiency of compu-
 625 tation. In *Power aware computing*, pages 293–315. Springer, 2002.

626 E. Nachmani, R. S. Roman, and L. Wolf. Non gaussian denoising diffusion models. *arXiv preprint*
 627 *arXiv:2106.07582*, 2021.

629 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
 630 L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
 631 B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance
 632 Deep Learning Library. In *Advances in Neural Information Processing Systems*, volume 32. Cur-
 633 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

635 F. Saad, C. Freer, M. Rinard, and V. Mansinghka. The Fast Loaded Dice Roller: A Near-Optimal
 636 Exact Sampler for Discrete Probability Distributions. In *Proceedings of the Twenty Third Interna-
 637 tional Conference on Artificial Intelligence and Statistics*, pages 1036–1046. PMLR, June 2020.
 638 URL <https://proceedings.mlr.press/v108/saad20a.html>. ISSN: 2640-3498.

639 K. Schwarz. Darts, Dice, and Coins, Dec. 2011. URL <https://www.keithschwarz.com/darts-dice-coins/>.

642 M. I. Shamos. *Computational Geometry*. Yale University., 1978. Ph.D. dissertation.

643 E. Sommer, J. Robnik, G. Nozadze, U. Seljak, and D. Rügamer. Microcanonical langevin ensembles:
 644 Advancing the sampling of bayesian neural networks. *arXiv preprint arXiv:2502.06335*, 2025.

646 T. Uyematsu and Y. Li. Two algorithms for random number generation implemented by using arith-
 647 metic of limited precision. *IEICE Transactions on Fundamentals of Electronics, Communications*
 and *Computer Sciences*, E86A:2542–2551, Oct. 2003.

648 A. J. Walker. New fast method for generating discrete random numbers with arbitrary frequency
649 distributions. *Electronics Letters*, 10(8):127–128, 1974.
650

651 P. Wiesner, R. Khalili, D. Grinwald, P. Agrawal, L. Thamsen, and O. Kao. Fedzero: Leveraging
652 renewable excess energy in federated learning. *arXiv preprint arXiv:2305.15092*, 2023. URL
653 <https://arxiv.org/abs/2305.15092>.

654 Z. Yang, L. Meng, J.-W. Chung, and M. Chowdhury. Chasing low-carbon electricity for practical
655 and sustainable dnn training. *arXiv preprint arXiv:2303.02508*, 2023. URL <https://arxiv.org/abs/2303.02508>.
656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704
705
706
707
A NOTATION708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
Table 4: Notation.

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 Symbol	723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 Description
b	Precision of frequencies \mathbf{f} in bits (e.g., minimal probability is 2^{-b})
2^c	Number of columns in the compressed lookup table
f	A vector of frequencies $\mathbf{f} = (f_1, \dots, f_n) \in \mathbb{N}_{\geq 0}^n$ corresponding to \mathbf{p} and b
I	Row index in cLUT sampling
J	Column index in cLUT sampling
N	Size of naive lookup table
n	Distribution size (number of outcomes)
\mathbf{p}	A vector of probabilities $\mathbf{p} = (p_1, \dots, p_n) \in [0, 1]^n$ specifying the target distribution
$H(\mathbf{p})$	Shannon entropy of \mathbf{p} specifying the target distribution
$r + 1$	Number of rows in the compressed lookup table
ρ	Compression ratio (size of compressed lookup table divided by size of naive table)
\mathcal{X}	Domain of sampled values, e.g. the set of representable floating point numbers
\mathbf{x}	A vector of values $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$ specifying the target distribution

756 **B DETAILS ON NON-FINITE DISTRIBUTIONS**
757

758 Many distributions relevant to machine learning belong to the class of continuous, real-valued, uni-
759 variate distributions, with the Gaussian distribution as a prominent example. These distributions are
760 discretized in a computational setting, as hardware can only represent a finite set of values.
761

762 A natural discretization proceeds as follows. Let a distribution on \mathbb{R} be specified via its cumula-
763 tive density function F . To discretize it on a finite support $\mathcal{X} \subset \mathbb{R}$ ($|\mathcal{X}| < \infty$), e.g., the set of
764 representable numbers in the IEEE 754 16-bit floating-point format, we define the probability mass
765 function $p : \mathcal{X} \rightarrow [0, 1]$ of the discretized distribution by
766

$$p(x) := \frac{1}{c} \left[F\left(\frac{x + x_+}{2}\right) - F\left(\frac{x + x_-}{2}\right) \right], \quad \forall x \in \mathcal{X},$$
767

768 where $x_+ := \min\{y \in \mathcal{X} : y > x\}$ is the next number to the right of x in \mathcal{X} , and $x_- := \max\{y \in$
769 $\mathcal{X} : y < x\}$ is the next number to the left.
770

771 Special care is required for the extrema of \mathcal{X} . Let $x^{\max} := \max \mathcal{X}$ and $x^{\min} := \min \mathcal{X}$. The next
772 numbers beyond these limits can be defined in two ways, depending on how you would like to
773 attribute the probability mass of the tails:
774

1. *Finite tail extension:*

$$x_+^{\max} := x^{\max} + \frac{x^{\max} - x_-^{\max}}{2},$$

$$x_-^{\min} := x^{\min} - \frac{x_+^{\min} - x^{\min}}{2},$$
775

776 which requires a normalization constant $c = 1 - F(x_+^{\max}) + F(x_-^{\min})$ to ensure that the
777 discretized probability mass function sums to one.
778

2. *Infinite tail extension:* $x_+^{\max} := +\infty$ and $x_-^{\min} := -\infty$, in which case $c = 1$ suffices.
779

780 Discrete distributions with infinite support, such as the Poisson distribution over $\mathbb{N}_{\geq 0}$, also require
781 truncation to be represented in finite precision. A common approach is to apply a cutoff.
782

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 6: Typical values for classic continuous distributions when discretized to the 16-bit floating point range \mathcal{X} with a precision of $b \in \{15, \dots, 24\}$, as described in section 3. Shown are (1) the number of outcomes n , i.e., the number of values with non-zero probability, and (2) the covered probability mass (sum of all probabilities before normalizing) after rounding to precision b . (3) Memory consumption, (4) row parameter r , (5) column parameter c , and (6) achieved compression ratio ρ of the compressed lookup table.

864 C DETAILS ON APPROXIMATED DISTRIBUTIONS

866 Since memory constraints impose a boundary on the size N of any lookup table, a lookup table
 867 might suffer from the inability to represent certain probabilities, such as very small or irrational
 868 probabilities, e.g., $p_i = \sqrt{1/2}$. In these cases we fill the table according to the frequencies
 869

$$870 f_i := \text{round}(p_i \cdot 2^b) \in \mathbb{N}_{\geq 0}, \quad i \in \{1, \dots, n\},$$

871 where $\text{round}(\cdot)$ is an arbitrary sum-preserving rounding scheme. The approximation error of a
 872 distribution stored in a lookup table with probabilities $f_i/2^b$ directly depends on the precision b , as an
 873 upper bound on the KL divergence can be expressed as a function of $\min_{1 \leq i \leq n} f_i$ (see Theorem 1).
 874

875 **Theorem 1** (KL-Divergence of approximated distribution). *The KL-Divergence between a distribution
 876 on $\mathbf{x} = (x_1, \dots, x_n)$ given by the associated probabilities $\mathbf{p} = (p_1, \dots, p_n)$ and the distribution
 877 approximated to a precision of $b \in \mathbb{N}_{>0}$ bits given by the frequencies $\mathbf{f} = (f_1, \dots, f_n)$ is bounded by*

$$878 D_{\text{KL}}(\mathbf{p} \parallel \mathbf{f}) \leq \log \left(1 + \frac{1}{2\kappa} \right),$$

880 where $\kappa := \min_{1 \leq i \leq n} f_i$.
 881

882 *Proof.* Write

$$883 p_i = f_i \cdot 2^{-b} + \delta_i,$$

884 with $\delta_i \in [-2^{-b-1}, 2^{-b-1}]$. Then, the KL-Divergence is given by
 885

$$\begin{aligned} 886 D_{\text{KL}}(\mathbf{p} \parallel \mathbf{f}) &= \sum_{i=1}^n p_i \log \frac{p_i}{f_i \cdot 2^{-b}} \\ 887 &= \sum_{i=1}^n p_i \log \frac{f_i \cdot 2^{-b} + \delta_i}{f_i \cdot 2^{-b}} \\ 888 &= \sum_{i=1}^n p_i \log \left(1 + \frac{\delta_i \cdot 2^b}{f_i} \right) \\ 889 &\leq \sum_{i=1}^n p_i \log \left(1 + \frac{2^{-b-1} \cdot 2^b}{\min_i f_i} \right) \\ 890 &= \log \left(1 + \frac{1}{2 \min_i f_i} \right) \cdot \sum_{i=1}^n p_i \\ 891 &= \log \left(1 + \frac{1}{2\kappa} \right), \end{aligned}$$

902 where $\kappa := \min_{1 \leq i \leq n} f_i$. In the third step, we used that $\delta_i \leq 2^{-b-1}$ and $f_i > \min_i f_i$ for all i . \square
 903

904 Note that $\kappa = \min_{1 \leq i \leq n} f_i = \min_{1 \leq i \leq n} \text{round}(p_i \cdot 2^b)$ and therefore $D_{\text{KL}} \in \mathcal{O}(\log(1 + 2^{-b}))$.
 905 Clearly, $D_{\text{KL}} \rightarrow 0$ for $b \rightarrow \infty$. However, while approximation error decreases logarithmically with
 906 precision b , the lookup table size N required to store all values \mathbf{x} with their respective frequencies
 907 $\mathbf{f} = (f_1, \dots, f_n)$ grows exponentially in b :
 908

$$909 N := \sum_{i=1}^n f_i = 2^b.$$

918 D PREPROCESSING DETAILS
919920 A pseudo code of the cLUT preprocessing algorithm that constructs the compressed lookup table is
921 shown in Algorithm 2. Algorithm 2 calls a the function `distribute()` in line 4, which is detailed
922 in pseudo code in Algorithm 3.
923924 **Algorithm 2** Constructing a compressed lookup table
925926 **Require:** probability distribution given by $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{f} = (f_1, f_2, \dots, f_n) \in \mathbb{N}_{\geq 0}^n$
927 **Ensure:** compressed lookup table `compressedTable` of size $(r + 1) \times 2^c$
928 ▷ Compute optimal r and c :
929 1: $b \leftarrow \log_2(\sum_{i=1}^n f_i)$
930 2: $r \leftarrow \max\{v \in [0, b] : \sum_{j=0}^w \sum_{i=1}^n f_i^{(j)} \cdot 2^{v-b-1} \leq 1 \quad \forall w \in \{0, \dots, b\}\}$
931 3: $c \leftarrow b - r$
932 ▷ Compute counts per row for each value:
933 4: $D \leftarrow \text{distribute}(\mathbf{f}, r, c)$
934 ▷ Fill compressed lookup table:
935 5: `compressedTable` $\leftarrow []$
936 6: **for** $i = 1$ to $r+1$ **do**
937 7: **for** $j = 1$ to n **do**
938 8: **for** $k = 1$ to D_{ji} **do**
939 9: `compressedTable`.append(x_j)
940 10: **end for**
941 11: **end for**
942 12: **end for**
943 13: **return** `compressedTable`
944945 **Algorithm 3** Distribute counts across bit levels with `distribute()`
946947 **Require:** frequencies $\mathbf{f} = (f_1, f_2, \dots, f_n) \in \mathbb{N}_{\geq 0}^n$, $r \in \mathbb{N}_{\geq 0}^n$, $c \in \mathbb{N}_{\geq 0}^n$
948 **Ensure:** bit levels $D \in \mathbb{N}_{\geq 0}^{n \times r+1}$
949 ▷ Expand counts into bit-level representation
950 1: **for** $i = 1$ to n **do**
951 2: **for** $j = 1$ to b **do**
952 3: $D_{ij} \leftarrow f_i^{(j)}$
953 4: **end for**
954 5: **end for**
955 ▷ Redistribute bits above level r
956 6: **for** $k = b$ downto r **do**
957 7: **for** $i = 1$ to n **do**
958 8: $D_{ir} \leftarrow D_{ir} + 2^{k-r+1} \cdot D_{ik}$
959 9: **end for**
960 10: **end for**
961 ▷ Adjust lower levels if cumulative sum exceeds 2^c
962 11: **for** $k = r - 1$ downto 1 **do**
963 12: $a \leftarrow 0$
964 13: **for** $i = 1$ to n **do**
965 14: $a \leftarrow a + D_{ik}$
966 15: **if** $a > 2^c$ **then**
967 16: $\delta \leftarrow a - 2^c$
968 17: $D_{ik} \leftarrow D_{ik} - \delta$
969 18: $D_{i(k-1)} \leftarrow D_{i(k-1)} + 2 \cdot \delta$
970 19: **end if**
971 20: **end for**
21: **end for**
22: **return** $(D_{ij})_{j \leq r+1}$

972 E IMPLEMENTATION DETAILS
973974 We implemented the preprocessing and sampling methods in C and reused the computed data struc-
975 tures in Python. To do so, we created a foreign function library that conveniently interfaces between
976 C and other languages. This library is used in our evaluation.
977978 Like the reference implementation of ALDR and FLDR (Draper and Saad, 2025), we used bit op-
979 erations, compiler intrinsics and linearized arrays where possible to ensure fast computation. We
980 extended the existing SOTA implementations to also work with 64-bit input values to make them
981 comparable with our test distributions.
982983 Our implementation, wrapper library and changes to existing SOTA implementations are publicly
984 available on GitHub under (omitted for blind review).
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 F JAX INTEGRATION AND GPU EVALUATION
10271028 To demonstrate the integratability of cLUT as well as potential performance gains from SIMD im-
1029 plementations, we have integrated our cLUT approach into the JAX library, as shown in Listing 1,
1030 and compared with the default sampling method from JAX, see Figure 7. This experiment was run
1031 on a single A100 GPU, using JAXs internal GPU mechanisms.
1032

1033 Listing 1: Integration of cLUT into the JAX library.

```

1 # jax._src.random.py
2 from jax._src import numpy as jnp
3 from jax._src import prng
4 ...
5
6 def choice(key: ArrayLike,
7             a: int | ArrayLike,
8             shape: Shape = (),
9             replace: bool = True,
10            p: RealArray | None = None,
11            # ----- CHANGES -----
12            b = -1,
13            c = -1,
14            # ----- END OF CHANGES -----
15            axis: int = 0,
16            mode: str | None = None) -> Array:
17 ...
18 if replace:
19     # ----- CHANGES -----
20     return _choice(arr, key, c, b, shape, dtype)
21     # ----- END OF CHANGES -----
22 else:
23 ...
24
25 # ----- CHANGES -----
26 @partial(jax.jit, static_argnames=['b', 'shape', 'dtype'])
27 def _choice(arr, key, c, b, shape, dtype):
28     mask = (1 << c) - 1
29     B = prng.random_bits(key, b, shape)
30     return jnp.take(arr, (clz(B | mask) << c) | (B & mask), 0)
31 # ----- END OF CHANGES -----

```

1060

1061

1062
1063 Figure 7: Comparison of our cLUT approach integrated into the JAX library with the default sam-
1064 pling method from JAX on GPU. Shown is the average wall time (in seconds) to generate 10^7
1065 samples from distributions of varying sizes $n \in [10^1, 10^8]$. Distributions were extracted from ex-
1066 ponential distributions with varying parameters (and shuffled) to cover a broad range of entropies,
1067 using variable precisions $b \in [4, 30]$. The plots are shown on a log-log scale. Each measurement
1068 was repeated ten times and averaged.
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083 **G ADDITIONAL EVALUATIONS**
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098
1099 Figure 8: Comparison of our cLUT approach with standard sampling methods from popular machine
1100 learning libraries (NumPy, JAX, PyTorch). Similar to Figure 3, but evaluated on sparse distributions.
1101 Shown are (1) the average wall time (in seconds) to generate 10^7 samples from distributions of
1102 varying sizes $n \in [10^4, 10^7]$, (2) the preprocessing time, and (3) the compression ratios ρ of the
1103 cLUT algorithm. Distributions were sampled from Dirichlet priors with varying parameters to cover
1104 a broad range of entropies, using a fixed precision of $b = 16$. The plots are shown on a log-log scale.
1105 Each measurement was repeated five times and averaged.

1106
1107 Table 5: Average wall time (in seconds, mean \pm std) for generating 10^7 samples and the preprocessing
1108 step. Evaluated in two subsets of the distributions from Figure 8, split by size.

# Outcomes:		$n \in [10^4, 10^5]$		$n \in [10^6, 10^7]$	
Method		Sampling time (s)	Preprocessing time (s)	Sampling time (s)	Preprocessing time (s)
NumPy		0.847 ± 0.288	0.000 ± 0.000	7.230 ± 4.138	0.020 ± 0.012
PyTorch		0.720 ± 0.253	0.001 ± 0.001	2.400 ± 1.138	0.070 ± 0.039
JAX		0.407 ± 0.132	0.335 ± 0.087	0.616 ± 0.250	0.572 ± 0.105
cLUT (ours)		0.095 ± 0.025	0.001 ± 0.001	0.080 ± 0.022	0.177 ± 0.090

1116
1117 Table 6: Average energy demand, wall time, and power draw of a single sampling operation. The
1118 power draw series is computed by dividing the energy series by wall time. It averages over all CPU
1119 instructions of a sampling iteration. High variance in entropy and distribution size results in the high
1120 standard deviation here. Shown are distributions from Figure 9, split by size.

# Outcomes:		$n \in [10^4, 10^5]$			$n \in [10^6, 10^8]$		
Method		Energy (nJ)	Time (ns)	Power (W)	Energy (nJ)	Time (ns)	Power (W)
ALDR		240.65 ± 73.91	18.83 ± 4.75	13.21 ± 4.28	225.38 ± 53.64	19.56 ± 4.56	12.29 ± 4.61
FLDR		221.25 ± 62.66	20.08 ± 4.99	11.45 ± 3.75	204.54 ± 47.07	20.83 ± 4.14	10.24 ± 3.56
Alias		180.58 ± 73.82	17.94 ± 7.82	10.21 ± 0.87	315.04 ± 93.36	33.89 ± 9.94	9.32 ± 0.48
cLUT (ours)		144.09 ± 18.34	14.15 ± 1.58	10.22 ± 1.06	128.23 ± 17.05	13.41 ± 1.75	9.60 ± 0.94

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

H DETAILS ON TRUESKILL

Our TrueSkill extension uses importance sampling as follows: (1) independently sample skills s_i and performances y_i from their respective priors, (2) compute importance weights as the product of prior densities and match likelihood, and (3) use these weights to estimate posterior distributions. Independent sampling of correlated variables enables parallelization while maintaining correctness through importance weighting (Algorithm 4). We discretize the continuous bimodal prior over the range $[-10, 10]$ with resolution 10^{-3} and construct cLUT tables with $b = 32$ bit precision.

Algorithm 4 TrueSkill with importance sampling for two players

Require: prior skills distributions $\pi_1(\theta_1)$ and $\pi_2(\theta_2)$, performance standard deviation β , match outcome data R
Ensure: posterior skills distributions $\pi_1(\theta_1|R)$ and $\pi_2(\theta_2|R)$

- 1: **for** $i = 1$ **to** N **do**
- 2: $s_1 \leftarrow \pi_1(\theta_1)$, $s_2 \leftarrow \pi_2(\theta_2)$
- 3: $y_1 \leftarrow \mathcal{G}(1, \beta)$, $y_2 \leftarrow \mathcal{G}(1, \beta)$
- 4: \triangleright Compute match outcome:
 $r = \mathbb{I}_{y_1 > y_2}$
- 5: \triangleright Compute importance sampling weights:
 $w_1 = p_{\pi_1|\theta_1}(s_1)$, $w_2 = p_{\pi_2|\theta_2}(s_2)$
- 6: $w_3 = p_{\mathcal{G}(s_1, \beta)}(y_1)$, $w_4 = p_{\mathcal{G}(s_2, \beta)}(y_2)$
- 7: $w = r \cdot \prod_{i=1}^4 w_i$
- 8: \triangleright Write down the results to arrays S_1, S_2, W :
 $S_1[i] = s_1$, $S_2[i] = s_2$, $W[i] = w$
- 9: **end for**
- 10: \triangleright Assign new posterior distribution as probability mass function:
 $\pi_1(\theta_1|R) := \{(S_1[i], W[i])\}_{i=1}^N$
- 11: $\pi_2(\theta_2|R) := \{(S_2[i], W[i])\}_{i=1}^N$
- 12: **return** $\pi_1(\theta_1|R), \pi_2(\theta_2|R)$

1188 To evaluate the precision of the posterior distribution sampled by cLUT, we ran the TrueSkill algo-
1189 rithm 50 times using both the NumPy-based continuous sampler and the cLUT sampler. Considering
1190 that these two samples operate on different domains, we cannot employ test that compare density
1191 functions. For this reason, we evaluate sampled results by comparing first and second moments. For
1192 each iteration, we computed the mean and variance of a player’s skill posterior distribution. We then
1193 applied a t-test to assess statistically significant differences in means and variances between the two
1194 samplers, obtaining p-values greater than 0.2 in both cases, meaning that the moments of sampled
1195 distributions do not have meaningful differences.

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 I APPLICATION TO DIFFUSION MODELS

1244 To demonstrate cLUT’s impact in a core ML problem, we apply cLUT to a small-scale generative
 1245 model. We train and validate a toy diffusion model Ho et al. (2020a) designed to learn a noise
 1246 distribution from corrupted data. In our experiments, we generate the training data from a bimodal
 1247 distribution (green line in the Figure 10) and introduce corruption through another bimodal distri-
 1248 bution. While the original algorithm assumes training and inference with Gaussian noise, previous
 1249 work has shown that reducing the difference between the data and noise distributions can improve
 1250 the precision of a model Lee et al. (2021). Additionally, using a Gaussian mixture can be a beneficial
 1251 replacement for certain tasks Nachmani et al. (2021). Our additional experiments are consistent with
 1252 these findings: when training on bimodal data, using Gaussian noise results in a substantially larger
 1253 Wasserstein distance between generated samples and the training distribution (greater than 1), while
 1254 using bimodal noise reduces this distance to below 0.07.

1255 Sampling is employed to simulate noise during both training and inference. We incorporate cLUT
 1256 in both stages and compare its performance and energy consumption against the default sampling in
 1257 JAX, as JAX was the most efficient library in our main evaluation. For the CPU evaluation, we use
 1258 the same hardware setup as described before. We define a shallow neural network with two linear
 1259 layers and train on small batches of 8 samples for 3×10^5 steps. For the inference stage, we run
 1260 the trained model for 2×10^3 iterations with the same batch size. To sample noise with the cLUT
 1261 algorithm, we construct a table with a fixed precision of $b = 8$. This preprocessing cost is included
 1262 in the evaluation of the overall application’s time and energy consumption.

1263 Table 7 shows that incorporating cLUT can save energy by 37% in the training stage and by 65% in
 1264 the inference stage compared to the default sampler of JAX. Additionally, to validate the quality of
 1265 generated samples, we compare the output of the inference stages using the two different sampling
 1266 algorithms, utilizing a model trained with JAX’s default sampler. As shown in Figure 10, the two
 1267 samplers return nearly identical distributions for the generated data, with a Wasserstein distance
 1268 from training data to samples of 0.069 for JAX’s default and 0.054 for cLUT, respectively.

1269 Table 7: Comparison of our cLUT approach with JAX incorporated into training and inference
 1270 processes of a denoising diffusion model.

1272 Method	1273 Training			1274 Inference		
	1275 rapl:cores (J)	rapl:pkg (J)	Time (s)	rapl:cores (J)	rapl:pkg (J)	Time (s)
JAX	3811.42 \pm 102.38	4702.91 \pm 86.61	265.77 \pm 5.29	331.63 \pm 3.67	403.29 \pm 6.53	19.89 \pm 0.22
cLUT	2392.14 \pm 111.05	2962.17 \pm 102.96	172.62 \pm 5.11	116.11 \pm 1.97	143.08 \pm 3.06	7.28 \pm 0.08
Reduction with cLUT	37.2%	37.0%	35.0%	65.0%	64.5%	63.4%

1288 Figure 10: Generated data by the denoising diffusion model with cLUT and JAX sampling algo-
 1289 rithms and comparison to the target data.

1296 **J DETAILS ON ENERGY EFFICIENCY**
12971298 It is crucial to understand different metrics and their relation to assess the efficiency of modern
1299 (electrical) computing systems and design experiments. While power is the rate at which electricity
1300 is consumed at a given point in time, energy is the amount of electricity required to perform an
1301 operation (power’s integral over time). Electric energy translates to battery life, electricity bills or
1302 emitted carbon dioxide, making it the most reasonable metric to optimize for when seeking *energy*
1303 *efficiency*.1304 An exception would be if the computer system has actively changing clock frequencies. Apart from
1305 the number of active switching transistors, the CPU’s clocking frequency and supply voltage play
1306 into the dynamic power demand at a given point in time (Le Sueur and Heiser, 2010). In this case,
1307 the energy-delay-squared product (Martin et al., 2002) would be a more suitable metric, combining
1308 execution time and energy demand.1309 Even at fixed clock rates, switching between CPU architectures can significantly alter power demand
1310 but not necessarily energy demand. A low-power device (a micro-controller or efficiency CPU
1311 core) can run for a longer time than a more power-intense one, resulting in comparable energy
1312 integrals—or not, depending on the static power demand and thus energy proportionality of the
1313 system (Barroso and Hölzle, 2007). For a fixed problem size, the latter device can switch to idle
1314 mode after completion or process more elements for a given unit of energy. Consequently, to obtain
1315 more representative measurements, we fixed the CPU frequency and micro-architecture (cores) in
1316 our experiments. As our particular Intel *Hybrid* CPU architecture comprises of larger **performance**
1317 cores and limited **efficiency** cores, we opted for the P-cores for consistent measurements.1318 There is a direct connection between the memory access behavior of modern computer systems
1319 and their electricity consumption (Horowitz, 2014). Memory subsystems and CPU caches have
1320 long been overlooked in comparison to computational cores but constitute a large portion of active
1321 transistors in today’s chip designs, leading to higher dynamic power demands. This means that,
1322 for general-purpose computers, algorithms that trade computation for memory lookups may have
1323 slightly worse energy efficiency than plain recomputation. This effect is more pronounced with
1324 multiple, nested lookups (also known as *pointer chasing*) because it involves more active transistors,
1325 which increases power demand. It also breaks CPU cache locality and access prediction, resulting in
1326 prolonged CPU stalls (increased time demand) and thus non-linear increase in energy demand. This
1327 motivates our idea to create a compression strategy for a lookup table that preserves all the statistical
1328 properties of sampling with simple lookup tables but reduces energy consumption.1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 **K DETAILS ON SAMPLING OF UNIFORM FLOATING-POINTS**
13511352 In the IEEE 754 floating-point format, numbers are organized into dyadic intervals of exponentially
1353 increasing size, each containing a fixed number of equally spaced values. This structure makes
1354 our index-based sampling scheme ideally suited for generating uniformly distributed floating-point
1355 numbers over fixed intervals, such as the unit interval $[0, 1]$. Specifically, by considering their binary
1356 expansions, we can interpret the row and column indices generated by our method as the exponent
1357 and mantissa of the floating-point representation, respectively. Using this approach, we achieve truly
1358 uniform sampling with maximal coverage of representable values.
13591360 In contrast, the classic approach of generating uniformly random mantissa bits to obtain a float in
1361 $[1, 2)$, and then subtracting 1 covers only a small fraction of all representable numbers, approxi-
1362 mately 13%. PyTorch’s common method for generating random variates uniformly on the interval
1363 $[0, 1]$ is `torch.rand()`. When generating values directly in 16-bit floating-point format, this
1364 method covers only 13.3% of all representable values in $[0, 1]$. A Pearson’s χ^2 test for uniformity
1365 fails significantly, yielding $\chi^2 = 1,277,749,854.249$ with $p < 10^{-10}$. Alternatively, generating
1366 values in 32-bit floating-point format and converting them to a 16-bit representation results in 100%
1367 coverage of 16-bit floating-point values in the unit interval. However, this approach also fails the
1368 Pearson’s χ^2 test, with $\chi^2 = 21,425.2924$ and $p < 10^{-10}$.
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403