
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENERGY-EFFICIENT RANDOM VARIATE GENERATION
VIA COMPRESSED LOOKUP TABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating (pseudo-)random variates lies at the core of probabilistic machine
learning and prediction algorithms and yet remains a major bottleneck due to its
high computational and energy cost. In this paper, we introduce a general and
scalable sampling strategy that enables fast and energy-efficient random variate
generation from arbitrary distributions. Our approach is based on efficient lookup
tables combined with a fast index sampling scheme. Using only a handful of fast
and energy-efficient compute operations on simple array structures, we achieve
superior speed, energy efficiency, and precision at near-optimal entropy cost com-
pared to state-of-the-art techniques. Microbenchmarking our approach with a C
implementation shows up to 40% savings in time and 60% in energy compared to
state-of-the-art approaches. Compared to commonly employed Python samplers
we achieve a 100x time improvement.

1 INTRODUCTION

Sampling from probability distributions is a fundamental yet computationally expensive operation
in machine learning. In representation learning and in broader machine learning, sampling under-
pins core methods such as variational autoencoders (Kingma & Welling, 2022), contrastive learning
with negative sampling (Chen et al., 2020), diffusion-based generative models (Ho et al., 2020), and
probabilistic inference techniques such as Bayesian deep learning (Sommer et al., 2025). While
the quality and efficiency of sampled variables directly shape the expressiveness and scalability of
learned representations, sampling costs often remain a primary barrier to scalability and widespread
deployment. In this paper, we address this bottleneck by introducing a novel, efficient sampling
approach for arbitrary distributions. Our method achieves 10-100× speedups and up to 60% reduc-
tion in energy consumption compared to commonly employed approaches, significantly reducing
the resource-intensity of many machine learning tasks.

The continued deployment of machine learning methods in data centers, cloud devices, and user
appliances alike is accompanied by increased concerns about the growing energy demand of the
field (International Energy Agency, 2025; Gadepally, 2025). Countermeasures include reducing the
carbon-intensity of the electricity supply or shifting training and inference to times or physical loca-
tions with a higher share of renewable energy sources throughout the day (Yang et al., 2023; Wiesner
et al., 2023). However, we argue that reducing the energy demand of the operations themselves is
worthwhile, with emphasis on frequently performed actions like sampling. Motivating us to per-
form extensive energy measurements in addition to speed measurements, comparing our method to
classical, widely used approaches and recent state-of-the-art advances.

On digital computers, sampling from arbitrary probability distributions is reduced to sampling from
finite discrete distributions due to fundamental constraints of finite precision and memory. All prob-
ability distributions, whether continuous or infinite discrete, must be discretized for computational
implementation (see Appendix A for discretization techniques). Standard sampling algorithms in
widely used libraries (NumPy, PyTorch, JAX) assume infinite precision arithmetic, where computa-
tion can be performed with arbitrarily precise real numbers (Shamos 1978; Devroye 1986, Chapter
2, p.1, Assumption 1). Additionally, they assume the ability to generate infinitely precise samples
from the real unit interval (Devroye 1986, Chapter 2, p.1, Assumption 2). However, actual imple-
mentations rely on finite floating-point representations and don’t have access to exact samples from
the real unit interval, causing generated distributions to deviate from their intended target distribu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tions in uncontrolled ways. These deviations are often intractable to quantify, precluding theoretical
guarantees about sampling accuracy. To address this issue, our proposed sampling method features
controllable precision and exactly represents target distributions with clear theoretical guarantees.

Problem formulation In what follows, we will describe a novel method to generate random vari-
ates from any finite discrete distribution, represented by n probabilities p1, . . . , pn ∈ [0, 1] of the
corresponding n outcomes x1, . . . , xn ∈ X . As we denote no constraints on the structure of X the
outcomes can be of arbitrary types, such as real numbers, strings, pointers to more complex data
structures, or any mixture of those. Our objective is to make this generation process fast, energy
efficient, and adjustable to an arbitrary and controllable precision.

Our contributions This work introduces a new sampling approach for arbitrary distributions
based on operations with lookup tables. Besides being a generic method for efficient and arbitrary
precise sampling, our approach is especially suitable for situations where floating-point operations
are either unavailable or too error prone, and situations with a low power supply. We summarize our
contributions as follows:

1. We propose a novel a random variate generator based on compressed lookup tables (cLUT),
optimized for highly efficient sampling. We introduce a lossless compression strategy for
compact representations of distributions achieving an exponential compression ratio.

2. We compare cLUT against state-of-the-art approaches in terms of speed, energy efficiency,
memory usage, and entropy efficiency. It runs 25-40% faster and saves 33-60% energy in
a diverse set of distributions. For larger distribution sizes, it performs particularly well.

3. We benchmark cLUT against standard sampling routines from widely used Python ma-
chine learning libraries. cLUT achieves up to 10-100× acceleration in speed. Furthermore,
we illustrate the impact of our approach in real-world machine learning applications by
showcasing that cLUT substantially reduces the execution time and energy consumption of
the exemplary TrueSkill application.

2 RELATED WORK

Sampling methods are classically divided into two categories: exact methods, which produce sam-
ples from the target distribution p as specified, and approximate methods, which generate samples
from a distribution p̃ that only approximately matches the desired distribution, i.e., p̃ ≈ p. Note
that our approach is exact.

Exact methods Knuth and Yao (Knuth & Yao, 1976) established the theoretical foundation for
exact discrete sampling using discrete distribution generating trees. Their seminal result shows
that any optimal sampling algorithm requires between H(p) and H(p) + 2 bits per sample, where
H(p) =

∑
i−pi log2(pi) is the Shannon entropy. While entropy-optimal, discrete distribution gen-

erating trees typically require exponential memory in the distribution precision. Lumbroso (2013)
overcame this limitation for uniform and Bernoulli distributions with a linear-memory implemen-
tation, but the approach does not generalize to arbitrary distributions. The generic interval algo-
rithm (Hao & Hoshi, 2006) achieves linear memory usage while consuming at most H(p) + 3 bits
per sample. However, implementations require expensive binary searches at each sampling step,
limiting practical efficiency (Devroye & Gravel, 2020; Uyematsu & Li, 2003). Saad et al. (2020)
presented the FLDR algorithm that combines entropy-optimal sampling with rejection sampling,
achieving an upper bound of H(p) + 6 bits per sample. Draper & Saad (2025a) improved this to
H(p) + 2 bits with faster sampling speed for the ALDR algorithm, though at a higher memory
cost. Building on Marsaglia (1963), Marsaglia et al. (2004) proposed compressed lookup tables for
discrete sampling. However, their compression scheme requires conditional branching and searches
across multiple tables during sampling, reducing efficiency. In contrast, our approach uses a single
compressed table with direct indexing, eliminating conditional overhead.

Approximate methods Most samplers for discrete and continuous distributions used in practice
are so-called approximate samplers (for an introduction, see Schwarz, 2011). These methods typi-
cally rely on the assumptions of the “real RAM” model (Shamos, 1978, see introduction), which can-
not be fully realized on digital computers. For a comprehensive overview, Devroye (1986) presents

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the mathematical foundations of random sampling and details numerous approximate samplers built
on the Real RAM model (Shamos, 1978). As noted by Draper & Saad (2025b), implementations
consequently suffer from multiple sources of approximation error and are often inefficient in their
use of bits, since generating a single uniform random variable typically already consumes 32 or 64
bits. A widely employed general approximate sampler is the Alias method (Walker, 1974), which
preprocesses distributions into probability and alias arrays, enabling sampling via one uniform ran-
dom variable and a single coin flip (see Schwarz (2011) for a detailed explanation). While being
fast, it produces approximate samples and lacks controllable error bounds. Similarly, the Index
method (Chen & Asau, 1974) uses preprocessed index tables to guide inversion-based approximate
sampling, but still requires expensive search operations.

In contrast, our proposed method does not rely on real RAM assumptions. It achieves exact sampling
while remaining highly entropy-efficient, using close to the minimum number of bits required to
represent the target distribution (see Figure 4).

3 APPROACH

Our approach is based on the idea of lookup tables, reusing precomputed results, while conserving
memory requirements and memory accesses as detailed in this section. A schematic of the sampling
pipeline is given in Figure 1a.

Naive approach We will describe a method to generate random variates from any finite discrete
distribution, represented by n probabilities p1, . . . , pn ∈ [0, 1] of the n outcomes x1, . . . , xn ∈ X .
Ideally, we would construct a lookup table containing duplicates of each outcome proportional to its
probability:

occurrences of xi in table
table size

= pi. (1)

Sampling would then reduce to uniformly selecting a random table index I ∼ Uniform{1, . . . , N}
and returning S = Table[I], where N is the table size. See Figure 1b for an examplary ‘naive‘
lookup table.

Memory constraints In practice, memory constraints bound the table size N , limiting repre-
sentable probabilities to multiples of 1/N . Approximating probabilities to precision b bits requires
quantizing each pi to fi = round(pi · 2b), yielding frequencies f=(f1, . . . , fn) and a table of size
N =

∑
i fi = 2b (see the Appendix B for rounding schemes and error analysis). While approx-

imation error decreases logarithmically with b, memory requirements grow exponentially, making
high-precision sampling prohibitive. Our approach also handles continuous and infinite discrete dis-
tributions through discretization techniques detailed in the Appendix, Section A. The basis of our
main approach is a lossless compression strategy for the lookup tables and the following sampling
scheme.

Compression scheme To tackle the prohibitive memory requirements of lookup tables, we pro-
pose to use the following compression scheme. Intuitively, the compressed lookup table can be
viewed as a two-dimensional array consisting of r + 1 rows and 2c columns, with r, c ∈ {0, . . . , b}
satisfying 2r+c = 2b = N . Each row i of the first r rows corresponds to a frequency of 2r−i, where
row indices run from 1 to r. The r+1-th row corresponds to the same frequency as the r-th row,
namely 2r−r = 1. For an exemplary compression, see Figure 1b. This lossless compression scheme
preserves the total frequencies

r∑
i=1

2i−1 · 2c + 2c = (2r − 1 + 1) · 2c = 2r+c = N,

while drastically decreasing the size of the lookup table. Compressing a naive lookup table with
N = 2r+c entries to a compressed lookup table with (r + 1) · 2c entries (organized in r + 1 rows
and 2c columns) yields a compression ratio of ρ = 2r/(r + 1).

In the example of Figure 1b, the compression ratio would be ρ = 23/(3 + 1) = 2, which yields a
compressed table half the size of the naive table. The compression ratio ρ improves exponentially

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Entropy Source

Row Index Column Index

Single Lookup

Truncated—————-
Geometrical————————-

—————-Uniform

(a) Schematic of sampling.

—
x=(a, b, c, d)

—
p=(7

16 ,
5
16 ,

3
16 ,

1
16)

—
f=(7, 5, 3, 1)

naive

lookup table

a a a a
a a a b
b b b b
c c c d

compressed

lookup table

a b
a c
a b
c d

corresponding

frequencies

4 4
2 2
1 1
1 1

(b) Example (compressed) lookup table.

Figure 1: a. Schematic of generating a single sample using our approach: i.i.d. Ber(0.5) bits are
drawn from an entropy source to compute a row and a column index, yielding in a single lookup on
the precomputed table. b. Illustration of the precomputation step: A naive and compressed lookup
table for an example distribution given by x=(a, b, c, d) and p=(7

16 ,
5
16 ,

3
16 ,

1
16). The naive lookup

table (left table) contains each value according to its frequency f=(7, 5, 3, 1) at a precision of b = 4
bits. The compressed lookup table (middle table) stores the same distribution when considering
the geometric frequency scheme (right table). For example, the frequency of “a“ is given by the
compressed lookup table as 4 + 2 + 1 = 7 and thus equals the frequency of “a“ in the naive lookup
table.

with r, up to a linear correction factor of r + 1, with the concrete values of r, and therefore of ρ,
depending on the frequencies f . Intuitively, better compression corresponds to an increase in the
number of rows (larger r) accompanied by an exponential decrease in the number of columns, re-
sulting in a “taller” and much “narrower” lookup table. This compression scheme is always possible
for lookup tables of size 2b. To see that, note that the compressed and the naive lookup table coincide
for the choice of r=0 and c=b.

Sampling step To generate a sample S ∈ X using a compressed lookup table, we generate two
indices independently: a row index I ∈ {1, . . . , r+1} and a column index J ∈ {1, . . . , 2c}. We
sample the index I according to a truncated geometric distribution, and the column index J uni-
formly:

P(I = i) = max(2−i, 2−r) for i = 1, . . . , r+1, and P(J = j) = 2−c for j = 1, . . . , 2c.

Therefore, we sample a table-index (I, J) = (i, j) with probability 2−min(i,r)−c. The column index
J can be efficiently sampled using any uniform sampler. The row index I can also be sampled
extremely efficient using the entropy optimal procedure detailed in Algorithm 1 in lines 2-8. A
sample is then generated by returning the value stored in the compressed lookup table at that index:

S = compressedTable[I, J].

Algorithm 1 Sampling from compressed lookup tables

Require: number of samples K, compressed lookup table compressedTable of size (r+1)×2c
Ensure: array of samples S

1: for k = 1 to K do
2: I ← 1
3: while I < r + 1 do // Sample row index geometrically:
4: if randomBit() = 1 then
5: break
6: end if
7: I ← I + 1
8: end while
9: J ← Uniform{1, . . . , 2c} // Sample column index uniformly.

10: S[k]← compressedTable[I, J] // Generate a sample from the distribution.
11: end for
12: return S

Preprocessing step Before sampling, we must construct the compressed table. Conveniently,
we do not have to construct the uncompressed lookup table, which could induce severe memory

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

issues. We rather construct the compressed lookup table directly from the binary expansion of the
frequencies fi. A value xi appears in row j if and only if the j-th bit f (j)

i of fi is one. The
frequencies f can be adjusted to sum to exactly 2b by using a sum-preserving rounding scheme,
making our sampling procedure rejection-free. Although the total probability mass and relative
ratios are preserved in the compressed lookup table, the number of active bits across the binary
representations of the fi may differ, which results in rows of unequal width in the initial construction
of the compressed lookup table. To improve the sampling speed, we ensure that all rows have
uniform width as detailed in Algorithm 2 and Figure 2.

distribution
—

x = (a, b, c, d, e)
—

p = (14
32

, 6
32

, 7
32

, 3
32

, 2
32

)
—

f = (14, 6, 7, 3, 2)
—

binary expansion
—

(f1)2 = 1110
(f2)2 = 0110
(f3)2 = 0111
(f4)2 = 0011
(f5)2 = 0010

—

Frq. initial compressed
Frq.——lookup table—-

8 a
4 a b c
2 b c d e a
1 c d
1

Frq. rectified
Frq. compressed

Frq.—lookup table–

4 a b c a
2 b c d e
1 c d a a
1 a a a a

Figure 2: The initial and final compressed lookup table for an example distribution given by
x=(a, b, c, d, e) and p=(1432 ,

6
32 ,

7
32 ,

3
32 ,

2
32). In a first step, the table is filled according to the binary

expansion of the frequencies (left table). Then, the table is rectified by moving entries from higher
to lower rows while doubling (right table). For example, The “a” in the top row corresponding to a
frequency of 8 (blue), is replaced by one “a” in the second row, which corresponds to a frequency
of 4, and 4 “a”’s in the bottom rows, which correspond to a frequency of 1. The total frequency of
each value is preserved, and the rows have equal length. In this case, b = 5, r = 3, and c = 2.

4 EVALUATION

To demonstrate the advantage of our sampling method, we compared it to state-of-the-art sampling
methods in five experiments.

Evaluation Setup All measurements were taken on a standard laptop equipped with an Intel i7-
1255U CPU and 16 GiB DDR4 memory running Ubuntu Linux.

Modern CPUs provide hardware counters that monitor the current power and energy demand. On
the x86 64 platform, Running Average and Power Limit (RAPL; David et al. 2010) counters provide
energy readings at a 1 ms resolution. RAPL is organized into different power domains, representing
different parts of the system. For this work, we focus on the CPU domains cores and package
(pkg). The latter includes the former and additionally other parts of the CPU socket, such as caches
and the memory controller. There are several factors that make energy measurements noisy, apart
from default hardware noise. They include background activities, battery charging, artificial noise
against side-channel attacks for security reasons (Lipp et al., 2021), etc. We limit these influences by
disabling CPU security features, keeping the laptop charged, providing additional warm-up rounds,
and measuring multiple iterations. Additionally, we set a constant CPU frequency and CPU core to
get meaningful energy readings, as detailed in the Appendix, Section E. We evaluate all methods
on a fixed set of synthetically generated distributions of sizes n ∈ [104, 107] drawn from Dirichlet
priors with varying parameters to span a broad range of entropy values. The bit precision is fixed to
b = 16.

Sampling speed in Python We benchmarked our method against standard discrete sampling rou-
tines from widely used Python machine learning libraries: RandomGenerator.choice() from
NumPy, multinomial() from PyTorch, and random.choice() from JAX (Harris et al.,
2020; Paszke et al., 2019; Bradbury et al., 2018). As shown in Figure 3, our method achieves a
10–100× speedup across a wide range of distributions. The performance advantage is most pro-
nounced for distributions with a large number of outcomes: Table 1 reports a 10× improvement
for distributions with 104 to 105 entries, with the speedup growing to over 100× already for dis-
tributions with 106 to 107 entries. This is particularly relevant when targeting high-precision and
high-diversity random variate generation: a 16-bit data type can already represent 65,536 distinct
values, whereas 32-bit and 64-bit types can represent vastly more (over 109 and 1019, respectively),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

104 105 106

Number of outcomes n

10
−

1
10

0
1
0

1

S
am

p
li
n
g

ti
m

e
[s

]

104 105 106

n

10
−

4
10

−
3

10
−

2
10

−
1

1
0

0

P
re

p
ro

ce
ss

in
g

ti
m

e
[s

]

0 10

Entropy H(p)

10
0

10
1

10
2

10
3

C
om

p
re

ss
io

n
 r

at
io

 ρ

cLUT NumPy JAX PyTorch

Figure 3: Comparison of our cLUT approach with standard sampling methods from popular machine
learning libraries (NumPy, JAX, PyTorch). Shown are (1) the average wall time (in seconds) to
generate 107 samples from distributions of varying sizes n ∈ [104, 107], (2) the preprocessing time,
and (3) the compression ratios ρ of the cLUT algorithm. Distributions were sampled from Dirichlet
priors with varying parameters to cover a broad range of entropies, using a fixed precision of b = 16.
The plots are shown on a log-log scale. Each measurement was repeated five times and averaged.

Table 1: Average wall time (in seconds, mean± std) for generating 107 samples and the preprocess-
ing step. Evaluated in two subsets of the distributions from Figure 3, split by size.

Outcomes: n ∈ [104, 105] n ∈ [106, 107]

Method Sampling time (s) Preprocessing time (s) Sampling time (s) Preprocessing time (s)

NumPy 0.847± 0.288 0.000± 0.000 7.230± 4.138 0.020± 0.012
PyTorch 0.720± 0.253 0.001± 0.001 2.400± 1.138 0.070± 0.039
JAX 0.407± 0.132 0.335± 0.087 0.616± 0.250 0.572± 0.105
cLUT (ours) 0.095± 0.025 0.001± 0.001 0.080± 0.022 0.177± 0.090

making conventional sampling increasingly inefficient. Furthermore, one should note that the sam-
plers in NumPy, PyTorch, and JAX build on the Inversion method (Devroye, 2006) and produce
distributions that are only approximately similar to the desired distribution, whereas our proposed
method produces exactly the specified distribution.

Sampling speed compared to SOTA implementations in C We compare our cLUT sampler
to the following state-of-the-art sampling methods: the Alias method (Walker, 1974), ALDR, and
FLDR (Draper & Saad, 2025a). All samplers are implemented in C, as it provides a lower execution
overhead compared to, e.g., Python. This allows for proper assessment of the actual costs of the
algorithm. To ensure comparability, we apply the same degree of fair but not over-engineered opti-
mization across these methods. We avoid multi-threading or (auto) vectorized code and use identical
compiler flags. All methods use the identical entropy source.

For our experiment, we distinguish between the preprocessing phase (ten repetitions) and the actual
sampling operation (one million repetitions). The latter can be performed quickly and repeatedly
after the higher, one-time upfront cost. Figure 4 shows our results, indicating that our cLUT method
samples faster for larger distributions than our competitors in terms of sampling time. It outperforms
ALDR and FLDR for most distributions larger than 105. For small distributions, the Alias method
is the better choice. For some large distributions, FLDR sampling is faster, but cLUT is consistently
fast for all larger distributions. In fact, its time demand ranges the same across all distribution sizes.

Energy consumption compared to SOTA implementations in C To demonstrate the energy-
saving potential of our approach, we compare the energy demand of all implementations. Due to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

104 106 108

Number of outcomes n

2−24

2−25

2−26

2−27

S
am

p
li
n
g

ti
m

e
[s

]

104 106 108

Number of outcomes n

2−13

2−10

2−7

2−4

2−1

22

P
re

p
ro

ce
ss

in
g

ti
m

e
[s

]

104 106 108

Number of outcomes n

2−3

2−2

2−1

S
am

p
li
n
g

p
k
g

en
er

gy
 [
J
]

0 10

Entropy H(p)

0

5

10

15

20

25

A
v
er

ag
e

co
n
su

m
ed

 b
it
s

theoretic
minimum

cLUT FLDR ALDR Alias method

Figure 4: Comparison of our cLUT approach with existing state-of-the-art sampling methods.
Shown are (1) the wall time required for generating a single sample (averaged over 106 repetitions)
and (2) preprocessing (averaged over 10 repetitions), as well as (3) the cumulative energy demand
of the CPU socket for generating 106 samples. Time and energy are shown on a log-log scale. The
fourth subfigure shows the average consumed bits per sample from the entropy source.

Table 2: Average energy demand, wall time, and power draw of a single sampling operation. The
power draw series is computed by dividing the energy series by wall time. It averages over all CPU
instructions of a sampling iteration. High variance in entropy and distribution size results in the high
standard deviation here. Shown are distributions from Figure 4, split by size.

Outcomes: n ∈ [104, 105] n ∈ [106, 108]

Method Energy (nJ) Time (ns) Power (W) Energy (nJ) Time (ns) Power (W)
ALDR 240.65± 73.91 18.83± 4.75 13.21± 4.28 225.38± 53.64 19.56± 4.56 12.29± 4.61
FLDR 221.25± 62.66 20.08± 4.99 11.45± 3.75 204.54± 47.07 20.83± 4.14 10.24± 3.56
Alias 180.58± 73.82 17.94± 7.82 10.21± 0.87 315.04± 93.36 33.89± 9.94 9.32± 0.48
cLUT (ours) 144.09± 18.34 14.15± 1.58 10.22± 1.06 128.23± 17.05 13.41± 1.75 9.60± 0.94

space restrictions, Figure 4 only shows the energy demand of the sampling operation across the
entire RAPL package domain (CPU socket and memory controller), which is representative of the
other measurements. Again, the Alias method performs better for smaller distributions, but our
cLUT approach works best across all sizes.

Although the energy demand roughly follows the same trend as the required time, the scale is not
linear. This is because time is not an accurate indicator of the energy required by complex real-life
computing systems. Rather, energy is the integral of the dynamic power demand over time.

Our cLUT’s single index-based memory lookup requires fewer switching transistors in the memory
subsystem, compared to, e.g., ALDR with multiple memory accesses to a flattened search tree.
Computing the average power draw of the CPU socket for different distribution sizes (Table 2)
confirms that Alias and cLUT show a lower power demand (with lower variance) than FLDR and
ALDR.

Memory usage and preprocessing overhead We measure peak memory usage for all approaches
and perform a break-even analysis for sampling time and energy consumption compared to the com-
monly used Alias method. Peak memory usage refers to the maximum amount of memory utilized
by a program during execution. As shown in Figure 5, the cLUT approach consumes slightly more
memory at peak times than other state-of-the-art algorithms. However, the constructed compressed
lookup tables and therefore the memory usage after preprocessing is relatively small, especially for
low-entropy distributions due to high compression ratios (see Figure 5, middle Figure; and compare

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

104 106 108

Number of outcomes n

1
0

6
1
0

8
1
0

1
0

M
em

o
ry

 [
b
y
te

s]

104 106 108

Number of outcomes n

1
0

2
1
0

3
1
0

4

M
em

o
ry

 [
b
y
te

s]

104 106 108

Number of outcomes n

1
0

1
1
0

4
1
0

7

B
re

a
k
 e

v
en

 p
o
in

t
n
∗

5 10 15
Entropy (H) Time (C)

Time (Python)

Energy (C)cLUT

FLDR

ALDR

Alias method

Figure 5: Comparison of cLUT with state-of-the-art sampling methods in terms of memory usage
and break-even analysis: (1) peak memory usage for all methods (including preprocessing), (2)
memory usage of compressed cLUT table, and (3) break-even analysis against the Alias method. The
break-even point n∗ is the minimum number of samples needed for cLUT to offset its preprocessing
overhead relative to the Alias method (in terms of sampling time or energy consumption).

Figure 3 for compression ratios). A break-even analysis against the Alias method shows that this
overhead is offset after a reasonable number of sampling iterations.

As shown in Figure 4, the preprocessing phase (look-up table creation) scales log-linear with the
distribution size across all investigated methods. Our cLUT method shows the highest time demand
for the preprocessing phase and the Alias method the lowest one. Thus, our approach requires more
sampling operations to offset its higher initial costs, but is then more time efficient, especially for
larger distributions. As shown in Figure 5, the break-even point n∗ for sampling time compared to
the Alias method is approximately linear in the distribution size. For energy efficiency, it ranges from
1 to below 104, indicating that the energy efficiency gains of our algorithm outweigh the increased
preprocessing overhead already for small sampling sizes, even for large distributions.

Bit efficiency compared to SOTA algorithms Sampling algorithms are commonly evaluated
based on the average number of independent fair coin flips (i.e., i.i.d. Bernoulli(0.5) bits) required to
generate a single sample. Generating a single sample with our cLUT method requires c random bits
to generate the column index J ∈ {1, . . . , 2c} (i.e., uniformly sampling one of the 2c entries in a row,
cmp. Line 9 in Algorithm 1) and between 1 and r bits to generate the row index I ∈ {1, ..., r + 1}
(cmp. Lines 2-8 in Algorithm 1). Since I follows a truncated geometric distribution, the expected
number of random bits required to generate the row index I is

∑r
i=1 i ·2−i+ r ·2−r = 2−2−(r−1).

Hence, the expected number of required random bits to produce a single sample is b−r+2−2−(r−1).

Furthermore, 50% of the generated samples consume as few as b − r + 1 random bits, as in these
cases only a single bit is needed to generate the row index. Empirical evaluations indicate that our
method is close to the information-theoretic minimal cost of sampling (−

∑
i pi ·log2(pi), see Knuth

& Yao (1976)) and approaches the minimum for high-entropy distributions (see Figure 4).

4.1 SAMPLING OF UNIFORM FLOATING-POINTS

Besides the proposed cLUT method, our index-based sampling scheme is ideally suited for gen-
erating uniformly distributed floating-point numbers over fixed intervals, such as the unit interval
[0, 1]. Specifically, by considering their binary expansions, we can interpret the row and column
indices generated by our method as the exponent and mantissa of the floating-point representation,
respectively. Using this approach, we achieve truly uniform sampling with maximal coverage of
representable values. In contrast, classic approaches for generating random numbers in fixed in-
tervals cover only a small fraction of all representable numbers in the intervals and oftentimes fail
statistical tests on uniformity (see Appendix F).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Average energy consumption and wall time for TrueSkill with different sampling methods.

Method mcp (J) rapl:cores (J) rapl:pkg (J) Sampling time (s)

NumPy’s discrete sampler 201.05± 2.45 91.19± 1.71 116.31± 1.91 1.65± 0.01
NumPy’s continuous sampler 160.26± 1.89 72.65± 1.34 93.36± 1.71 0.88± 0.03
cLUT (ours) 132.69± 1.13 60.82± 0.72 77.99± 0.91 0.46± 0.01

4.2 EXEMPLARY APPLICATION

In addition to the evaluation of the algorithm, we illustrate the potential impact of our approach on
machine learning applications. To minimize overhead and the influence of confounding factors, we
demonstrate it on the TrueSkill system, one of the few large-scale probabilistic machine learning
systems currently in use (Herbrich et al., 2006). TrueSkill is a Bayesian skill rating system that
infers player skill distributions from match outcomes. Although the original algorithm is limited to
closed-form solutions for Gaussian priors, we extend its applicability to arbitrary prior distributions
through an importance sampling scheme, as detailed in the Appendix, Section D. This extension
allows for more flexible modeling of assumptions about the skill distributions.

First, we conduct experiments against a fair discrete competitor (RandomGenerator.choice
from NumPy). We then highlight the broader applicability of the approach by testing it against a fast
distribution-specific sampler for a Gaussian mixture (RandomGenerator.normal with mixture
logic from NumPy), showing that our method is effective not only for discrete unparameterized dis-
tributions but also for parametrized distributions that are (slightly) more complex than standard ones.
We measure the end-to-end energy demand in the setup detailed in the Evaluation section, recording
core and pkg RAPL domains. As an additional ground truth and better electricity bill proxy, we
include the laptop’s wall socket energy consumption using a Microchip MCP39F511N device. As
a result, our method reduces the total execution time of TrueSkill by 72% and decreases the total
energy consumption by 34% compared to the discrete sampler. Even against the specialized mixture
sampler, cLUT demonstrates competitive performance with a 48% reduction in sampling time and a
17% decrease in overall energy consumption, as shown in Table 3. At the same time, cLUT outputs
near identical posterior distribution as the two NumPy-based methods (see the Appendix, Section
D).

5 CONCLUSION

We present cLUT, a new fast and energy-efficient sampling method for sampling from arbitrary
distributions, based on operations with compressed lookup tables. Time to sample a distribution
speeds up 10-100× compared to commonly used machine learning Python libraries. It saves up to
60% in energy compared to state-of-the-art methods. We further showcase the value of our sampler
in real-world applications by reducing up to 34% energy consumption and 72% execution time in
the TrueSkill example.

We provide a fairly optimized, robust, and understandable reference implementation of our algo-
rithm in C, as well as a wrapper library that can be used with other programming languages, such
as Python. We have not vectorized or parallelized our implementation to improve understandability
and facilitate comparison with other methods. However, our sampling method only requires a sin-
gle index-based memory lookup and some arithmetic and bit-shift operations. This makes it better
suited than competing approaches for single instruction, multiple data devices (Flynn, 1972), such
as modern vector and graphics processing units, given a compatible streaming source of entropy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing. Computer, 40
(12):33–37, 2007. doi: 10.1109/MC.2007.443.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Hui-Chuan Chen and Yoshinori Asau. On Generating Random Variates from an Empirical
Distribution. A I I E Transactions, 6(2):163–166, June 1974. ISSN 0569-5554. doi:
10.1080/05695557408974949. URL http://www.tandfonline.com/doi/abs/10.
1080/05695557408974949.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations, July 2020. URL http://arxiv.org/abs/
2002.05709. arXiv:2002.05709 [cs].

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. Rapl: memory
power estimation and capping. In Proceedings of the 16th ACM/IEEE International Symposium
on Low Power Electronics and Design, ISLPED ’10, pp. 189–194, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781450301466. doi: 10.1145/1840845.1840883.

Luc Devroye. Non-Uniform Random Variate Generation. Springer New York, New York, NY,
1986. ISBN 978-1-4613-8645-2 978-1-4613-8643-8. doi: 10.1007/978-1-4613-8643-8. URL
http://link.springer.com/10.1007/978-1-4613-8643-8.

Luc Devroye. Nonuniform random variate generation. Handbooks in operations research and
management science, 13:83–121, 2006.

Luc Devroye and Claude Gravel. Random variate generation using only finitely many unbiased,
independently and identically distributed random bits, November 2020. URL http://arxiv.
org/abs/1502.02539. arXiv:1502.02539 [cs].

Thomas L Draper and Feras A Saad. Efficient rejection sampling in the entropy-optimal range.
arXiv preprint arXiv:2504.04267, 2025a.

Thomas L. Draper and Feras A. Saad. Efficient Rejection Sampling in the Entropy-Optimal Range,
April 2025b. URL http://arxiv.org/abs/2504.04267. arXiv:2504.04267 [cs].

Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21(9):948–960, 1972. doi: 10.1109/TC.1972.5009071.

V. Gadepally. Ai has high data center energy costs — but there are solutions,
2025. URL https://mitsloan.mit.edu/ideas-made-to-matter/
ai-has-high-data-center-energy-costs-there-are-solutions.

Te Sun Hao and M. Hoshi. Interval algorithm for random number generation. IEEE Trans. Inf.
Theor., 43(2):599–611, September 2006. ISSN 0018-9448. doi: 10.1109/18.556116. URL
https://doi.org/10.1109/18.556116.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system. Advances
in neural information processing systems, 19, 2006.

10

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://www.tandfonline.com/doi/abs/10.1080/05695557408974949
http://www.tandfonline.com/doi/abs/10.1080/05695557408974949
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://link.springer.com/10.1007/978-1-4613-8643-8
http://arxiv.org/abs/1502.02539
http://arxiv.org/abs/1502.02539
http://arxiv.org/abs/2504.04267
https://mitsloan.mit.edu/ideas-made-to-matter/ai-has-high-data-center-energy-costs-there-are-solutions
https://mitsloan.mit.edu/ideas-made-to-matter/ai-has-high-data-center-energy-costs-there-are-solutions
https://doi.org/10.1109/18.556116
https://doi.org/10.1038/s41586-020-2649-2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020. URL http://arxiv.org/abs/2006.11239. arXiv:2006.11239 [cs].

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

International Energy Agency. Energy demand from ai, 2025. URL https://www.iea.org/
reports/energy-and-ai/energy-demand-from-ai.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2022. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [stat].

D. Knuth and A. Yao. Algorithms and complexity: New directions and recent results. Academic
Press, 1976. Section: The complexity of nonuniform random number generation.

Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: the laws of dimin-
ishing returns. In Proceedings of the 2010 International Conference on Power Aware Computing
and Systems, HotPower’10, pp. 1–8, USA, 2010. USENIX Association.

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella,
and Daniel Gruss. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021.

Jérémie Lumbroso. Optimal Discrete Uniform Generation from Coin Flips, and Applications, April
2013. URL http://arxiv.org/abs/1304.1916. arXiv:1304.1916 [cs].

G. Marsaglia. Generating discrete random variables in a computer. Communications of the ACM,
6(1):37–38, January 1963. ISSN 0001-0782, 1557-7317. doi: 10.1145/366193.366228. URL
https://dl.acm.org/doi/10.1145/366193.366228.

George Marsaglia, Wai Wan Tsang, and Jingbo Wang. Fast generation of discrete random variables.
Journal of Statistical Software, 11:1–11, 2004.

Alain J Martin, Mika Nyström, and Paul I Pénzes. Et2: A metric for time and energy efficiency of
computation. In Power aware computing, pp. 293–315. Springer, 2002.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Feras Saad, Cameron Freer, Martin Rinard, and Vikash Mansinghka. The Fast Loaded Dice Roller:
A Near-Optimal Exact Sampler for Discrete Probability Distributions. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, pp. 1036–1046.
PMLR, June 2020. URL https://proceedings.mlr.press/v108/saad20a.html.
ISSN: 2640-3498.

Keith Schwarz. Darts, Dice, and Coins, December 2011. URL https://www.keithschwarz.
com/darts-dice-coins/.

Michael Ian Shamos. Computational Geometry. Yale University., 1978. Ph.D. dissertation.

Emanuel Sommer, Jakob Robnik, Giorgi Nozadze, Uros Seljak, and David Rügamer. Microcanon-
ical langevin ensembles: Advancing the sampling of bayesian neural networks. arXiv preprint
arXiv:2502.06335, 2025.

T. Uyematsu and Y. Li. Two algorithms for random number generation implemented by using arith-
metic of limited precision. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E86A:2542–2551, October 2003.

11

http://arxiv.org/abs/2006.11239
https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai
https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1304.1916
https://dl.acm.org/doi/10.1145/366193.366228
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.mlr.press/v108/saad20a.html
https://www.keithschwarz.com/darts-dice-coins/
https://www.keithschwarz.com/darts-dice-coins/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alastair J Walker. New fast method for generating discrete random numbers with arbitrary frequency
distributions. Electronics Letters, 10(8):127–128, 1974.

P. Wiesner, R. Khalili, D. Grinwald, P. Agrawal, L. Thamsen, and O. Kao. Fedzero: Leveraging
renewable excess energy in federated learning. arXiv preprint arXiv:2305.15092, 2023. URL
https://arxiv.org/abs/2305.15092.

Z. Yang, L. Meng, J.-W. Chung, and M. Chowdhury. Chasing low-carbon electricity for practical
and sustainable dnn training. arXiv preprint arXiv:2303.02508, 2023. URL https://arxiv.
org/abs/2303.02508.

12

https://arxiv.org/abs/2305.15092
https://arxiv.org/abs/2303.02508
https://arxiv.org/abs/2303.02508

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS ON NON-FINITE DISTRIBUTIONS

Many distributions relevant to machine learning belong to the class of continuous, real-valued, uni-
variate distributions, with the Gaussian distribution as a prominent example. These distributions are
discretized in a computational setting, as hardware can only represent a finite set of values.

A natural discretization proceeds as follows. Let a distribution on R be specified via its cumula-
tive density function F . To discretize it on a finite support X ⊂ R (|X | < ∞), e.g., the set of
representable numbers in the IEEE 754 16-bit floating-point format, we define the probability mass
function p : X → [0, 1] of the discretized distribution by

p(x) :=
1

c

[
F
(x+ x+

2

)
− F

(x+ x−

2

)]
, ∀x ∈ X ,

where x+ := min{y ∈ X : y > x} is the next number to the right of x in X , and x− := max{y ∈
X : y < x} is the next number to the left.

Special care is required for the extrema of X . Let xmax := maxX and xmin := minX . The next
numbers beyond these limits can be defined in two ways, depending on how you would like to
attribute the probability mass of the tails:

1. Finite tail extension:

xmax
+ := xmax +

xmax − xmax
−

2
,

xmin
− := xmin −

xmin
+ − xmin

2
,

which requires a normalization constant c = 1 − F (xmax
+) + F (xmin

−) to ensure that the
discretized probability mass function sums to one.

2. Infinite tail extension: xmax
+ := +∞ and xmin

− := −∞, in which case c = 1 suffices.

Discrete distributions with infinite support, such as the Poisson distribution over N≥0, also require
truncation to be represented in finite precision. A common approach is to apply a cutoff.

B DETAILS ON APPROXIMATED DISTRIBUTIONS

Since memory constrains impose a boundary on the size N of any lookup table, a lookup table
might suffer from the inability to represent certain probabilities, such as very small or irrational
probabilities, e.g., pi =

√
1/2. In these cases we fill the table according to the frequencies

fi := round(pi · 2b) ∈ N≥0, i ∈ {1, . . . , n},

where round(·) is an arbitrary sum-preserving rounding scheme. The approximation error of a
distribution stored in a lookup table with probabilities fi/2b directly depends on the precision b, as an
upper bound on the KL divergence can be expressed as a function of min1≤i≤n fi (see Theorem 1).

Theorem 1 (KL-Divergence of approximated distribution). The KL-Divergence between a distri-
bution on x=(x1 . . . , xn) given by the associated probabilities p=(p1, . . . , pn) and the distribution
approximated to a precision of b ∈ N>0 bits given by the frequencies f=(f1, . . . , fn) is bounded by

DKL
(
p || f

)
≤ log

(
1 +

1

2κ

)
,

where κ := min1≤i≤n fi.

Proof. Write

pi = fi · 2−b + δi,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

with δi ∈ [−2−b−1, 2−b−1]. Then, the KL-Divergence is given by

DKL
(
p || f

)
=

n∑
i=1

pi log
pi

fi · 2−b

=

n∑
i=1

pi log
fi · 2−b + δi
fi · 2−b

=

n∑
i=1

pi log

(
1 +

δi · 2b

fi

)

≤
n∑

i=1

pi log

(
1 +

2−b−1 · 2b

mini fi

)

= log

(
1 +

1

2mini fi

)
·

n∑
i=1

pi

= log
(
1 +

1

2κ

)
,

where κ := min1≤i≤n fi. In the third step, we used that δi ≤ 2−b−1 and fi > mini fi for all i.

Note that κ = min1≤i≤n fi = min1≤i≤n round(pi · 2b) and therefore DKL ∈ O(log(1 + 2−b)).
Clearly, DKL → 0 for b → ∞. However, while approximation error decreases logarithmically with
precision b, the lookup table size N required to store all values x with their respective frequencies
f=(f1, . . . , fn) grows exponentially in b:

N :=

n∑
i=1

fi = 2b.

C IMPLEMENTATION DETAILS

A pseudo code of the cLUT preprocessing algorithm is shown in Algorithm 2. We implemented it in
C and reused the computed data structures in Python. To do so, we created a foreign function library
that conveniently interfaces between C and other languages. This library is used in our TrueSkill
evaluation.

Algorithm 2 Constructing a compressed lookup table

Require: probability distribution given by x = (x1, x2, . . . , xn) and f = (f1, f2, . . . , fn) ∈ Nn
≥0

Ensure: compressed lookup table compressedTable of size (r + 1)× 2c

▷ Compute optimal r and c:
1: b← log2(

∑n
i=1 fi)

2: r ← max{v ∈ [0, b] :
∑w

j=0

∑n
i=1 f

(j)
i · 2v−b−1 ≤ 1 ∀w ∈ {0, . . . , b}}

3: c← b− r
▷ Compute counts per row for each value:

4: D ← distribute(f , r, c)
▷ Fill compressed lookup table:

5: compressedTable← []
6: for i = 1 to r+1 do
7: for j = 1 to n do
8: for k = 1 to Dji do
9: compressedTable.append(xj)

10: end for
11: end for
12: end for
13: return compressedTable

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Like the reference implementation of ALDR and FLDR (Draper & Saad, 2025a), we used bit op-
erations, compiler intrinsics and linearized arrays where possible to ensure fast computation. We
extended the existing SOTA implementations to also work with 64-bit input values to make them
comparable with our test distributions.

Our implementation, wrapper library and changes to existing SOTA implementations are publicly
available on GitHub under (omitted for blind review).

D DETAILS ON TRUESKILL

Our TrueSkill extension uses importance sampling as follows: (1) independently sample skills si
and performances yi from their respective priors, (2) compute importance weights as the product of
prior densities and match likelihood, and (3) use these weights to estimate posterior distributions.
Independent sampling of correlated variables enables parallelization while maintaining correctness
through importance weighting (Algorithm 3). We discretize the continuous bimodal prior over the
range [−10, 10] with resolution 10−3 and construct cLUT tables with b = 32 bit precision.

Algorithm 3 TrueSkill with importance sampling for two players

Require: prior skills distributions π1(θ1) and π2(θ2), performance standard deviation β, match
outcome data R

Ensure: posterior skills distributions π1(θ1|R) and π2(θ2|R)
1: for i = 1 to N do
2: s1 ← π1(θ1), s2 ← π2(θ2)
3: y1 ← G(1, β), y2 ← G(1, β)

▷ Compute match outcome:
4: r = Iy1>y2

▷ Compute importance sampling weights:
5: w1 = pπ1|θ1(s1), w2 = pπ2|θ2(s2)
6: w3 = pG(s1,β)(y1), w4 = pG(s2,β)(y2)

7: w = r ·
∏4

i=1 wi

▷ Write down the results to arrays S1, S2,W :
8: S1[i] = s1, S2[i] = s2,W [i] = w
9: end for

▷ Assign new posterior distribution as probability mass function:
10: π1(θ1)|R) := {(S1[i],W [i])}Ni=1

11: π2(θ2|R) := {(S2[i],W [i])}Ni=1
12: return π1(θ1|R), π2(θ2|R)

To evaluate the accuracy of the posterior distribution sampled by cLUT, we ran the TrueSkill al-
gorithm 50 times using both the cLUT sampler and the NumPy-based continuous sampler. For
each iteration, we computed the mean and variance of a player’s skill posterior distribution. We
then applied a t-test to assess differences in means and variances across the two samplers, obtaining
p-values greater than 0.2 in both cases.

E DETAILS ON ENERGY EFFICIENCY

It is crucial to understand different metrics and their relation to assess the efficiency of modern
(electrical) computing systems and design experiments. While power is the rate at which electricity
is consumed at a given point in time, energy is the amount of electricity required to perform an
operation (power’s integral over time). Electric energy translates to battery life, electricity bills or
emitted carbon dioxide, making it the most reasonable metric to optimize for when seeking energy
efficiency.

An exception would be if the computer system has actively changing clock frequencies. Apart from
the number of active switching transistors, the CPU’s clocking frequency and supply voltage play
into the dynamic power demand at a given point in time (Le Sueur & Heiser, 2010). In this case,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the energy-delay-squared product (Martin et al., 2002) would be a more suitable metric, combining
execution time and energy demand.

Even at fixed clock rates, switching between CPU architectures can significantly alter power demand
but not necessarily energy demand. A low-power device (a micro-controller or efficiency CPU core)
can run for a longer time than a more power-intense one, resulting in comparable energy integrals—
or not, depending on the static power demand and thus energy proportionality of the system (Barroso
& Hölzle, 2007). For a fixed problem size, the latter device can switch to idle mode after completion
or process more elements for a given unit of energy. Consequently, to obtain more representative
measurements, we fixed the CPU frequency and micro-architecture (cores) in our experiments. As
our particular Intel Hybrid CPU architecture comprises of larger performance cores and limited
efficiency cores, we opted for the P-cores for consistent measurements.

There is a direct connection between the memory access behavior of modern computer systems
and their electricity consumption (Horowitz, 2014). Memory subsystems and CPU caches have
long been overlooked in comparison to computational cores but constitute a large portion of active
transistors in today’s chip designs, leading to higher dynamic power demands. This means that,
for general-purpose computers, algorithms that trade computation for memory lookups may have
slightly worse energy efficiency than plain recomputation. This effect is more pronounced with
multiple, nested lookups (also known as pointer chasing) because it involves more active transistors,
which increases power demand. It also breaks CPU cache locality and access prediction, resulting in
prolonged CPU stalls (increased time demand) and thus non-linear increase in energy demand. This
motivates our idea to create a compression strategy for a lookup table that preserves all the statistical
properties of sampling with simple lookup tables but reduces energy consumption.

F DETAILS ON SAMPLING OF UNIFORM FLOATING-POINTS

In the IEEE 754 floating-point format, numbers are organized into dyadic intervals of exponentially
increasing size, each containing a fixed number of equally spaced values. This structure makes
our index-based sampling scheme ideally suited for generating uniformly distributed floating-point
numbers over fixed intervals, such as the unit interval [0, 1]. Specifically, by considering their binary
expansions, we can interpret the row and column indices generated by our method as the exponent
and mantissa of the floating-point representation, respectively. Using this approach, we achieve truly
uniform sampling with maximal coverage of representable values.

In contrast, the classic approach of generating uniformly random mantissa bits to obtain a float in
[1, 2), and then subtracting 1 covers only a small fraction of all representable numbers, approxi-
mately 13%. PyTorch’s common method for generating random variates uniformly on the interval
[0, 1] is torch.rand(). When generating values directly in 16-bit floating-point format, this
method covers only 13.3% of all representable values in [0, 1]. A Pearson’s χ2 test for uniformity
fails significantly, yielding χ2 = 1,277,749,854.249 with p < 10−10. Alternatively, generating
values in 32-bit floating-point format and converting them to a 16-bit representation results in 100%
coverage of 16-bit floating-point values in the unit interval. However, this approach also fails the
Pearson’s χ2 test, with χ2 = 21,425.2924 and p < 10−10.

16

	Introduction
	Related Work
	Approach
	Evaluation
	Sampling of uniform floating-points
	Exemplary application

	Conclusion
	Details on Non-Finite Distributions
	Details on Approximated Distributions
	Implementation Details
	Details on TrueSkill
	Details on Energy Efficiency
	Details on Sampling of Uniform Floating-Points

