Published at the SSL-RL Workshop at ICLR 2021

OUT-OF-DISTRIBUTION GENERALIZATION OF
INTERNAL MODELS IS CORRELATED WITH REWARD

Khushdeep S. Mann* Steffen Schneider*' Alberto Chiappa Jin H. Lee
TU Berlin EPFL & U. Tiibingen EPFL TU Munich
Matthias Bethge Alexander Mathis Mackenzie W. Mathis
University Tiibingen EPFL EPFL

ABSTRACT

We investigate the behavior of reinforcement learning (RL) agents under morpho-
logical distribution shifts. Similar to recent robustness benchmarks in computer
vision, we train algorithms on selected RL environments and test transfer perfor-
mance on perturbed environments. We specifically test perturbations to popular
RL agent’s morphologies by changing the length and mass of limbs, which in bi-
ological settings is a major challenge (e.g., after injury or during growth). In this
setup, called PyBullet-M, we compare the performance of policies obtained by
reward-driven learning with self-supervised models of the observed state-action
transitions. We find that out-of-distribution performance of self-supervised mod-
els is correlated to degradation in reward.

1 INTRODUCTION

Animal behavior is highly adaptive. When challenged with different terrain, as well as changes to
their bodies (such as growth or injury), they operate successfully by adapting their behavior to new
conditions. In comparison to animals, robots and artificial autonomous agents are less versatile in
recovering task-effective behavior, when properties of their body, or of the surrounding environment
change. This discrepancy can be attributed to the lack of an internal model of the world, which has
been demonstrated in humans and other animals (Wolpert et al.,|1995; [Kawato & Wolpert, |1998]).

In reinforcement learning (RL)
robustness and generalization
are two main concerns, es-
pecially in robotics applica-
tions, where a policy trained
in simulation should adapt to
the different conditions in the
real world. However, standard
RL algorithms are designed to
learn a policy which yields the
maximum reward given the en-
vironment’s transition dynam-
ics. As analyzed by Koos et al.
(2010) and [Peng et al. (2018),
this is one of the main causes
of the reality-gap problem.

Inspired by recent work
using environmental pertur-
bations (Packer et all [2019;

' R R
e WK wR ale
R i
| AR A R g

Figure 1: Benchmarking robustness to morphological perturba-
tions in PyBullet. The modified morphology of the 4 agents is a
challenging test for the policies trained on baseline.

Pathak et al.,|2019; Mankowitz et al.| [2019), we study how the reward in motor control tasks decays
when the morphology of the agent changes. In particular, we randomize length and size of limbs

*Equal contribution; t correspondence: steffen@bethgelab.org

Published at the SSL-RL Workshop at ICLR 2021

at test time (without additional learning) and measure the loss in performance as a function of the
modification’s severity. Furthermore, we test the utility of a self-supervision task as a metric for
generalization success. Our experiments show a correlation between the task performance and the
accuracy in solving a self-supervised task, which motivates the choice of self-supervision for future
work as a way to recover task performance at test time without providing reward feedback.

Related Work. Robustness and generalization are key challenges in machine learning. In com-
puter vision benchmarks have driven rapid algorithmic innovations, and in particular recent bench-
marks such as ImageNet-C (Hendrycks & Dietterich, [2019), that apply common corrupts to images
have both revealed limitations, and allowed the development of new models that are more robust
in real-world scenarios (e.g., [Xie et al., [2020; Hendrycks et al.l [2020; (Geirhos et al., |2020). In
RL, the de facto standard benchmarks test the performance of algorithms across many tasks, e.g.
in Arcade (Bellemare et al. [2013; Mnih et al., |2013) and rllab (Duan et al.| 2016). Recently, new
benchmarks for generalization in continuous control tasks have been put forth (Packer et al., |2019;
Dulac-Arnold et al., [2021).

Several techniques have been proposed for RL algorithms to handle test environments, where the
agent faces perturbed transition dynamics compared to what it had been trained on. Meta-learning
techniques have proven successful for domain adaptation (e.g. Nagabandi et al., [2018). For im-
proving the robustness of RL algorithms, strategies such as data augmentation (Kostrikov et al.|
2020; [Laskin et al., |2020), representation learning (Srinivas et al.,|2020; Raffin & Stulp, 2020), self-
supervision (Hansen et al., 2020; Sun et al.,[2019)) and worst-case reward optimization (Mankowitz
et al.,|2019) have shown promising results. In these studies the agent is either tested in novel en-
vironments or the agent’s physical properties (morphology, mechanics) are modified. |Pathak et al.
(2019) even allow the agent structure to change completely through the recombination of body parts.

2 METHODS

We consider continuous control problems implemented in the PyBullet library (Coumans & Bail
2016-2019) and use the environments Hopper, Walker, Half-Cheetah and Ant (Figure [1)). We eval-
uate the performance of two learning schemes: Reward-driven learning for policies and contrastive
self-supervised learning for modeling the dynamics.

Reward-driven learning. We train two state of the art model-free, off-policy actor-critic algo-
rithms, soft-actor critic (SAC; [Haarnoja et al.l 2018)) and twin-delayed deep deterministic policy
gradient (TD3; Fujimoto et al.,2018). The objective of the RL agent is to maximize a reward signal
proportional to the (signed) linear velocity in the forward direction. The state s of the system is
fully observable, as the observations include the relative position of each body component, as well
as the velocity, inertia, internal and external forces. The policy acts by selecting the torque to apply
at each joint per time step. TD3 maximizes the reward by updating the policy with deterministic
policy gradient (Silver et al.l [2014)) and enabling the training of deep networks by including a sec-
ond critic network, a target network and other techniques such as batch normalization. In SAC an
additional entropy term is added (modulated by a parameter «), which controls the stochasticity of
the policy (Haarnoja et al., [2018). Additional details are given in §A.1]

Self-supervised learning. We use a time contrastive loss (Hyvirinen & Moriokal [2016} Oord et al.,
2018)) for self-supervised learning (SSL) and adapt the model setup of |[Schneider et al.[(2019) to use
three convolutional networks. The state encoder f; maps single states s and the action encoder f,
maps single actions a to features. The aggregator network g computes a context representation from
the past ¢’ state-action pairs,

Ct = g(fs(st—l)’ - "fs(st—t')’fa(at—l)v .- '7fa(at—t'))’ ey

and we consider a variant where only states s are considered. We train the networks to minimize the
contrastive learning criterion,

T—k

Li==" (logo(fulsirr) hile) + ABany, logo(~£(8) hu(e))]), @

i=1

for multiple time steps k, where o(-) is the sigmoid function and § is a random negative sample
from the state sequence. Intuitively, this is a binary classification task between a “true” state s;

Published at the SSL-RL Workshop at ICLR 2021

Hopper Walker Ant Half-Cheetah
3000 3000 3000 . 3000

2000 . 2000 2000

B

10004 — GLM 10 1000 T

Reward (perturbed)

1000 1000 Bl
o Mmean k4]
+ SEM e
; - N . 0+ . 0+ . . 0+ . L .
1072 107t 100 1072 100 1072 107t 100 1072 107t 10°
Environment difference Environment difference Environment difference Environment difference

Figure 2: The difference between baseline and perturbed morphology (L' difference in lengths and
widths of limbs) is correlated with reward in perturbed environment for TD3 (mean across seeds).
We show results for SAC in Figure 6]

Hopper Walker Ant Half-Cheetah
3000
=
L2 ’
S 27 40
S 2000 ;_'_.;’J,
é v v
8 kY §3 g, . a‘..-‘_-:'.'\t‘ e
= 1000 R s c',”-‘g?' 0=005 "+
§ v it : e Vo=0.1
" g,
& i, Dttt Ao =02
0
| B
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Reward (baseline) Reward (baseline) Reward (baseline) Reward (baseline)

Figure 3: Comparing baseline to target reward reveals differences between agents: Baseline reward
is indicative of robustness with best correlation for Ant and Half-Cheetah for TD3 (mean across
envs). We show results for SAC in Figure[7}

following k steps after the context ¢; and a set of distractor samples s. As an intuitive metric, we can
compute the true positive rate as the fraction of positive samples s;,; with f,(s;41) " hi(c;) > 0.
See §A.72|for further details on the model, and §A 3| for details on the SSL data generation.

3 EXPERIMENTAL PROTOCOL

Training in the baseline environments. We benchmark the behavior of TD3 (Fujimoto et al.,
2018) (Lillicrap et al., 2015) and SAC (Haarnoja et al., [2018)), using a two-layer MLP with hid-
den layer sizes 300 and 400 and ReL.U activation functions. We outline the remaining (standard)
hyperparameters in §A.T] We train 50 seeds for TD3. For SAC, we additionally investigate how
the entropy parameter o (cf. §A.T) affects model robustness. We train 10 seeds for each value of
a € {0.01,0.033,0.05,0.1,0.2,0.33}. Training is done for 10° time steps in episodes with 103
steps maximum duration.

Testing in perturbed environments (PyBullet-M) In each of the considered environments, we
vary the limb length and width for each agent. We sample from a normal distribution N (z, ox¢)
centered around the original limb width or length zy with a variance relative to the baseline quantity
(Fig.[T). We obtain environments of varying difficulty by choosing o € {0.05,0.1,0.2}. We sample
200 random environments for each value o. We report the median reward across 10* evaluation
steps and we reset the environment after a maximum episode length of 10 steps. We repeat this
evaluation 10 times for each baseline environment to collect additional data for SSL training.

Analysis. We compute the mean reward and standard error of the mean (SEM) across model seeds,
yielding 200 data points per algorithm and agent. For relating environment difference and target
reward (Fig. 2, we fit a Binomial GLM with logit link function to the reward ratio 7/ (rmax — r). As
a model for the relationship between positive sample accuracy in contrastive learning and the drop
in reward 7 — 7 (Fig. @), we fit a Gaussian GLM with logarithmic link function. We fit GLMs
with the statsmodels package (Seabold & Perktold, 2010).

Published at the SSL-RL Workshop at ICLR 2021

Half-Cheetah

(#i) SAC (best)

2000

Reward (perturbed

1000

O I_".'._'_| [— T 1 r T 1 I'—'—|
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.0 0.1 0.2
True Positive Rate (SSL) True Positive Rate (SSL) True Positive Rate (SSL) True Positive Rate (SSL)

Figure 4: Out of distribution evaluation of models trained on the unperturbed environment. Policies
were trained on non-perturbed environments using TD3 or SAC. SSL models were then trained on
state-action pairs of these baseline policies. We show the results of testing both model types on the
perturbed environments. The true positive rate of SSL models is correlated with the reward obtained
by RL models (mean across seeds) during evaluation on the perturbed environments.

4 RESULTS

We focus our analysis on metrics with relationships to the reward obtained on the perturbed environ-
ments. The general approach is inspired by robustness benchmarks in computer vision: On datasets
like ImageNet-C (Hendrycks & Dietterich} 2019)), it is known that (in many cases) baseline accu-
racy correlates with target accuracy (Hendrycks et al.l [2020). Moreover, we sought to find metrics
(based on the baseline behavior) allowing to predict degradation in performance from the level of
distribution shift (Schneider et al., [2020)).

Environment mismatch correlates with degradation in reward. We first study the general prop-
erties of the PyBullet-M tasks. We compare the relative environment difference between each per-
turbed environment and the baseline setting for the respective agent to the reward obtained when
testing on this environment. Degradation in reward correlates with differences in the environment,
which we compute as the L' relative difference between baseline and perturbed limb configuration.
We find that the relationship can be modeled by a logistic GLM (Fig. [2] [6). While we observe the
full range of the logistic curve for Hopper and Walker environments, the Ant and Half-Cheetah en-
vironments are more robust, potentially because their body plan is inherently more stable. Going
forward, we therefore contrast these “stable” agents (Ant, Half-Cheetah) to the metrics we observe
on the unstable agents (Hopper, Walker).

Baseline correlates with out-of-distribution reward for stable environments & small perturba-
tions. We now compare the performance obtained in the baseline and target environments (Fig.
[7). In low-perturbation environments (0 = 0.05), we see a strong correlation for the stable environ-
ments (Ant, Half-Cheetah). The relationship is generally less clear for the unstable environments
(Walker, Hopper). On high-perturbation environments (¢ = 0.2), the relationship only holds for
Half-Cheetah. This result generally suggests that (for low perturbation environments) model selec-
tion for PyBullet-M is possible by using the baseline reward as a metric. On the other hand, given
that the correlation weakens as perturbation strength increases, additional (unsupervised) model
selection metrics are needed (without taking into account the algorithm performance on the target
environment). We reasoned that self-supervised models trained on the dynamics of state-action pairs
during baseline compared to perturbations could be a metric.

Out-of-distribution error of self-supervised learning predicts drop in reward. We train self-
supervised models on all baseline environments (jointly for SAC and TD3 algorithms, 1100 runs
total per agent, 11M total time steps) and compute their ood. performance when evaluated on per-
turbed environments. We use the true positive rate of the SSL. models as an intuitive measure of
performance, indicating how well the model is able to predict subsequent states up to £ = 16 steps
into the future from state-action pairs observed in the past. We find a log-linear relationship be-
tween the true positive rate (median across the £ = 16 time steps) of the self-supervised model and

Published at the SSL-RL Workshop at ICLR 2021

the reward (Fig.] [0). The relationship holds particularly well for Ant, Hopper and Half-Cheetah
environments. Overall this suggests that the out of distribution performance of “internal models”
(trained on state-action pairs) can indeed serve as a metric for predicting the reward obtained by the
baseline policies.

Additional results (Appendix, §B). We show baseline results for TD3 and SAC in compare
baseline vs. models frained on the perturbed environments in and provide detailed results for
the three aforementioned sections in including an ablation for a purely state-based SSL
model.

5 CONCLUSIONS

We analyze the performance of two state of the art actor-critic methods—SAC and TD3—under
morphological changes of the agent body (in our new task suite, called PyBullet-M). We show
correlations between ood. reward and differences in the environment. Under small environment
changes, ood. reward is also well correlated with baseline reward. Contrasting the ood. performance
of an “internal model” trained with self-supervised learning, correlates well with the expected reward
obtained by reward-driven reinforcement learning. Taken together and consistent with other recent
results (Hansen et al. [2020; [Sun et al., 2019)), we expect that exploring a causal link through self-
supervised adaptation mechanisms in RL is an interesting research direction.

AUTHOR CONTRIBUTIONS

StS conceived of the project; StS devised the experimental protocol with help of KM; KM im-
plemented and ran the experiments; JHL conducted experiments and analysis on self-supervised
training; AC, KM, and StS analyzed the data; StS, AC, MWM, AM, MB wrote the paper.

ACKNOWLEDGMENTS

Funding was provided from the Bertarelli Foundation (StS, MWM), Swiss National Science Foun-
dation (StS, MWM), the German Academic Exchange Service, DAAD (JHL), the International Max
Planck Research School for Intelligent Systems (StS) and by the German Federal Ministry of Edu-
cation and Research (BMBF) through the Tiibingen AI Center, FKZ: 01IS18039A (StS, JHL).

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016-2019.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,

pp. 1329-1338. PMLR, 2016.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-
ing, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587-1596. PMLR, 2018.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861-1870. PMLR, 2018.

http://pybullet.org

Published at the SSL-RL Workshop at ICLR 2021

Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang. Self-
supervised policy adaptation during deployment. arXiv preprint arXiv:2007.04309, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

Aapo Hyvirinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. In NIPS, 2016.

M. Kawato and D. Wolpert. Internal models for motor control. Novartis Foundation symposium,
218:291-304; discussion 304—7, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008—1014. Citeseer, 2000.

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the reality gap in evolution-
ary robotics by promoting transferable controllers. pp. 119-126, 2010. ISBN 9781450300728.
URLhttps://doi.org/10.1145/1830483.1830505!

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Daniel J Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki,
Jost Tobias Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. Robust re-
inforcement learning for continuous control with model misspecification. arXiv preprint
arXiv:1906.07516, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krihenbiihl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning, 2019.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to con-
trol self-assembling morphologies: a study of generalization via modularity. arXiv preprint
arXiv:1902.05546, 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803-3810. IEEE, 2018.

https://doi.org/10.1145/1830483.1830505
http://arxiv.org/abs/1312.5602

Published at the SSL-RL Workshop at ICLR 2021

Antonin Raffin and Freek Stulp. Generalized state-dependent exploration for deep reinforcement
learning in robotics. arXiv preprint arXiv:2005.05719, 2020.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Removing covariate shift improves robustness against common corruptions. Thirty-fourth
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with python.
In 9th Python in Science Conference, 2010.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387-395. PMLR, 2014.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros. Unsupervised domain adaptation through
self-supervision. arXiv preprint arXiv:1909.11825, 2019.

Daniel M Wolpert, Zoubin Ghahramani, and Michael I Jordan. An internal model for sensorimotor
integration. Science, 269(5232):1880-1882, 1995.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

Published at the SSL-RL Workshop at ICLR 2021

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DETAILED DESCRIPTION OF RL AGENTS.

All the results presented in this work have been obtained with two Reinforcement Learning algo-
rithms: Twin Delayed Deep Deterministic Policy Gradient (TD3; [Fujimoto et al., 2018) and Soft
Actor Critic (SAC; Haarnoja et al.l 2018). All of them belong to the family of the policy gradi-
ent algorithms, which allows them to deal with continuous action spaces, and they are thus ideally
suited for the continuous motor control tasks presented in this paper. In particular, all of them are
actor-critic algorithms (Konda & Tsitsiklis, 2000), meaning that they both train a policy function
(actor) and an action-value function (critic).

The update rule of policy gradient algorithms is based on the gradient of an objective function, which
usually is the expected return at the initial state:

J(m9) = Esnpmammy [(s, 0)] 3)

where (s, a) is the reward obtained by choosing action a at the state s, 7y is the policy parametrized
by 6 and p™ the visitation distribution of the states under the policy 7. This objective function is
in fact used to derive, thanks to the deterministic policy gradient theorem (Silver et al.| |2014), the
policy update rule of DDPG (Lillicrap et al.l 2015) and TD3:

Vo (7o) = Esmpr Vomo(5)VaQ" (8, a)|a=rp(s) 4)

where Q™ (s, a) is the state-action value function (critic). The main difference between DDPG and
TD3 is that the latter method addresses a Q-value overestimation problem of former thanks to the
introduction of a second Q-network. On the other hand, SAC modifies the objective function by
adding an auxiliary entropy term, which encourages the policy to maximize stochasticity. The ob-
jective writes as follows:

T

J(1) = Esanmpn [r(s6,ae) + aH(m(-]s1))] (5)

t=0

where « is a temperature parameter which regulates the weight of the entropy term H. As we
thought that there might be a relation between the stochasticity of the policy and its generalization
performance, we ran tests for different values of «, as shown in § [B.1]

Table 1: Hyperparameters for TD3 algorithm

Hyperparameters Value
Discount factor ~ 9.9 x 107!
Soft target network update parameter T 5x 1073
Batch size 256

Actor learning rate 3x107*
Critic learning rate 3x107*
Training steps 10°
Exploration steps 10°
Maximum steps for each episode 103

Replay buffer size 10°
Dimensions of first hidden layer for actor and critic 400 units
Dimensions of second hidden layer for actor and critic 300 units
Exploration noise 0.1

Policy noise 0.2

Noise clip 0.5
Nonlinearity ReLU
Optimizer Adam (Kingma & Ba,|2014)

Table 2: Hyperparameters for the SAC algorithm.

Published at the SSL-RL Workshop at ICLR 2021

Hyperparameters Value
Discount factor ~y 9.9 x 107!
Soft target network update parameter T 5x 1073
Alpha « [0.01,0.033,0.05,0.1,0.2,0.33]
Batch size 256

Actor learning rate 3x107*
Critic learning rate 3x 1074
Policy learning rate 3x107*
Training steps 10°
Exploration steps 103
Maximum steps for each episode 103

Replay buffer size 10°
Dimensions of first hidden layer for actor and critic 400 units
Dimensions of second hidden layer for actor and critic 300 units
Gradient steps (updates per step) 1

Target update interval 1
Automatic entropy tuning False

Log sig max 2

Log sig min —20
Epsilon € 107°
Nonlinearity ReLU
Optimizer Adam(Kingma & Ba (2014))

A.2 SELF SUPERVISED MODEL TRAINING

We train self-supervised models on state-action pairs obtained by the evaluation runs of the baseline
policies. As a model for time-series, we adapt the wav2vec architecture (Schneider et al., 2019)
originally designed for self-supervised learning (SSL) in speech processing. The state encoders f,
and the action encoder f, are CNNs with kernel sizes (4, 4), strides (2, 2), dilation factors (2, 1)
and channel sizes (64, 128). This yields a receptive field size of 16 and the output features are
subsampled by a factor of four. The aggregator consists of two CNN layers with kernel sizes (3, 3),
strides (1, 1), dilation factor (1, 1) and channel sizes (256, 128). The batch size is fixed to 10,000
tokens, the input token size per sample in each batch for training is set to 500 and 10 negative samples
are sampled for the contrastive loss. We predict k£ = 16 tokens into the future and compute the true
positive rate for each of these time steps. We train for 40k updates with the Adam optimizer (Kingma
& Bal 2014)) and cosine learning rate schedule (Loshchilov & Hutter, [2016; Schneider et al., [2019).
The learning rate is initialized to 10~% and then gradually increases up to 5 - 10~* over 500 updates
then decrease in cosine curve to 1077,

A.3 TRAINING DATA FOR SELF SUPERVISED LEARNING

We build one dataset per agent. We combine the state-action pairs obtained on the baseline envi-
ronment. We use 50 model seeds for TD3 and 10 seeds per 6 alpha values for SAC (60 models).
We obtain 1100 total runs with 11M tokens per agent, since each model is evaluated 10 times for
10 total evaluation steps. The total dataset size per agent contains approximately 11M tokens. The
dataset is randomly split into a 9:1 training:validation ratio. After training, we pick the best model
according to validation performance and evaluate the value of the contrastive loss as well as the true
positive rate for each time step of the perturbed environments.

Published at the SSL-RL Workshop at ICLR 2021

B ADDITIONAL RESULTS

We here supplement the three key results in the paper by additional baseline and control experiments,
as well as more detailed versions of the paper plots. The section is organized as follows: Baseline
results are outlined in In we test if some environments are inherently more difficult than
others by computing topline results. We conclude with which contains more detailed
version of the plots used in the result section of the main text.

B.1 BASELINE RESULTS

We train 50 seeds for TD3 and 10 seeds of SAC for 6 different settings of «. The full baseline results
are depicted in Table 3] For all summary plots in the paper, the best a values for SAC based on this
baseline performance are reported.

Table 3: Baseline results (mean = SEM across seeds), using standard hyperparameters for both SAC
and TD3. We run an ablation across the regularizer value o in SAC to explore different behaviors
based on the stochasticity of the policy (high o encourages high entropy).

Algorithm « Hopper Walker Ant Half-Cheetah

SAC 0.010 2260£39 1735+ 15 1737+£96 2224 +25
0.033 2040+ 65 1801 =34 2023 £88 2233 £21
0.050 2250+49 1781 £ 8 2191 £46 2360 £ 25
0.100 1949 £58 1506 =34 2054 £30 1945 + 62
0.200 2208 =15 916 £28 905 £ 10 808 £6
0.330 1621 +£38 704 £3 651 £5 7517

TD3 — 2186 £ 13 1816 £ 18 2723 £12 2253+ 12

B.2 CONTROL: ENVIRONMENT DIFFICULTY AND TOPLINE PERFORMANCE.

For each of the 200 evaluation settings, we compute both the baseline and topline performance.
Baseline performance is obtained by fitting the agent on the respective baseline environment, us-
ing standard hyperparameters, and subsequently evaluating on the perturbed environment. We also
compute the topline performance, by training and evaluating agents on each of the perturbed envi-
ronments, given an intuitive estimate of environment difficulty. Results for TD3 and SAC (o = 0.2)
are depicted in Fig.[3]

(i) Hopper, TD3 (ii) Hopper, SAC, a = 0.2
- - AR . -
2500 £ . 25002 . . et -
g B ra tiand 2/
& 2000 = 520008 §°° dyl i
& E =~ = . I
kel = el - !
s 1500 — s 1500 — - 1
2 = 2 = i
7] = 9] s 1
@ = o = 1
v 1000 = v 1000 = 5
= = = e “d .
o _ o . 1
F 500 = F 500 ~ Thase = "top :
; 77 Thase !
0 |
LTI T |/ A
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Baseline Reward, Thase Baseline Reward, Thase

Figure 5: Comparison of baseline and topline reward that can be obtained on the perturbed envi-
ronments. Ideally, topline models are strictly better (black) than baseline models. 9.5% of all runs
points violate this condition for TD3, 15.25% violate the condition for SAC (pink).

10

Published at the SSL-RL Workshop at ICLR 2021

B.3 DETAILED RESULTS, FIG.[2} ENVIRONMENT MISMATCH CORRELATES WITH
DEGRADATION IN REWARD

We show the full results underlying Fig. [2]in Fig. [f] including results for TD3 and SAC across all
values of a. Performance generally degrades for large o values with exception of the Hopper agent;
besides the performance degradation the qualitative relationship is rather independent of the exact
value of a.

3000 7

2000 A

1000 A

0~

Walker

Half-Cheetah

3000 7

2000 A

1000 A

04

3000 7

2000 A

1000 A

0~

3000 7

SAC (a = 0.05) h

oot

2000 A i E
"
.
.‘-
100049 il E
“..,5*:. "&*
0 _I T 5 1 _I 1
3000 71SAC (a = 0.1) 7 7 7
2000 1
1000
0+ .
3000 1
2000
1000
0 _I 1
3000 1
2000
1000 E E E
' —w\ " G
() _I |' 1 _I . e T 1 _I T 1 _I 1;! + ;'.l ! 1
1072 1071 100 10-2 1071 100 10-2 10! 100 1072 107! 10°

Environment difference

Environment difference

Environment difference

Environment difference

Figure 6: We show detailed results for TD3 and all SAC models, extending Fig.[2]

11

Published at the SSL-RL Workshop at ICLR 2021

B.4 DETAILED RESULTS, FIG.[3} BASELINE CORRELATES WITH OUT-OF-DISTRIBUTION
REWARD

We show the full results underlying Fig. 3] including results for TD3 and SAC across all values of

«, in Fig.[7]
Hopper
— 3000 7
c
-8 TD3
®
< 2000
3
€
8 T
Na? i o) A
T 1000 . AL S
& s an
: Do R,
04 0
1000 2000 3000
— 3000
% SAC (a =0.01)
£ 2000
2
g
5 1000 N
[v - Y
g : LE
o 0
1000 2000 3000
— 3000 7
S SAC (o = 0.033)
@
£ 2000
b=
[
2 '
< 1000 RN
g .
2 sttt
3 = .
x 0- L e |
1000 2000 3000
— 3000 7
8 SAC (a = 0.05)
8
< 2000
E
g .
= 1000 ™
2 . we
2
[}
04 0
1000 2000 3000
— 3000
% SAC (o =0.1)
< 2000
2
2 a
< 1000
5 2 .
H - e
3 . .
o 0
1000 2000 3000
— 3000 7
2 SAC (a=0.2)
©
£ 2000
b=
[
2 R
< 1000 A
5 .
H ot
O
x 0- L e |
1000 2000 3000
— 3000 7
8 SAC (o = 0.33)
©
< 2000
E
g
= 1000 .oey
5 ot
2
[}
04 0+
1000 2000 3000

Reward (baseline)

Walker

w0 =0.05
o
. . '.".“gVJ:O.l

Lb e =02

1000 2000 3000

o =005
S ve =01
a e AC=02

T

1000 2000 3000

o =0.05
5 wo=0.1
D h.A0=02

L —
1000 2000 3000

o =005
4 Vo=01
anh A0 =02

T
1000 2000 3000

=005
©) Vo=01
T g A0=02

.

| B
1000 2000 3000
o =0.05
Vvo=0.1
L Ac=02
. s
T
1000 2000 3000
o =0.05
Vo=0.1
4 Ao =02
My
| B
1000 2000 3000

Reward (baseline)

Ant

1000 2000 3000

1000 2000 3000

as
das

I —
1000 2000 3000

L e |
1000 2000 3000

T et

L e
1000 2000 3000
e

| E—
1000 2000 3000

Ed

T

1000 2000 3000

Reward (baseline)

Half-Cheetah

#v
p
ey
affod
M AN
S
PASR
K

s

v
:

L —

1000 2000 3000

1000 2000 3000

T
1000 2000 3000

Y
.08,
. e

.
»

L e |
1000 2000 3000

.

> -
U
,e

s

v
H

L —
1000 2000 3000

i
‘il—l—|
1000 2000 3000

z
.

L e |
1000 2000 3000
Reward (baseline)

Figure 7: We show detailed results for TD3 and all SAC models, extending Fig.[3]

12

Published at the SSL-RL Workshop at ICLR 2021

B.5 DETAILED RESULTS, FIG.[d} OUT-OF-DISTRIBUTION ERROR OF SELF-SUPERVISED
LEARNING PREDICTS DROP IN REWARD

We show the full results underlying Fig. f] including results for TD3 and SAC across all values
of a.. Results for self-supervised models trained on states only are depicted in Fig. [§] results for
self-supervised models trained on state action pairs as in the paper are depicted in Fig.[9] For all
models except Hopper (the only environment where o = 0.2 attained good performance, cf. Tbl[3),
the relationship breaks for sub-optimal values of o > 0.1 and is stable in all other regions.

Hopper Walker

Half-Cheetah
TD3

Reward
(perturbed)

= o

1=} =}

=) =)

=) S
L |

Reward
(perturbed)

=}
L

— ¥

=) =

=) =

S s
L |

Reward
(perturbed)

=}
L

¥}

=3

=)

S
|

Reward
(perturbed)

1000 A

= o

1= =}

=} =)

=) S
L |

Reward
(perturbed)

=}
L

— o

=) =

=) =

S s
L |

Reward
(perturbed)

o
L

SAC (o = 0.33)

= ¥}
1= =3
1= =)
S =)
L |
|

Reward
(perturbed)

=}
L

. E 4 s
e J .‘iv N . .
0.0 0.2 0.4 0.6 0.0 0.2

0.4 0.6 0.0 0.2 0.4 0.0 0.1 0.2
True Positive Rate (SSL) True Positive Rate (SSL) True Positive Rate (SSL) True Positive Rate (SSL)

13

Published at the SSL-RL Workshop at ICLR 2021

Figure 8: Full results for SSL vs. RL performance. In contrast to Fig.[d] the SSL model is trained
on states only.

Reward

Reward
(perturbed)

Reward
(perturbed)

Reward
(perturbed)

Reward
(perturbed)

Reward
(perturbed)

= o
=3 f=3
=1 =]
s} S
L)

Hopper Walker

Half-Cheetah

Reward
(perturbed)

[}
=}
=)
S

=
=3
=3
=)

SAC (a = 0.033)

3 2000
£
=1
£
2 1000

o
f=3
=]
S

—
f=3
=1
s}

= [}
=3 (=3
=3 =)
S S
L J

o
L

= o
=3 =%
=) =)
S S
L J

=}
L

s ~ '

I_~'_'_| r
0.0 0.2 04 06 0.0
True Positive Rate (SSL)

=}
L

0.2 0.4 0.6 0.0 0.2 0.4 0.0 0.1
True Positive Rate (SSL)

0.2
True Positive Rate (SSL)

True Positive Rate (SSL)

Figure 9: Full results for SSL vs. RL performance. Fig. [d]shows a part of this figure.

14

Published at the SSL-RL Workshop at ICLR 2021

C ENVIRONMENTS

a

§

iy
(a) Hopper (b) Walker (c) Half-Cheetah (d) Ant
Figure 10: Continuous control agents in PyBullet physics engine
Table 4: Default values of Hopper model Table 5: Default values of Walker model

Model parameters Width Length Model parameters Width Length
Torso 0.05 1.45 Torso 0.05 1.45
Thigh 0.05 1.05 Thigh 0.05 1.05
Leg 0.04 0.6 Leg 0.04 0.6
Foot 0.06 0.26 Foot 0.06 0.2

Table 6: Default values of Ant model Table 7: Default values of Half-Cheetah model

Model parameters Width Length

Torso 0.25 0.25
Front left leg joint1 0.08 0.2 Model parameters Width Length
Front left leg joint2 0.08 0.2
Front left leg foot 0.08 0.4 Torso 0.046 0.5
. .. Head 0.046 0.15
Front right leg jointl 0.08 0.2 .
. . Front thigh 0.046 0.145
Front right leg joint2 ~ 0.08 0.2 .
. Front shin 0.046 0.15
Front right leg foot 0.08 0.4
> . Front foot 0.046 0.094
Left back leg joint1l 0.08 0.2 .
e Front thigh 0.046 0.133
Left back leg joint2 0.08 0.2 .
Leftback leg foot ~ 0.08 0.4 Front shin 0.046 - 0.106
8 Front foot 0.046 0.07

Right back leg jointl 0.08 0.2
Right back leg joint2 0.08 0.2
Right back leg foot 0.08 0.4

Hopper (s € R, @A € R?)is an 3 DoF two-dimensional one-legged—and hence, unstable—
agent. The environment is reset when the model falls over. The default values of different Hopper
limbs in the PyBullet simulator are listed in Tbl.

Walker (s € R??, a € R) is a 6-DoF two-legged agent resembling two connected instances of
the Hopper model. The goal to move forward is achieved by walking motion. The environment is
reset when the model falls over. Default values of Walker limbs are listed in Tbl.

Half-Cheetah (s € R?% | @ € R) is a 6-DoF two-dimensional agent. The goal to move forward
is achieved by running. The default values for this agent used in simulation are listed in Tbl.

Ant (s € R?®, a € R®)is an 8-DoF three-dimensional four-legged agent. The agent uses alternate
legs at a time for performing forward locomotion. The default limbs and their values for this agent
are listed in Table

15

	Introduction
	Methods
	Experimental Protocol
	Results
	Conclusions
	Additional Experimental Details
	Detailed Description of RL Agents.
	Self Supervised Model Training
	Training Data for Self Supervised Learning

	Additional Results
	Baseline Results
	Control: Environment difficulty and topline performance.
	Detailed results, Fig. 2: Environment mismatch correlates with degradation in reward
	Detailed results, Fig. 3: Baseline correlates with out-of-distribution reward
	Detailed results, Fig. 4: Out-of-distribution error of self-supervised learning predicts drop in reward

	Environments

