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ABSTRACT

We investigate the behavior of reinforcement learning (RL) agents under morpho-
logical distribution shifts. Similar to recent robustness benchmarks in computer
vision, we train algorithms on selected RL environments and test transfer perfor-
mance on perturbed environments. We specifically test perturbations to popular
RL agent’s morphologies by changing the length and mass of limbs, which in bi-
ological settings is a major challenge (e.g., after injury or during growth). In this
setup, called PyBullet-M, we compare the performance of policies obtained by
reward-driven learning with self-supervised models of the observed state-action
transitions. We find that out-of-distribution performance of self-supervised mod-
els is correlated to degradation in reward.

1 INTRODUCTION

Animal behavior is highly adaptive. When challenged with different terrain, as well as changes to
their bodies (such as growth or injury), they operate successfully by adapting their behavior to new
conditions. In comparison to animals, robots and artificial autonomous agents are less versatile in
recovering task-effective behavior, when properties of their body, or of the surrounding environment
change. This discrepancy can be attributed to the lack of an internal model of the world, which has
been demonstrated in humans and other animals (Wolpert et al., 1995; Kawato & Wolpert, 1998).

Figure 1: Benchmarking robustness to morphological perturba-
tions in PyBullet. The modified morphology of the 4 agents is a
challenging test for the policies trained on baseline.

In reinforcement learning (RL)
robustness and generalization
are two main concerns, es-
pecially in robotics applica-
tions, where a policy trained
in simulation should adapt to
the different conditions in the
real world. However, standard
RL algorithms are designed to
learn a policy which yields the
maximum reward given the en-
vironment’s transition dynam-
ics. As analyzed by Koos et al.
(2010) and Peng et al. (2018),
this is one of the main causes
of the reality-gap problem.

Inspired by recent work
using environmental pertur-
bations (Packer et al., 2019;
Pathak et al., 2019; Mankowitz et al., 2019), we study how the reward in motor control tasks decays
when the morphology of the agent changes. In particular, we randomize length and size of limbs
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at test time (without additional learning) and measure the loss in performance as a function of the
modification’s severity. Furthermore, we test the utility of a self-supervision task as a metric for
generalization success. Our experiments show a correlation between the task performance and the
accuracy in solving a self-supervised task, which motivates the choice of self-supervision for future
work as a way to recover task performance at test time without providing reward feedback.

Related Work. Robustness and generalization are key challenges in machine learning. In com-
puter vision benchmarks have driven rapid algorithmic innovations, and in particular recent bench-
marks such as ImageNet-C (Hendrycks & Dietterich, 2019), that apply common corrupts to images
have both revealed limitations, and allowed the development of new models that are more robust
in real-world scenarios (e.g., Xie et al., 2020; Hendrycks et al., 2020; Geirhos et al., 2020). In
RL, the de facto standard benchmarks test the performance of algorithms across many tasks, e.g.
in Arcade (Bellemare et al., 2013; Mnih et al., 2013) and rllab (Duan et al., 2016). Recently, new
benchmarks for generalization in continuous control tasks have been put forth (Packer et al., 2019;
Dulac-Arnold et al., 2021).

Several techniques have been proposed for RL algorithms to handle test environments, where the
agent faces perturbed transition dynamics compared to what it had been trained on. Meta-learning
techniques have proven successful for domain adaptation (e.g. Nagabandi et al., 2018). For im-
proving the robustness of RL algorithms, strategies such as data augmentation (Kostrikov et al.,
2020; Laskin et al., 2020), representation learning (Srinivas et al., 2020; Raffin & Stulp, 2020), self-
supervision (Hansen et al., 2020; Sun et al., 2019) and worst-case reward optimization (Mankowitz
et al., 2019) have shown promising results. In these studies the agent is either tested in novel en-
vironments or the agent’s physical properties (morphology, mechanics) are modified. Pathak et al.
(2019) even allow the agent structure to change completely through the recombination of body parts.

2 METHODS

We consider continuous control problems implemented in the PyBullet library (Coumans & Bai,
2016–2019) and use the environments Hopper, Walker, Half-Cheetah and Ant (Figure 1). We eval-
uate the performance of two learning schemes: Reward-driven learning for policies and contrastive
self-supervised learning for modeling the dynamics.

Reward-driven learning. We train two state of the art model-free, off-policy actor-critic algo-
rithms, soft-actor critic (SAC; Haarnoja et al., 2018) and twin-delayed deep deterministic policy
gradient (TD3; Fujimoto et al., 2018). The objective of the RL agent is to maximize a reward signal
proportional to the (signed) linear velocity in the forward direction. The state s of the system is
fully observable, as the observations include the relative position of each body component, as well
as the velocity, inertia, internal and external forces. The policy acts by selecting the torque to apply
at each joint per time step. TD3 maximizes the reward by updating the policy with deterministic
policy gradient (Silver et al., 2014) and enabling the training of deep networks by including a sec-
ond critic network, a target network and other techniques such as batch normalization. In SAC an
additional entropy term is added (modulated by a parameter α), which controls the stochasticity of
the policy (Haarnoja et al., 2018). Additional details are given in §A.1.

Self-supervised learning. We use a time contrastive loss (Hyvärinen & Morioka, 2016; Oord et al.,
2018) for self-supervised learning (SSL) and adapt the model setup of Schneider et al. (2019) to use
three convolutional networks. The state encoder fs maps single states s and the action encoder fa
maps single actions a to features. The aggregator network g computes a context representation from
the past t′ state-action pairs,

ct = g(fs(st−1), . . . , fs(st−t′), fa(at−1), . . . , fa(at−t′)), (1)

and we consider a variant where only states s are considered. We train the networks to minimize the
contrastive learning criterion,

Lk = −
T−k∑
i=1

(
log σ(fs(si+k)

>hk(ci)) + λEs̃∼pn [log σ(−fs(s̃)>hk(ci))]
)
, (2)

for multiple time steps k, where σ(·) is the sigmoid function and s̃ is a random negative sample
from the state sequence. Intuitively, this is a binary classification task between a “true” state si+k

2



Published at the SSL-RL Workshop at ICLR 2021

10−2 10−1 100

Environment difference

0

1000

2000

3000

R
ew

ar
d

(p
er

tu
rb

ed
)

Hopper

10−2 10−1 100

Environment difference

0

1000

2000

3000
Walker

10−2 10−1 100

Environment difference

0

1000

2000

3000
Ant

GLM

mean
± SEM

10−2 10−1 100

Environment difference

0

1000

2000

3000
Half-Cheetah

Figure 2: The difference between baseline and perturbed morphology (L1 difference in lengths and
widths of limbs) is correlated with reward in perturbed environment for TD3 (mean across seeds).
We show results for SAC in Figure 6.
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Figure 3: Comparing baseline to target reward reveals differences between agents: Baseline reward
is indicative of robustness with best correlation for Ant and Half-Cheetah for TD3 (mean across
envs). We show results for SAC in Figure 7.

following k steps after the context ct and a set of distractor samples s̃. As an intuitive metric, we can
compute the true positive rate as the fraction of positive samples si+k with fs(si+k)>hk(ci) > 0.
See §A.2 for further details on the model, and §A.3 for details on the SSL data generation.

3 EXPERIMENTAL PROTOCOL

Training in the baseline environments. We benchmark the behavior of TD3 (Fujimoto et al.,
2018) (Lillicrap et al., 2015) and SAC (Haarnoja et al., 2018), using a two-layer MLP with hid-
den layer sizes 300 and 400 and ReLU activation functions. We outline the remaining (standard)
hyperparameters in §A.1. We train 50 seeds for TD3. For SAC, we additionally investigate how
the entropy parameter α (cf. §A.1) affects model robustness. We train 10 seeds for each value of
α ∈ {0.01, 0.033, 0.05, 0.1, 0.2, 0.33}. Training is done for 106 time steps in episodes with 103

steps maximum duration.

Testing in perturbed environments (PyBullet-M) In each of the considered environments, we
vary the limb length and width for each agent. We sample from a normal distribution N (x0, σx0)
centered around the original limb width or length x0 with a variance relative to the baseline quantity
(Fig. 1). We obtain environments of varying difficulty by choosing σ ∈ {0.05, 0.1, 0.2}. We sample
200 random environments for each value σ. We report the median reward across 104 evaluation
steps and we reset the environment after a maximum episode length of 103 steps. We repeat this
evaluation 10 times for each baseline environment to collect additional data for SSL training.

Analysis. We compute the mean reward and standard error of the mean (SEM) across model seeds,
yielding 200 data points per algorithm and agent. For relating environment difference and target
reward (Fig. 2), we fit a Binomial GLM with logit link function to the reward ratio r/(rmax− r). As
a model for the relationship between positive sample accuracy in contrastive learning and the drop
in reward rbase − r (Fig. 4), we fit a Gaussian GLM with logarithmic link function. We fit GLMs
with the statsmodels package (Seabold & Perktold, 2010).
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Figure 4: Out of distribution evaluation of models trained on the unperturbed environment. Policies
were trained on non-perturbed environments using TD3 or SAC. SSL models were then trained on
state-action pairs of these baseline policies. We show the results of testing both model types on the
perturbed environments. The true positive rate of SSL models is correlated with the reward obtained
by RL models (mean across seeds) during evaluation on the perturbed environments.

4 RESULTS

We focus our analysis on metrics with relationships to the reward obtained on the perturbed environ-
ments. The general approach is inspired by robustness benchmarks in computer vision: On datasets
like ImageNet-C (Hendrycks & Dietterich, 2019), it is known that (in many cases) baseline accu-
racy correlates with target accuracy (Hendrycks et al., 2020). Moreover, we sought to find metrics
(based on the baseline behavior) allowing to predict degradation in performance from the level of
distribution shift (Schneider et al., 2020).

Environment mismatch correlates with degradation in reward. We first study the general prop-
erties of the PyBullet-M tasks. We compare the relative environment difference between each per-
turbed environment and the baseline setting for the respective agent to the reward obtained when
testing on this environment. Degradation in reward correlates with differences in the environment,
which we compute as the L1 relative difference between baseline and perturbed limb configuration.
We find that the relationship can be modeled by a logistic GLM (Fig. 2, 6). While we observe the
full range of the logistic curve for Hopper and Walker environments, the Ant and Half-Cheetah en-
vironments are more robust, potentially because their body plan is inherently more stable. Going
forward, we therefore contrast these “stable” agents (Ant, Half-Cheetah) to the metrics we observe
on the unstable agents (Hopper, Walker).

Baseline correlates with out-of-distribution reward for stable environments & small perturba-
tions. We now compare the performance obtained in the baseline and target environments (Fig. 3,
7). In low-perturbation environments (σ = 0.05), we see a strong correlation for the stable environ-
ments (Ant, Half-Cheetah). The relationship is generally less clear for the unstable environments
(Walker, Hopper). On high-perturbation environments (σ = 0.2), the relationship only holds for
Half-Cheetah. This result generally suggests that (for low perturbation environments) model selec-
tion for PyBullet-M is possible by using the baseline reward as a metric. On the other hand, given
that the correlation weakens as perturbation strength increases, additional (unsupervised) model
selection metrics are needed (without taking into account the algorithm performance on the target
environment). We reasoned that self-supervised models trained on the dynamics of state-action pairs
during baseline compared to perturbations could be a metric.

Out-of-distribution error of self-supervised learning predicts drop in reward. We train self-
supervised models on all baseline environments (jointly for SAC and TD3 algorithms, 1100 runs
total per agent, 11M total time steps) and compute their ood. performance when evaluated on per-
turbed environments. We use the true positive rate of the SSL models as an intuitive measure of
performance, indicating how well the model is able to predict subsequent states up to k = 16 steps
into the future from state-action pairs observed in the past. We find a log-linear relationship be-
tween the true positive rate (median across the k = 16 time steps) of the self-supervised model and
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the reward (Fig. 4, 9). The relationship holds particularly well for Ant, Hopper and Half-Cheetah
environments. Overall this suggests that the out of distribution performance of “internal models”
(trained on state-action pairs) can indeed serve as a metric for predicting the reward obtained by the
baseline policies.

Additional results (Appendix, §B). We show baseline results for TD3 and SAC in §B.1, compare
baseline vs. models trained on the perturbed environments in §B.2 and provide detailed results for
the three aforementioned sections in §B.3–B.5, including an ablation for a purely state-based SSL
model.

5 CONCLUSIONS

We analyze the performance of two state of the art actor-critic methods—SAC and TD3—under
morphological changes of the agent body (in our new task suite, called PyBullet-M). We show
correlations between ood. reward and differences in the environment. Under small environment
changes, ood. reward is also well correlated with baseline reward. Contrasting the ood. performance
of an “internal model” trained with self-supervised learning, correlates well with the expected reward
obtained by reward-driven reinforcement learning. Taken together and consistent with other recent
results (Hansen et al., 2020; Sun et al., 2019), we expect that exploring a causal link through self-
supervised adaptation mechanisms in RL is an interesting research direction.
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Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the reality gap in evolution-
ary robotics by promoting transferable controllers. pp. 119–126, 2010. ISBN 9781450300728.
URL https://doi.org/10.1145/1830483.1830505.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Daniel J Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki,
Jost Tobias Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. Robust re-
inforcement learning for continuous control with model misspecification. arXiv preprint
arXiv:1906.07516, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DETAILED DESCRIPTION OF RL AGENTS.

All the results presented in this work have been obtained with two Reinforcement Learning algo-
rithms: Twin Delayed Deep Deterministic Policy Gradient (TD3; Fujimoto et al., 2018) and Soft
Actor Critic (SAC; Haarnoja et al., 2018). All of them belong to the family of the policy gradi-
ent algorithms, which allows them to deal with continuous action spaces, and they are thus ideally
suited for the continuous motor control tasks presented in this paper. In particular, all of them are
actor-critic algorithms (Konda & Tsitsiklis, 2000), meaning that they both train a policy function
(actor) and an action-value function (critic).

The update rule of policy gradient algorithms is based on the gradient of an objective function, which
usually is the expected return at the initial state:

J(πθ) = Es∼ρπ,a∼πθ [r (s, a)] (3)

where r(s, a) is the reward obtained by choosing action a at the state s, πθ is the policy parametrized
by θ and ρπ the visitation distribution of the states under the policy π. This objective function is
in fact used to derive, thanks to the deterministic policy gradient theorem (Silver et al., 2014), the
policy update rule of DDPG (Lillicrap et al., 2015) and TD3:

∇θJ(πθ) = Es∼ρπ∇θπθ(s)∇aQπ(s, a)|a=πθ(s) (4)

where Qπ(s, a) is the state-action value function (critic). The main difference between DDPG and
TD3 is that the latter method addresses a Q-value overestimation problem of former thanks to the
introduction of a second Q-network. On the other hand, SAC modifies the objective function by
adding an auxiliary entropy term, which encourages the policy to maximize stochasticity. The ob-
jective writes as follows:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (5)

where α is a temperature parameter which regulates the weight of the entropy term H. As we
thought that there might be a relation between the stochasticity of the policy and its generalization
performance, we ran tests for different values of α, as shown in § B.1.

Table 1: Hyperparameters for TD3 algorithm

Hyperparameters Value

Discount factor γ 9.9× 10−1

Soft target network update parameter τ 5× 10−3

Batch size 256
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Training steps 106

Exploration steps 103

Maximum steps for each episode 103

Replay buffer size 105

Dimensions of first hidden layer for actor and critic 400 units
Dimensions of second hidden layer for actor and critic 300 units
Exploration noise 0.1
Policy noise 0.2
Noise clip 0.5
Nonlinearity ReLU
Optimizer Adam (Kingma & Ba, 2014)

Table 2: Hyperparameters for the SAC algorithm.
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Hyperparameters Value

Discount factor γ 9.9× 10−1

Soft target network update parameter τ 5× 10−3

Alpha α [0.01, 0.033, 0.05, 0.1, 0.2, 0.33]
Batch size 256
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Policy learning rate 3× 10−4

Training steps 106

Exploration steps 103

Maximum steps for each episode 103

Replay buffer size 105

Dimensions of first hidden layer for actor and critic 400 units
Dimensions of second hidden layer for actor and critic 300 units
Gradient steps (updates per step) 1
Target update interval 1
Automatic entropy tuning False
Log sig max 2
Log sig min −20
Epsilon ε 10−6

Nonlinearity ReLU
Optimizer Adam(Kingma & Ba (2014))

A.2 SELF SUPERVISED MODEL TRAINING

We train self-supervised models on state-action pairs obtained by the evaluation runs of the baseline
policies. As a model for time-series, we adapt the wav2vec architecture (Schneider et al., 2019)
originally designed for self-supervised learning (SSL) in speech processing. The state encoders fs
and the action encoder fa are CNNs with kernel sizes (4, 4), strides (2, 2), dilation factors (2, 1)
and channel sizes (64, 128). This yields a receptive field size of 16 and the output features are
subsampled by a factor of four. The aggregator consists of two CNN layers with kernel sizes (3, 3),
strides (1, 1), dilation factor (1, 1) and channel sizes (256, 128). The batch size is fixed to 10,000
tokens, the input token size per sample in each batch for training is set to 500 and 10 negative samples
are sampled for the contrastive loss. We predict k = 16 tokens into the future and compute the true
positive rate for each of these time steps. We train for 40k updates with the Adam optimizer (Kingma
& Ba, 2014) and cosine learning rate schedule (Loshchilov & Hutter, 2016; Schneider et al., 2019).
The learning rate is initialized to 10−6 and then gradually increases up to 5 · 10−4 over 500 updates
then decrease in cosine curve to 10−9.

A.3 TRAINING DATA FOR SELF SUPERVISED LEARNING

We build one dataset per agent. We combine the state-action pairs obtained on the baseline envi-
ronment. We use 50 model seeds for TD3 and 10 seeds per 6 alpha values for SAC (60 models).
We obtain 1100 total runs with 11M tokens per agent, since each model is evaluated 10 times for
104 total evaluation steps. The total dataset size per agent contains approximately 11M tokens. The
dataset is randomly split into a 9:1 training:validation ratio. After training, we pick the best model
according to validation performance and evaluate the value of the contrastive loss as well as the true
positive rate for each time step of the perturbed environments.
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B ADDITIONAL RESULTS

We here supplement the three key results in the paper by additional baseline and control experiments,
as well as more detailed versions of the paper plots. The section is organized as follows: Baseline
results are outlined in §B.1. In §B.2, we test if some environments are inherently more difficult than
others by computing topline results. We conclude with §B.3,B.4,B.5 which contains more detailed
version of the plots used in the result section of the main text.

B.1 BASELINE RESULTS

We train 50 seeds for TD3 and 10 seeds of SAC for 6 different settings of α. The full baseline results
are depicted in Table 3. For all summary plots in the paper, the best α values for SAC based on this
baseline performance are reported.

Table 3: Baseline results (mean± SEM across seeds), using standard hyperparameters for both SAC
and TD3. We run an ablation across the regularizer value α in SAC to explore different behaviors
based on the stochasticity of the policy (high α encourages high entropy).

Algorithm α Hopper Walker Ant Half-Cheetah

SAC 0.010 2260 ± 39 1735 ± 15 1737 ± 96 2224 ± 25
0.033 2040 ± 65 1801 ± 34 2023 ± 88 2233 ± 21
0.050 2250 ± 49 1781 ± 8 2191 ± 46 2360 ± 25
0.100 1949 ± 58 1506 ± 34 2054 ± 30 1945 ± 62
0.200 2208 ± 15 916 ± 28 905 ± 10 808 ± 6
0.330 1621 ± 38 704 ± 3 651 ± 5 751 ± 7

TD3 — 2186 ± 13 1816 ± 18 2723 ± 12 2253 ± 12

B.2 CONTROL: ENVIRONMENT DIFFICULTY AND TOPLINE PERFORMANCE.

For each of the 200 evaluation settings, we compute both the baseline and topline performance.
Baseline performance is obtained by fitting the agent on the respective baseline environment, us-
ing standard hyperparameters, and subsequently evaluating on the perturbed environment. We also
compute the topline performance, by training and evaluating agents on each of the perturbed envi-
ronments, given an intuitive estimate of environment difficulty. Results for TD3 and SAC (α = 0.2)
are depicted in Fig. 5.
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Figure 5: Comparison of baseline and topline reward that can be obtained on the perturbed envi-
ronments. Ideally, topline models are strictly better (black) than baseline models. 9.5% of all runs
points violate this condition for TD3, 15.25% violate the condition for SAC (pink).
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B.3 DETAILED RESULTS, FIG. 2: ENVIRONMENT MISMATCH CORRELATES WITH
DEGRADATION IN REWARD

We show the full results underlying Fig. 2 in Fig. 6, including results for TD3 and SAC across all
values of α. Performance generally degrades for large α values with exception of the Hopper agent;
besides the performance degradation the qualitative relationship is rather independent of the exact
value of α.
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Figure 6: We show detailed results for TD3 and all SAC models, extending Fig. 2.
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B.4 DETAILED RESULTS, FIG. 3: BASELINE CORRELATES WITH OUT-OF-DISTRIBUTION
REWARD

We show the full results underlying Fig. 3, including results for TD3 and SAC across all values of
α, in Fig. 7.
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Figure 7: We show detailed results for TD3 and all SAC models, extending Fig. 3.
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B.5 DETAILED RESULTS, FIG. 4: OUT-OF-DISTRIBUTION ERROR OF SELF-SUPERVISED
LEARNING PREDICTS DROP IN REWARD

We show the full results underlying Fig. 4, including results for TD3 and SAC across all values
of α. Results for self-supervised models trained on states only are depicted in Fig. 8, results for
self-supervised models trained on state action pairs as in the paper are depicted in Fig. 9. For all
models except Hopper (the only environment where α = 0.2 attained good performance, cf. Tbl 3),
the relationship breaks for sub-optimal values of α > 0.1 and is stable in all other regions.
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Figure 8: Full results for SSL vs. RL performance. In contrast to Fig. 4, the SSL model is trained
on states only.
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Figure 9: Full results for SSL vs. RL performance. Fig. 4 shows a part of this figure.
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C ENVIRONMENTS

(a) Hopper (b) Walker (c) Half-Cheetah (d) Ant

Figure 10: Continuous control agents in PyBullet physics engine

Table 4: Default values of Hopper model Table 5: Default values of Walker model

Model parameters Width Length

Torso 0.05 1.45
Thigh 0.05 1.05
Leg 0.04 0.6
Foot 0.06 0.26

Model parameters Width Length

Torso 0.05 1.45
Thigh 0.05 1.05
Leg 0.04 0.6
Foot 0.06 0.2

Table 6: Default values of Ant model Table 7: Default values of Half-Cheetah model

Model parameters Width Length

Torso 0.25 0.25
Front left leg joint1 0.08 0.2
Front left leg joint2 0.08 0.2
Front left leg foot 0.08 0.4
Front right leg joint1 0.08 0.2
Front right leg joint2 0.08 0.2
Front right leg foot 0.08 0.4
Left back leg joint1 0.08 0.2
Left back leg joint2 0.08 0.2
Left back leg foot 0.08 0.4
Right back leg joint1 0.08 0.2
Right back leg joint2 0.08 0.2
Right back leg foot 0.08 0.4

Model parameters Width Length

Torso 0.046 0.5
Head 0.046 0.15
Front thigh 0.046 0.145
Front shin 0.046 0.15
Front foot 0.046 0.094
Front thigh 0.046 0.133
Front shin 0.046 0.106
Front foot 0.046 0.07

Hopper ( s ∈ R15 , aA ∈ R3 ) is an 3 DoF two-dimensional one-legged—and hence, unstable—
agent. The environment is reset when the model falls over. The default values of different Hopper
limbs in the PyBullet simulator are listed in Tbl. 4.

Walker (s ∈ R22 , a ∈ R6) is a 6-DoF two-legged agent resembling two connected instances of
the Hopper model. The goal to move forward is achieved by walking motion. The environment is
reset when the model falls over. Default values of Walker limbs are listed in Tbl. 5.

Half-Cheetah (s ∈ R26 , a ∈ R6) is a 6-DoF two-dimensional agent. The goal to move forward
is achieved by running. The default values for this agent used in simulation are listed in Tbl. 7.

Ant (s ∈ R28 , a ∈ R8) is an 8-DoF three-dimensional four-legged agent. The agent uses alternate
legs at a time for performing forward locomotion. The default limbs and their values for this agent
are listed in Table 6.
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