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ABSTRACT

We introduce Generator Matching, a modality-agnostic framework for generative modeling
using arbitrary Markov processes. Generators characterize the infinitesimal evolution of
a Markov process, which we leverage for generative modeling in a similar vein to flow
matching: we construct conditional generators which generate single data points, then
learn to approximate the marginal generator which generates the full data distribution. We
show that Generator Matching unifies various generative modeling methods, including
diffusion models, flow matching and discrete diffusion models. Furthermore, it provides
the foundation to expand the design space to new and unexplored Markov processes such
as jump processes. Finally, Generator Matching enables the construction of superpositions
of Markov generative processes and enables the construction of multimodal models in
a rigorous manner. We empirically validate our method on protein and image structure
generation, showing that superposition with a jump process improves image generation.

1 INTRODUCTION

Early deep generative models—like VAEs (Kingma, 2013) and GANs (Goodfellow et al., 2014) generated
samples in a single forward pass. With denoising diffusion models (DDMs) (Song et al., 2020; Ho et al.,
2020), a paradigm shift happened were step-wise updates are used to transform noise into data. Similarly,
scalable training of continuous normalizing flows (CNFs; Chen et al. 2018) via flow matching (Lipman
et al., 2022; Liu et al., 2022; Albergo et al., 2023) allowed for high-quality and fast generative modeling by
simulating an ODE. Since then, similar constructions based on diffusion and flows have also been applied to
other modalities such as discrete data (Campbell et al., 2022; Gat et al., 2024) or data on manifolds (De Bortoli
et al., 2022; Huang et al., 2022; Chen & Lipman, 2024) leading to a variety of models for different data types.

The single common property of the aforementioned generative models is their iterative step-wise nature:
starting with a sample X0 ∼ psimple from an easy-to-sample distribution psimple, they iteratively construct
samples Xt+h of the next time step depending only on the current state Xt. Mathematically speaking, this
means that they are all Markov processes. In this work, we develop a generative modeling framework that
relies on that Markov property. At the core of our framework is the concept of a generator that describes the
infinitesimal change of the distribution of a Markov process. We show that one can easily learn a generator
through a family of scalable training objectives—a framework we coin Generator Matching (GM).

Generator Matching unifies many existing generative modeling techniques across modalities such as denoising
diffusion models (Song et al., 2020), flow matching (Lipman et al., 2022), stochastic interpolants (Albergo
et al., 2023), discrete diffusion models (Campbell et al., 2022; Gat et al., 2024; Lou et al., 2024a), among
many others (see sec. 8). Most importantly, GM gives rise to new, unexplored models, and allows us to
combine models across different classes of Markov processes. We make the following contributions:
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Figure 1: Overview of the Generator Matching (GM) framework to construct generative models. GM works
on any state space (including multi-modal) and Markov processes. Flower image source: vecteezy.com

1. Generator Matching: We present Generator Matching, a framework for generative modeling with
Markov processes on arbitrary state spaces. This framework unifies a diversity of prior generative
modeling methods into a common framework that is modality-agnostic.

2. Novel models: We universally characterize the space of Markovian generative models on discrete
and Euclidean spaces identifying jump models as an unexplored model class for Rd.

3. Model combinations: We show how Generator Matching allows to combine models in 2 ways: (1)
We introduce Markov superpositions for generative models on the same state space; and (2) We
build multimodal generative models by combining unimodal generators.

4. Experiments: On image and multimodal protein generation experiments, we show that jump
models and Markov superpositions allow us to achieve competitive results.

2 GENERATIVE MODELING VIA PROBABILITY PATHS

Let S be a state space. Important examples are S = Rd (e.g., images, vectors), S discrete (e.g., language), S
a Riemannian manifold (e.g., geometric data) or their products for multimodal data generation. In generative
modeling, we are given samples x1, . . . , xN ∼ pdata from a distribution pdata on S and our goal is to generate
novel samples z ∼ pdata. GM works for arbitrary distributions, in particular those that do not have densities
(e.g., with discrete support). For general probability measures p, we use the notation p(dx) where "dx" is a
symbolic expression denoting integration with respect to p in a variable x. If for a distribution p a density
exists with respect to a reference measure ν on S, we write dp

dν (x) for its density.

A fundamental paradigm of recent state-of-the-art generative models is that they prespecify a transformation
of a simple distribution psimple (e.g. a Gaussian) into pdata via probability paths. Specifically, a conditional
probability path is a set of time-varying probability distributions (pt(dx|z))0≤t≤1 depending on a data point
z ∈ S. The data distribution pdata induces a corresponding marginal probability path

pt(dx) = Ez∼pdata [pt(dx|z)] (1)

The main feature of the conditional probability path pt(dx|z) is that it is easy to sample from. Given a dataset
of samples from pdata, one can then also efficiently draw samples from the marginal pt(dx): first sample a
data point z ∼ pdata and then sample x ∼ pt(dx|z). As we will see, this makes training scalable.

The key design requirement for the conditional probability path is that its associated marginal probability
path interpolates between psimple and pdata, leading to the first design principle of GM:

Principle 1: Given a data distribution pdata, choose a prior psimple and a conditional probability path such
that its marginal probability path (pt)0≤t≤1 fulfills psimple = p0 and pdata = p1.
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Two common constructions are mixtures (for arbitrary S) and geometric averages (for S = Rd):

pt(dx|z) = (1− κt) · psimple(dx) + κt · δz(dx) ⇔ xt ∼
{
z with prob κt

x0 with prob (1− κt)
I mixture (2)

pt(dx|z) = Ex0
[δσtx0+αtz] ⇔ xt = σtx0 + αtz I geometric average (3)

where xt ∼ pt(·|z), x0 ∼ psimple, z ∼ pdata, and αt, σt, κt ∈ R≥0 are differentiable functions satisfying
κ0 = α0 = σ1 = 0 and κ1 = α1 = σ0 = 1 and 0 ≤ κt ≤ 1 and δz refers to the Dirac delta distribution.

Remark. Our time parameterization follows the standard from the flow literature where t = 1 corresponds to
data and t = 0 corresponds to noise. In the diffusion literature, time is inverted (t = 0 corresponds to data)
and a probability path is modelled as a forward diffusion process (see app. A.4 for details). Further, GM also
works if one conditions a probability path on start and end point (Tong et al., 2023; Pooladian et al., 2023).

3 MARKOV PROCESSES

We briefly define time-continuous Markov processes, a fundamental concept in this work (Ethier & Kurtz,
2009). For t ∈ [0, 1], let Xt ∈ S be a random variable. We call (Xt)0≤t≤1 a Markov process if it fulfills the
following condition for all 0 ≤ t1 < t2 < · · · < tn < tn+1 ≤ 1 and A ⊆ S (measurable):

P[Xtn+1
∈ A|Xt1 , Xt2 , . . . , Xtn ] = P[Xtn+1

∈ A|Xtn ] I Markov assumption (4)

Informally, the above condition says that the process has no memory. If we know the present, knowing the
past will not influence our prediction of the future. In table 1, we give an overview over important classes
of Markov processes. Each Markov process has a transition kernel (kt+h|t)0≤t<t+h≤1 that assigns every
x ∈ S a probability distribution kt+h|t(·|x) such that P[Xt+h ∈ A|Xt = x] = kt+h|t(A|x). Due to the
Markov assumption, there is a 1:1 correspondence between a Markov process and a transition kernel paired
with an initial distribution p0. We impose loose regularity assumptions on Xt listed in app. A.2.

In the context of GM, we use a Markov process as follows: Given a marginal path (pt(dx))0≤t≤1 (see
sec. 2), we want to train a model that allows to simulate a Markov process such that X0 ∼ psimple ⇒ Xt ∼
pt for all 0 ≤ t ≤ 1. That is, if initializing state at t = 0 with X0 ∼ p0, the marginals of Xt will be
pt for all 0 ≤ t ≤ 1. Once we have found such a Markov process, we can simply generate samples from
p1 = pdata by sampling X0 ∼ p0 and simulating Xt+h ∼ kt+h|t(·|Xt) step-wise up to time t = 1. The
challenge with such an approach is that an arbitrary general kernel kt+h|t is hard to parameterize in a neural
network. One of the key insights in the development of diffusion models was that for small h > 0, the kernel
kt+h|t can be closely approximated by a simple parametric distribution like Gaussian (Sohl-Dickstein et al.,
2015; Ho et al., 2020). One can extend this idea to Markov processes leading to the concept of the generator.

4 GENERATORS

Let us consider the transition kernel kt+h|t for small h > 0. Specifically, we consider an informal 1st-order
Taylor approximation in t with an error term o(h):

“kt+h|t = kt|t + hLt + o(h)”, Lt :=
d

dh

∣∣∣
h=0

kt+h|t, kt|t(·|x) = δx (5)

We call the 1st-order derivative Lt the generator of kt+h|t (Ethier & Kurtz, 2009; Rüschendorf et al.,
2016). Similar to derivatives, generators are first-order linear approximations and, as we will see, easier to
parameterize than kt+h|t. Diffusion, flow, and other generative models can all be seen as algorithms to learn
the generator of a Markov process (see table 1). However, as a probability measure is not a standard function,
equation 5 is not well-defined yet. We will make it rigorous using test functions.

Test functions. Test functions are a way to “probe” a probability distribution. They serve as a theoretical
tool to handle distributions as if they were real-valued functions. Specifically, we use a family T of bounded,
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Name Flow Diffusion Jump process
Continous-time

Markov chain

Space S S = Rd S = Rd S arbitrary |S| < ∞

Parameters ut(x) ∈ Rd σ2
t (x) ∈ S++

d Jump measure Qt(dy;x)
Qt ∈ RS×S , 1TQt = 0

Qt(x
′;x) ≥ 0 (x′ 6= x)

Sampling Xt+h = Xt + hut(Xt)
Xt+h = Xt +

√
hσ2

t (Xt)εt

εt ∼ N (0, I)

Xt+h = Xt with prob. 1− h
∫
Qt(dy;x)

Xt+h ∼ Qt(dy;x)∫
Qt(dy;x)

with prob. h
∫
Qt(dy;x)

Xt+h ∼ (I + hQt)(·;Xt)

Generator Lt ∇fTut
1
2∇

2f · σ2
t

∫
[f(y)− f(x)]Qt(dy;x) fTQT

t

KFE

(Adjoint)

Continuity Equation:

∂tpt = −∇ · [utpt]

Fokker-Planck Equation:

∂tpt =
1
2∇

2 · [ptσ2
t ]

Jump Continuity Equation: ∂t dpt

dν (x) =∫
Qt(x;x

′)dpt

dν (x′)−Qt(x
′;x)dpt

dν (x)v(dx′)

Mass preservation:

∂tpt = Qtpt

Marginal Ez∼p1|t(·|x)[ut(x|z)] Ez∼p1|t(·|x)[σ
2
t (x|z)] Ez∼p1|t(·|x)[Qt(dx

′;x|z)] Ez∼p1|t(·|x)[Qt(x
′;x|z)]

CGM Loss

(Example)
‖ut(x|z)− uθ

t (x)‖2 ‖σ2
t (x|z)− [σθ

t ]
2(x)‖22

(
∫
Qθ

t (x
′;x)v(dx′)

−Qt(x
′;x|z) logQθ

t (x
′;x)v(dx′))

(
∑

x′ 6=x

Qθ
t (x

′;x)

−Qt(x
′;x|z) logQθ

t (x
′;x))

Table 1: Examples of Markov models that can be learnt with GM. Derivations are in app. A.5. For diffusion,
we assume zero drift. KFE is listed in its adjoint version, i.e. assumes jump kernel Qt(y;x) and density
dpt

dν (x) exists with respect to reference ν. For Lebesgue measure ν, we write dpt

dν (x) = pt(x).

integrable functions f : S → R that characterize probability distributions fully, i.e., two probability
distributions µ1, µ2 are equal if and only if Ex∼µ1

[f(x)] = Ex∼µ2
[f(x)] for all f ∈ T . Generally speaking,

one chooses T to be as “nice” (or regular) as possible. For example, if S = Rd, the space T = C∞
c of

infinitely differentiable functions with compact support fulfills that property. We define the action of the
marginal pt and transition kernels kt+h|t for all f ∈ T via the linear function defined via

〈pt, f〉
def
=

∫
f(x)pt(dx) = Ex∼pt

[f(x)] I marginal action (6)〈
kt+h|t, f

〉
(x)

def
=
〈
kt+h|t(·|x), f

〉
= E [f(Xt+h)|Xt = x] I transition action (7)

where the marginal action maps each test function f to a scalar 〈pt, f〉 ∈ R, while the transition action maps
a real-valued function x 7→ f(x) to a another real-valued function x 7→

〈
kt+h|t, f

〉
(x). The tower property

implies that
〈
pt,
〈
kt+h|t, f

〉〉
= 〈pt+h, f〉. We note that the above is only a "symbolic" dot product but

becomes a "proper" dot product if a density dpt

dν exists, i.e. 〈pt, f〉 =
∫
f(x)dpt

dν (x)ν(dx).

Generator definition. Let us revisit equation 5 and define the derivative of kt+h|t. With the test function
perspective in mind, we can take derivatives of

〈
kt+h|t, f

〉
(x) per x ∈ S and define

d

dh

∣∣∣
h=0

〈
kt+h|t, f

〉
(x) = lim

h→0

〈
kt+h|t, f

〉
(x)− f(x)

h

def
= [Ltf ](x). (8)

We call this action the generator Lt (and define it for all f for which the limit exists uniformly in x and t, see
app. A.1 ). In table 1, there are several examples of generators listed with derivations in app. A.5. With this
definition, the Taylor series in equation 5 has the, now well-defined, form as

〈
kt+h|t, f

〉
= f + hLtf + o(h).

Under mild regularity assumptions, there is a unique correspondence between the generator and the Markov
process (see (Ethier & Kurtz, 2009; Pazy, 2012)). This allows us to parameterize a Markov process:

Principle 2: Parameterize a Markov process via a parameterized generator Lθ
t .
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Of course, it is hard to parameterize a linear operator Lt on function spaces directly via a neural network. A
simple solution is to restrict ourselves to certain subclasses of Markov processes and parameterize it linearly
with a neural network (see app. A.6 for details and examples). For example, flow matching restricts itself to
generators of the form Ltf = ∇f(x)Tuθ

t (x) which correspond to flows. However, as we will show now, we
can in fact fully characterize generators on specific spaces.
Theorem 1 (Universal characterization of generators). Under regularity assumptions (see app. A.2), the
generators of a Markov processes Xt (0 ≤ t ≤ 1) take the form:

1. Discrete |S| < ∞: The generator is given by a rate transition matrix Qt and the Markov process
corresponds to a continuous-time Markov chain (CTMC).

2. Euclidean space S = Rd: The generator has a representation as a sum of components described in
table 1, i.e.,

Ltf(x) = ∇f(x)Tut(x)︸ ︷︷ ︸
flow

+
1

2
∇2f(x) · σ2

t (x)︸ ︷︷ ︸
diffusion

+

∫
[f(y)− f(x)]Qt(dy;x)︸ ︷︷ ︸

jump

(9)

where u : [0, 1] × Rd → Rd is a velocity field, σ : [0, 1] × Rd → S++
d the diffusion coefficient

(S++
d =positive semi-definite matrices), and Qt(A|x) is a finite measure called jump measure.

∇2f(x) describes the Hessian of f and ∇2f(x) · σ2
t (x) describes the Frobenius inner product.

The proof adapts a known result in the mathematical literature and can be found in app. C.1. This result
allows us to not only characterize a wide class of Markov process models but to characterize the design space
exhaustively for S = Rd or S discrete. In Euclidean space, people have considered learning the flow parts
of the generator and for diffusion models, using a fixed σt for a diffusion. Learning σt or jump models on
non-discrete spaces have not (or rarely) been considered. A general recipe to sample from a Markov process
with a universal generator is presented in alg. 2. For S = Rd, we can therefore simplify Principle 2:

Principle 2 (S = Rd): Parameterize a Markov process (e.g., using a neural network) via a generator Lt that
is composed of (a subset of) velocity ut, diffusion coefficient σ2

t , and jump measure Qt.

5 KOLMOGOROV FORWARD EQUATION AND MARGINAL GENERATOR

Beyond parameterizing a Markov process, the generator has a further use-case in the Generator Matching
framework: checking if a Markov process generates a desired probability path pt. We discuss the latter now
using the Kolmogorov Forward Equation (KFE). Specifically, the evolution of the marginal probabilities pt
of a Markov process Xt are governed by the generator Lt, as can be seen by computing:

∂t 〈pt, f〉 =
d

dh

∣∣∣
h=0

〈pt+h, f〉 =
〈
pt,

d

dh

∣∣∣
h=0

〈
kt+h|t, f

〉〉 (8)
= 〈pt,Ltf〉 (10)

where we used that the 〈pt, ·〉 operation is linear to swap the derivative, and the fact that
〈
pt,
〈
kt+h|t, f

〉〉
=

〈pt+h, f〉. This shows that given a generator Lt of a Markov process Xt we can recover its marginal
probabilities via their infinitesimal change,

∂t 〈pt, f〉 = 〈pt,Ltf〉 I Kolmogorov Forward Equation (KFE) (11)

Conversely, if a generator Lt of a Markov process Xt satisfies the above equation, then Xt generates the
probability path (pt)0≤t≤1, i.e. initializing X0 ∼ p0 will imply that Xt ∼ pt for all 0 ≤ t ≤ 1 (see app. A.2)
(Rogers & Williams, 2000). Therefore, a key component of the Generator Matching framework will be:

Principle 3*: Given a marginal probability path (pt)0≤t≤1, find a generator satisfying the KFE.

5
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Adjoint KFE. The above version of the KFE determines the evolution of expectations of test functions f .
Whenever a probability density dpt

dν (x) exists, one can use the adjoint KFE (see table 1 for examples and
app. A.3 for details). In this form, the KFE generalizes many equations used to develop generative models
such as Fokker-Planck or the continuity equation (Song et al., 2020; Lipman et al., 2022) (see table 1).

We return to the task of finding a generator that generates a marginal probability path pt with conditional path
pt(·|z). Assume that for every data point z ∈ S, we found a generator Lz

t that generates pt(·|z). We call Lz
t

conditional generator. This allows us to construct a generator for the marginal path (marginal generator):
Proposition 1. The marginal probability path (pt)0≤t≤1 is generated by a Markov process Xt with generator

Ltf(x) =Ez∼p1|t(·|x)[L
z
t f(x)] (12)

where p1|t(dz|x) is the posterior distribution (i.e. the conditional distribution over data z given an observation
x). For S = Rd and the representation in eq. (9), we get a marginal representation of Ltf(x) given by:

∇f(x)TEz∼p1|t(·|x)[ut(x|z)] +
∇2f(x)

2
· Ez∼p1|t(·|x)[σ

2
t (x|z)] +

∫
[f(y)− f(x)]Ez∼p1|t(·|x)[Qt(dy;x|z)]

Generally, an identity as in eq. (12) holds for any linear parameterization of the generator (see app. A.6).

The proof relies on the linearity of the KFE (see app. C.3). Proposition 1 immensely simplifies the construction
of a Markov process that generates a desired probability path. To find the right training target, we only need
to find a solution for the KFE for the conditional path. This simplifies Principle 3* to:

Principle 3: Derive a conditional generator Lz
t satisfying the KFE for the conditional path pt(·|z).

In denoising diffusion models, the strategy to find solutions to a KFE is to construct a probability path via a
forward noising process and then use a time-reversal of that process as a solution to the KFE (we illustrate this
in app. H.2). Here, we illustrate two novel solutions for the KFE for common conditional probability paths on
Rd in fig. 2. We discuss them here for d = 1 (in sec. 7.2 it is discussed how to easily extend it to d > 1).

Example 1 - Jump solution to geometric average. Current state-of-the-art models use a geometric average
probability path given by pt(·|z) = N (tz, (1− t)2) called CondOT path (Lipman et al., 2022). We ask the
question: are there other Markov processes that follow the same probability path? As derived in app. E.1,
another solution is given by a jump model with rate kernel Qt : R× R → R:

Qt(x
′;x|z) = [kt(x)]+[−kt(x

′)]+pt(x
′|z)

(1− t)3
∫
[−kt(x̃)]+pt(x̃|z)dx̃

, kt(x) = x2 − (t+ 1)xz − (1− t)2 + tz2 (13)

where [x]+ := max(x, 0). In fig. 2, we illustrate how a jump model trained with this conditional rate has the
same marginal probability path as common flow models but with significantly different sample paths.

Example 2 - Pure diffusion solution to mixture path. GM allows to learn the diffusion coefficient σ2
t of an

SDE. We illustrate this for the mixture path pt(dx|z) = κtδz + (1− κt)Unif[a1,a2]. We introduce a solution
that we call “pure diffusion” (see app. E.2). The corresponding Markov process is given by an SDE with no
drift (i.e., no vector field) and diffusion coefficient given by

σ2
t (x|z) =2κ̇t

a2 − a1
1− κt

(
1

2

(z − a1)
2

a2 − a1
+ [x− z]+ − 1

2

(x− a1)
2

a2 − a1
)

)
(14)

We add an additional reflection term at the boundaries of the data support (see app. E.2 for details). Note the
striking feature of this model: It only specifies how much noise to add to the current state. Still, it is able to
generate data (see fig. 2). This is strictly different than “denoising diffusion models” because they corrupt
data (as opposed to generating) with a diffusion process and there σ2

t (x) = σ2
t is state-independent.
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Figure 2: Illustration of Markov models trained with different KFE solutions for the same probability path.
The paths for individual samples are plotted across time in one plot. 2d histograms of generated samples are
plotted per time point. Although the individual sample paths look very different, the marginal probability path
(histogram) are the same up to approximation error (Geometric average ∼ example 1, mixture ∼ example 2).

6 GENERATOR MATCHING

We now discuss how to train a parameterized generator Lθ
t to approximate the “true” marginal generator Lt.

In practice, Lθ
t is linearly parameterized by a neural network F θ

t : S × [0, 1] → Ω where Ω ⊂ V is convex
subset of some vector space V with inner product 〈·, ·〉 (see app. A.6 for details). Our goal is to approximate
the ground truth parameterization Ft : S × [0, 1] → Ω of Lt. For example, Ft = ut for flows, Ft = σ2

t
for diffusion, or Ft = Qt for jumps (see table 1). We train the neural network F θ

t to approximate Ft. As a
distance function on Ω, we consider Bregman divergences defined via a convex function φ : Ω → R as

D(a, b) = φ(a)− [φ(b) + 〈a− b,∇φ(b)〉], a, b ∈ Ω (15)
which are a general class of loss functions including many examples such as MSE or the KL-divergence (see
app. C.4.1). We use D to measure how well F θ

t approximates Ft via the Generator Matching loss defined as

Lgm(θ)
def
= Et∼Unif,x∼pt

[
D(Ft(x), F

θ
t (x))

]
I Generator Matching (16)

Unfortunately, the above training objective is intractable as we do not know the marginal generator Lt and
also no parameterization Ft of the marginal generator. To make training tractable, let us set F z

t to be a linear
parameterization of the conditional generator Lz

t with data point z (see app. A.6). For clarity, we reiterate
that by construction, we know F θ

t , F
z
t , pt(·|z), D as well as can draw data samples z ∼ pdata but the shape of

Ft is unknown. By proposition 1, we can assume that Ft has the shape Ft(x) =
∫
F z
t (x)p1|t(dz|x). This

enables us to define the conditional Generator Matching loss as

Lcgm(θ)
def
= Et∼Unif,z∼pdata,x∼pt(·|z)

[
D(F z

t (x), F
θ
t (x))

]
I Conditional Generator Matching (17)

This objective is tractable and scalable. It turns out that we can use it to minimize the desired objective.
Proposition 2. For any Bregman divergence, the GM loss Lgm has the same gradients as the CGM loss Lcgm,
i.e. ∇θLgm(θ) = ∇θLcgm(θ). Therefore, minimizing the CGM loss with Stochastic Gradient Descent will
also minimize the GM loss. Further, for this property to hold, D must necessarily be a Bregman divergence.

Note the significance of proposition 2: we can learn Lt without having ever access to it with a scalable
objective. Further, we can universally characterize the space of loss functions. The proof can be found in
app. C.4. In table 1, we list examples of several CGM loss functions. Often it is also possible to derive losses
that give lower bounds on the model log-likelihood (ELBO bounds). We illustrate this in app. D.

Principle 4: Train Lθ
t by minimizing the CGM loss with a Bregman divergence.

With this, we arrived at the last principle of GM. In alg. 1, we summarize the Generator Matching recipe for
constructing generative models.
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7 APPLICATIONS OF GENERATIVE MATCHING THEORY

GM provides a unifying framework for many existing generative models (see sec. 8), as well as gives rise to
new models. Beyond that, the generality of GM in itself has several use cases that we discuss in this section.

7.1 COMBINING MODELS

The generator is a linear operator and the KFE ∂t 〈pt, f〉 = 〈pt,Ltf〉 is a linear equation. These two
properties enable us to combine generative models for the same state space S in different ways.
Proposition 3 (Combining models). Let pt be a marginal probability path, then the following generators
solve the KFE for pt and consequently define a generative model with pt as marginal:

1. Markov superposition: α1
tLt+α2

tL′
t, where Lt,L′

t are two generators of Markov processes solving
the KFE for pt, and α1

t , α
2
t ≥ 0 satisfy α1

t + α2
t = 1. We call this a Markov superposition.

2. Divergence-free components: Lt + βtLdiv
t , where Ldiv

t is a generator such that
〈
pt,Ldiv

t f
〉
= 0 for

all f ∈ T , and βt ≥ 0. We call such Ldiv
t divergence-free.

3. Predictor-corrector: α1
tLt + α2

t L̄t, where Lt is a generator solving the KFE for pt in forward-time
and L̄t is a generator solving the KFE in backward time, and α1

t , α
2
t ≥ 0 with α1

t − α2
t = 1.

A proof can be found in app. C.5. Markov superpositions can be used to combine generative models of
different classes, e.g., one could combine a flow and a jump model. These can be 2 networks trained separately
or we can train two models in one network simultaneously. We illustrate Markov superpositions in fig. 2. To
find divergence-free components, one can use existing Markov-Chain Monte-Carlo (MCMC) algorithms -
such as Hamiltonian Monte Carlo, Langevin dynamics, or approaches based on detailed balance - all of these
algorithms are general recipes to find divergence-free components.

7.2 MULTIMODAL AND HIGH-DIMENSIONAL GENERATIVE MODELING

GM allows us to easily combine generative models from two state spaces S1, S2 into the product space
S1 × S2 in a rigorous, principled, and simple manner. This has two advantages: (1) we can design a joint
multi-modal generative model easily and (2) we can often reduce solving the KFE in high dimensions to the
one-dimensional case. We state here the construction informally and provide a rigorous treatment in app. C.6.
Proposition 4 (Multimodal generative models - Informal version). Let q1t (·|z1), q2t (·|z2) be two conditional
probability paths on state spaces S1, S2. Define the conditional factorized path on S1 × S2 as pt(·|z1, z2) =
q1t (·|z1)q2t (·|z2). Let pt(dx) be its marginal path.

1. Conditional generator: To find a solution to the KFE for the conditional factorized path, we only
have to find solutions to the KFE for each S1, S2. We can combine them component-wise.

2. Marginal generator: The marginal generator of pt(dx) can be parameterized as follows: (1)
parameterize a generator on each Si but make it values depend on all dimensions; (2) During
sampling, update each component independently as one would do for each Si in the unimodal case.

3. Loss function: We can simply take the sum of loss functions for each Si.

As a concrete example, let us consider joint image-text generation with a joint flow and discrete Markov
model with S1 = Rd, S2 = {1, . . . , N}. To build a multimodal model, we can simply make the vector field
ut(x

1
t , x

2
t ) ∈ Rd depend on both modalities x1

t , x
2
t but update the flow part via X1

t+h = X1
t + hut(X

1
t , X

2
t ).

Similarly, the text updates depend on both (X1
t , X

2
t ). In app. F, we give another example for jump models.

8 RELATED WORK

GM unifies a diversity of previous generative modeling approaches. We discuss here a selection for S = Rd

and S discrete. App. H includes an detailed discussion and models for other S (e.g. manifolds, multimodal).
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Denoising Diffusion and Flows in Rd. From the perspective of GM, a “denoising diffusion model” is a
flow model that is learnt using the CGM loss with the mean squared error. During sampling, a divergence-
free component given via Langevin dynamics (Flow + SDE) can be be added for stochastic sampling (see
proposition 3). If we set the weight of that component to 0, we recover the probability flow ODE (Song et al.,
2020). To the best of our knowledge, it has not been explored in the literature yet whether one could learn
a state-dependent diffusion coefficient σt(x) as opposed to fixing it. Our framework allows for that as we
illustrate in fig. 2. Flow matching and rectified flows (Lipman et al., 2022; Liu et al., 2022) are immediate
instances of Generator Matching leveraging the flow-specific versions of the KFE given by the continuity
equation (see table 1). Stochastic interpolants (Albergo et al., 2023) extend general flow-based models by
learning an additional divergence-free Langevin dynamics component separately (see proposition 3 (b)) and
showcase the advantages of adding it both theoretically and practically.

Discrete models and LLMs. In discrete space, Generator Matching recovers generative modeling via
continuous-time Markov chains (Campbell et al., 2022; Santos et al., 2023; Gat et al., 2024), often coined
“discrete diffusion models”. These models use a version of proposition 4 using factorized probability paths to
make the generator (=rate matrix Qt) update each dimension independently. SEDD (Lou et al., 2024b) use
the same Bregman divergence but with a different linear parameterization of the generator, namely via the
discrete score. Theoretically, by using auto-regressive probability paths and fixing the jump times via high
jump intensities, one can also recover common language model training as an edge case of GM.

Markov generative modeling. The most closely-related work to ours is Benton et al. (2024). This work
focuses on recovering existing denoising diffusion models into a common framework. Here, we try to fully
characterize the design space of Markov generative models as a whole and identify novel parts - e.g., by
introducing jump models on Rd, Markov superpositions, universal characterizations of the space of generators,
novel solutions to the KFE, Bregman divergence losses as the natural loss classes, among others.

9 EXPERIMENTS

The design space of the GM framework is extraordinarily large. At the same time, single classes of models
(e.g., diffusion and flows) have already been optimized over many previous works. Therefore, we choose to
focus on 3 aspects of GM: (i) Jump models as a novel class of models (ii) The ability of combining different
model classes into a single generative model (iii) The ability to design models for multimodal state spaces.

Method CIFAR10 ImageNet

DDPM (Ho et al., 2020) 3.17 6.99
VP-SDE (Song et al., 2020) 3.01 6.84
EDM (Karras et al., 2022) 1.98 −
Flow model (Euler) 2.94 4.58
Jump model (Euler) 4.23 7.66
Jump + Flow MS (Euler) 2.49 3.47
Flow model (2nd order) 2.48 3.59
Jump + Flow MS (mixed) 2.36 3.33

Table 2: Experimental results for image generation. FID
scores are listed. MS=Markov superposition. Euler: euler
sampling. 2nd order: 2nd order ODE sampler. Mixed: Flow
uses 2nd order sampler and jump uses Euler sampling.

New models - Jump model. We first study
jump models as a novel model class in Eu-
clidean space. We use the jump model de-
fined in eq. (13) and extend it to multiple
dimensions using proposition 4. The jump
kernel is parameterized with a U-Net archi-
tecture (see app. F for details). We use the
loss from table 1. In app. D, we show that
this corresponds to an ELBO loss. We apply
the model on CIFAR10 and the ImageNet32
(blurred faces) datasets. As jump models do
not have yet an equivalent of classifier-free
guidance, we focus on unconditional gener-
ation. A challenge for a fair comparison is
that flow models can use higher-order ODE
samplers, while sampling for jump models in
Rd is only done with Euler sampling so far.
Hence, we ablate over this choice. As one can see in fig. 4, the jump model can generate realistic images of
high quality. In table 2, we show quantitative results. While lacking behind current state-of-the art models,
the jump model shows promising results as a first version of an unexplored class of models.

9
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Combining models - Markov superposition. Next, we train a flow and jump model in the same architecture.
We validate that the flow part achieves the state-of-the-art results as before. We then combine both models via
a Markov superposition. As one can see in table 2, a Markov superposition of a flow and jump model boosts
the performance of each other. For Euler sampling, we see significant improvements. We can also combine
2nd order samplers for flows with Euler sampling for jumps in a “mixed” sampling method (see table 2)
leading to improvements of the current SOTA by flow models. We anticipate that with further improvements
of the jump model, the increased performance via Markov superposition will be even more pronounced.

Multimodal Unimodal
Method Div. Nov. Div. Nov.

RFdiffusion (Watson et al., 2023) N/A 0.4 0.37
FrameFlow (Yim et al., 2024) N/A 0.39 0.39
FoldFlow (Bose et al., 2023) N/A 0.24 0.32
Protpardelle (Chu et al., 2024) 0.1 0.4 0.12 0.41
ProteinGenerator (Lisanza et al., 2023) 0.09 0.31 0.19 0.35
MultiFlow (Campbell et al., 2024b) 0.38 0.39 0.52 0.39
w/ SO(3) jumps (ours) 0.48 0.41 0.63 0.41
w/ SO(3) jumps + flow (ours) 0.47 0.4 0.59 0.40

Table 3: Protein generation results. Diversity (Div) is the share of unique
proteins passing a quality check called designability, Novelty (Nov) is
the average inverse similarity of each protein passing designability.

Multimodal state spaces - Pro-
tein experiments. GM allows
us to design models for arbitrary
and complex state spaces. To il-
lustrate this, we show that GM
allows to easily improve Multi-
Flow, a state-of-the-art model for
joint protein structure and amino
acid sequence generation (Camp-
bell et al., 2024b), without even
re-training the model. Specifi-
cally, we derive a novel solution
Lz
t to the KFE on S = SO(3)

with a jump model (see app. G.1).
We then make this model multi-
dimensional (S = SO(3)d) and
use proposition 4 to combine it with a flow model on Rd and a discrete Markov model on {1, . . . , n}d for
n = 20 (number of amino acids), i.e. the state space becomes S = Rd × SO(3)d × {1, . . . , 20}d. Using the
pre-trained MultiFlow without any fine-tuning, we “pseudo-marginalize” the conditional jumps by predicting
x1 ∈ SE(3) and then taking a conditional step with Lz

t . In fig. 3, we can see examples of generated proteins.
We benchmark our results following Yim et al. (2023a). Table 3 shows our results of incorporating jumps
with MultiFlow compared to baselines. In multimodal setting, both sequence and structure state spaces are
sampled jointly while in the unimodal setting only the structure is sampled. We clearly see that including a
jump model results in state-of-the-art performance while greatly increases the diversity metric. See
App. G.4 for more results and experiment details.

10 DISCUSSION

We introduced Generator Matching, a general framework for scalable generative modeling on arbitrary state
spaces via Markov generators. The generator abstraction offers key insights into the fundamental equations
governing Markov generative models: Generators are linear operators, the KFE is a linear equation, and
many losses (Bregman divergences) are linear in the training target. Therefore, any minimization we do
conditionally on a data point, implicitly minimizes the training target marginalized across a distribution of
data points. These principles allowed us to unify a diversity of prior generative modeling methods such as
diffusion models, flow matching, or discrete diffusion models. Further, we could universally characterize
the space of Markov models and loss functions. GM allows us to combine generative models of different
classes on the same state space (Markov superpositions) and how to build multimodal generative models from
unimodal components. Future work could further explore the design space of GM. For example, we showed
how one can learn a diffusion coefficient σt of a diffusion model. In addition, jump models on Euclidean
space offer a large class of models that we could only study here in its simple instances. In addition, future
work can explore better samplers or distillation to minimize computational cost during sampling. To conclude,
Generator Matching provides both a rigorous theoretical foundation and opens up a large practical design
space to advance generative modeling across a diverse range of applications.
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Figure 4: . Examples of generated images on CIFAR10 (top) and ImageNet32 (bottom).

Figure 3: Examples of generated proteins with SO(3) jumps model and MultiFlow. Each protein passes the
designability filter check and is structurally unique.

Algorithm 1 Generator Matching
recipe for constructing Markov gen-
erative model (theory in black, imple-
mentation in brown)
Step 0: Choose prior psimple
Step 1: Choose pt(dx|z) such that
marginal p0 = psimple and p1 = pdata
Step 2: Find solution Lz

t to KFE
Step 3: Choose Bregman div. as loss
Step 4: Construct neural net Lθ

t
Step 5: Minimize CGM loss using Lz

t
Step 6: Sample using Algorithm 2.

Algorithm 2 Euler sampling for S = Rd

Given: ut, σt, Qt, psimple, step size h > 0
Init: X0 ∼ psimple

1: for t in linspace(0, 1, 1/h) do
2: Jump intensity λt(Xt) =

∫
Qt(dy;Xt)

3: X̄t+h ∼ Qt(·;Xt)/λt(Xt)
4: m ∼ Bernoulli(hλt(Xt)), εt ∼ N (0, 1)

5: X̃t+h = Xt + hut(Xt) +
√
hσt(Xt)εt

6: Xt+h = mX̄t+h + (1−m)X̃t+h

7: end for
Return: X1
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A OVERVIEW OF MARKOV PROCESSES AND THEIR GENERATORS

A.1 SETUP AND DEFINITIONS

State space. Throughout this work, we assume (S, d) is a Polish metric space, i.e., S is a set and there is a
metric d : S × S → R≥0 defined on S such that (S, d) is complete (i.e., any Cauchy sequence converges)
and separable (i.e., it has a countable dense subset). We endow S with its Borel σ-algebra B(S) and consider
a set A ⊂ S as measurable if A ∈ B(S). Any function f : S → R considered in this work is assumed to
be measurable. Throughout this work, we assume that T is a set of functions f : S → R on S such two
probability measures µ1, µ2 are equal if and only if Ex∼µ1

[f(x)] = Ex∼µ2
[f(x)] for all f ∈ T . We call

elements in T test functions. Throughout this work, ν denote a reference measure on S (e.g. the Lebesgue
measure on Rd or the count measure on discrete spaces). We write dp

dν (x) for a density of a probability
measure p with respect to the reference measure ν.

Markov process. Let (Ω,F ,P) be a probability space. A Markov process (Xt)0≤t≤1 is a collection of
integrable random variables Xt : Ω → S such that

Markov assumption: P[Xtn+1 ∈ A|Xt1 , Xt2 , . . . , Xtn ] = P[Xtn+1 ∈ A|Xtn ] (18)
for all 0 ≤ t1 < t2 < · · · < tn < tn+1 ≤ 1, A ⊆ S measurable (19)

We denote by kt+h|t(A|x) = E[Xt+h ∈ A|Xt = x] the transition kernel of Xt.

Semigroup. We define the action of marginals pt and of transition kernels kt+h|t on test functions f as in
the main paper via:

〈pt, f〉 =
∫

f(y)pt(dy) = E [f(Xt)] I marginal action (20)〈
kt+h|t, f

〉
(x) =

∫
f(y)kt+h|t(dy|x) = E [f(Xt+h)|Xt = x] I transition action (21)

where the marginal action maps each test function f to a scalar 〈pt, f〉 ∈ R, while transition action maps a
real-valued function x 7→ f(x) to a another real-valued function x 7→ [

〈
kt+h|t, f

〉
](x). The tower property

implies that pt
〈
kt+h|t, f

〉
= 〈pt+h, f〉. Considering kt+h|t as a linear operator as above, we know by the

Markov assumption and the tower property that there are two fundamental properties that hold:

kt|t =Id,
〈
ps|u, f

〉
=
〈
pt|u,

〈
ps|t, f

〉〉
, 0 ≤ u < t < s ≤ 1 I composition (22)

‖
〈
ps|t, f

〉
‖∞ ≤‖f‖∞, 0 ≤ t < s ≤ 1 I contraction (23)

where ‖ · ‖∞ describes the supremum norm.

A.1.1 DEFINITIONS FOR TIME-HOMOGENEOUS MARKOV PROCESSES

A complication in the theory we develop here is that we (need to) consider time-inhomogeneous Markov
processes, while most of the mathematical theory and literature resolves around time-homogeneous Markov
processes. Therefore, we first give the definitions for time-homogeneous Markov processes and then explain
how this can be translated to the time-homogenous case.

A time-homogeneous Markov process is a Markov process X̄t such that kt+h|t = kh|0 for all t, h ≥ 0 - i.e.
the evolution is constant in time. This implies the semigroup property

kt|0 = Id, ks|0 ◦ kt|0 = ks+t|0 (24)

Let C0(S) be the space of continuous functions f : S → R that vanish at infinity, i.e. for all ε > 0 there
exists a compact set K ⊂ S such that |f(x)| < ε for all x ∈ S \K.
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Feller process. We call X̄t a Feller process if it holds that

1. Operators on continuous functions: For any f ∈ C0(S) and t ≥ 0, also kt|0f ∈ C0(S).

2. Strong continuity: For any f ∈ C0(S):

lim
t↓0

‖kt|0f − f‖∞ = 0 (25)

Generator. We define the generator L of a Feller process X̄t as follows: for any f ∈ C0(S) such that the
limit

lim
t↓0

kt|0f − f

t
→ Lf (26)

exists uniformly in S (i.e., in ‖ · ‖∞) and we define Lf as the limit above. We define the core D(L) as all f
for which that limit exists. It holds that D(L) is a dense subspace of C0(S) (Pazy, 2012) and L is a linear
operator.

A.1.2 DEFINITIONS FOR TIME-INHOMOGENEOUS MARKOV PROCESSES

For a general time-inhomogeneous Markov process Xt, one can extend the definitions to a two-parameter
semigroup, see (Rüschendorf et al., 2016) for example. Another approach is to simply consider the corre-
sponding time-homogeneous Markov process X̄t = (Xt, t) on extended state space S × [0, 1]. The transition
kernel on extended state space is then given for A ⊂ S × [0, 1] via:

p̄h|0(A, (x, t)) = kt+h|t(At+h|x), At+h := {y|(y, t+ h) ∈ A} (27)

and the action is given via

p̄h|0f(x, t) = E[f(Xt+h, t+ h)|Xt = x] (28)

Feller process. The Feller assumption is equivalent to:

1. Operators on continuous functions: For any f ∈ C0(S × [0, 1]) and t ≥ 0, also kt|0f ∈
C0(S × [0, 1]).

2. Strong continuity: For any f ∈ C0(S × [0, 1]):

lim
t↓0

‖kt|0f − f‖∞ = 0 (29)

where here the supremum norm ‖ · ‖∞ is taken across S and time [0, 1].

Time-dependent generator. In the above case, we can reshape the generator via

Lf(x, t) = lim
h→0

E[f(Xt+h, t+ h)− f(Xt, t)|Xt = x]

h
(30)

= lim
h→0

E[f(Xt+h, t+ h)− f(Xt, t+ h) + f(Xt, t+ h)− f(Xt, t)|Xt = x]

h
(31)

= lim
h→0

[
E[f(Xt+h, t+ h)− f(Xt, t+ h)|Xt = x

h

]
+ lim

h→0

f(x, t+ h)− f(x, t)

h
(32)

= lim
h→0

[
E[f(Xt+h, t+ h)− f(Xt, t+ h)|Xt = x]

h

]
︸ ︷︷ ︸

=:Ltft(x)

+∂tf(x, t) (33)

=Ltf
t(x) + ∂tf(x, t) (34)
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where f t : S → R, x 7→ f(x, t) describes the restriction of f on S and we defined the time-dependent
generator Lt as an operator acting on spatial components, i.e. functions in C0(S), via

Ltg(x) := lim
h→0

E[g(Xt+h)− g(Xt)|Xt = x]

h
(35)

for any g : S → R such that the limit exists. Note that however that when we define the time-dependent
generator Ltf , we also need to specify the direction operator ∂t (i.e. in what direction of time it goes). This is
always implicitly assumed. Further, we remark that in the above derivation, we have assumed that t 7→ Ltf

t

is continuous (in supremum norm) in t for any function in the domain of Lt. We will state this now again.

A.2 REGULARITY ASSUMPTIONS.

Throughout this work, we make the following regularity assumptions:

1. Assumption on semigroup: The Markov process Xt is a Feller process in the sense defined in
app. A.1.2.

2. Assumption on sample paths: In every time interval [s, t], the expected number of discontinuities
of t 7→ Xt is finite.

3. Assumptions on test functions: There exists a subspace of test functions T that is dense in
C0(S) such that T ⊂ dom(Lt) and the function t 7→ Ltf is continuous for any f ∈ T . Further,
two probability distributions µ1, µ2 on S are equal if and only if for all f ∈ T it holds that
Ex∼µ1

[f(x)] = Ex∼µ2
[f(x)].

4. Assumptions on probability path: Any probability path (pt)0≤t≤1 considered fulfils that the
function t 7→ 〈pt, f〉 is continuous in t for all f ∈ T .

5. KFE is sufficient to check probability path: Let (pt)0≤t≤1 be a probability path on S. Then:

X0 ∼p0 (start with right initial distribution) (36)
∂t 〈pt, f〉 = 〈pt,Ltf〉 for all f ∈ T (fulfill KFE) (37)

⇒ Xt ∼pt for all 0 ≤ t ≤ 1 (marginals of Xt are given by pt) (38)

i.e. if Xt is initialized with the right initial distribution, its marginals will be given by pt.

Remark regarding assumption 5. We note that assumption 5 is true under relatively weak assumptions
and there is a diversity of mathematical literature on showing uniqueness of the solution of the KFE in pt
for different settings. However, to the best of our knowledge, there is no known result that states regularity
assumptions for general state spaces and Markov processes, which is why simply state it here as an assumption.
For the machine learning practitioner, this assumption holds for any state space of interest. To illustrate
this, we point the rich sources in the mathematical literature that show uniqueness that list the regularity
assumptions for specific spaces and classes of Markov processes:

1. Flows in Rd and manifolds: (Villani et al., 2009, Mass conservation formula, page 15), (DiPerna &
Lions, 1989), (Ambrosio, 2004)

2. Diffusion in Rd and manifolds: (Villani et al., 2009, Diffusion theorem, page 16)

3. General Ito-SDEs in Rd: (Figalli, 2008, Theorem 1.3 and 1.4), (Kurtz, 2011, Corollary 1.3),
(Bogachev et al., 2022)

4. Discrete state spaces: Here, the KFE is a linear ODE, which has a unique solution under the
assumption that the coefficients are continuous.
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Remark regarding assumption 1. In order for a generator of a Markov process to be defined, property 2 in
the definition of a Feller process must hold (see section A.1.2). Property 1 in the definition of a Feller process
(see section A.1.2), might not be stricly necessary. However, we use it because (i) most of the mathematical
literature (including the one we cite) uses it and (ii) any function on a computer is defined on a compact set.

Motivation for assumption 2. Our framework would not break necessarily if we allowed for infinite number
of discontinuities. We included this assumption because simulating an infinite number of discontinuities with
a finite number of simulation steps would necessarily induce uncontrollable simulation error upon sampling
and therefore most likely be not interesting for the purposes of generative modeling.

Motivation for assumption 4. As every probability path generated by a Feller process fulfils this assumption,
it is reasonable to only consider probability paths that have that property as well.

A.3 ADOINT KFE

The version of the KFE in eq. (11) determines the evolution of expectations of test functions f . This is
necessary if we use probability distributions that do not have a density. If a density exists, a more familiar
version of the KFE can be used that directly prescribe the change of the probability densities. To present it,
we introduce the adjoint generator L∗

t , which acts on probability densities dpt

dν (x) with respect to a refreen,
namely [L∗

t pt](x) is implicitly defined by the identity〈
dpt
dν

,Ltf

〉
ν

=

〈
L∗
t

dpt
dν

, f

〉
ν

, ∀f ∈ T (39)

⇔
∫

dpt
dν

(x)Ltf(x)ν(dx) =

∫
L∗
t

dpt
dν

(x)f(x)ν(dx) ∀f ∈ T (40)

Now, equation 39 applied to the KFE (equation 11) we get∫
∂t

dpt
dν

(x)f(x)ν(dx) (41)

=∂t

∫
dpt
dν

(x)f(x)ν(dx) (42)

=∂t 〈pt, f〉 (43)
= 〈pt,Ltf〉 (44)

=

〈
dpt
dν

,Ltf

〉
ν

(45)

=

〈
L∗
t

dpt
dν

, f

〉
ν

(46)

=

∫
[L∗

t

dpt
dν

](x)f(x)ν(dx) (47)

where "v(dx)" denotes the integration with respect to the reference measure ν on S. As this holds for all test
functions f , we can conclude that this is equivalent to

∂t
dpt
dν

(x) = [L∗
t

dpt
dν

](x) for all x ∈ S I Adjoint KFE (48)

which is an equivalent version of the KFE that we call adjoint KFE. In this form, the KFE generalizes many
famous equations used to develop generative models such as the Continuity Equation or the Fokker-Planck
Equation (Song et al., 2020; Lipman et al., 2022) (see table 1). Whenever a probability density exists, we use
the adjoint KFE. We will derive several examples of adjoint generators and adjoint KFEs in app. A.5.
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A.4 TIME-REVERSAL

In diffusion models (Song et al., 2020), the notion of a time-reversal of a diffusion process plays a crucial
role in the construction of the generative model. We discuss here the idea of time-reversal of a stochastic
process and explain why we build our framework based on probability paths and solutions to the Kolmogorov
Forward Equation (KFE) and how this includes the diffusion construction.

Probability paths vs noising/forward process. In the context of diffusion models, one usually corrupts (or
"noises") data via a "forward process". With our time parameterization (where t = 1 corresponds to data),
this is represented by a Markov process (X̄t)0≤t≤1 running backwards in time. Every such Markov process
also defines a conditional probability path pt(·|z) = k̄t|1(·|z) via its transition kernel k̄ and the marginal
probability pt corresponds to the marginals, i.e. Xt ∼ pt. Therefore, diffusion models specify a probability
path via the forward process/data corruption process. We use probability path as opposed to a noising
process because (1) it is often easier to define a probability path as opposed to a full transition kernel (2) it is
the only thing that is used during training (only the marginals of the probability path are used during training,
see eq. (17) - this includes diffusion model training as a special example). Further, we show in this work
how one probability path can have different Markov processes that generate the same probability path (see
fig. 2 for examples). However, an explicit data corruption process via a Markov process can be still a useful
heuristic to find good probability paths.

The notion of the time-reversal by Anderson (1982) is stronger than the one needed for generative
modeling. To explain this, we briefly define two notions of time-reversals. Let (Xt)0≤t≤1 be a Markov
process running in forward time and (X̄t)0≤t≤1 a Markov process running in backward time. The Markov
process Xt is called a time-reversal of X̄t if the joint distributions coincide, i.e. if

P[Xt1 ∈ A1, . . . , Xtn ∈ An] = P[X̄t1 ∈ A1, . . . , X̄tn ∈ An] (49)
for all 0 ≤ t1, . . . , tn ≤ 1, A1, . . . , An ⊂ S measurable (50)

A famous example is the time-reversal of stochastic differential equations by Anderson (1982). Next, we
introduce here the notion of a weak time-reversal. We call Xt a weak time-reversal of X̄t if the marginals
coincide, i.e. if

P[Xt ∈ A] = P[X̄t ∈ A] for all 0 ≤ t ≤ 1, A ⊂ S measurable (51)
Obviously, any strong time-reversal gives us a weak time-reversal but not vice versa necessarily. For the
purposes of generative modeling, we often only use the final point X1 of the Markov process (e.g. as a
generated image) and discard earlier time points. Therefore, whether a Markov process is a "true" time-
reversal or weak time-reversal does not matter for most applications. A famous example of a weak time
reversal that is not a "strong" time-reversal is the probability flow ODE in diffusion models (Song et al, 2020).
The probability flow ODE does not constitute a time-reversal of a diffusion process in the sense of Anderson
(1982) but it constitutes a weak time-reversal (i.e. it has the same marginals). As the probability flow ODE
is currently the state-of-the-art method for low NFEs, it illustrates that finding "true" time-reversals is a
harder mathematical problem to solve but (often) not necessary to solve for the purposes of generative
modeling and might give suboptimal results. Therefore, we restrict ourselves to weak time-reversals in this
work.

Using the KFE to find weak time-reversals. Let (X̄t)0≤t≤1 be a Markov process running in backward
time. How can we find or check whether a Markov process (Xt)0≤t≤1 running in forward time is a weak time
reversal of (X̄t)0≤t≤1? Let (pt)0≤t≤1 be the marginals of X̄t, then pt defines a probability path. Further, by
definition (Xt)0≤t≤1 is a weak time reversal of (X̄t)0≤t≤1 if and only if Xt generates the probability path
(pt)0≤t≤1. By the KFE (see eq. (11)), this holds if and only if X0 ∼ p0 and

〈pt,Ltf〉 =∂t 〈pt, f〉 = −
〈
pt, L̄tf

〉
for all f ∈ T , 0 ≤ t ≤ 1 (52)
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where in the second equation we use the KFE in reverse-time (we have to flip signs as time is running
backwards). Therefore, finding a time-reversal reduces to finding a generator Lt such that

〈pt,Ltf〉 = −
〈
pt, L̄tf

〉
for all f ∈ T , 0 ≤ t ≤ 1 (53)

This allows us to find weak time-reversal for many Markov processes. We illustrate this in app. H.2 on the
example of diffusion processes. However, actual time-reversals like the one by Anderson (1982) can still
be helpful for our purposes as a way to find a solution to the KFE. If pt is a probability path given by the
marginals of a Markov a process X̄t, its strong time-reversal is also a weak time-reversal - so we can use it to
find a solution to the KFE. Therefore, finding time-reversals can of Markov processes can be a tool to find
solutions to the KFE. We avoid using time-reversal as it imposes additional mathematical complexity that is
not needed for the vanilla generative modeling task.

A.5 PROPERTIES OF IMPORTANT MARKOV PROCESSES (DERIVATIONS FOR TABLE 1)

In this section, we include the definition of important classes of Markov processes and their properties
including their generators.

A.5.1 FLOWS

Definition. Let S = Rd and u : Rd × R → Rd, (x, t) 7→ ut(x) be a time-dependent vector field. Then a
flow φt,s(x) is the solution to the ODE:

d

dt
φt,s(x) = ut(φt,s(x), t), φs,s(x) = x (54)

It is clear that φt,s is a deterministic Markov transition kernel pt|s, i.e. pt|s(·;x) is a delta distribution for
every x ∈ Rd. Euler sampling of the ODE corresponds to

Xt+h = Xt + hut(Xt) + o(h) (55)

Generator. Let T = C∞
c (Rd) be the space of infinitely differentiable and smooth functions with compact

support (test function in Rd). Then we can compute the generator via

[Ltf ](x) = lim
h→0

E [f(Xt + hut(Xt) + o(h))|Xt = x]− f(x)

h
(56)

= lim
h→0

h∇f(x)Tut(x) + o(h)

h
= ∇f(x)Tut(x), (57)

where we used a first-order Taylor approximation and the limit is uniform by the fact that f is in C∞
c (Rd).

Adjoint and adjoint KFE. Let’s assume that pt has a density dpt

dν (x) with respect to the Lebesgue measure
that is bounded and continuously differentiable. In the following paragraph, we write pt(x) =

dpt

dν (x) for its
density. Then we can compute the adjoint generator L∗

t via
〈pt,Ltf〉 =Ex∼pt

[Ltf(x)] (58)

=

∫
Ltf(x)pt(x)dx (59)

=

∫
∇f(x)Tut(x)pt(x)dx (60)

=

∫
f(x)[−∇ · [ut(x)pt(x)]]dx (61)

=

∫
f(x)[L∗

t pt](x)dx (62)
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by partial integration. Therefore, the adjoint generator is given by L∗
t pt = −∇ · [ut(x)pt(x)]. Using the

adjoint KFE, we get the well-known continuity equation
∂tpt(x) = −∇ · [utpt](x) (63)

A.5.2 DIFFUSION

Definition. Let S = Rd and σt : Rd × R → Rd×d, (x, t) 7→ σt(x) be a time-dependent function mapping
to symmetric positive semi-definite matrices σt in a continuous fashion. A diffusion process with diffusion
coefficient σt is defined via the infinitesimal sampling procedure:

Xt+h = Xt +
√
hσt(Xt)εt (64)

where εt ∼ N (0, I). For a more formal definition, see (Oksendal, 2013).

Generator. Let T = C∞
c (Rd) be the space of infinitely differentiable and smooth functions with compact

support (test function in Rd). Then we can compute the generator via

[Ltf ](x) = lim
h→0

E
[
f(Xt +

√
hσt(Xt)εt + o(h))|Xt = x

]
− f(x)

h
(65)

= lim
h→0

E[f(x) +∇f(x)T
√
hσt(x)εt +

1
2h[σt(x)εt]

T∇2f(x)[σt(x)εt]− f(x)]

h
(66)

= lim
h→0

∇f(x)T
√
hσt(x)E[εt] + E[ 12h[σt(x)εt]

T∇2f(x)[σt(x)εt]]

h
(67)

=
1

2
E[εTt [σt(x)]

T∇2f(x)[σt(x)]εt]] (68)

=
1

2
Trace

(
σt(x)

T∇2f(x)σt(x)
)

(69)

=
1

2
Trace[σt(x)σt(x)

T∇2f(x)] (70)

=
1

2
σ2
t (x) · ∇2f(x) (71)

where we used a 2nd order Taylor approximation (2nd order because E[‖
√
hεt‖2] ∝ h) and the symmetry of

σ2
t . Further, we use A ·B = trace(AB) to denote the matrix inner product.

Adjoint and adjoint KFE. Let’s assume that pt has a density dpt

dν (x) with respect to the Lebesgue measure
that is bounded and continuously differentiable. In the following paragraph, we write pt(x) =

dpt

dν (x) for its
density. We can compute the adjoint generator L∗

t via

〈pt,Ltf〉 =Ex∼pt
[Ltf(x)] (72)

=

∫
Ltf(x)pt(x)dx (73)

=
1

2

∫
σ2
t (x) · ∇2f(x)pt(x)dx (74)

=
1

2

∫
f(x)∇2 · [σ2

t pt](x)dx (75)

=

∫
f(x)[L∗

t pt](x)dx (76)
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by partial integration. Using the fact that this holds for all test functions, we can convert the KFE to the
adjoint KFE recovering the well-known Fokker-Planck equation

∂tpt(x) = ∇2 · [σ2
t pt](x) (77)

A.5.3 JUMPS

Let us assume that we consider a jump process defined by a time-dependent kernel Qt(dy;x), i.e. for every
0 ≤ t ≤ 1 and every x ∈ S, Qt(dy;x) is a positive measure over S \ {x}. The idea of a jump process is that
the total volume assigned to S

λt(x) =

∫
Qt(dy;x) (78)

gives the jump intensity, i.e. the infinitesimal likelihood of jumping. Further, if λt(x) > 0, we can assign a
jump distribution by normalizing Qt to a probability kernel

Jt(dy;x) =
Qt(dy;x)

λt(x)
(79)

The infinitesimal sampling procedure is as follows:

Xt+h =

{
Xt with probability 1− hλt(Xt) + o(h)

∼ Jt(dy;Xt) with probability hλt(Xt) + o(h)
(80)

We derive the generator here in an informal way. For a rigorous treatment of jump processes, see for example
(Davis, 1984). Up to o(h)-approximation error, the generator is then given by

Ltf(x) = lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x]

h
(81)

= lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x, Jump in [t, t+ h)]P[Jump in [t, t+ h)]

h
(82)

+ lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x,No jump in [t, t+ h)]P[No jump in [t, t+ h)]

h︸ ︷︷ ︸
=0

(83)

= lim
h→0

Ey∼Jt(dy;x) [f(y)− f(x)]hλt(x)

h
(84)

=Ey∼Jt(dy;x) [f(y)− f(x)]λt(x) (85)

=

∫
(f(y)− f(x))Qt(dy;x) (86)

where we have used that if Xt does not jump in [t, t+ h], then Xt+h = Xt.

Adjoint and adjoint KFE. Let’s assume that pt has a density dpt

dν (x) with respect to the Lebesgue measure
that is bounded and continuously differentiable. In the following paragraph, we write pt(x) =

dpt

dν (x) for its
density. Let’s assume that the jump measures Qt(dy;x) is given via a kernel Qt : S × S → R≥0, (y, x) 7→
Qt(y;x) such that ∫

f(y)Qt(dy;x) =

∫
f(y)Qt(y;x)ν(dy) (87)
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where ν(dy) denotes the integration with respect to the reference measure ν on S. Then we can derive the
adjoint generator as follows:

〈pt,Ltf〉 (x) =
∫ ∫

(f(y)− f(x))Qt(y;x)ν(dy)pt(x)ν(dx) (88)

=

∫ ∫
f(y)Qt(y;x)pt(x)ν(dy)ν(dx)−

∫ ∫
f(x)Qt(y;x)pt(x)ν(dy)ν(dx) (89)

=

∫ ∫
f(x)Qt(x; y)pt(y)ν(dy)ν(dx)−

∫ ∫
f(x)Qt(y;x)pt(x)ν(dy)ν(dx) (90)

=

∫
f(x)

[∫
Qt(x; y)pt(y)−Qt(y;x)pt(x)ν(dy)

]
︸ ︷︷ ︸

=:L∗
t pt

ν(dx) (91)

(92)

where we have seen that L∗
t describes the adjoint generator. With this, we get the jump continuity equation

as adjoint KFE

∂tpt(x) =

∫
Qt(x; y)pt(y)︸ ︷︷ ︸

inflow

−Qt(y;x)pt(x)︸ ︷︷ ︸
=outflow

ν(dy) (93)

A.5.4 CONTINUOUS-TIME MARKOV CHAIN (CTMC)

Let us consider a continuous-time Markov chain Xt on a discrete space S with |S| < ∞. We define this to be
a jump process as defined in app. A.5.3. However, we can find a convenient parameterization for the jump
process. Specifically, we can convert integrals into sums and see that there is a jump kernel Qt ∈ RS×S

≥0 given
such that for all x ∈ S it holds that

Ltf(x) =
∑
y∈S

[f(y)− f(x)]Qt(y;x) =
∑
y 6=x

[f(y)− f(x)]Qt(y;x) (94)

A natural convention people follow is to set Qt(x;x) = −
∑
y 6=x

Qt(y;x). This gives us the rate of staying at x

(However, note that Qt(y;x) does not describe a kernel of a positive measure anymore.) With this constraint,
we get

Ltf(x) =
∑
y∈S

f(y)Qt(y;x) = fTQt (95)

where we consider f = (f(x))x∈S as a row vector. The adjoint is simply given by the adjoint multiplication
pt 7→ Qtpt and we get that the adjoint KFE is given by

∂tpt(x) =
∑
y∈S

Qt(x; y)pt(y) (96)
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To sample the next time step given Xt = x, we get

Xt+h =


∼ Qt(y;x)∑

y 6=x

Qt(y;x)
with probability h

∑
y 6=x

Qt(y;x) + o(h)

x with probability 1− h
∑
y 6=x

Qt(y;x) + o(h)
(97)

=

∼ Qt(y;x)∑
y 6=x

Qt(y;x)
with probability h

∑
y 6=x

Qt(y;x) + o(h)

x with probability 1 + hQt(x;x) + o(h)
(98)

=

{
y with probability hQt(y;x) + o(h) (for all y ∈ S)

x with probability 1 + hQt(x;x) + o(h)
(99)

∼(I + hQt)(·;x) (100)

where we simply sample from the stochastic matrix I + hQt (a matrix whose columns sum to 1).

A.6 LINEAR PARAMETERIZATION OF GENERATORS

We describe here what we understand under a linear parameterization of a generator. This is the basis for
parameterizing a generator in a neural network that can be implemented in a computer. For simplicity, we
fix a t ∈ [0, 1]. As before, T be the space of test functions and B(S) be the space of bounded functions on
S. Then the space A(T ) := {L : T → B(S)|L is linear} of linear operators on T is itself again a vector
space. Let W ⊂ A(T ) be a subspace. Then a linear parameterization of W is given by 2 components: (1)
a convex closed set Ω ⊂ V that is a subset of a vector space with an inner product 〈·, ·〉V and (2) a linear
operator K : T → C(S;V ) such that every Lt ∈ W can be written as

Ltf(x) = 〈Kf(x);Ft(x)〉V (101)

for a continuous function Ft : S → Ω. We list several examples to make this abstract definition more
concrete.

1. Flows in S = Rd: T = C∞
c (Rd) and Ω = V = Rd. Let W be the space of linear operators given

via generators of flows, i.e.

Ltf = ∇fTut, ut : Rd → Rd (102)

Setting Kf = ∇f and Ft = ut we recover the shape of eq. (101).
2. Diffusion in S = Rd: T = C∞

c (Rd) and Ω = S++
d ⊂ Rd×d = V , where S++

d denotes the set of
all positive semi-definite matrices. Let W is the space of linear operators given via generators of
diffusion, i.e.

Ltf = ∇2f · σ2
t , σt : Rd → S++

d (103)

Setting Kf = ∇2f and Ft = σ2
t we recover the shape of eq. (101).

3. Jumps in S = Rd: T = C∞
c (Rd) and Ω = {a : Rd → R≥0, a continuous} ⊂ C1(Rd,R) = V .

On V , a dot product is defined via 〈a, b〉V =
∫
a(x)b(x)dx. Let W be the space of linear operators

given via generators of jumps, i.e.

Ltf(x) =

∫
f(y)− f(x)Qt(y;x)dy = 〈Df(x), Qt(·;x)〉V (104)

where we set Kf(x) as the function y 7→ f(y) − f(x). Setting Ft = Qt we recover the shape of
eq. (101).
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4. Continuous-time Markov chains: Let S be discrete and Qt ∈ RS×S be a rate matrix of a
continuous-time Markov chain. Then for any f ∈ RS

Ltf(x) = fTQt(·;x) = 〈f,Qt(·;x)〉V (105)

where V = RS and Df = f and 〈·, ·〉V is the standard Euclidean dot product. With this, we recover
the shape of eq. (101).

B SAMPLING WITH UNIVERSAL REPRESENTATION (ALG. 2)

In alg. 2, we summarize a sampling procedure to sample a generator for S = Rd with universal representation
described in theorem 1. We briefly want to derive that alg. 2 is in fact a method a sampling procedure that
simulates a Markov process with the correct generator up to o(h) approximation error. Let us assume that Xt

is a Markov process that is obtained by sampling as in alg. 2 (limit process for h → 0). Then its generator is
given via:
Ltf(x) (106)

= lim
h→0

1

h
(E[f(Xt+h)− f(Xt)|Xt = x]) (107)

= lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x, Jump in [t, t+ h)]P[Jump in [t, t+ h)]

h
(108)

+ lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x,No jump in [t, t+ h)]P[No jump in [t, t+ h)]

h︸ ︷︷ ︸
=0

(109)

= lim
h→0

Ey∼Qt(dy;x)/λt(x)[f(y)− f(x)]hλt(x)

h
(110)

+ lim
h→0

[E[f(Xt + hut(Xt) +
√
hσt(Xt)εt)− f(Xt)|Xt = x,No jump in [t, t+ h)]](1− hλt(x))

h
(111)

=

∫
(f(y)− f(x))Qt(dy;x) (112)

+ lim
h→0

E[f(Xt + hut(Xt) +
√
hσt(Xt)εt)− f(Xt)|Xt = x,No jump in [t, t+ h)]]

h
(113)

=

∫
(f(y)− f(x))Qt(dy;x) (114)

+ lim
h→0

E[h∇f(x)T [ut(Xt) +
√
hσt(Xt)εt)] +

1
2h

2[ut(Xt) +
√
hσt(Xt)εt)]

T∇2f(x)[ut(Xt) +
√
hσt(Xt)εt)]]

h
(115)

=

∫
(f(y)− f(x))Qt(dy;x) (116)

+∇f(x)Tut(x) + lim
h→0

E[ 12 [σt(Xt)εt)]
T∇2f(x)[σt(Xt)εt)]]

h
(117)

=

∫
(f(y)− f(x))Qt(dy;x) +∇f(x)Tut(x) +

1

2
Trace

[
σt(Xt)∇2f(x)σt(Xt)

]
(118)

=

∫
(f(y)− f(x))Qt(dy;x) +∇f(x)Tut(x) +

1

2
σ2
t (Xt) · ∇2f(x) (119)
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This finishes the proof.

C PROOFS

C.1 PROOF OF THEOREM 1

Let (Xt)0≤t≤1 be a continuous-time Markov process. For now, we assume that Xt is time-homogeneous. Let
L be the generator of Xt defined via

Lf(x) = lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x]

h
(120)

We know that L has the following property:

f(x) = 0, f ≥ 0 ⇒ Lf(x) ≥ 0 (“almost positive”) (121)

An operator having the above property is called almost positive. The theory of almost positive operators is
well-established. Specifically, we can use universal representations of almost positive operators as established
in (von Waldenfels, 1965, Satz 1). Related theorems can be found in (Courrege, 1965) for characterizing
differential operators satisfying the absolute maximum principle (that is closely related to the almost positive
principle) and in weaker form for Markov processes (Feller, 1955). Here we use (von Waldenfels, 1965, Satz
1). Specifically, we know that L must have the form

Lf(x) =− c(x)f(x) + u(x)T∇f(x) +
1

2
σ2(x) · ∇2f(x) (122)

+

∫
y 6=x

[
f(y)− f(x)− yT∇f(x)1‖y−x‖<1

]
Q(dy;x) (123)

where c(x) ≥ 0, u(x) ∈ Rd are continuous functions and σ2(x) is a positive semi-definite matrix continuous
in x. For every x, Q(dy;x) is a measure on Rd \ {x}. The term c(x) corresponds to a process that is “dying”.
As we assume that our process runs from t = 0 to t = 1, we can drop c(x). Further, using the assumption that
there only exists a finite number of discontinuities (see app. A.2), we can discard the term yT∇f(x)1‖y−x‖<1

(alternatively, one can redefine the drift to ū(x) = u(x)−
∫
y1‖y−x‖<1Q(dy;x)). Therefore, we can rewrite

the above formula as:

Lf =u(x)T∇f(x) +
1

2
σ2(x) · ∇2f(x) +

∫
y 6=x

(f(y)− f(x))Q(dy;x) (124)

C.2 TIME-INHOMOGENOUS CASE

Let (Xt)0≤t≤1 be a continuous-time Markov process. Now, we allow Xt to be time-inhomogenous. To
make it time-homogenous, we define X̄t = (Xt, t). Let L̄ be the generator of X̄t. Then for a test function
f : Rd × R → R we get

L̄f =ū(x, t)T∇x,tf(x, t) +
1

2
σ̄2(x, t) · ∇2

x,tf(x, t) +

∫
(f(y, s)− f(x, s))Q(dy, ds;x, t) (125)

where ū, σ̄2, Qt are operators over the extended space Rd × R, i.e. ū(x, t) = (ūx(x, t), ūt(x, t)) and

σ̄(x, t) =

(
σ̄x,x(x, t) σ̄x,t(x, t)
σ̄t,x(x, t) σ̄t,t(x, t)

)
(126)
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However, note that since marginal process in t is deterministic and has derivative one, it must necessarily
hold (by uniqueness of the representation) that ūt(x, t) = 1 and σ̄2(x, t)t,x = σ̄2(x, t)x,t = σ̄2(x, t)t,t = 0
and Q(·, ·;x, t) is supported over Rd × {t} - i.e. is a time-dependent kernel Qt(dy;x). Therefore, we can
rewrite the above equation as:

L̄f =
∂

∂t
f(x, t) + ut(x)

T∇xf(x, t) +
1

2
σ2
t (x) · ∇2

xf(x, t) +

∫
(f(y, t)− f(x, t))Qt(dy;x) (127)

Rewriting L̄ as a time-dependent generator Lt (see app. A.2), we get for a time-independent test function
f : Rd → R

Ltf =ut(x)
T∇xf(x) +

1

2
σ2
t (x) · ∇2

xf(x) +

∫
(f(y)− f(x))Qt(dy;x) (128)

This finishes the proof.

C.3 PROOF OF PROPOSITION 1

Let kt+h|t(·|x, z) be the conditional transition kernel for the conditional Markov process Xz
t with conditional

generator Lz
t that solves the KFE for the conditional probability path pt(dx|z). Then we can compute for the

marginal probability path pt and a test function f that:

∂t 〈pt, f〉 = lim
h→0

1

h
〈pt+h, f〉 − 〈pt, f〉 (129)

= lim
h→0

1

h
[Ez∼pdata,x′∼pt+h(·|z)[f(x

′)]− Ez∼pdata,x∼pt(·|z)[f(x)]] (130)

= lim
h→0

1

h
[Ez∼pdata,x∼pt(·|z),x′∼kt+h|t(·|x,z)[f(x

′)]− Ez∼pdata,x∼pt(·|z)[f(x)]] (131)

= lim
h→0

1

h
[Ez∼pdata,x∼pt(·|z),x′∼kt+h|t(·|x,z)[f(x

′)− f(x)]] (132)

= lim
h→0

1

h
Ex∼pt(x)

[
Ez∼pt(dz|x)

[[
E[x′∼kt+h|t(·|x,z)[f(x

′)]− f(x)
]]]

(133)

=Ex∼pt(x)

[
Ez∼pt(dz|x)

[
lim
h→0

1

h

[
E[x′∼kt+h|t(·|x,z)[f(x

′)]− f(x)
]]]

(134)

=Ex∼pt(x)[Ez∼pt(dz|x)[L
z
t f(x)]︸ ︷︷ ︸

=:Ltf(x)

] (135)

=Ex∼pt
[Ltf(x)] (136)

= 〈pt,Ltf〉 (137)

Therefore, we see that the marginal generator Lt defined as above solves the KFE for the marginal probability
path pt.

Proof that proposition 1 also holds for any linear parameterization of the generator. Let us assume
that the conditional generator has a linear parameterization in the sense defined in app. A.6 given via

Lz
t (x) = 〈Kf(x);F z

t (x)〉V (138)
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for a function F z
t : S → V . The proof proceeds exactly as above to get

∂t 〈pt, f〉 =Ex∼pt(x)[Ez∼pt(dz|x)[L
z
t f(x)] (139)

=Ex∼pt(x)[Ez∼pt(dz|x)[〈Kf(x);F z
t (x)〉V ]] (140)

=Ex∼pt(x)[

〈
Kf(x);Ez∼pt(dz|x)[F

z
t (x)]︸ ︷︷ ︸

=:Ft(x)

〉
] (141)

= 〈pt,Ltf〉 (142)

Therefore, we can see that also the marginal generator has linear parameterization given via Ft : S → Ω.
Note that it holds that Ft(x) ∈ Ω because Ω is convex and closed.

C.4 PROOF OF PROPOSITION 2

C.4.1 EXAMPLE OF BREGMAN DIVERGENCES

We list two motivating examples of an illustration for Bregman divergences (see eq. (15)):

1. Mean squared-error: Setting φ : Rd → R, x 7→ ‖x‖2 leads to

D(x, y) =φ(x)− φ(y)− 〈x− y,∇φ(y)〉 (143)

=‖x‖2 − ‖y‖2 − 〈x− y, 2y〉 (144)

=‖x‖2 − 2 〈x, y〉+ ‖y‖2 (145)

=‖x− y‖2 (146)

2. KL-divergence: Define the probability simplex as ∆d−1 = {x ∈ Rd
≥0|

d∑
i=1

x = 1}. Then define

φ :∆d−1 → R, x 7→
d∑

i=1

xi log xi (147)

⇒ D(x, y) =φ(x)− φ(y)− 〈x− y,∇φ(y)〉 (148)

=

d∑
i=1

xi log xi −
d∑

i=1

yi log yi −
d∑

i=1

(xi − yi)(1 + log xi) (149)

=
d∑

i=1

yi log
yi
xi

(150)

C.4.2 BREGMAN DIVERGENCE AS SUFFICIENT CONDITION FOR PROPOSITION 2

First, we show that ∇θLgm(θ) = ∇θLcgm(θ) for any Bregman divergence. Let V be an arbitrary vector space,
Ω ⊂ V be a convex subset, and D : Ω× Ω → R≥0 be a Bregman divergence on it defined via

D(a, b) = φ(a)− [φ(b) + 〈a− b,∇φ(b)〉], a, b ∈ Ω (151)

for a convex function φ : Ω → R. We rewrite D as

D(a, b) = A(a) + 〈a,B(b)〉+ C(b) (152)

with functions A(a) = φ(a), B(b) = ∇φ(b), C(b) = −φ(b) + 〈b,∇φ(b)〉.
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With this, we get:

Lgm(θ) =Et∼Unif,x∼pt

[
D(Ft(x), F

θ
t (x))

]
(153)

=Et∼Unif,x∼pt

[
A(Ft(x)) +

〈
Ft(x), B(F θ

t (x))
〉
+ C(F θ

t (x))
]

(154)

=Et∼Unif,x∼pt

[
A(Ft(x)) +

〈∫
F z
t (x)pt(dz|x), B(F θ

t (x))

〉
+ C(F θ

t (x))

]
(155)

=Et∼Unif,x∼pt

[
A(Ft(x)) +

∫ 〈
F z
t (x), B(F θ

t (x))
〉
pt(dz|x) + C(F θ

t (x))

]
(156)

=Et∼Unif,x∼pt

[∫ [
A(F z

t (x)) +
〈
F z
t (x), B(F θ

t (x))
〉
+ C(F θ

t (x))
]
pt(dz|x)

]
+ const (157)

=Et∼Unif,x∼pt,z∼pt(·|x) [D(F z
t (x), Ft(x))] + const (158)

=Et∼Unif,z∼pdata,x∼pt(·|z) [D(F z
t (x), Ft(x))] + const (159)

=Lcgm(θ) + const (160)

i.e. both losses only different by a constant in θ. Hence, their gradients with respect to θ are the same. This
proves proposition 2 for any Bregman divergence D eq. (162).

C.4.3 BREGMAN DIVERGENCE AS NECESSARY CONDITION FOR PROPOSITION 2

We now show that the Bregman divergence property is a necessary condition for ∇θLgm(θ) = ∇θLcgm(θ) to
hold for arbitrary probability paths and data distributions.

To do so, we first prove an equivalent characterization of Bregman divergences. For simplicity and because
any representation used in a computer will be finite-dimensional, we restrict ourselves here to fine-dimensional
vector spaces, i.e. we set V = Rk for some k ∈ N.

Lemma 1. Let Ω ⊂ Rk to be a convex closed subset such that its interior Ωo is convex and dense in Ω. Let
D : Ω× Ω → R≥0 be an arbitrary cost function, here defined as smooth function such that D(a, b) = 0 if
and only if a = b. Then the following statements are equivalent:

1. Bregman divergence: The function D is a Bregman divergence, i.e. there exists a strictly convex
function φ : Ω → R such that

D(a, b) = φ(a)− [φ(b) + 〈a− b,∇φ(b)〉], for all a, b ∈ Ω (161)

2. Target-affine loss function: There exist functions A : Ω → R, B : Ω → Rk, C : Ω → R such that

D(a, b) = A(a) + 〈a,B(b)〉+ C(b) (162)

3. Gradient in second argument is linear: For every a1, a2 ∈ Ω and λ1, λ2 ≥ 0 such that λ1+λ2 = 1
it holds that

∇bD(λ1a1 + λ2a2, b) = λ1∇bD(a1, b) + λ2∇bD(a2, b) (163)

Proof of (1) ⇒ (2). This is trivial. Define A(a) = φ(a), B(b) = ∇φ(b), C(b) = −φ(b) + 〈b,∇φ(b)〉.

Proof of (2) ⇒ (1). Let us assume we have

D(a, b) =A(a) + 〈a,B(b)〉+ C(b) (164)
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The condition that D is a valid differentiable cost function implies that

argmin
a

D(a, b) =b for all b ∈ Ω (165)

⇒ 0 =∇aD(a, b)|a=b (166)

=∇A(b) +B(b) for all b ∈ Ω (167)

This is equivalent to B = −∇A. Therefore, we get that

D(a, b) = A(a)− 〈a,∇A(b)〉+ C(b) (168)

Further, we require that D(a, a) = 0 for all a, which implies that

0 =D(a, a) = A(a)− 〈a,∇A(a)〉+ C(a) for all a ∈ Ω (169)
⇒ C(a) = 〈a,∇A(a)〉 −A(a) for all a ∈ Ω (170)
⇒ D(a, b) =A(a)− 〈a,∇A(b)〉+ 〈b,∇A(b)〉 −A(b) for all a, b ∈ Ω (171)

=A(a)−A(b)− 〈a− b,∇A(b)〉 for all a ∈ Ω (172)

Finally, since D(a, b) ≥ 0 it must hold that

A(a) ≤ A(b) + 〈a− b,∇A(b)〉 for all a, b ∈ Ω (173)

The above is equivalent to the fact that A is a convex function. Therefore, setting A(a) = φ(a), we get that
D is a Bregman divergence.

Proof of (2) ⇒ (3). Let us assume that

D(a, b) =A(a) + 〈a,B(b)〉+ C(b) (174)

Then:

∇bD(λ1a1 + λ2a2, b) = 〈λ1a1 + λ2a2,∇bB(b)〉+∇bC(b) (175)
=λ1 〈a1,∇bB(b)〉+ λ2 〈a2,∇bB(b)〉+ λ1∇bC(b) + λ2∇bC(b) (176)
=λ1∇bD(a1, b) + λ2∇bD(a2, b) (177)

Proof of (3) ⇒ (2). Let us assume that eq. (163) holds. Fix a b ∈ Ωo. We first show that eq. (163) implies
that the function a 7→ ∇bD(a, b) is an affine function. To see this, because of the required condition, the
function F = (F1, . . . , Fd) : a 7→ ∇bD(a, b) fulfills the condition that each Fi is both convex and concave.
In particular, ∇2Fi and −∇2Fi are both positive semi-definite. This implies that ∇2Fi = 0. In turn, this
implies that ∇Fi is a constant function. In turn, this implies that the Jacobian ∇F is constant. This implies
that F is affine, i.e. that

∇bD(a, b) = B̃(b)a+ C̃(b) (178)

for a C̃ : Rk → Rk and B̃ : Rk → Rk × Rk. Further, since D is twice continuously differentiable

∇b∇aD(a, b) = ∇a∇bD(a, b)T = B̃(b)T (179)

which implies that B̃(b)T = ∇bB(b) for the function B = ∇aD(a, b) : Ω → Rk. In turn, this implies that
C̃(b) = ∇bC(b) for the function C(b) = D(a, b)− 〈a,B(b)〉. Then we get:

∇bD(a, b) = ∇b[〈a,B(b)〉+ C(b)] for all a, b ∈ Ω (180)
⇒D(a, b) = A(a) + 〈a,B(b)〉+ C(b) for all a, b ∈ Ω (181)

for some function A : Ω → R. This finishes the proof.
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Necessity of Bregman divergence property for proposition 2 to hold. We show the necessity of the
Bregman divergence property by giving a counterexample. Fix a 0 ≤ t < 1. Let us assume that the network
F θ
t is just a constant function given by a vector θ ∈ Ω. Now, let us suppose that D is not a Bregman

divergence. Then by lemma 1(c), there exist some a1, a2, b ∈ Ω and λ1, λ2 ≥ 0 with λ1 + λ2 = 1 such that

∇bD(λ1a1 + λ2a2, b) 6= λ1∇bD(a1, b) + λ2∇bD(a2, b) (182)

Then define the data distribution as pdata = λ1 · δz1 + λ2 · δz2 and the conditional distribution at time t simply
as pt(·|z) = pdata, i.e. a distribution that just resamples independently from pdata. Then pt(dz|x) = pdata(dz).
Further, let there be a conditional KFE solution parameterized by F z

t such that F z1
t (x) = a1, F

z2
t (x) = a2

for all x (note that we can choose an arbitrary parameterization and we can choose pt′(·|z) arbitrarily for any
t < t′ < 1). Finally, set θ = b. Then

Ft(x) = Ez∼pt(dz|x)[F
z
t (x)] = Ez∼pdata [F

z
t (x)] = λ1a1 + λ2a2 (183)

and

∇θLgm(θ) =∇θE[D(Ft(z), F
θ
t (z))] (184)

=∇θD(λ1a2 + λ2a2, θ) (185)
6=∇θ[λ1D(a1, θ) + λ2D(a2, θ)] (186)
=∇θEz∼pdata [D(F z

t (z), θ)] (187)
=∇θEz∼pdata,x∼pt(·|z)[D(F z

t (x), θ)] (188)

=∇θLcgm(θ) (189)

Therefore, the gradients are not the same and proposition 2 does not hold. This shows that the Bregman
divergence property is necessary if we want to desired property to hold for arbitrary data distributions,
probability paths, and network parameterizations.

C.5 PROOF OF PROPOSITION 3

Let Lt,L′
t be two generators of two Markov processes that solve the KFE for a probability path pt. Then for

α1
t , α

2
t ∈ R with α1

t + α2
t = 1 it holds that:〈

pt, (α
1
tLt + α2

tL′
t)f
〉

(190)

=α1
t 〈pt,Ltf〉+ α2

t 〈pt,L′
tf〉 (191)

=α1
t∂t 〈pt, f〉+ α2

t∂t 〈pt, f〉 (192)

=(α1
t + α2

t )∂t 〈pt, f〉 (193)
=∂t 〈pt, f〉 (194)

i.e., α1
tLt + α2

tL′
t is again a solution of the KFE. A small but important detail is whether α1

t , α
2
t are positive

or negative and whether Lt,L′
t correspond to actual Markov processes - and if yes, in forward or backward

time. As explained in app. A.5, the generator of a time-inhomogeneous Markov process is given by a spatial
generator Lt operating on spatial components plus an associated time-derivative ∂t operator (as explained,
it is usually ignored but relevant here). Therefore, both the spatial components have to sum to 1 and the
time-derivative operators. Therefore, we have to add the time-derivative operators up (Markov superposition),
set their weight to zero (divergence-free components), or flip their sign (predictor-corrector) in order to make
the KFE hold. This leads to the 3 different use-cases described.

C.6 PROOF OF PROPOSITION 4

First, we state a formal version of proposition 4. We assume that we have a setup where have a Generator
Matching model given for each state space S1, S2. Specifically, let q1t (·|z1), q2t (·|z2) be two conditional
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probability paths on state spaces S1, S2. Let L̄z
t , L̃z

t be solutions to the conditional KFE for q1t (·|z1), q2t (·|z2).
In the sense defined as in app. A.6, we assume that there are linear parameterizations F̄ z1

t : S → Ω1 ⊂
V1, F̃

z2
t : S → Ω1 ⊂ V1 of L̄z1

t , L̃z2
t given such that

L̄z1
t f1(x1) =

〈
K1f1(x1), F̄

z1
t (x1)

〉
V1

, L̄z2
t f(x2) =

〈
K2f2(x2), F̃

z2
t (x2)

〉
V2

(195)

for all test functions f1 : S1 → R, f2 : S2 → R and for two linear operators K1,K2. On the product space
V1 × V2, we define an inner product via

〈(a1, b1), (a2, b2)〉V1×V2
= 〈a1, a2〉V1

+ 〈b1, b2〉V2
(196)

Let X1
t , X

2
t be two marginal Markov processes with corresponding marginal generators L̄t, L̃t with parame-

terization F 1
t , F

2
t . We assume that there is a simulation kernels T 1, T 2 given that are independent for the

Markov process (e.g. Euler sampling in table 1 or an ODE solver), i.e. simulating the Markov process

X1
t+h ∼ T 1

t+h|t(·|X
1
t , F

1
t (X

1
t )) (197)

X2
t+h ∼ T 2

t+h|t(·|X
2
t , F

2
t (X

2
t )) (198)

leads to a valid simulation with the correct generators, i.e. for all test functions f :

L̄tf(xt) = lim
h→0

1

h
Ext+h∼T 1

t+h|t(·|X
1
t ,F

1
t (X

1
t ))

[f(xt+h)− f(xt)] (199)

L̃tf(xt) = lim
h→0

1

h
Ext+h∼T 2

t+h|t(·|X
2
t ,F

2
t (X

2
t ))

[f(xt+h)− f(xt)] (200)

Proposition 5 (Multimodal generative models - Formal version). Let there be a data distribution pdata
be given over S1 × S2. Define the conditional factorized path as pt(·|z1, z2) = q1t (·|z1)q2t (·|z2) and the
marginal factorized path via E(z1,z2)∼pdata [pt(dx|z1, z2)]. Then:

1. Conditional generator: The conditional factorized path pt(·|z1, z2) = q1t (·|z1)q2t (·|z2) on S1 × S2

admits a KFE solution given by a Markov process Xt = (X1
t , X

2
t ) where X1

t , X
2
t are independent

Markov processes with marginals q1t (·|z1), q2t (·|z2) and generator

Lz
t f(x1, x2) = [L̄z1

t fx2 ](x1) + [L̃z2
t fx1 ](x2), z = (z1, z2) (201)

where fx1(y) = f(x1, y) describes the restriction of a test function f : S1 × S2 → R on S2. In
particular, a linear parameterization of Lz

t is given for x = (x1, x2) ∈ S1 × S2 via

Lz
t f(x1, x2) = 〈Kf(x), F z

t (x)〉V1×V2
, Kf(x) = (K1f

x2(x1),K2f
x1(x2)) (202)

F z
t (x) =(F z1

t (x1), F
z2
t (x2)) (203)

for all test functions f : S1 × S2 → R.

2. Marginal generator: The marginal generator of a multimodal generative model (with conditional
generator as in eq. (201)) is given by

Ltf(x1, x2) =

∫
L̄z1
t fx2(x1)p1|t(dz1|x1, x2) +

∫
L̃z2
t fx1(x2)p1|t(dz2|x1, x2) (204)

=:L̄tf
x2(x1, x2) + L̃tf

x1(x1, x2) (205)

In particular, the above generator can be linearly parameterized by

Ltf(x) = 〈Kf(x), Ft(x)〉V1×V2
, Kf(x) = (K1f

x2(x1),K2f
x1(x2)) (206)

for a function Ft : S1 × S2 → Ω1 × Ω2.
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3. Loss function: For two Bregman divergences D1 : Ω1 × Ω1 → R, D2 : Ω2 × Ω2 → R, the product

D((a1, a2), (b1, b2)) = D(a1, b1) +D(a2, b2), a1, b1 ∈ Ω1, a2, b2 ∈ Ω2 (207)

is again a Bregman divergence. To train a linear parameterization represented by a neural network
F θ
t = (F θ

t,1, F
θ
t,2) : S1 × S2 → Ω1 × Ω2 we can train it with the sum of two CGM losses

Et∼Unif,z∼pdata,x1∼pt(·|z1),x2∼pt(·|z2)
[
D1(F

z1
t (x1), F

θ
t,1(x1, x2)) +D2(F

z2
t (x2), F

θ
t,2(x1, x2))

]
(208)

4. Sampling: A valid simulation procedure is given by updating each dimension independently, i.e.

Xt+h =

(
X1

t+h

X2
t+h

)
(209)

X1
t+h ∼T 1

t+h|t(·|X
1
t , F

θ
t,1(X

1
t , X

2
t )) (210)

X2
t+h ∼T 2

t+h|t(·|X
2
t , F

θ
t,2(X

1
t , X

2
t )) (211)

where X1
t+h, X

2
t+h are sampled independently, i.e. the above procedure simulates a Markov process

with generator as given in eq. (204) for h → 0 (note that each F θ
t,i depends on both modalities).

Note that there are several striking features about eq. (204) and eq. (206): (1) each summand depends only on
the marginal posterior p1|t(dzi|x1, x2) per single modality (i = 1, 2). The dependency of the posterior across
modalities does not influence the marginal generator Lt. (2) The shape of Lt can be easily parameterized into
a neural network by taking the parameterizations per modality and making the input depend on all modalities
jointly (i.e. the dimension of the parameterization scales linearly with the dimension - if we parameterized a
transition kernels, it would scale exponentially).

Proof for conditional generator. It holds that:

∂t 〈pt(·|z1, z2), f〉 (212)
=∂t[Ex1∼pt(·|z1),x2∼pt(·|z2)[f(x1, x2)]] (213)

= lim
h→0

1

h

[
Ex1∼pt+h(·|z1),x2∼pt+h(·|z2)[f(x1, x2)]− Ex1∼pt(·|z1),x2∼pt(·|z2)[f(x1, x2)]

]
(214)

= lim
h→0

1

h
(Ex1∼pt+h(·|z1),x2∼pt+h(·|z2)[f(x1, x2)]− Ex1∼pt(·|z1),x2∼pt+h(·|z2)[f(x1, x2)] (215)

+ Ex1∼pt(·|z1),x2∼pt+h(·|z2)[f(x1, x2)]− Ex1∼pt(·|z1),x2∼pt(·|z2)[f(x1, x2)]) (216)

= lim
h→0

1

h
Ex2∼pt+h(·|z2)[Ex1∼pt+h(·|z1)[f

x2(x1)]− Ex1∼pt(·|z1)[f
x2(x1)]] (217)

+ Ex1∼pt(·|z1)

[
lim
h→0

1

h

[
Ex2∼pt+h(·|z2)[f

x1(x2)]− Ex2∼pt(·|z2)[f
x1(x2)])

]]
(218)

=Ex2∼pt(·|z2)
[
Ex1∼pt(·|z1)[L

′
tf

x2(x1)]
]
+ Ex1∼pt(·|z1)

[
Ex2∼pt(·|z2)[L̃tf

x1(x2)]
]

(219)

= 〈pt(·|z1, z2),Ltf〉 (220)

where Lt is defined as in eq. (201).
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Proof of marginal generator shape. To show statement 2, we can compute that

Ltf(x1, x2) =

∫
Lz
t f(x1, x2)p1|t(dz1, dz2|x1, x2) (221)

=

∫
L̄z1
t fx2(x1) + L̃z2

t fx1(x2)p1|t(dz1, dz2|x1, x2) (222)

=

∫
L̄z1
t fx2(x1)p1|t(dz1, dz2|x1, x2) +

∫
L̃z2
t fx1(x2)p1|t(dz1, dz2|x1, x2) (223)

=

∫
L̄z1
t fx2(x1)p1|t(dz1|x1, x2) +

∫
L̃z2
t fx1(x2)p1|t(dz2|x1, x2) (224)

where we used in the last equation that summand i = 1, 2 only depends on zi.

Proof of Loss shape We use the equivalent characterization of Bregman divergences as target-affine loss
functions (see lemma 1(2)). Let D1(a, b), D2(c, d) are two Bregman divergence functions on V1, V2 for
a, b ∈ V1, c, d ∈ V2 in shape

D1(a, b) = A1(a) + 〈a,B1(b)〉V1
+ C1(b) (225)

D2(c, d) = A2(c) + 〈c,B2(d)〉V2
+ C2(d) (226)

(227)

Then define:

D((a, c), (b, d)) :=D1(a, b) +D2(c, d) (228)
=[A1(a) +A2(c)] + 〈(a, c), (B1(b), B2(d))〉V1×V2

+ [C1(b) + C2(d)] (229)

where the last equation shows that D is again of the shape as outlined in lemma 1(b), i.e. it is again a Bregman
divergence. For a parameterization F θ

t (x1, x2) = (F θ
t,1(x1, x2), F

θ
t,2(x1, x2)) ∈ V1 × V2 of the generator,

we therefore get the loss given by

Lcgm(θ) =Et∼Unif,z∼pdata,x1∼pt(·|z1),x2∼pt(·|z2)
[
D(F z

t (x), F
θ
t (x))

]
(230)

=Et∼Unif,z∼pdata,x1∼pt(·|z1),x2∼pt(·|z2)
[
D((F z1

t (x1), F
z2
t (x2)), F

θ
t (x))

]
(231)

=Et∼Unif,z∼pdata,x1∼pt(·|z1),x2∼pt(·|z2)
[
D1(F

z1
t (x1), F

θ
t,1(x)) +D2(F

z2
t (x2), F

θ
t,2(x))

]
(232)

where F z1
t , F z2

t describe the ground truth parameterizations of the conditional generators for each modality.
In app. F, we see a concrete example of this loss construction.

Sampling. For readability, we drop the parameter θ and write F 1
t , F

2
t for two general parameterizations

of Markov processes. We assume that eq. (199) and eq. (200) hold. Let Xt+h be a Markov process that is
simulated as specified in eq. (209). Our goal is to show that Xt+h has the desired shape of the generator, i.e.
that for a test function f : S1 × S2 → R it holds

Ltf(x1, x2) = lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t )),x

2
t+h∼T 2

t+h|t(·|X
2
t ,F

θ
t,2(X

1
t ,X

2
t ))

[f(x1
t+h, x

2
t+h)− f(x1, x2)]

]
(233)
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We derive

lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t )),x

2
t+h∼T 2

t+h|t(·|X
2
t ,F

θ
t,2(X

1
t ,X

2
t ))

[f(x1
t+h, x

2
t+h)− f(x1, x2)]

]
(234)

= lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t )),x

2
t+h∼T 2

t+h|t(·|X
2
t ,F

θ
t,2(X

1
t ,X

2
t ))

[f(x1
t+h, x

2
t+h)− f(x1

t+h, x2)]
]

(235)

+ lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t ))

[f(x1
t+h, x2)− f(x1, x2)]

]
(236)

= lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t )),x

2
t+h∼T 2

t+h|t(·|X
2
t ,F

θ
t,2(X

1
t ,X

2
t ))

[fx1
t+h(x2

t+h)− fx1
t+h(x2)]

]
(237)

+ lim
h→0

1

h

[
Ex1

t+h∼T 1
t+h|t(·|X

1
t ,F

θ
t,1(X

1
t ,X

2
t ))

[fx2(x1
t+h)− fx2(x1)]

]
(238)

=L̃x1
t fx1(x1, x2) + L̄tf

x2(x1, x2) (239)
=Ltf(x1, x2) (240)

where we used eq. (199) and eq. (200) and the uniform continuity in both arguments x1
t+h, x

2
t+h. The above

derivation shows that the sampling procedure as defined in eq. (209) leads to the correct generator.

D KL-DIVERGENCE (ELBO) LOSSES FOR MARKOV PROCESSES

In principle, proposition 2 shows that any Bregman divergence allows us to train a Generator Matching
model. However, while the minimum for all Bregman divergences is the same, different Bregman divergences
trade-off errors differently. Further, some Bregman divergences can be derived via first principles and have
theoretical properties that make it seem preferrable. Here, we consider an ELBO/KL-divergence loss and
derive it for jump models, the model that we implement in sec. 9.

D.1 PATH ELBO LOSS - GENERAL CASE

For completeness, we give here a heuristic derivation of the continuous-time ELBO loss. A similar derivation
as below was already used by Sohl-Dickstein et al. (2015) to derive an ELBO loss to train a diffusion model
(for discrete time steps). Let us be given a reference Markov process (Xt)0≤t≤1 with transition kernel kt+h|t
and a parameterized Markov process (Xθ

t )0≤t≤1 with transition kernel kθt+h|t. Then let us discretize the
process in time and let’s define grid points ti = i/n for i = 0, 1 . . . , n and h = 1

n . Here, we assume that all
considered probability measures are absolutely continuous with respect to a reference measure ν. Let p, pθ
denote the joint marginals of all grid points, i.e.

pθ(x1, xn−1
n

, . . . , x 1
n
, x0) =p0(x0)

∏
t=0,1/n,...,(n−1)/n

kθt+h|t(xt+h|xt) (241)

p(x1, xn−1
n

, . . . , x 1
n
, x0) =p0(x0)

∏
t=0,1/n,...,(n−1)/n

kt+h|t(xt+h|xt) (242)
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Then we can bound the KL-divergence by using the data processing inequality and the chain rule for
KL-divergence to get

DKL(pdata(x1)||pθ1(x1)) (243)

≤DKL(p(x1, xn−1
n

, . . . , x 1
n
, x0)||pθ(x1, xn−1

n
, . . . , x 1

n
, x0)) (244)

=DKL(p(x0)||pθ(x0)) +

n−1∑
i=0

Exti
∼pti

[DKL(kti+1|ti(·|xti)||kθti+1|ti(·|xti))] (245)

=0 +

n−1∑
i=0

(ti+1 − ti)Exti
∼pti

[
DKL(kti+1|ti(·|xti)||kθti+1|ti(·|xti))

ti+1 − ti

]
(246)

→
1∫

0

∫
pdata(x1)pt|x1

(xt|x1)
∂

∂h

[
DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt))

]
|h=0

dxtdx1dt (247)

=Et∼Unif,z∼pdata,xt∼pt(·|z)

[
∂

∂h

[
DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt))

]
|h=0

]
(248)

for n → ∞. The above shows that

DKL(pdata(x1)||pθ1(x1)) (249)

≤Et∼Unif,z∼pdata,xt∼pt(·|z)

[
∂

∂h

[
DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt))

]
|h=0

]
(250)

D.2 ELBO LOSS FOR CONTINUOUS-TIME MARKOV CHAIN (CTMC)

We work out an ELBO bound for the case of S discrete using the path ELBO bound given via eq. (249). Let
use assume that there are two CTMCs given with rate matrices Qt, Q

θ
t and transition kernels kt+h|t, k

θ
t+h|t.

Then, it holds that:

kt+h|t(xt+h|xt) = δxt
(xt+h) + hQt(xt+h|xt) + o(h) (251)

kθt+h|t(xt+h|xt) = δxt(xt+h) + hQθ
t (xt+h|xt) + o(h) (252)

Further,

DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt)) (253)

=
∑
xt+h

kt+h|t(xt+h|xt) log
kt+h|t(xt+h|xt)

kθt+h|t(xt+h|xt)
dxt+h (254)

=

∫
[δxt

(xt+h) + hQt(xt+h|xt)] log
δxt

(xt+h) + hQt(xt+h|xt) + o(h)

δxt
(xt+h) + hQθ

t (xt+h|xt) + o(h)
dxt+h (255)

=(1 + hQt(xt|xt)) log
1 + hQt(xt|xt) + o(h)

1 + hQθ
t (xt|xt) + o(h)

(256)

+
∑

xt+h 6=xt

hQt(xt+h|xt) log
hQt(xt+h|xt) + o(h)

hQθ
t (xt+h|xt) + o(h)

(257)
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Ignoring the o(h)-terms, we get:

DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt)) (258)

=(1 + hQt(xt|xt)) log
1 + hQt(xt|xt)

1 + hQθ
t (xt|xt)

+
∑

xt+h 6=xt

hQt(xt+h|xt) log
Qt(xt+h|xt)

Qθ
t (xt+h|xt)

(259)

It holds that:
∂

∂h
log

a+ hy

a+ hx
=
a+ hx

a+ hy

(a+ hx)y − (a+ hy)x

(a+ hx)2
(260)

=
1

a+ hy

ay + hxya− xa− hyxa

a+ hx
=

a(y − x)

(a+ hy)(a+ hx)
(261)

∂

∂h
log

a+ hy

a+ hx |h=0
=
y − x

a
(262)

And therefore,
∂

∂h
DKL(kt+h|t(xt+h|xt)||kθt+h|t(xt+h|xt))|h=0 (263)

=

[
Qt(xt|xt) log

1 + hQt(xt|xt)

1 + hQθ
t (xt|xt)

+ (1 + hQt(xt|xt))
Qt(xt|xt)−Qθ

t (xt|xt)

(1 + hQθ
t (xt|xt))(1 + hQt(xt|xt))

]
|h=0

(264)

+
∑

xt+h 6=xt

Qt(xt+h|xt) log
Qt(xt+h|xt)

Qθ
t (xt+h|xt)

(265)

=Qt(xt|xt)−Qθ
t (xt|xt) +

∑
xt+h 6=xt

Qt(xt+h|xt) log
Qt(xt+h|xt)

Qθ
t (xt+h|xt)

(266)

=−Qθ
t (xt|xt)−

∑
xt+h 6=xt

Qt(xt+h|xt) logQ
θ
t (xt+h|xt) + C (267)

=
∑

xt+h 6=xt

Qθ
t (xt+h|xt)−Qt(xt+h|xt) logQ

θ
t (xt+h|xt) + C (268)

where the last step assumes that Qt has been normalized to
∑

y 6=xt

Qt(y|xt) = −Qt(xt|xt) and C is a constant

in q. The above gives us a simple way of training the Qt-kernel. Plugging this into the Generator Matching
loss (see proposition 2) for a conditional rate matrix Qz

t , this gives us the total loss of:

DKL(pdata(x1)||pθ1(x1)) (269)

≤Ez∼pdata,t∼Unif[0,1],xt∼pt(·|z)

∑
x̃ 6=xt

Qθ
t (x̃|xt)−Qz

t (x̃|xt) logQ
θ
t (x̃|xt)

+ C (270)

=:L(θ) (271)
The above loss was also found previously in the literature (Opper & Sanguinetti, 2007, equation (3)) as an
ELBO bound of the KL-divergence of continuous-space jump processes.

Up to a constant in θ, we can frame the above as a conditional Generator Matching loss with a Bregman
divergence by defining the convex function φ on Ω = R|S|−1

≥0 via

φ : Ω → R, x 7→
|S|−1∑
i=1

xi log(xi)− xi (272)
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To see this, it holds that

∇φ(x) = log(x),∇2φ(x) = diag(1/x) ≥ 0 (273)

which shows that φ is a convex function. Further, the corresponding Bregman divergence is given by

D(x, y) =φ(x)− φ(y)− 〈x− y,∇φ(y)〉 (274)

=

|S|−1∑
i=1

−yi log(yi) + xi log(xi)− (xi − yi)− (xi − yi) log(yi) (275)

=

|S|−1∑
i=1

yi − xi log(yi) + C (276)

where C is a constant in y. This recovers the above loss.

E FINDING SOLUTIONS TO KOLMOGOROV FORWARD EQUATION (KFE)

In this section, we give examples of two solutions to the KFE for two different conditional probability paths.
These allow us to build generative models based on their corresponding Markov processes. Models trained
with these solutions are illustrated in fig. 2. We formally derive the models here.

E.1 EXAMPLE 1 - CONDOT PATH WITH JUMP MODEL

The CondOT probability path in 1d with a Gaussian prior is given via:

pt(·|z) = N (tz, (1− t)2) (277)

for z ∈ R, 0 ≤ t ≤ 1. With a slight abuse of notation, we write pt(x|z) for its density. The jump continuity
equation (see app. A.5.3 for derivation) describes the adjoint KFE in this case given via

∂

∂t
pt(x|z) =

∫
Qt(x; y)pt(y|z)−Qt(y;x)pt(x|z)dy (278)

where we omit the dependency of Qt on z for conciseness and readability. Setting λz
t (x) =

∫
Qt(y;x)dy ≥ 0

and Jt(y;x) = Qt(y;x)/λt(x) (similarly, dropping dependency on z for readability), we get

∂

∂t
pt(x|z) =

∫
λt(y)Jt(x; y)pt(y|z)dy − λt(x)pt(x|z) (279)
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Time-derivative ∂
∂tpt. Let’s compute the left-hand side first:

∂

∂t
pt(x|z) (280)

=
∂

∂t

[
1√

2π(1− t)2
exp

(
− (x− tz)2

2(1− t)2

)]
(281)

=
∂

∂t

[
1√

2π(1− t)2

]
exp

(
− (x− tz)2

2(1− t)2

)
+

1√
2π(1− t)2

∂

∂t

[
exp

(
− (x− tz)2

2(1− t)2

)]
(282)

=
∂

∂t
[(1− t)−1](2π)−1/2 exp

(
− (x− tz)2

2(1− t)2

)
−N (x; tz, (1− t)2)

∂

∂t

[
(x− tz)2

2(1− t)2

]
(283)

=(1− t)−2(2π)−1/2N (x; tz, (1− t)2)

(2π(1− t)2)−1/2
−N (x; tz, (1− t)2)

∂

∂t

[
(x− tz)2

2(1− t)2

]
(284)

=(1− t)−2N (x; tz, (1− t)2)

(1− t)−1
−N (x; tz, (1− t)2)

∂

∂t

[
(x− tz)2

2(1− t)2

]
(285)

=(1− t)−1N (x; tz, (1− t)2)−N (x; tz, (1− t)2)
∂

∂t

[
(x− tz)2

2(1− t)2

]
(286)

=N (x; tz, (1− t)2)

[
(1− t)−1 − ∂

∂t

[
(x− tz)2

2(1− t)2

]]
(287)

=N (x; tz, (1− t)2)

[
(1− t)−1 − 2(1− t)22(x− tz)(−z)− (x− tz)24(1− t)(−1)

4(1− t)4

]
(288)

=N (x; tz, (1− t)2)

[
(1− t)−1 − −(1− t)(x− tz)z + (x− tz)2

(1− t)3

]
(289)

=N (x; tz, (1− t)2)

[
(1− t)−1 − (x− tz)

(1− t)3
(−(1− t)z + (x− tz))

]
(290)

=N (x; tz, (1− t)2)

[
(1− t)−1 − (x− tz)

(1− t)3
(x− z)

]
(291)

Let’s assume that Jt(x|z) = Jt(x) for a state-independent jump distribution Jt(x). Further, let’s set
λ̃t(x) = λt(x)(1− t). Then jump continuity equation becomes:

N (x; tz, (1− t)2)

[
1− (x− tz)(x− z)

(1− t)2
+ λ̃t(x)

]
=Jt(x)

∫
λ̃t(x̃)N (x̃; tz, (1− t)2)dx̃ (292)

N (x; tz, (1− t)2)
[
1− (x−tz)(x−z)

(1−t)2 + λ̃t(x)
]

∫
λ̃t(x̃)N (x̃; tz, (1− t)2)dx̃

=Jt(x) (293)
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To be a valid probability distribution, Jt must fulfill:

Jt(x) ≥0 ⇔ λ̃t(x) ≥ max

(
(x− tz)(x− z)

(1− t)2
− 1, 0

)
(294)

1 =

∫
Jt(x)dx (295)

⇔ 0 =

∫
N (x; tz, (1− t)2)

[
1− (x− tz)(x− z)

(1− t)2

]
dx (296)

⇔ 0 =1−
∫

N (x; tz, (1− t)2)
(x− tz)(x− z)

(1− t)2
dx (297)

⇔ 0 =1−
∫

N (x; tz, (1− t)2)
x2 − (t+ 1)zx+ tz2

(1− t)2
dx (298)

⇔ 0 =1− (1− t)2 + t2z2 − (t+ 1)z2t+ tz2

(1− t)2
(299)

⇔ 0 =
t2z2 − (t+ 1)z2t+ tz2

(1− t)2
(300)

⇔ 0 =
−z2t+ tz2

(1− t)2
(301)

⇔ 0 =0 (302)

Hence, we can see that Jt(x) is indeed a valid probability distribution. Using that λ̃t(x) = λt(x)(1− t), we
get the following result:

λt(x) =
max

(
(x−tz)(x−z)

(1−t)2 − 1, 0
)

1− t
(303)

=
max

(
(x− tz)(x− z)− (1− t)2, 0

)
(1− t)3

(304)

=
max

(
x2 − (t+ 1)xz − (1− t)2 + tz2, 0

)
(1− t)3

(305)

Jt(x) =
N (x; tz, (1− t)2)

[
1− (x−tz)(x−z)

(1−t)2 + (1− t)λt(x)
]

(1− t)
∫
λt(x̃)N (x̃; tz, (1− t)2)dx̃

(306)

=

[
1− (x−tz)(x−z)

(1−t)2

]
+
N (x; tz, (1− t)2)∫ [

1− (x̃−tz)(x̃−z)
(1−t)2

]
+
N (x̃; tz, (1− t)2)dx̃

(307)

=

[
(1− t)2 − (x− tz)(x− z)

]
+
N (x; tz, (1− t)2)∫

[(1− t)2 − (x̃− tz)(x̃− z)]+ N (x̃; tz, (1− t)2)dx̃
(308)

=

[
−x2 + (t+ 1)xz + (1− t)2 − tz2

]
+
N (x; tz, (1− t)2)∫

[−x2 + (t+ 1)xz + (1− t)2 − tz2]+ N (x̃; tz, (1− t)2)dx̃
(309)
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Let’s study the 2nd degree polynomial that is used here:

k(x) =x2 − (t+ 1)xz − (1− t)2 + tz2 (310)

x1,2 =
(t+ 1)z ±

√
(t+ 1)2z2 + 4(1− t)2 − 4tz2

2
(311)

=
(t+ 1)z ±

√
(t2 + 2t+ 1)z2 + 4− 8t+ 4t2 − 4tz2

2
(312)

=
(t+ 1)z ±

√
(t2 − 2t+ 1)z2 + 4− 8t+ 4t2

2
(313)

=
(t+ 1)z ±

√
(1− t)2z2 + 4(1− t)2

2
(314)

=
(t+ 1)z ± |1− t|

√
z2 + 4

2
(315)

=
tz + z

2
± |1− t|

√
z2

4
+ 1 (316)

The above says intuitively that the jump intensity is “most negative” around the area at the arithmetic of
the currrent mean tz and the final mean z. Note that for t ≈ 1, it holds that only x with x close to z have
p(x) < 0, all others must jump.

As an aside, the above allows to know the support of the marginal Jt apriori:

tz + z

2
± |1− t|

√
z2

4
+ 1 ≤c

t+ 1

2
+ (1− t)

√
c2

4
+ 1 (317)

=

[
c

2
−
√

c2

4
+ 1

]
t+

√
c2

4
+ 1 +

c

2
(318)

≤
√

c2

4
+ 1 +

c

2
(319)

where c is the upper boundary of the support of the data. A reverse inequality for holds the lower boundary.

Summary. The CondOT probability path is generated by a jump process with jump intensity λt(x) and
state-independent jump distribution Jt given by:

λt(x) =
[kt(x)]+
(1− t)3

(320)

Jt(x; x̃) = Jt(x) ∝[−kt(x)]+N (x, tz, (1− t)2) (321)

where kt(x) =x2 − (t+ 1)xz − (1− t)2 + tz2 (322)
Qt(y;x) =λt(x)Jt(y;x) (323)

Intuitively, we jump at xt only if k(xt) has a positive value. If we jump, we jump to a region of negative
kt(x) proportional to kt(x) multiplied with the desired density.
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E.2 EXAMPLE 2 - MIXTURE PATH WITH DATA-GENERATING DIFFUSION

In this section, we would like to find a solution based on a forward diffusion process that solves for the
mixture probability path in R given by:

pt(x|z) = (1− κt)·0 (dx) + κt · N (z, σ2
min) ⇔ xt ∼

{
∼ N (z, σ2

min) with prob κt

∼ p0 with prob (1− κt)
(324)

where σmin > 0 is a small value (we will later σmin → 0). Specifically, we search for KFE solutions given by
an SDE

dXt = σ(Xt, t)dWt + dLt (325)
where σ(Xt, t) is a diffusion coefficient controlling the amount of infinitesimal noise we add and dLt describes

a reflection process. Let G0(x) =
x∫

−∞

y∫
−∞

p0(w)dwdy and Gz,σmin(x) =
x∫

−∞

y∫
−∞

N (w; z, σ2
min)dwdy. Then:

∂2

∂2x
Gx1,σmin(x) =N (x;x1, σ

2
min),

∂2

∂2x
G0(x) = p0(x) (326)

Therefore, for any at, bt ∈ R we get
∂

∂t
pt(x|z) =κ̇t(N (x; z, σ2

minId)− p0(x)) (327)

=
∂2

∂2x
(κ̇t(at + btx+Gz,σmin(x)−G0(x))) (328)

=
∂2

∂2x
(pt(x|z)

κ̇t(at + btx+Gz,σmin(x)−G0,σ(x))

pt(x|z)
) (329)

=
1

2

∂2

∂2x
(pt(x|z)

2κ̇t(at + btx+Gz,σmin(x)−G0(x))

κtN (x; z, σ2
min) + (1− κt)p0(x)︸ ︷︷ ︸
=:σ̃2

t (x|z)

) (330)

=
1

2

∂2

∂2x
(pt(x|z)σ̃2

t (x|z)) (331)

Therefore, we can see that σ̃2
t (x|z) satisfies the Fokker-Planck equation. However, σ̃2 can be negative and

therefore it is not a valid diffusion coefficient in general. We have to pick at, bt such that σ̃2
t is non-negative.

Choice of at, bt. Specifically, define at = ct +
1
2z and bt = 0 for a value ct that we will define later. Then

we get that:

σ̃2
t (x|z) =

2κ̇t(at + btx+Gz,σmin(x)−G0(x))

κtN (x; z, σ2
min) + (1− κt)p0(x)

=
2κ̇t(ct +

1
2x+ 1

2 (z − x) +Gz,σmin(x)−G0(x))

κtN (x; z, σ2
min) + (1− κt)p0(x)

(332)

The value ct is chosen such that σ̃2
t (x|z) is non-negative (we will simply define it as the minimum of the

residual). For σmin → 0, it holds that Gz,σmin(x) → [x− z]+ and we have:

σ̃2
t (x|z) =

2κ̇t(ct +
1
2x+ 1

2 (z − x) +Gz,σmin(x)−G0(x))

κtN (x; z, σ2
min) + (1− κt)p0(x)

(333)

→
2κ̇t(ct +

1
2x+ 1

2 (z − x) + [x− z]+ −G0(x)))

(1− κt)p0(x)
(334)

=
2κ̇t(ct +

1
2x+ 1

2 |x− z| −G0(x)))

(1− κt)p0(x)
(335)

43



2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

Under review as a conference paper at ICLR 2025

We can define

ct := −min
x∈R

g(x), g(x) =
1

2
x+

1

2
|x− z| −G0(x) (336)

We know that

g′(x) =1− F0(x) < 0, (x ≥ z) (337)

g′(x) =− F0(x) < 0, (x ≤ z) (338)

The above implies that the minimum of g(x) is obtained at z and it holds that:

ct = G0(z)−
1

2
z (339)

This value can be computed numerically. The final function we get is:

σ̃2
t (x|z) =

2κ̇t(G0(z)− 1
2z +

1
2x+ 1

2 |x− z| −G0(x)))

(1− κt)p0(x)
=

2κ̇t(G0(z) + [x− z]+ −G0(x)))

(1− κt)p0(x)
(340)

If the above prior p0 has no boundaries (i.e. support R) as for a Gaussian, then we are done here. For a prior
with compact support, we need to consider reflections.

Uniform prior. Let’s consider a uniform prior p0 = Unif[a1,a2]. Then the equation becomes

σ̃2
t (x|z) =(a2 − a1)

2κ̇t(
1
2
(z−a1)

2

a2−a1
+ [x− z]+ − 1

2
(x−a1)

2

a2−a1
))

(1− κt)
(341)

The above equation has non-zero boundaries:

σ̃2
t (a1|z) =

κ̇t(z
2 − a21 − 2a1[z − a1])

(a2 − a1)(1− κt)
=

κ̇t(z
2 + a21 − 2a1z)

(a2 − a1)(1− κt)
=

κ̇t(z − a1)
2

(a2 − a1)(1− κt)
(342)

σ̃2
t (a2|z) =

κ̇t(z
2 − a22 + 2a2[a2 − z])

(a2 − a1)(1− κt)
=

κ̇t(z
2 + a22 − 2a2z)

(a2 − a1)(1− κt)
=

κ̇t(z − a2)
2

(a2 − a1)(1− κt)
(343)

Therefore, we need to consider a reflected SDE of the form

dXt = σt(Xt)dWt + Lt

where Lt describes a reflection on the boundaries [a1, a2]. We refer to (Pilipenko, 2014) for a rigorous
definition on reflected SDEs. Here, we simply note that one can imulate the reflected SDE up to o(h)-
approximation error with

Xt+h = Ra1,a2
(Xt +

√
hσt(Xt))

where Ra1,a2 describes the reflection operator along the boundaries [a1, a2]. Beyond satisfying the Fokker-
Planck equation, it must then also satisfy the Neumann boundary condition that (Pilipenko, 2014; Lou &
Ermon, 2023):

∂

∂x
[σ̃2

t (x|z)pt(x|z)]|x=a1
= 0 (344)

∂

∂x
[σ̃2

t (x|z)pt(x|z)]|x=a2
= 0 (345)
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Note that here, pt(x|z) is a constant along the boundary (because the only place where it is not constant is
around z for σmin → 0). Therefore, the above reads as

∂

∂x
[σ̃2

t (x|z)]|x=a1
= 0 (346)

∂

∂x
[σ̃2

t (x|z)]|x=a2
= 0 (347)

That this is fulfilled can be easily seen. Therefore, in total, we have proven that a reflected Brownian motion
with a uniform initial distribution and σ̃2

t as defined as in eq. (341) generates the conditional mixture
path.

F DETAILS FOR EUCLIDEAN JUMP MODEL

We use a jump model with Qt(y;x) = λt(x)Jt(y;x) where λt, Jt are described in eqs. (321) and (323).

Sampling. For sampling, we can use the fact that λt(x) = [kt(x)]+/(1 − t)3 factorizes in a part that is
relatively constant across time and a part that is relatively time-dependent. Specifically, we can set:

λt+s(x) ≈
[kt(x)]+

(1− t− s)3
0 ≤ s < h (348)

Which gives:

P[No Jump in [t, t+ h)] = exp(−
h∫

0

λt+s(x)ds) (349)

≈ exp(−[kt(x)]+

h∫
0

1

(1− t− s)3
ds) (350)

=exp(−[kt(x)]+[
1

2
(1− t− s)−2]h0 ) (351)

=exp

(
− [kt(x)]+

2

[
1

(1− t− h)2
− 1

(1− t)2

])
(352)

=exp

(
[kt(x)]+

2

[
1

(1− t)2
− 1

(1− t− h)2

])
(353)

=exp

(
[kt(x)]+

2

(1− t)3

[
1− t− (1− t)3

(1− t− h)2

])
(354)

=exp

(
1

2
λt(x)(1− t)

[
1− (1− t)2

(1− t− h)2

])
(355)

=:Rt,t+h(λt(x)) (356)

Therefore, the above gives us a valid scheduler to decide whether to jump in a time-interval [t, t+ h) or not.
For us, this modification made a significant difference in the image generation results (e.g. FID 12 vs 4.5 on
CIFAR-10).

45



2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

Under review as a conference paper at ICLR 2025

Extension to multi-dimensional case. We assume our data is multi-dimensional and lies in Rd and we can
use proposition 4 to extend the model from 1d to multiple dimensions. Specifically, for x ∈ Rd our model is
given via

λd
t (x) =(λ1

t (x), . . . , λ
d
t (x)) (357)

Jd
t (x) =(J1

t (x), . . . , J
d
t (x)) (358)

where λi
t(x) ≥ 0 and J i

t (x) is a categorical distribution (using softmax) over a fixed set of bins in [−1, 1]
(support of normalized images). On images, we implement this by using a U-Net architecture with b + 1
channels where b describes the number of bins. During sampling, for each time update t 7→ t+ h, updates
happen independently per dimension. Specifically,

Xt+h =(X1
t+h, . . . , X

d
t+h) (359)

mi ∼Bernoulli(1−Rt,t+h(λt(x))) (360)

Xi
t+h =

{
Xt if m = 0

∼ J i
t (Xt) if m = 1

(361)

Loss function. As a loss function, we use an infinitesimal KL-divergence in 1d via

Qt(y;x) =Jt(y;x)λt(x), Qθ
t (y;x) = Jt(y;x)λ

θ
t (x) (362)

D(Qt(y;x), Q
θ
t (y;x)) =

∑
y 6=x

Qθ
t (y;x)−Qt(y;x) logQ

θ
t (y;x) (363)

where the sum of y’s is here over regularly spaced bin values in [−1, 1]. We extend the above loss to the
multi-dimensional case via

Qi
t(y

i;x) =J i
t (y

i;x)λi
t(x), Qθ,i

t (yi;x) = Jθ,i
t (yi;x)λθ,i

t (x) (364)

D(Qt(y;x), Q
θ
t (y;x)) =

d∑
i=1

D0(Q
i
t(y

i;x), Qθ,i
t (yi;x)) (365)
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G DETAILS FOR PROTEIN JUMP MODEL

G.1 JUMP SOLUTION TO THE KFE

We first derive a general jump solution to the jump continuity equation. The jump model described in app. F
will be a special case of the same construction. Let pt(x) be a probability density for every 0 ≤ t ≤ 1 on S -
where S is an arbitrary state space. For a jump intensity λt(x) and jump kernel Jt(x̃;x), the jump continuity
equation is given by:

∂

∂t
pt(x) =

∫
λt(x̃)Jt(x; x̃)pt(x̃)dx̃− pt(x)λt(x) (366)

⇔ pt(x)[
∂

∂t
log pt(x) + λt(x)] =

∫
λt(x̃)Jt(x; x̃)pt(x̃)dx̃ (367)

Making Jt(x; x̃) = Jt(x) state-independent, we get:

pt(x)[
∂

∂t
log pt(x) + λt(x)] =Jt(x)

∫
λt(x̃)pt(x̃)dx̃ (368)

⇔
pt(x)[

∂
∂t log pt(x) + λt(x)]∫
λt(x̃)pt(x̃)dx̃

=Jt(x) (369)

We require Jt(x) to be a probability density and λt(x) ≥ 0. Therefore, we get the two necessary constraints:

λt(x) ≥[− ∂

∂t
log pt(x)]+ (370)

1 =

∫
Jt(x)dx (371)

⇔
∫

λt(x)pt(x)dx =

∫
pt(x)

[
∂

∂t
log pt(x) + λt(x)

]
+

dx (372)

⇔ 0 =

∫
∂

∂t
pt(x)dx (373)

⇔ 0 =
∂

∂t

∫
pt(x)dx (374)

⇔ 0 =
∂

∂t

∫
1dx (375)

⇔ 0 =0 (376)
Therefore, λt(x) and Jt(x) defined as above are always a solution to the jump continuity equation for any
state space. For minimal jump intensity λt, we get:

λt(x) =[− ∂

∂t
log pt(x)]+ (377)

=
[− ∂

∂tpt(x)]+

pt(x)
(378)

Jt(x) =
pt(x)[

∂
∂t log pt(x)]+∫

[− ∂
∂t log pt(x̃)]+pt(x̃)dx̃

(379)

=
[ ∂∂tpt(x)]+∫
[ ∂∂tpt(x̃)]+dx̃

(380)

(381)
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The above equations are illustrated in app. G.1 for a sphere in R3. The above in fact represents a general
solution to arbitrary state spaces.

Figure 5: Illustration of jump model on manifolds. Left: Illustration of conditional probability pt(dx|z) on
sphere with z = (0, 0, 1)T (North pole). Top: density pt(x|z). Middle: jump intensity λt(x) =

∫
Qt(dy;x).

Bottom: Jump distribution Jt(dy;x) = Qt(dy;x)/
∫
Qt(dy;x).

G.2 PROBABILITY PATHS AND COMPUTING λt, Jt

We consider the quaternion model for SO(3), namely, each element of SO(3) is represented by a unit vector
x ∈ S3 ⊂ R4, where

S3 =
{
x ∈ R4

∣∣ ‖x‖ = 1
}

(382)
with ‖x‖ = 1. We consider a probability path of Fisher-von-Mises distributions given by

pt(x|x1) = Cp(κt) exp(κtx
T
1 x) (383)

for a scheduler κt such that κ0 = 0 and κ1 >> 0 and normalization constant Cp(κt). We use a custom
implementation of the Fisher-von-Mises distribution in a way that makes pt(x|x1) differentiable with respect
to t. We then use automatic differentiation to compute ∂tpt(x|x1). This allows us to compute λt and Jt (see
previous section). To parameterize λt on SO(3), we simply consider a function on SO(3). To parameterize
Jt on SO(3) we place uniform bins over SO(3) and make each bin represent a rotation. We note that the
probability path that FrameFlow was trained on is not the probability path above. Rather, it is a probability
path constructed via geodesic interpolation of a uniform to a delta function. Computing λt, Jt on this path was
numerically unstable for us (because of sharp boundaries introduced by the uniform distribution). Therefore,
we choose a Fisher-von-Mises path as above but selected the scheduler κt to optimally approximate the
geodesic path. This ensured numerical stability and an (approximately) faithful recovery of the probability
path. The Fisher-von-Mises path is more numerically stable as its support is all of SO(3) for all 0 ≤ t ≤ 1.

G.3 SAMPLING

The FrameFlow model predicts a data point z given a state xt at time 0 ≤ t ≤ 1, i.e. it predicts the conditional
expectation Ez∼pt(dz|x)[z]. The marginal jump rate kernel is given by

Qt(y;xt) = Ez∼pt(dz|xt)[Q
z
t (y;xt)] (384)

In order to repurpose the flow model, we make the simplifying assumption that

Qt(y;xt) = Ez∼pt(dz|xt)[Q
z
t (y;xt)] ≈ Q

Ez∼pt(dz|xt)
[z]

t (y;xt) (385)

Assuming that the distribution pt(dz|x) is unimodal, this corresponds to high temperature sampling of z. We
do not employ any temperature to sample from Jt or λt but use plain Euler sampling as described in table 1.
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G.4 EXPERIMENT DETAILS

We based our implementation off https://github.com/jasonkyuyim/multiflow and down-
loaded pre-trained weights from the same repository. We use Euler-Maruyama integrator and 100 discretiza-
tion steps for all sampling runs. Each sample uses 100 neural network function evaluations (NFEs). Neural
network architecture details can be found in Campbell et al. (2024b). The size of the model is 17.4 million
parameters. All MultiFlow hyperparameters, except those for the jump model, use the default ones provided
in in the open source code. We found increasing the number of SO(3) jumps bins to improve results and use
2056 bins in our experiments. For our metrics, we deviate slightly from (Yim et al., 2023a) by only reporting
diversity and novelty and exclude designability. As noted in (Yim et al., 2024), designability can be artificially
high if the generative model samples the same protein repeatedly. Nevertheles, using designability to filter bad
samples is still important since protein generative models are prone to hallucination and producing proteins
that would never be real. A detailed description of designability can be found in (Yim et al., 2023b). Our
metrics already take designability into account by first filtering the sampled proteins to only be the designable
proteins then clustering the protein structures to compute diversity and searching against protein datasets to
measure novelty. Following the widely adopted benchmark in Watson et al. (2023), we sample 100 proteins
for each length 70, 100, 200, 300 for a total of n = 400 samples then compute each metric as follows:

1. Diversity (Div): Taking only the samples passing the designability filter, we use MaxCluster (Herbert
& Sternberg, 2008) to compute the number of clusters nc. We report nn/n which is the proportion of
designable clusters to number of total samples. The higher this value, the more diverse the generated
samples are after the designability filter. Diversity is important in protein design where it is ideal
to test many diverse protein candidates in the hopes of having many shots to make a new drug or
medicine for instance.

2. Novelty (Nov): Taking only the samples passing the designability filter, we use FoldSeek (Van Kem-
pen et al., 2024) to compute the similarity of each sample to the Protein Data Bank (PDB) (Berman
et al., 2000). The similarity score is given as a protein structure alignment score called the TM-score
(Xu & Zhang, 2010) where a value of 0.5 or less means the two structures are likely to be distinct.
The probability of the two structures being similar with the same biological function increases as the
score goes to 1.0. Therefore, the dissimilarity is 1 - (TM-score). We report the average dissimilarity
of the outputs of FoldSeek as the novelty since this describes how “novel” the designable samples
are on average compared to the known protein structures.

For baselines, we follow the ones described in Campbell et al. (2024b) with the addition of FoldFlow (Bose
et al., 2023) since it was recently open sourced. Our full results are provided in Table 4 whereas a truncated
version is presented in the main text Table 3. We remove mention of Des. in the main text since this metric
can be misleading – it can easily be hacked and achieve 100% if the method repeatedly samples the same
designable protein. As we see, our jump modifications lead to the best results in all categories. The ensemble
model of jumps and flows performs similarly as the pure jump model.
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Method Co-design 1 (multi-modal) PMPNN 8 (unimodal)
Des Div Nov Des Div Nov

RFdiffusion 0.87 0.4 0.37
FrameFlow 0.86 0.39 0.39
FoldFlow 0.81 0.24 0.32
Protpardelle 0.63 0.10 0.40 0.90 0.12 0.41
ProteinGenerator 0.37 0.09 0.31 0.89 0.19 0.35
MultiFlow 0.86 0.38 0.39 0.99 0.52 0.39
w/ SO(3) jumps (ours) 0.76 0.48 0.41 0.96 0.63 0.41
w/ SO(3) jumps + flow (ours) 0.78 0.47 0.40 0.96 0.59 0.40

Table 4: Full protein generation results.

H EXTENDED DISCUSSION OF RELATED WORKS

H.1 FLOW MATCHING

Flow matching and rectified flows (Lipman et al., 2022; Liu et al., 2022) are immediate instances of Generator
Matching leveraging the flow-specific versions of the KFE given by the continuity equation (see table 1 and
app. A.5.1 for a derivation). We briefly describe here how one can map the propositions from this work to
their work. Specifically, flow matching restricts itself to generators of the form Lθ

t f(x) = ∇f(x)Tuθ
t (x)

for a vector field uθ
t (x) parameterized by a neural network with parameters θ. Given a conditional vector

field ut(x|z) and a probability path pt(x|z), the corresponding marginal vector field in flow matching (see
(Lipman et al., 2022, equation (8))) is given by

ut(x) =

∫
ut(x|z)

pt(x|z)pdata(z)

pt(x)
dz (386)

and corresponds to the marginal generator (see proposition 1). The Bregman divergence used is the mean
squared error (MSE) obtained by choosing φ(x) = ‖x‖2 in eq. (15). The conditional flow matching loss
(Lipman et al., 2022, Theorem 2 ) is a special case of proposition 2. Therefore, Generator Matching can be
seen as a generalization of the principles of flow matching to the space of Markov process generators for
arbitrary state spaces.

H.2 DENOISING DIFFUSION MODELS

From the perspective of Generator Matching, denoising diffusion models (Song et al., 2020) are flow models
with two conceptual differences to flow matching: (1) They allow for stochastic sampling via SDEs by adding
a divergence-free Langevin component (see proposition 3) and (2) A probability path is defined via forward
noising process and a time-reversal of that process serves a solution to the KFE. We explain both differences
below.

Time-reversal to find solutions to the KFE. First, let’s discuss the idea of time-reversal. In diffusion
models, a probability path pt(dx|z) is constructed via a forward diffusion process that noises data (i.e. here,
not only the marginals are specified but a full distribution across all time points). The conceptual idea of
time-reversal allows to find solutions to the KFE. We illustrate this here. We derived this already in app. H.2
for general Markov processes and illustrate it here for diffusion models. Specifically, let’s consider a Markov
noising process X̄t given by a variance-exploding SDE dX̄t = σtdW̄t that goes from t = 1 to t = 0
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backwards in time1. Then we know that the KFE holds in reverse time

∂tptf =−
〈
pt, L̄tf

〉
I KFE in reverse time (387)

=−
∫

pt(x)
σ2
t

2
∆f(x)dx I generator for diffusions, see table 1 (388)

=−
∫

pt(x)
σ2
t

2
∇ · ∇f(x)dx I definition of Laplacian (389)

=

∫
∇pt(x)

T σ2
t

2
∇f(x)dx I partial integration (390)

=

∫
pt(x)∇f(x)T

[
σ2
t

2
∇ log pt(x)

]
︸ ︷︷ ︸

=:Ltf(x)

dx I derivative of log (391)

= 〈pt,Ltf〉 (392)

As we can see, the operator Ltf = ∇fT σ2
t

2 ∇ log pt fulfils the KFE in forward time. Further, Lt corresponds

to a generator of a flow with vector σ2
t

2 ∇ log pt. We can see that the corresponding flow must generate
the probability path pt. This flow is commonly called the probability flow ODE (Song et al., 2020). The
conditional Generator Matching loss with a mean squared error then leads to the denoising score matching
loss (Vincent, 2011)

Ez∼pdata,t∼Unif,x∼pt(·|z)[‖∇ log pt(x|z)− sθ(x, t)‖2] (393)

for a neural network sθ : Rd × [0, 1] → Rd approximating the score vector field. We remark that mathe-
matically there is also a stronger notion of time-reversal that also requires the joint distribution (across time
points) to the be same - as opposed to just the marginals.

Stochastic sampling by adding a divergence component. Second, let’s discuss stochastic sampling. For a
general probability path pt with density pt(x), a general divergence-free component is given via the Langevin
generator corresponding to an SDE with drift σ2

t∇ log pt(x) and diffusion coefficient
√
2σt

LLangevin
t f(x) = σ2

t∇f(x)T∇ log pt(x) + σ2
t∆f(x), (394)

This fact is widely applied in statistical physics and Markov chain Monte Carlo methods in the form of
Langevin dynamics (Roberts & Tweedie, 1996). To see that this is divergence-free (in the sense as defined in
proposition 3), we can simply use partial integration〈

pt,LLangevin
t f

〉
(395)

=

∫
pt(x)σ

2
t∇f(x)T∇ log pt(x)dx+

∫
pt(x)σ

2
t∆f(x)dx I by definition (396)

=

∫
σ2
t∇f(x)T∇pt(x)dx+

∫
pt(x)σ

2
t∆f(x)dx I derivative of log (397)

=−
∫

σ2
t∆f(x)pt(x)dx+

∫
pt(x)σ

2
t∆f(x)]dx I partial integration (398)

=0 (399)

1Note that in (Song et al., 2020) t = 0 corresponds to data, while we keep the convention here that t = 1 corresponds
data
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In (Song et al., 2020), they fix a specific weighting and run several iterations of a Langevin sampling iteration
at every time step, there called a predictor-corrector scheme (see (Song et al., 2020, Algorithm 1-3)). However,
by proposition 3 any positive weighting of the above Langevin component leads to a valid sampling procedure.
This observation was already made by Karras et al. (2022, section 4) where the optimal weighting of the
divergence-free Langevin component is studied experimentally in more detail.

Finally, we note that many denoising diffusion models use formulations in discrete time (Sohl-Dickstein et al.,
2015; Ho et al., 2020). While these formulations do not incur a time discretization error during sampling,
they incur an error in the loss formulation. The reason for that is that a similar proposition as in proposition 2
does not hold for discrete time steps (i.e. the linearization only holds for the generator and not the transition
kernel). Therefore, a formulation with discrete time steps can only us an approximate loss via an ELBO lower
bound using parameterized family of distributions such as a Gaussian (Sohl-Dickstein et al., 2015).

H.3 STOCHASTIC INTERPOLANTS

Stochastic interpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023) is a framework for generative
modelling that shares many similarities with diffusion models and flow matching. We explain conceptual
differences by placing its findings within the Generator Matching framework.

General flow solution based on interpolant. A difference in the perspective of stochastic interpolants is
that they take a sample-based perspective, i.e. they specific an initial distribution x0 ∼ p0 and a probability
path xt ∼ pt(dx) is constructed implicitly via a simulator function I (see (Albergo et al., 2023, definition
2.1))

xt := Φ(t, x0, z, ε) := I(t, x0, z) + γ(t)ε (400)
where ε ∼ N (0, Id) and we impose the condition that I(0, x0, z) = x0, I(1, x0, z) = z and γ(0) = 0, γ(1) =
0. A general flow-based solution can be derived by using the KFE (see (Albergo et al., 2023, theorem 2.6)):

∂

∂t
〈pt, f〉 = ∂tE[f(Φ(t, x0, z, ε))] =E[∇f(Φ(t, x0, z, ε))

T∂tΦ(t, x0, z, ε)] (401)

=Ext∼pt [∇f(xt)
TE[∂tΦ(t, x0, z, ε)|xt]︸ ︷︷ ︸

=:Ltf(xt)

] (402)

=Ext∼pt [Ltf(xt)] (403)
The operator Ltf is a generator of a flow with vector field given by the conditional expectation of the velocity
u(xt, t) = E[∂tΦ(t, x0, z, ε)|xt]. Hence, we see that the above vector field generates the probability path pt.
This can be trained in the same way with a mean-squared error as for denoising diffusion models and flow
matching.

Stochastic sampling. Another difference of stochastic interpolants is a generalization of the stochastic
sampling procedure for denoising diffusion models (see app. H.2). One advantage of denoising diffusion
models is that one gets - informally - "2 advantages for 1": Specifically, both for learning a flow-based
solution to the KFE and for stochastic sampling, we only need to learn the function ∇ log pt commonly
called the score function (see app. H.2). This works because the process is constructed as a diffusion process.
However, in the general case, one can still learn the score ∇ log pt separately from the flow and then add a
divergence-free Langevin component during sampling (see eq. (394)). As pointed out in (Albergo et al., 2023,
theorem 2.8), the special shape of the stochastic interpolant (see eq. (400)) allows to derive a simple denoising
score matching loss. In (Albergo et al., 2023, theorem 2.23), it is further shown that adding stochastic
sampling leads to the ability to control the KL-divergence between the target distribution and the distribution
generated by the model. This highlights an advantage of adding a noise (SDE) term because bounding the
KL-divergence is in general not possible with a pure flow model (although bounds in Wasserstein distance
exist for flow models, see (Benton et al., 2023)).
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H.4 DISCRETE SPACES VIA CONTINUOUS-TIME MARKOV CHAINS ("DISCRETE DIFFUSION")

For discrete state spaces S, the generator of a Markov process Xt ∈ S is given by a rate transition matrix
Qt ∈ RS×S (see app. A.5.4 for derivations). Therefore, if we restrict ourselves to generators on discrete state
spaces, we recover the framework developed by (Campbell et al., 2022) as an instance of Generator Matching.
Proposition 1 in Campbell et al. (2022) corresponds to proposition 1 showing that the marginal generator/rate
matrix corresponds a conditional generator weighted by the posterior. Proposition 2 in Campbell et al. (2022)
shows that a continuous-time ELBO can be derived via a Bregman divergence. We derive a similar, slightly
simpler, Bregman divergence loss in app. D.2 that also corresponds to an ELBO lower bound. Further, they
use a predictor-corrector scheme (see Campbell et al. (2022, Proposition 4)) as outlined here for the general
case in proposition 3. In the discrete setting, this leads to significant improvements (Gat et al., 2024).

In many applications such as language modelling, the state space decomposes into dimensions, i.e. is given
via S = {1, . . . , N}d =: [N ]d where N is the vocabulary size. This state space is usually too large that
one cannot store a full rate transition matrix Qt (and not even a single row of it) in a computer. However,
using a factorized probability path, we can use proposition 4 to see that we can learn a rates Qt that update
each dimension independently (i.e. it has a block structure). This reduces the dimension significantly. This
was shown for discrete spaces also in Campbell et al. (2022, Proposition 3) and has since then the de facto
standard for discrete diffusion models (Lou et al., 2024a; Gat et al., 2024). Instead of parameterizing the
generator directly, proposition 4 also shows that one can also only learns the marginals pt(zi|x) for each
z = (z1, . . . , zn) ∈ [N ]d independently. One can then train the marginals of the posterior pt(zi|x) via the
cross-entropy loss (Gat et al., 2024; Campbell et al., 2024b).

Campbell et al. (2022) adapt the idea of time-reversal from diffusion models to find solutions of the KFE
for a given probability path. Specifically, the time-reversal Qt of a process with rate matrix Q̄t running in
backwards-time is given via

Qt(x; y) = Q̄t(y;x)
pt(x)

pt(y)
(404)

In more recent works (Lou et al., 2024a), it has been shown that parmeterizing the generator by the ratio
p(y)/p(x) that is needed to time-reverse the process - called the "discrete score" - leads to improved results.
As this is a linear parameterization of the generator, they can use the same Bregman divergence as we derive
in app. D.2 to train the discrete score.

Blackout diffusion. As another example of a discrete Markov model, we discuss blackout diffusion (Santos
et al., 2023). This model also considers a model on discrete state spaces S with rate matrix Qt (there, denoted
as Lmm′ ). The KFE in discrete spaces corresponds to (Santos et al., 2023, Equation (2)). A probability path is
constructed via a "forward process" or noising process that allows for transitions to neighboring states, in the
specific case for the blackout diffusion characterization by a decay process representing by m → m− 1 (see
app. A.4 for a discussion of how probability paths and time-reversal relate). The loss function in (Santos et al.,
2023, Equation (11) and (12)) correspond to the ELBO likelihood loss derived in app. D.2 (up to constants).
Further, Santos et al. (2023) show that this design of the probability path allows to simplify several equations
during training (Santos et al., 2023, Algorithm 1) and allows to make finite-time approximations reducing the
discretization error during sampling (Santos et al., 2023, Algorithm 2).

H.5 GEOMETRIC DATA AND MANIFOLDS

We next describe how Generator Matching generalizes models on Riemannian manifolds. In the following,
let S = M be a smooth Riemannian manifold with metric g. For x ∈ M, let TxM be the tangent space of x
and let TM =

⊔
x∈M TxM be the tangent bundle.
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Riemannian Flow Matching (Chen & Lipman, 2024). First, we consider flows on M showing how we
can recover Riemannian Flow Matching (Chen & Lipman, 2024). A flow on M is defined via a vector field
u : M× [0, 1] → TM such that ut(x) ∈ TxM for all x ∈ M. As every tangent space is a vector space, the
space of vector fields is a vector space again. Every vector fields defines a flow φt|s that fulfils

φt|t(x) =x for all 0 ≤ t ≤ 1 (405)
d

dt
φt|s(x) =ut(φt|s(x)) for all 0 ≤ s ≤ t ≤ 1 (406)

Next, we derive the generator. Let f : M → R be a smooth function. Then the generator is given via

Ltf(x) = lim
h→0

f(φt+h|t(x))− f(x)

h
= 〈∇f(x), ut(x)〉g (407)

where 〈·, ·〉g describes the dot product defining the Riemannian metric g and ∇f describes the gradient of
f with respect to g. This coincides with the Lie derivative of a function (Jost & Jost, 2008), a fundamental
concept in differential geometry. Therefore, we see that ut(x) is a linear parameterization of the generator.
We can then use an arbitrary Bregman divergence on TxM, e.g. the mean-squared error. The CGM loss then
recovers the Riemannian Conditional Flow Matching loss (see (Chen & Lipman, 2024, equation (8))). This
shows that Riemannian Flow Matching is a specific instance of Generator Matching with Markov processes
on manifolds restricted to flows.

Diffusion models on manifolds (De Bortoli et al., 2022; Huang et al., 2022). Riemannian score-based
generative modeling can equally be seen as an instance of GM. Similar to Euclidean diffusion models,
a probability path is constructed via a forward noising process and a solution to the KFE is found via a
time-reversal of the process (see app. H.2 as an example on Euclidean space). Specifically, a forward-time
SDE that generates data is obtained via time-reversal (see (De Bortoli et al., 2022, theorem 3.1.)) and has the
shape

dYt =[−b(Yt) +∇ log pt(Yt)]dt+ dBM
t (408)

where b : M → TM describes a drift, ∇ log pt : M → TM describe the score vector field and BM
t

describes a Brownian motion on M. The generator of the above SDE is given via

Ltf(x) = −〈b(x),∇f(x)〉g + 〈∇f(x),∇ log pt(x)〉g +
1

2
∆Mf(x) (409)

where ∆gf describes the Laplace-Beltrami operator on manifolds (Elworthy, 1998). Note that b is fixed as a
hyperparameter. Therefore, like in the Euclidean case, a linear parameterization of the generator is again given
via a score network sθ : M× [0, 1] → TM. Choosing the mean squared error as a Bregman divergence,
one recovers Riemannian denoising score matching (see (De Bortoli et al., 2022, section 3.2)). However, the
fact that the noising process is not analytically tractable does not give us an analytically tractable formula for
pt(x|z), i.e. in GM language the conditional solution to the KFE is not known analytically. Therefore, this
approach requires iterative simulation of a noising process during training even for geometries with analytic
geodesic formulas and requires approximations of score functions as a training target (see (De Bortoli et al.,
2022, table 2)).

H.6 MULTIMODAL SPACES

Markovian multimodal generative models have been previously described for specific spaces and model
classes (Anand & Achim, 2022; Campbell et al., 2024b).
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MultiFlow (Campbell et al., 2024b). As an example, we illustrate here how the work by Campbell et al.
(2024b) for multimodal protein generation fits into the GM framework. Campbell et al. (2024b) first construct
a generative model on discrete spaces representing amino acids of a protein using the recipe outlined in
(Campbell et al., 2022) (see app. H.4 for explanations how this fits into GM framework). Further, they use a
Euclidean flow model (Lipman et al., 2022) for the translation components of the protein and a Riemannian
Flow model (Yim et al., 2024) is used for frames represented via elements on SO(3). Using a factorized
probability, one can use the recipe outlined in proposition 4 to build a multimodal generative model. This
corresponds to Proposition 4.1. and Proposition 4.2. in (Campbell et al., 2024b). As outlined in proposition 4,
loss functions for individual modalities can be summed up, as done in (Campbell et al., 2024b, equation (16)).
Therefore, the work by Campbell et al. (2024b) is a direct example of the power of the recipe outlined in
proposition 4 to build a Markovian generative model.

H.7 JUMP MODELS ON NON-DISCRETE STATE SPACES

We discuss a selection of models relying on (and including) jump models. In app. H.4, we discussed already
continuous-time Markov processes, which are jump models on discrete state spaces. Hence, we focus here on
other state spaces.

Piecewise deterministic generative models (Bertazzi et al., 2024). The combination of a flow and jump
Markov process is commonly called a piecewise-deterministic Markov process (PDMP) (Davis, 1984;
Del Moral & Penev, 2017). Recently, PDMPs have been applied by Bertazzi et al. (2024) for generative
modeling in the form of "piecewise-deterministic generative models". Specifically, they consider models
in phase space, i.e. where the states is given via a tuple (x, v) of a location x and a velocity v. Similar to
diffusion models, they construct a probability path via a forward/noising process and use its time-reversal
as a solution to the KFE of the corresponding probability path. The jump intensity and jump kernels of the
time-reversal can be linearly parameterized via likelihood ratios (see (Bertazzi et al., 2024, Equation (4) and
(5))) - this corresponds to a linear parameterization of the generator (see app. A.6) and is related to the linear
parameterization used by (Lou et al., 2024a) on discrete state spaces.

Score-based generative models with Levy Processes (Yoon et al., 2023). A general class of stochastic
processes is given by Lévy processes that are characterized by independent and stationary increments. Lévy
processes include certain flows, diffusion, and jump processes and were recently used for generative modeling
purposes by Yoon et al. (2023). Here, Yoon et al. (2023) construct SDEs driven by Lévy processes as a
forward process - implicitly definining a probability path (see app. A.4) - and the time-reversal is giving a
solution to the KFE (see app. A.4). There, the time-reversal depends on the fractional score function that
determines the flow component of the backwards process (the other parts are hyperparameters and don’t have
to be learned). The fractional score serves as a linear parameterization of the generator (see app. A.6). To
learn this vector field, we can employ the conditional Generator Matching loss with the Bregman divergence
given by the MSE - this recovers the fractional denoising score matching loss (i.e. (Yoon et al., 2023, Theorem
4.3.) directly corresponds to proposition 2). While Lévy processes in principle include jump processes (and
also their SDEs), we note that the work by (Yoon et al., 2023) only consider learning the flow component of
the Markov processes (the rest are hyperparameters), while here we show how to also learn the jump kernel
or the diffusion coefficient.

Trans-dimensional jump diffusion (Campbell et al., 2024a). Recently, jump processes have recently
been leveraged to model generative modeling tasks over state-spaces that includes a various numbers of
dimensions (Campbell et al., 2024a). From the perspective of GM, we can consider this to be on state space
S = ∪d

k=1{d} × Rd. A conditional probability path is constructed via a forward noising process and a
time-reversal serve as a solution to the KFE ((Campbell et al., 2024a, Proposition 1)). The loss in (Campbell
et al., 2024a, Proposition 2) corresponds to a combined loss of two Bregman divergences: (1) A mean-squared
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error and (2) The Bregman divergence considered in app. D.2 (the jump measure Qt is denoted there as
the product λt(x)A

θ
t (y;x) and uses the fact that log(λt(x)A

θ
t (y;x)) = log(λt(x)) + log(Aθ

t (y;x))). The
second term has an additional time-reversal step similar to (Campbell et al., 2022).

I ADDITIONAL EXPERIMENTS ON LOSS FUNCTIONS

To illustrate the utility of Bregman divergences for GM models, we ran additional experiments using a flow
model on image generation. Specifically, we use the following two functions φ : R → R:

φ(x) =
exp(αx) + exp(−αx)

2
= cosh(αx) I Cosh

φ(x) = exp(αx) I Exponential

We construct Bregman divergences with these where we give weight 0.5 to the MSE and weight 0.5 to the
above φ(x). We then train a flow model on CIFAR-10 using the resulting Bregman divergences. We ablate
over a few options of α ∈ R. In fig. 6, one can see the training dynamics are significantly more stable and the
final results are better by modifying the Bregman divergence loss function. For example, the MSE model
achieves an FID score of 2.62 (existing flow matching or diffusion models), while the Bregman divergence
achieves a score of 2.54. Note that this was achieved by modifying one line in an existing codebase. Note
that the results slightly differ from fig. 4 because those were obtained with a joint flow and jump model
trained together. Of course, further exploration in the future is needed to explore the design space of Bregman
divergences. Here, this shows the practical utility of the space of loss functions given by Bregman
divergences.

0 1000 2000 3000
Epoch

2

3

4

5

6

FI
D

MSE
Cosh
Exponential

Figure 6: Training evolution of a flow model trained on CIFAR-10 with different Bregman divergences. As
one can see, using Bregman divergences other than the MSE leads to improved training stability and final
performance (achieved with changing a single line of code). Results are reported using a dopri5 sampler.
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