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Abstract. We present Multi-HMR, a strong single-shot model for multi-
person 3D human mesh recovery from a single RGB image. Predictions
encompass the whole body, i.e., including hands and facial expressions,
using the SMPL-X parametric model and 3D location in the camera
coordinate system. Our model detects people by predicting coarse 2D
heatmaps of person locations, using features produced by a standard
Vision Transformer (ViT) backbone. It then predicts their whole-body
pose, shape and 3D location using a new cross-attention module called
the Human Prediction Head (HPH), with one query attending to the
entire set of features for each detected person. As direct prediction of
fine-grained hands and facial poses in a single shot, i.e., without rely-
ing on explicit crops around body parts, is hard to learn from existing
data, we introduce CUFF'S, the Close-Up Frames of Full-body Subjects
dataset, containing humans close to the camera with diverse hand poses.
We show that incorporating it into the training data further enhances
predictions, particularly for hands. Multi-HMR also optionally accounts
for camera intrinsics, if available, by encoding camera ray directions for
each image token. This simple design achieves strong performance on
whole-body and body-only benchmarks simultaneously: a ViT-S back-
bone on 448x448 images already yields a fast and competitive model,
while larger models and higher resolutions obtain state-of-the-art results.
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Fig. 1: Efficient 3D reconstruction of multiple humans in camera space. We
introduce Multi-HMR, a single-shot approach to detect multiple humans in images, and
regress whole-body human meshes. Predictions encompass hands and facial expressions,
as well as 3D location with respect to the camera. Left: Visualization of Multi-HMR
predictions. Right: Relative improvements (in %) on human mesh recovery benchmarks.
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1 Introduction

We introduce a single-shot model for recovering whole-body 3D meshes of hu-
mans from a single RGB image. Our problem formulation focuses on four aspects
of Human Mesh Recovery (HMR) that we identify as pivotal to making HMR
applicable to real-world scenarios: i) capture of expressive body poses — i.e.,
including hands and facial expressions, ii) efficient processing of images with a
variable number of people, iii) location of people in 3D space, iv) adaptability
to camera information when available.

Successfully handling these aspects simultaneously makes our proposed model,
denoted Multi-HMR, widely applicable. For instance, in virtual or augmented
reality (AR/VR), capturing faces and hands precisely is key for communica-
tion. It is also beneficial for enabling human-robot interactions [11}/55], or hu-
man understanding from images and videos [50,56,70]. Likewise, understanding
the placement of people in the scene is necessary for applications ranging from
robotic navigation to AR/VR applications involving several people. In addition,
efficient processing of a variable number of people is desirable when computa-
tion is restricted or real-time processing is needed. Finally, reasoning about 3D
meshes can only benefit from adapting to camera information when it is avail-
able [28,30].

In their pioneering work on
HMR [26], Kanazawa et al. pro-
pose to predict SMPL mesh pa-
rameters and three parameters for

Table 1: Main features of Multi-HMR
vs. the state of the art: Single-person meth-
ods rely on human detectors to process im-
. SO : age crops around each person independently.
weak-perspective reprojection given Multi-person approaches detect humans and
a cropped image containing a per- regress their properties using the same net-
son. Different aspects of this ap- work. Single-shot refers to methods regress-
proach have been improved since, ing the expected output without extracting
including architectures |157 30, 67|7 or resampling features from different regions.

training teChniqueS l29| and data Method Whole Single Camera Camera

h ts l5 25 46' The an- Body Shot Space  Aware
enhancemen ) 125, 146]. p I o P p

proach has also been extended to HMR2.0 15| x /X

hl b d t d]. lk SPEC |28 X 4 X v
whole-body parametric models like CLIFF B0 x s X y
SMPL-X |47|’ often with multiple Single-person ¢ PIXIE [14] v X X X
Hand4Whole 42| v/ X X X
crops centered on body, hands and PYMAFX 66l v x X x
: : 08X [31 v X X X
face ll(?, 14/142]. Multi person inputs SMpLex VR y
are typically handled with a two-step  pet. + single { 3DCrowdNet g ¥ x X x
. : the ROMP [57] X v X x
procedure: first running an off-the o | BV P y
shelf human detector, then apply- PSVT [is] x v x

Multi-HMR v v v Optional

ing a mesh recovery model on crops
around each detected person. Conversely, ROMP [57] and PSVT [48] recover
multiple human meshes in a single step using one-shot detectors. BEV [58| addi-
tionally predicts the relative depths of meshes. Accounting for intrinsic camera
parameters has been shown to improve reprojection [2830], especially when these
differ between training and inference. Despite these advancements, no previous
method has successfully integrated in a single model all four essential features:



Multi-HMR 3

Image Patch-level detection Human Human
+ offset regression Queries Predictions

W []

LI S CC-]

Camera Keys/Values: All extracted features
Fig.2: Overview of Multi-HMR. A ViT backbone extracts image embeddings.
Detection is conducted at the patch level with additional 2D offset regression. Each
detected token serves as a query for a cross-attention-based head, called the Human
Perception Head (HPH), which predicts pose and shape parameters, along with location
in 3D space. Optionally, known camera parameters are embedded and added to each
patch, represented as a Fourier encoding of the ray originating from the camera center.

efficient multi-person processing, whole-body mesh recovery, location estimation
in camera space and, optionally, camera-aware predictions. Please refer to Ta-
ble [1] for a comparison to existing work.

In this paper, we introduce Multi-HMR, an efficient single-shot method that
detects each person in a scene and regresses their pose, shape, and 3D loca-
tion in camera space, using a whole-body parametric mesh model. Please see
Figure (1] (left) for an example of prediction. Optionally, Multi-HMR can be con-
ditioned on camera intrinsics if available. Figure [2] presents an overview of the
model architecture. We use a standard Vision Transformer (ViT) backbone
to extract features from the input data, which allows us to benefit from recent
advancements in large-scale self-supervised pre-training [8[17,[45]. This differs
from architectures like HR-Net which are less common in the pre-training
literature. We regress a person-center heatmap from the feature tensor produced
by the backbone: for each input token, the model first outputs a probability that
a person is centered on a point present in the corresponding input patch, as well
as location offsets . We introduce a prediction head called the Human Per-
ception Head (HPH) that employs cross-attention. In this mechanism, queries
correspond to the detected center tokens, while keys and values are drawn from
all image tokens. It efficiently predicts pose and shape parameters of an expres-
sive human model, namely SMPL-X , for a variable number of detections,
while also regressing depths to place individuals within the scene. To improve
3D prediction by incorporating camera intrinsics, our model can optionally take
camera parameters as input. These parameters are used to augment each token
feature with Fourier-encoding of the corresponding camera ray directions before
passing them to the prediction head.

Multi-HMR is conceptually simple: unlike most existing whole-body approaches,
it does not rely on multiple high-resolution crops of the body parts for expres-
sive models , or hand-designed components to place people in the
scene |§|, However, naively regressing SMPL-X parameters from a single to-
ken feature tends to under-perform on small body parts like hands. We find that
incorporating expressive human subjects positioned close to the camera in the
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training data results in good performance across all body parts. We thus intro-
duce the CUFFS (Close-Up Frames of Full-body Subjects) dataset, containing
synthetic renderings of people with clearly visible hands in diverse poses.

We train a family of models with various backbone sizes and input resolutions.
We evaluate performance on both body-only (3DPW [35], MuPoTs [37], CMU-
Panoptic [24], AGORA-SMPL [46]) and whole-body expressive mesh recovery
benchmarks (EHF [47], AGORA-SMPLX [46] and UBody [31]), see Figure
(right). The single-shot nature of the model allows for efficient inference. For
instance, with a ViT-S backbone and 448 x448 inputs, Multi-HMR is competitive
on both body-only and whole-body datasets while being real-time, achieving 30
frames per second (fps) on a NVIDIA V100 GPU. Larger backbones and higher
resolutions — up to a ViT-L backbone and 896x896 inputs — outperform the
state of the art at the cost of slower but still reasonable inference speed (5 fps).

2 Related work

Multi-HMR primarily builds upon whole-body HMR and multi-person HMR. It
also relies on synthetic datasets. We now review these three literatures.
Whole-body Human Mesh Recovery. There has been a recent surge of
interest for whole-body mesh recovery from a single image [14}31,/42,/47|, fos-
tered in part by seminal work on improving whole-body parametric models. In
particular SMPL-X [47] outputs an expressive mesh for the whole body given
a small set of pose and shape parameters. The first approaches were based on
optimization, e.g. SMPLify-X [47], but they remain slow and sensitive to local
minima. Numerous learning-based methods were also introduced, but only in
single-person settings |7}/10}/14,42,|541|66}72]. This setting already poses signifi-
cant challenges: hands and faces are typically low resolution in natural images,
and capturing their poses hinges on subtle details. To overcome this, most ap-
proaches leverage a multi-crop pipeline: areas of interest — such as the face and
hands — are cropped, resized and used to estimate the associated meshes which
are aggregated into a whole-body prediction. In particular, ExPose [10] selects
high-resolution crops using a body-driven attention mechanism; PIXIE |14] fuses
body parts in an adaptive manner, and Hand4Whole [42] uses both body and
hand joint features for 3D wrist rotation estimation. In contrast to these meth-
ods, Multi-HMR is single-shot, without high-resolution crops. More recently,
OSX [31] introduced the first single-crop method for single-person whole-body
mesh recovery. They leverage a ViT encoder, followed by a high-resolution fea-
ture pyramid, and use keypoint (e.g. wrists) estimates to resample features in
their decoder head. SMPLer-X [7] employed a similar approach, training on nu-
merous datasets. We depart from existing methods by i) tackling rmulti-person
whole-body mesh recovery and ii) using a single-shot approach, with a non-
hierarchical feature extractor.

Multi-Person Human Mesh Recovery. Most existing multi-person HMR
methods [9,[15/29,49L/67] build upon a multi-stage framework: an off-the-shell
human detector [18}33}/52] is used, followed by a single-person mesh estimation
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model [27}34,/65,/69] to process each detected human. This has two drawbacks:
i) it is inefficient at inference time compared to a single-shot approach and ii)
the pipeline cannot be learned end-to-end. This impacts final performance, in
particular in cases of truncation by the image frame or person-person occlu-
sions, a common scenario in multi-person settings. Following the seminal work
of ROMP [57] which estimates 2D maps for 2D human detections, positions and
mesh parameters, single-stage models have been proposed [48,/57,/58]. In par-
ticular, BEV [58] introduces an additional Bird-Eye-View representation of the
scene to predict relative depth between detected persons and PSVT [48| im-
proves performance using a transformer decoder. We follow the same single-shot
philosophy as [481/57,/58] but go beyond their settings by: i) tackling whole-body
mesh recovery, ii) regressing the 3D location of each person in the camera coor-
dinate system, and iii) incorporating camera intrinsics as an optional input. We
also introduce an efficient cross-attention-based head, making Multi-HMR faster
to train, efficient at inference and improving performance.

Synthetic data. Acquiring high-quality real-world ground-truth data at scale
for human mesh recovery is costly, in particular when considering faces and hands
expressions. A body of work [16}|60,/64] has explored the generation of large-
scale synthetic data for human-related tasks. In this work, we experiment with
BEDLAM |[5] and AGORA [46], and confirm empirically that using large-scale
synthetic data is beneficial for whole-body human mesh regression, compared to
real-world data with pseudo ground-truth fits. We also propose a new synthetic
dataset, CUFFS, which stands for Close-Up Frames of Full-body Subjects, de-
signed to improve performance particularly on hands for one-stage whole-body
prediction. It departs from existing ones in that it contains humans with diverse
and clearly visible hand poses, seen from a limited distance, to allow fine details
to be captured. Our experiments show that this type of training data is key to
allow regressing whole-body meshes in a single shot.

3 Multi-HMR

We now describe our single-shot multi-person whole-body human mesh recovery
approach. Given an input RGB image I € R¥*W*3 with resolution H x W, our
model, denoted H, directly outputs a set of N centered whole-body 3D humans
meshes M € RV >3 composed of V vertices, along with their corresponding root
3D locations t € R3 in the camera coordinate system:

{M,, +t,} H(T). (1)

As preliminaries, Section [3.1] presents the 3D whole-body parametric model
and the camera model that we use. We then detail the model architecture in
Section [3.2] and the training losses in Section [3.3]

ne{l,...,N} =

3.1 Preliminaries

Human whole-body mesh representation. We build upon the SMPL-X
parametric 3D body model [10]. Given input parameters for the pose 8 € R?3*3
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(global orientation, body, hands and jaw poses) in axis-angle representation,
shape B € R and facial expression o € R!Y, it outputs an expressive human-
centered 3D mesh M = SMPL-X(8, 3, ) € RV*3 with V = 10,475 vertices.
The mesh M is centered around a primary keypoint — in this work we choose the
head as primary keypoint. It is placed in the 3D scene by putting the primary
keypoint at the 3D location t = (¢,t,,t,). For simplicity, let x = [0, 3, a]: the
problem reduces to predicting x and t for all detected humans.

Pinhole camera model. We assume a simple pinhole camera model to project
3D points on the image plane. Ignoring distortion, it is defined by an intrinsic
matrix K € R3*3 of focal length f and principal point (p,,p,). We set the
camera pose to the origin. We have:

0 pu ws Cos 1T = (1/t,) - K [tg, t,, t.]7
K:[éfgu} and [C,C ]T (/ ) ) [ Y T] , (2)
00 [to, by, t]" =t - K™ [ey, cv, 1]

with ¢ = (ey, ¢,) the 2D image coordinates of the projection of a 3D point t into
the image plane. K can thus be used to backproject a 2D point into 3D given its
depth ¢,. We denote by mk the camera projection operator and 71'1_(1 its inverse.

3.2 Single-shot architecture

Our method is summarized in Figure 2] We first encode images into token em-
beddings using a ViT backbone. These embeddings are used to detect humans
and can optionally be combined with camera embeddings. Our proposed Human
Perception Head is then employed to regress whole-body human meshes and
depth for a variable number of detected humans.

ViT backbone. The input RGB image I is encoded with a ViT backbone [12]. Tt
is sub-divided into image patches of size P x P, each embedded into tokens with
a linear transformation and positional encoding. The set of tokens is processed
with self-attention blocks into E € RH/PXW/PXD with D the feature dimension.
The ViT model keeps a constant resolution throughout so that each output token
spatially corresponds to a patch in the input image.

Patch-level detection. To detect humans in the input image, we define a
primary keypoint on human bodies, here the 3D keypoint of the head as de-
fined according to the SMPL-X body model. For each patch index (i,j) €
{1,...,H/P} x{1,...,W/P}, we predict if the patch centered at u*/ = (u’,v?)
contains a primary keypoint [71], with a score s/ € [0, 1] computed from the
associated token embedding E*/ € RP using a Multi-Layer-Peceptron (MLP).
At inference, we apply a threshold 7 to the scores to detect patches containing

primary keypoints: o
{un}, = {u"

At train time, the ground-truth detections are used for the rest of the model.

§ > 1), 3)

Image coordinates regression. Detecting people at the patch level yields a
rough estimation of the 2D location of the primary keypoint, up to the size of
the predefined patch size P. We refine the 2D location of the primary keypoint
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Fig. 3: (a) The token embeddings corresponding to the N detected primary keypoints
are used as queries in a series of cross-attention blocks where keys and values corre-
spond to the context provided by all image tokens. MLPs then predict the SMPL-X
parameters (pose and shape) as well as the depth for each query. (b) Samples from
our CUFFS synthetic dataset.

by regressing a residual offset § = (8,,d,) from the center of a patch (u’,v),
using an MLP taking the corresponding token embedding E*/ as input. The 2D
coordinates predicted for the primary keypoint detected at patch location (3, j)
are thus given by:

chl = [u' + 8y, 07 + 6] (4)

Human Perception Head (HPH). We predict human-centered meshes and
depths estimations for all people detected in the scene in a structured manner and
in parallel, by processing E with our Human Perception Head, built from cross-
attention blocks , see Figure for an overview. This design choice allows
features corresponding to a person detection to attend information from all image
patches before making a full pose, shape and depth prediction for this person. For
a human detection n at patch location (4, j), we initialize a cross-attention query
a4, = (E¥ @ X) + p»J, where p*/ is a learned query initialization dependent on
patch location, X denotes the mean body model parameters, of dimension D’ as
in previous works , and @ denotes concatenation along the channel axis.
Given N detections, the queries {q,}, are stacked into Q° € R(P+PIXN for
efficient processing in parallel. The full feature tensor E is used as cross-attention
keys and values. The queries are then updated with a stack of L blocks B! (L—2
in practice), alternating between cross-attention layers (CA) over queries and
image features, self-attention layers (SA) over queries, and an MLP:

Q' =B'[Q"',E] = MLP' (SA' (CA' [Q'"",E])). (5)

The final outputs of the cross-attention-based module are given by QX € R(P+P)*xN
and viewed as a set of IV output features, used to regress N human-centered

whole-body parameters {Xn}n with a shared MLP.

Depth parametrization. Following the monocular depth literature , we
predict the depth d in log-space, also called nearness denoted 7. We assume
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a standard focal length f and regress a normalized 1) from QF with an MLP:

n==70, d=exp(—n). (6)

N

This follows [13] which shows that this parametrization improves robustness to
focal length changes. The depth d is used to back-project the 2D camera coordi-
nates c¢ using the camera inverse projection operator 7TI_<1 following Equation
to obtain the 3D location t of the primary keypoint.

Note that we directly supervise the absolute depth while most previous

works [58] supervise the relative depth. This is made possible by the utiliza-
tion of large-scale synthetic data, where absolute depth is known, as opposed to
real-world data where only relative depth can be annotated. Our experimental
results show the effectiveness of this simple strategy.
Optional camera embedding. If available, camera intrinsics K can be used as
additional input to our model H which becomes H (I, K). In more details, camera
information may be integrated into the Human Perception Head at training
and/or inference time. This is a desirable feature, but making it optional allows
for i) processing images when it is not available, and ii) fairly comparing to the
state-of-the-art methods that do no use this information.

We embed camera information by computing the ray direction [40] r; ; =
K~ '{ui,vj,1]T from each patch center (u;,v;). The first two coordinates of the
r; ; vector are kept, and embedded into a high-dimensional space using Fourier
encoding [40] to obtain a patch-level embedding Ex € RH/P>xW/Px2(F+1) where
F' denotes the number of frequency bands. We concatenate features extracted
using the vision backbone with camera embeddings to get E := E ¢ Ek.

3.3 Training Multi-HMR

Multi-HMR is fully-differentiable and trained end-to-end by back-propagation.
We now discuss training losses. The symbol ~ denotes ground-truth targets.

Detection loss. We project the ground-truth primary keypoint of each human
present in the image using the camera projection operator 7k, and construct
a score map S of dimension (W/P) x (H/P) with 57 equal to 1 if a primary
keypoint is projected to the corresponding patch and 0 otherwise. Predictions
are trained by minimizing a binary cross-entropy loss:

Laet = — Z 57 log(s™7) + (1 — 5"9) log(1 — 7). (7)
4,J
Regression losses. All other quantities predicted by the model are trained

with L, regression losses. We concatenate the offset from the patch centers ¢,
the body model parameters (pose, shape, expression) X, following [15}/29], and

the depth d and minimize Loarans = Y, [c,x,d] — [é,f{, cﬂ ‘ We also found it
beneficial to minimize an L; loss for human-centered output meshes Lyeen =
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Yon |Mn —M,,|, as well as for the reprojection of the mesh onto the image plane
Lireproj = D p ‘WK (M, + t,) — (Mn +t,,)|. The final training loss is thus:

£ = ‘Cdet + Epara.ms + )\(Emesh + ACreproj)‘ (8>

Synthetic whole-body CUFFS dataset. We introduce CUFFSEI, the Close-
Up Frames of Full-body Subjects dataset, designed to contain synthetic render-
ings of people with close-up views of full-bodies with clearly visible hands in
diverse poses, see Figure Using Blender [1], we render synthetic human mod-
els close to the camera, in poses sampled from the BEDLAM [5], AGORA [46],
and UBody [31] datasets, using additional hand poses from InterHand2.6M [44]
for increased diversity. Please refer to the supplementary material for more de-
tails. We render a total of 60,000 images. Simply adding this data during training
improves the quality of hand pose predictions, without degrading other metrics.
Implementation details. By default, we use squared input images of resolution
448 x 448, with the longest side resized to 448 and the smallest zero-padded to
maintain aspect ratio. We use random horizontal flipping as data augmentation.
We initialize the weights of the backbone with DINOv2 [45] and experiment with
Small, Base and Large ViT models as encoder. Please refer to the supplementary
material for the full list of hyper-parameters and more implementation details.

4 Experiments

We first ablate training data and model architecture (Section , and then
compare to the state of the art on body-only and whole-body HMR (Section.

Evaluation metrics. We evaluate the accuracy of the entire 3D mesh predic-
tions with the per-vertex error (PVE), following [31}/57,58], and also report it for
specific body parts (hands and face). When the entire ground-truth mesh is not
available, we report the Mean Per Joint Position Error (MPJPE) and the Per-
centage of Correct Keypoints (PCK) using a threshold of 15cm. We also report
these metrics after Procrustes-Alignment (PA), and F1-Scores to evaluate detec-
tion. To evaluate the placement in the scene, we report the Mean Root Position
Error (MRPE) [58] and the Percentage of Correct Ordinal Depth (PCOD) [68|
metrics. For computational costs, we report inference time on a NVIDIA V100
GPU and the number of Multiply-Add Cumulation (MACs) using the focore li-
braryﬂ More details about the metrics are given in the supplementary material.
Evaluation benchmarks. For body-only benchmarks, we predict SMPL meshes
from SMPL-X meshes using the regressor from [5], and follow prior work [31}/42]
48)57)58| in evaluating on 3DPW [35], MuPoTs [37], CMU [24] and AGORA [46].
For whole-body evaluation, we compare performance with prior work [14431}42]
on EHF [47], AGORA [46] and UBody [31]. We refer to the supplementary ma-
terial for more details on datasets.

"https://download.europe.naverlabs.com/ComputerVision/MultiHMR/CUFFS
“https://github.com/facebookresearch/fvcore
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Table 2: Architecture and training data are ablated on MuPoTs (PCK3D-
All), 3DPW (MPJPE), EHF (PVE-All), EHF-H (PVE-Hands) and CMU (MPJPE).
Default settings in grey . (a) We compare a ViT backbone to HRNet as well as
our HPH with respect to a standard iterative regressor 26| (‘Reg.’). (b) Training
data type; ‘Real’=MS-CoCo+MPII+Human3.6M,'A’=AGORA, ‘B’=BEDLAM, and
‘C’=CUFFS. When trained on ‘C’ only, we evaluate on single-person test sets only.

(a) Architecture (b) Data
Backbone Head |MuPoTst 3DPW/ EHF) CMU| Data \MuPoTST 3DPWJ EHF|EHF-H| CMUJ,
HRNet Reg.| 65.8 83.2 143.1130.1 Real 68.5 83.8 70.2 51.2 101.6

ViT-S Reg.| 70.1 80.2 90.6 118.1 A+B 76.3 735 553 474 97.2
HRNet HPH| 69.8 80.2 115.2116.6 C - - 535 445 -

ViT-S HPH| 70.9 80.1 80.1 109.1 A+B+C| 76.0 72.9 49.8 40.5 96.5
ViT-B HPH| 76.3 73.5 55.3 97.2 +Real| 69.8 77.6 61.1 484 98.5

4.1 Ablations on model design and training data

Default configuration. For the ablations, we use a ViT-B backbone with a
HPH head composed of 2 blocks. We train only using synthetic the BEDLAM
and AGORA datasets (but not CUFFS), without using the intrinsics as input. In
each table the row of the default ablation configuration has a grey background.
Model architecture. We investigate several architectures in Table[2al As most
state-of-the-art single-shot methods (ROMP [57], BEV [58], PSVT [48]) use a
HRNet [61] convolutional backbone, we evaluate both HRNet and ViT-S (as
they have approximately equivalent parameter counts, 28.6M for HRNet and
21M for ViT-S) with either a vanilla iterative regression head [26] (‘Reg.’) or our
proposed HPH. In both cases, the ViT-S backbone is beneficial and significant
gains also come from our proposed HPH head, which validates our architecture.
Scaling up the backbone (last row) further improves performance.

Training data. In Table we experiment with different types of training
data. One source can be real-world datasets (‘Real’: MS-CoCo [32], MPII [4]
and Human3.6M [20]), for which pseudo-ground-truth fits [41}/43] are obtained
by minimizing the reprojection error of annotated 2D keypoints, but this re-
mains inherently noisy. An alternative is to train on synthetic datasets such as
AGORA [46] (‘A’) or BEDLAM |[5] (‘B’) that have the advantage to be highly

Table 3: Ablation on the Human Perception Head (HPH). ‘Reg.’: parallel iter-
ative regressors; HPH w/o SA: queries processed independently in HPH, i.e., without
self-attention, L: number of layers and H: number of heads. (a) Training convergence
speed. (b) Impact of head choice. (¢) Impact of HPH hyperparameters.

(a) Convergence (b) Head architecture (c) HPH Hyperparameters
o7 Head |MuPoTSt 3DPW| EHF| L H |[MuPoTST3DPW|EHF|
Sar Reg. |26 735 789 650 g i ;2::’ ;i'g gi-z
2%e oupi [l HPH,,sa| 745 764 632 o| sio  m, oia
A @ Reg. . . .
55 i H HPH 76.3 73.5 55.3 8 8 78.9 72.0 51.0

|
100k 200k 300k
Tterations
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Fig.4: Backbone-resolution-speed trade-off. We report the performance on
MuPoTs, CMU and EHF using different backbone sizes and image resolutions. We
also report the inference time (right).

scalable and to have perfect ground-truth. Recent work [5]| has shown that state-
of-the-art results can be achieved using synthetic training data only, despite an
inherent sim-to-real gap. Our results confirm this finding as we obtain better
results when training on large-scale synthetic data. When we add our synthetic
CUFFS dataset (‘C’) we observe a significant boost in performance especially
for metrics related to the hands (column EHF-H in the fourth row). However,
when combining both real-world and synthetic datasets (last row), performance
drops compared to training solely on synthetic data (penultimate row).

HPH architecture. In Table [3| we further compare different heads to regress
the SMPL-X parameters. The baseline (‘Reg.’) uses a vanilla iterative regres-
sor 29| applied to each detected feature token independently. ‘HPH’ converges
faster (Table and performs better (Table . ‘HPH w/o SA’ denotes a vari-
ant where queries are treated independently by removing SA blocks from the
HPH, see Equation treating queries together is beneficial (Table . In Table
we experiment with different configurations of the HPH (number of layers
‘L’ and number of attention heads ‘H’). Increasing the number of layers slightly
improves performance but we favor the use of 2 layers for better efficiency.

Input resolution and backbone size. We evaluate the impact of the input im-
age resolution for different backbone sizes (ViT-S, ViT-B, ViT-L) in Figure[d] In-
creasing the input resolution consistently brings performance gains across back-
bone sizes, at the cost of increased inference time (right). For body-only metrics,
a ViT-L backbone at 448x448 inputs arguably offers a good performance wvs.
speed trade-off. Using higher resolutions may be more worthwhile for whole-
body metrics; in particular, with a ViT-S or ViT-B backbone, high resolutions
are critical to achieve competitive performance. This is to be expected as small
details such as facial expressions and hand poses are easier to capture at high
resolution — it motivated previous works [10l14442] to extract specific high resolu-
tion crops for these parts. The largest backbone (ViT-L) at a 896 x 896 resolution
takes approximately 120ms per image — without compressing or quantizing the
network — which is fast compared to multi-stage methods (see Section .

Optional camera intrinsics. Integrating camera information is expected to
improve accuracy when recovering and placing human 3D meshes in the scene. In
Table[da] we report results with different kinds of camera embeddings: computing
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Table 4: Ablative study. Experiments on (a) the importance of the camera embed-
ding type and (b) the sensitivity to the camera intrinsics in terms of human-centric
reconstruction error and distance estimation error. f: focal length normalization.

(a) Camera embeddings (b) Impact of optional intrinsics

MuPoTSt 3DPW| EHF] FOV | Reconstruction| | Distance (MRPE])
none 76.3 73.5 553 Train Test | MuPoTs 3DPW CMU | MuPoTs 3DPW CMU
simple 74.8 75.3  56.8 60°  60° 76.3 73.5 97.2 1345 732 570
rays 77.0 72.6 544 gt 60° 76.8 76.8 99.5 1512 731 595
raystf 78.8 71.3 53.1 et gt | 765 73.2 96.9 | 693 445 287

Fig.5: Randomly sampled qualitative examples: input image and our results
overlaid on it. Images from EHF and AGORA (top), MuPoTs and 3DPW (middle),
UBody and CMU (bottom). See supplementary material for more visualizations.

simple embedding (where the flattened intrinsics matrix is fed to a linear layer)
degrades performances compared to not adding camera embedding (i.e., none)
while adding rays brings a gain. When combined with focal length normahzatlon
f , we observe a clear gain on all metrics. In Tablewe report: performance with
a fixed field of view (FOV) of 60°, like ROMP/BEV, for a model trained with
intrinsics (row 1), and for a model trained without (row 2). Conditioning the
model on camera intrinsics improves depth prediction accuracy (row 3), while
reconstruction metrics which are centered on people are far less sensitive to this
change. This validates the benefit of using intrinsics when available.

Other design choices. We present other ablations, e.g. on training losses and
choice of primary keypoints, in the supplementary material.

Qualitative results. Figure [5| shows visualizations of some predictions.

4.2 Comparisons with the state of the art

No existing method is both multi-person and whole-body (Table . We thus
compare either to multi-person approaches on body-only mesh recovery or to
whole-body methods. In the latter case, our approach is single-shot, while oth-
ers assume human detections, extract crops around each person, and process
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Table 5: Comparison with state-of-the-art methods. As there is no other method

that is both multi-person and whole-body, we compare separately to state-of-the-art

approaches for (a) multi-person body-only mesh recovery, and (b) whole-body mesh

recovery (all methods except Multi-HMR are single-person). For AGORA, we report

performance for a single Multi-HMR setting due to restrictions of the evaluation system.

1 indicates a universal model which is not finetuned specifically for each benchmark.
(a) Body-only benchmarks

Method Res. Single Backbone 3DPW MuPoTs CMU AGORA
Shot PA-MPJPE| MPJPE| PVE||PCK-Allt PCK-Matchedt| F1T MPJPE|| F1T MPJPE| PVE]
Body-only
CRMH 22| 832 v RN50 - - - 69.1 72.2 0.92 1432 - - -
3DCrowdNet (9] Full RN50 51.5 81.7 98.3 72.7 73.3 0.95 127.3 - -
ROMP |57 512 v HR32 47.3 76.6 93.4 69.9 72.2 0.93 128.2 |0.91 108.1 103.4
BEV [58 512 v HR32 46.9 78.5 92.3 70.2 75.2 0.97 109.5 [0.93 105.3 100.7
PSVT 48] 512 4 HR32 45.7 75.5 84.9 - - 0.97 105.7 |0.93 97.7 94.1
Whole-Body
Hand4Whole [42|Full RN50 54.4 86.6 - - - - - 0.93 89.8 84.8
0SX [31] Full / 60.6 86.2 - - - - - - - -
SMPLer-X |7| Full 51.5 76.8 - - - - - - - -
SMPLer-X [7|  Full 48.0 T - - - - - - - -
Multi-HMR 896 v 53.2 76.3 91.1 77.0 81.5 0.97 102.9 - - -
Multi-HMR 896 v ViT-B/14 46.7 70.9 86.9 79.4 84.6 0.97 94.6 - - -
Multi-HMR 896 v ViT-L/14 41.7 61.4 75.9 85.0 89.3 0.97 77.3 [0.95 65.3 61.1
Multi-HMR 448 ViT-L/14 43.8 64.6 797 | 778 84.1 096 84.0 | - - -
Multi-HMR! 896 v ViT-L/14 46.9 69.5 88.8 80.6 86.4 0.97 975 - - -
(b) Whole-body benchmarks
EHF AGORA UBody-intra
Single PVE| PA-PVE| PVE| PVE| PA-PVE/|
Method shot Backbone All Hands Face| All Hands Face| All Hands Face| All Hands Face| All Hands Face
Single person, per-body-part crops
ExPose 10| HR32/RN18| 77.1 51.6 35.0|54.5 12.8 5.8|217.3 73.1 51.1| - - - - - -
FrankMocap [54] RN50 107.6 42.8 - |57.5 126 - - 55.2 - - - - - - -
PIXIE |14 RN50 88.2 42.8 32.7|55.0 11.1 4.6 |191.8 49.3 50.2(168.4 55.6 45.2|61.7 12.2 4.2
Hand4Whole |42 RN50 76.8 39.8 26.1/50.3 10.8 5.8 |135.5 47.2 41.6|104.1 45.7 27.0|448 89 28
PyMAF-X |66] HR48 64.9 29.7 19.7|50.2 10.2 5.5 |125.7 45.0 35.0| - - - - - -
Single person, feature resampling
OSX |31] ViT-L/16 |70.8 53.7 26.4|48.7 159 6.0 |122.8 45.7 36.2|81.9 41.5 212|422 86 2.0
SMPLer-X |7 ViT-L/16 | 654 494 17.4|37.8 150 5.1|99.7 39.3 29.9(57.4 40.2 21.6|31.9 10.3 28
Multi-person, one forward pass
Multi-HMR v ViT-S/14 |50.0 43.3 24.4|36.8 14.4 58| - - - 569 35.7 18.9(23.8 9.9 25
Multi-HMR v ViT-B/14 |43.3 39.5 23.3[34.8 12.2 54 - - - | 544 320 17.3|23.0 88 22
Multi-HMR v ViT-L/14 |42.0 28.9 18.0(28.2 10.8 5.3 |195.9 40.7 27.7|51.2 25.0 16.2(21.0 7.2 1.8
Multi-HMR § v ViT-L/14 |42.0 28.9 18.0(28.2 108 5.3 | - - - |54.0 275 17.0(22.8 80 24

each one independently. We report results with a 896x896 input resolution and
without using camera intrinsics, with either a model finetuned for each bench-
mark as other methods do or a single universal model indicated by { (please refer
to the supplementary material for additional information regarding finetuning).
Body Mesh Recovery. As most of these methods (ROMP [57], BEV [58]
and PSVT [48]) use a 512x512 resolution, we also report results obtained at
448 x 448, which offers an excellent speed-performance trade-off. All these multi-
person approaches are limited to body-only meshes. Multi-HMR, outperforms
existing work, with substantial gains across various metrics, even when using
lower resolution input, smaller backbone or a universal model. At the same time,
it also predicts hands poses and facial expressions (as evaluated next), which is
not the case for other multi-person approaches.

‘Whole-Body Mesh Recovery. We evaluate our whole-body regression perfor-
mance by comparing it against whole-body 3D pose methods [1431//42]. All exist-
ing approaches are limited to the single-person scenario: they do not consider the
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Table 6: Comparison to existing works for human depth estimation and
inference cost. (a) Human depth estimation: we evaluate Multi-HMR without and
with camera intrinsics information. (b) Comparison of inference cost for different num-
ber of humans N in an image between Multi-HMR (bottom) and the state of the art,
which is limited to either multi-person but body-only methods (top), or single-person
whole-body approaches thus requiring a human detector (middle).

(a) Depth estimation benchmark (b) Inference time and MACs

MRPE () PCOD (1) Method SMPL-X Params Time (ms) MACs (G)

Method MuPoTs 3DPW CMU AGORA|MuPoTs CMU (M) |N=1 N=5 N=10|N=1 N=5 N=10
N ROMP [57] 29.0 |32.1 335 34.8 |43.0 43.6 44.2

ect |36 639 - - Y
rovr 7l | 1688 1060 670 o1 g7, BEV[E 35.8 [36.6 37.8 39.1 [48.6 48.9 49.9

- r‘ O = " HanddWhole [42 /| 779 |73.3 3665 733.0 [26.3 98.3 188.3
BEV 58] 1884 1030 673 518 | 913 912  ogx [31] /| 102.9 |54.6 273.5 546.0 | 94.8 440.8 873.5
Multi-HMR Multi-HMR-S V| 324 |28.0 28.6 28.8 | 44.4 445 44.6
w/o cam. | 1125 522 355 421 | 951 985 Multi-HMR-B V| 99.0 |38.0 389 39.0 |143.9144.2 144.4
w/ cam. 514 318 110 396 | 97.9 99.5 Multi-HMR-L V| 318.7 |50.8 50.9 50.9 |478.7 479.5 479.8

detection stage and the 3D positions in the scene, instead assuming predefined
2D bounding boxes around the person of interest. We report results in Table [5b}
Multi-HMR is competitive with, or outperforms, previous whole-body methods,
even when considering the universal model. In particular it obtains competi-
tive performance on hands and faces (on par with or better than SMPLer-X [7],
that is not single-shot). Overall, empirical results show that Multi-HMR, predicts
accurate hand and facial poses while also being multi-person.

Human depth estimation. In Table [6a] we compare the performance of our
model in distance estimation, which uses simple depth regression, to the state
of the art [361/57,/58]. Prior works assume a fixed camera setting. For exam-
ple, BEV [58] is competitive on AGORA-val but does not generalize as well to
datasets with different camera parameters. The camera-aware variant of Multi-
HMR provides accurate distance predictions across datasets and camera param-
eters, and the proposed approach still significantly outperforms the state of the
art when camera intrinsics are not provided.

Inference cost. The number N of humans in an image defines the number of
queries in the HPH head. With N=512, HPH takes 2.5ms vs. 2.3ms for N=>5 on
a NVIDIA V100 GPU. Other parts of the model are independent of N, thus our
method scales well, as do other single-shot approaches (e.g. ROMP, BEV), see
Table This is in contrast to multi-stage methods (e.g. Hand4Whole, OSX)
which detect people,e.g. with YOLOv5 [23], and independently process their
crops.

5 Conclusion

We presented Multi-HMR, the first single-shot method for multi-person whole-
body human mesh recovery. It estimates accurate expressive 3D meshes (body,
face and hands) and 3D positions in the scene, outperforming the state of the art
for each sub-problem. Our model also adapts to camera information (i.e., intrin-
sics) when available. Multi-HMR is conceptually simple: it relies on a vanilla ViT
backbone and a newly introduced cross-attention-based head for predictions.
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Appendix

This supplementary material contains additional implementation details and
descriptions of the datasets and metrics used in the main paper (Appendix [A)),
details about how our synthetic CUFFS dataset was generated (Appendix [B)),
additional quantitative results (Appendix and ablation studies (Appendix|D)),
and finally, a discussion on limitations (Appendix . We also attached an ad-
ditional video to showcase some results obtained with Multi-HMR.

A Implementation, Datasets and Metrics

In this section, we give details about implementation, as well as each dataset
used in the main paper, followed by a detailed description of the evaluation
metrics.

A.1 Implementation details

By default, we use squared input images of resolution 448x 448, with the longest
side resized to 448 and the smallest zero-padded to maintain aspect ratio. The
only data augmentation used is random horizontal flipping. The weights of the
backbone are initialized with DINOv2 [45]. We experiment with Small, Base and
Large ViT models as encoder, with a batch-size of 8 images and an initial learning
rate of 5e-5. Our models are trained with automated mixed precision [39] for 400k
iterations. At resolution 448x448, training a ViT-S (resp. ViT-L) takes around
2 (resp. 5) days on a single NVIDIA V100 GPU. The default detection threshold
is 7=0.5. We use the neutral SMPL-X model 10| with 10 shape components.

A.2 Datasets descriptions

BEDLAM |[5] is a large-scale multi-person synthetic dataset composed of 300k
images for training including diverse body shapes, skin tones, hair and clothing.
Synthetic humans are built by using a SMPL-X mesh and adding some assets
such as clothes and hair. In each scene there are between 1 to 10 people with
diverse camera viewpoints, and the test set is composed of 16k images.
AGORA [46] is a multi-person high realism synthetic dataset which contains
14k images for training, 2k images for validation and 3k for testing. It consists of
4,240 high-quality human scans each fitted with accurate SMPL and SMPL-X
annotations. Results on the test set are obtained using an online leaderboard
for SMPL and SMPL-X results. We also report results on the validation for the
distance estimation following [57}/58] since the leaderboard does not give this
metric on the test set.

3DPW [35] is an outdoor multi-person dataset composed of 60 sequences
which contain respectively 17k images for training, 8k images for validation and
24k images for testing. It was the first in-the-wild dataset in this domain for
evaluating body mesh reconstruction methods [29}/30].
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MuPoTs [37] is an outdoor multi-person dataset captured in a multi-view
setting. The dataset is composed of 8k frames from 20 real-world scenes with up
to three subjects. We use this dataset for evaluation only. Poses are annotated
in 3D with 14 body joints.

CMU Panoptic [24] is a large-scale controlled environment multi-person
dataset captured using multiple cameras. Each person is annotated with 14 joints
in 3D. Following prior works [22,|48|, we use 4 sequences which leads to a test
set composed of 9k images.

EHF [47] is the first evaluation dataset for SMPL-X based models. It was built
using a scanning system followed by a fitting of the SMPL-X mesh. It is a single
person whole-body pose dataset composed of 100 images.

UBody [31] is a large-scale dataset covering a wide range of real-life scenarios
such as fitness videos, VLOGs or sign language. Most of the time only the upper
body part of the persons is visible. We use the inter-scene protocol where there
are 55k images for training and 2k images for testing.

Training datasets used by state-of-the-art methods are many, and each
method uses its own mix. For more transparency, we report in Table [7] the
training sets used by all methods that we compare to in Table 5 of the main
paper.

Table 7: Training datasets used by state-of-the-art models. ROMP [57| men-
tions other datasets for training their ‘advanced’ model, that we did not include. We
also did not include hands-only or face-only datasets.

Method Human3.6M MPI-INF-3DHP PoseTrack LSP LSP Extended MPII MS-CoCo MuCo-3DHP CrowdPose UP AICH RH
Body-only

CRMH |22] v 4 v v v 4 4

3DCrowdNet |9 4 4 v 4 v

ROMP |57 4 v 4 4 4 v 7/
BEV 58] v v 4 v 4 v 4
PSVT [48] v v v v v v

Whole-Body

Hand4Whole 42 v v v

OSX [31] v v 4

SMPLer-X |7| 32 datasets. Refer to their paper for a full list

ExPose |10} v v v v

FrankMocap |54 v v

PIXIE [14] v v v v

PyMAF-X 66| 4 v 4 v 4 v

A.3 Metrics Descriptions

Prior work on multi-person human mesh recovery proposed metrics that can be
separated into three categories: 1) metrics that evaluate the reconstruction of the
human mesh, centered around the root joint; ii) metrics that evaluate detection
and iii) metrics that evaluate the prediction of spatial location. In this section,
we review the metrics used in the main paper.

Human-centered mesh metrics. To evaluate the predicted human mesh, we
center both estimated and ground-truth human meshes around the pelvis joint.
We use per-vertex error (PVE) to evaluate the accuracy of the entire 3D mesh.
When available, we also report PVE computed on vertices corresponding to the
face and hands only (PVE-Face and PVE-Hands). Because global orientation
mistakes heavily impact the PVE, we also assess prediction quality without
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taking the global orientation into account by reporting all these metrics after
Procrustes-Alignment (denoted with the prefix PA). Since some human body
datasets do not have mesh ground-truths but only 3D keypoints, we also report
Mean Per Joint Position Error (MPJPE) on the 14 LSP 3D keypoints as well as
the Percentage of Correct Keypoints (PCK) using a threshold of 15cm.
Detection metrics. To evaluate detection we rely on the Recall, Precision
and F1-Score metrics. On some datasets, it is also common to report normalized
mean joints error (NMJE) and normalized mean vertex error (NMVE), which are
obtained by dividing mean joint errors and mean vertex errors by the F1-Score.
This produces a score sensitive to both reconstruction quality and detection.
Spatial location metrics. To evaluate distance predictions we use the Mean
Root Position Error (MRPE) by using the pelvis as root keypoint.

A.4 TUniversal model and Fine-tuning strategy

In the main paper, Table 5 presents the performance of a universal model (de-
noted with a T) on multiple benchmarks, and results obtained by fine-tuning the
model on a specific training set. The universal model is trained on a combination
of BEDLAM, AGORA, CUFFS and UBody. The UBody dataset contains noisy
ground truths, unlike BEDLAM, AGORA and CUFFS. Nevertheless we found
that for the universal model, including UBody in the training data improves ro-
bustness to in-the-wild images with little impact on synthetic benchmarks. This
was not the case for other real-world datasets such as MS-CoCo or MPII, possibly
because they have the same annotation issues but bring less variability. For re-
sults reported with finetuning, we follow the standard practice of independently
finetuning on the training set of AGORA, 3DPW and UBody when evaluating
on the respective benchmarks. While CMU and MuPoTs do not have an associ-
ated training set, we still consider a simple finetuning strategy: we finetune the
universal model on BEDLAM, AGORA and 3DPW, by sampling images equally
between the datasets during the finetuning stage. We observe that this brings
substantial gains, presumably because this training data mix is better aligned
with the data distributions of CMU and MuPoTs.

B The synthetic CUFFS dataset

Motivation. Existing synthetic datasets, namely BEDLAM and AGORA, pro-
vide perfect ground truths for the SMPL-X model, i.e., including faces and
hands. However, in these datasets: i) most humans are seen from afar, which
is not ideal to capture subtle details needed to properly reconstruct faces and
hands and ii) hand poses lack diversity. In particular since our method is single-
shot, i.e., runs without specific image crops or feature resampling around hands,
hands consist of only a few visible pixels for many training images. We rem-
edy this by adding a dedicated, booster dataset, consisting of close-up pictures
of single humans with clearly visible hands in diverse poses, to the rest of the
training data.
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Fig. 6: Samples from our CUFFS dataset with a rendered human using Hum-
Gen3D (top) and the corresponding SMPL-X shape used for retargeting (overlaid at
the bottom).

3D Human models. We render images of 3D human models. Following the
strategy of BEDLAM , we use a procedural generation pipeline with fine
control over parameters, rather than commercially available scans of clothed
humans (e.g. as in AGORA ) To this end, we make use of HumGen3D , a
human generator add-on to the Blender software tool . This add-on generates
3D rigged human models, with different clothing (layered on top of the body
mesh), hairstyles, skin tones, age, etc. This yields a high diversity of humans
overall.

SMPL-X annotations. In order to produce precisely annotated images, we
take SMPL-X parameters as input and deform human models to closely match
these annotations. We proceed through iterative optimization by minimizing
the pairwise distance between corresponding points at the surface of SMPL-
X and human mesh models, using semi-automatically annotated dense corre-
spondences. Figure [f] shows examples of rendered avatars and their associated
SMPL-X meshes and illustrates the quality of the annotations.

Rendering. Characters are placed in empty scenes with random high dynamic
range images from Poly Haven |3| as environment backgrounds. We render images
with a 900x675 resolution and a 56.2° horizontal field of view. The principal
point is set at the center of the image.

Human shape sources and hand diversity. We seek to generate humans
that are: i) close to the camera such that the hands are sufficiently visible, and
ii) with diverse hand poses. For the first point, we simply render images of a
single person, facing the camera, at a distance varying slightly around 2.5 me-
ters so that it fills most of the image. We find that this yields clearly visible
hands. For the second point, we sample human poses from BEDLAM, AGORA,
and UBody, where hand annotations are respectively: taken from the GRAB
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laid SMPL-X annotations, a close-up on the image and annotations around the hands
corresponding to the rectangle shown in the second column. People are seen up close,
and diverse hand poses are used.

dataset, fitted to 3D scans, and fitted to in-the-wild images. In addition to these
three sources, in order to further diversify our set of hand poses, we also augment
UBody’s annotations with hands from other sources: we create a large set of di-
verse hand poses using MANO annotations from the InterHand2.6M
dataset. This is done by extracting all MANO annotations and converting them
into a right hand format, using a mirroring operation for left hand poses. When
creating a synthetic image with augmented hands, we sample two random hand
annotations from the large set, transform one into a left hand format and replace
SMPL-X hand annotations using the new hand poses. This left/right augmen-
tation strategy further increases hand pose diversity compared to the original
InterHand2.6M dataset.

Dataset. We generate about 60k images, with human shapes equally sampled
from i) BEDLAM, ii) AGORA, iii) UBody, iv) UBody, with increased hand
diversity. We show qualitative examples of our generated images and the associ-
ated SMPL-X mesh in Figures[6] and [} We also provide examples of hand pose
augmentations in Figure

Impact. In addition to the quantitative gain reported in the main paper, we
show some qualitative example of adding the synthetic CUFFS dataset to the
training set in Figure [9] For instance, in the third example, the hands are sig-
nificantly better predicted when the training set includes our synthetic CUFFS
dataset.
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Fig. 8: Illustrations of how we increase hand diversity in human shape
sources to be rendered. Given an annotation from UBody (image on top, annota-
tion in the middle row), we swap the hands from a large set built from InterHand2.6M
to have more diversity in terms of hand poses.

Table 8: BEDLAM-test leaderboard. CLIFF is trained on BEDLAM, CLIFF+
on BEDLAM+AGORA. Multi-HMR is the only multi-person and the only single-shot
method reported on the benchmark to date.

Method ‘Fl—ScoreT Precisiont RecallﬂBody—MVEi FullBody-MVE| Face-MVE| LHand-MVE| RHand-MVE|
PIXIE |14 0.94 0.99 0.90 100.8 149.2 51.4 44.8 48.9
CLIFF 0.94 0.99 0.90 61.3 94.6 29.8 34.7 35.5
CLIFF+ 0.94 0.99 0.90 57.5 87.2 27.3 30.3 32.6
Multi-HMR| 0.97 0.99 0.90 53.4 76.8 21.3 23.0 25.8

C Additional results

We now present additional results on two additional test datasets namely BED-
LAM [5| and 3DMPB .

Results on BEDLAM-test. We report results on BEDLAM-test in Table
using the recently released online leaderboard. Since the leaderboard is extremely
recent (online since October 2023), we were unable to compare to many existing
methods. At the time of this submission, only single-person methods are
reported in the leaderboard which makes the comparison with our method diffi-
cult. Still, Multi-HMR significantly outperforms other methods on this datasets.
Results on 3DMPB. We report results on whole-body predictions on the
3DMPB dataset in Table@ Multi-HMR reaches state-of-the-art performance
with all backbones (ViT-S/B/L).

D Additional ablations

We conduct additional ablations on model design choices. First, we evaluate
various initializations for ViT-Base models. Second, we ablate different choices
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Input image w/ CUFFS w/o CUFFS

Fig. 9: Qualitative results on some UBody images with or without training
with our synthetic CUFFS dataset. Hand pose predictions are more accurate when
the model has been trained with the synthetic CUFFS dataset.

of primary keypoint in our formulation of detection. Third, we evaluate the
impact of the different training losses considered in the main paper.

D.1 Backbone pretraining

In Figure we report results using various pretraining methods, with a ViT-
Base architecture and 448x448 input images. DINO [8] and DINOv2 rely
on self-supervised pre-training, while ViT-Pose [63] is trained with 2D body key-
points supervision. DINOv2 leads to the best final performance, and converges
faster. The difference in performance decreases while training longer, which may
be due to the relatively large size of our training set, with ViT-Pose eventually
achieving comparable results. Thus, using DINOv2 may be most beneficial when
training compute is limited.

D.2 Choice of primary keypoint

In Table we report results with different choices of primary keypoint: head,
pelvis or spine. The method appears robust to this choice, though using the



26 Baradel et al.

Table 9: Comparison to the state of the art on the 3DMPB dataset.

Method |PA-MPJPE]
ROMP [57] 72.0
Pose2UV [19] 69.5
Multi-HMR ViT-S 62.6
Multi-HMR ViT-B|  55.8
Multi-HMR ViT-L|  49.7

Table 10: Additional ablative study. We report additional ablation experiments

on (a) the choice of the primary keypoint, and (b) the influence of training losses.

(a) Primary keypoint
MuPoTSt 3DPW/| EHF|
head 76.3 74.4 55.3
pelvis  77.0 74.5 57.5
spinel 77.1 749 56.1
spine3 76.5 74.8 56.8

head as primary keypoint yields better results by a small margin. We postulate
it might be due to the fact that the head is less often occluded in images, and
we keep the head as primary keypoint.

(b) Losses

MuPoTSt 3DPW/ EHF|

v3d
rot

75.0 76.1
70.1 92.2

+v3d 76.3 73.5
+v2d 79.2 70.5

D.3 Training losses on 3D and 2D

We experiment with different combinations of reconstruction losses: directly on
the SMPL-X parameters (rot), on the vertices produced by the SMPL-X model
(v3d), a combination of both (rot + v3d), and the addition of reprojection losses
(+v2d). Table shows that adding as much supervision as possible (in 3D,
2D and rotation space) yields the best performance, possibly because it reduces

ambiguities during training.

L 275 | |
H ~— 70_/ B
°a gg | DINO ||
e | O ViT-Pose | |
= 560 .
5551 ‘ ‘oDINO2‘7
100k 300k

Fig. 10: Impact of backbone pretraining. Initializing the backbone with DINOv2

leads to faster convergence.

Iterations

65.0
97.9
55.3
53.2
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E Limitations

While Multi-HMR reaches state-of-the-art performance across multiple human
mesh recovery benchmarks, we still observe some limitations that may be im-
proved upon in the future.

Patch-level detection. We follow the CenterNet 71| paradigm for the detec-
tion stage, which allows us to propose a single-shot method without elaborate
post-processing. However it comes with the main limitation that multiple hu-
mauns (i.e. person-centers) may belong to the same patch in the image. Because of
this, some collisions happen during training and some detections are impossible
at inference time. This well-known limitation is already discussed in Appendix
C of the CenterNet paper |71]. We refer reader to this section for more details.
In our case we observe that as long as we use images of reasonable resolution
(i.e. more than 448x448) and a small patch-size (i.e., 14x14), collisions remain
very rare at training. As shown in the attached video, Multi-HMR. produces
reasonable predictions even in relatively crowded environment which indicates
that our modeling is overall robust. In future work, robustness could likely be
increased further, e.g. by having multiple queries per patch.

Truncated humans. We observe that Multi-HMR sometimes struggles to de-
tect humans when the head is not visible; this may in part be due to the fact
that we chose the head as primary keypoint, and also to the fact that such data
is very rare in the training datasets. We still observe (see attached video) that
Multi-HMR is able to detect human when only a small part of the head is visible.
We make the assumption that adding more aggressive cropping augmentations
during training would lead to a model more robust to this type of truncation by
the image frame. As shown in the attached video, we observe that Multi-HMR
is already quite robust to occlusions in general.

SMPL-X representation. We employ the SMPL-X parametric 3D model for
representing whole-body human mesh. As discussed in the method section, we
use the pose parameters expressed by the relative rotations of each joint regard-
ing its parent given a pre-defined kinematic tree. Such representation is easy to
use and commonly relied upon in practice [15,/29], however it may raise several
concerns: i) in general rotations are not easy to regress as they lie in a non-
Euclidean space [6]. This is a topic that may not have been explored sufficiently
in the 3D vision community so far and may deserve further work — we use the
6D representation for regression — ii) regressing the pose using a relative rep-
resentation can lead to an accumulation of errors, particularly on the extreme
parts of the body (hands, legs). We believe that investigating different pose rep-
resentations would be beneficial for Multi-HMR and the human mesh recovery
field in general.
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Fig. 11: Additional qualitative results of Multi-HMR. Front-view and Side-view
3D reconstructions on test images (Left: 3DPW, Right: MuPoTs).
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